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LARGE DEVIATIONS FOR LOCAL TIMES AND INTERSECTION
LOCAL TIMES OF FRACTIONAL BROWNIAN MOTIONS

AND RIEMANN–LIOUVILLE PROCESSES

BY XIA CHEN1, WENBO V. LI2, JAN ROSIŃSKI3 AND QI-MAN SHAO4

University of Tennessee, University of Delaware, University of Tennessee and
Hong Kong University of Science and Technology

In this paper, we prove exact forms of large deviations for local times
and intersection local times of fractional Brownian motions and Riemann–
Liouville processes. We also show that a fractional Brownian motion and the
related Riemann–Liouville process behave like constant multiples of each
other with regard to large deviations for their local and intersection local
times. As a consequence of our large deviation estimates, we derive laws
of iterated logarithm for the corresponding local times. The key points of
our methods: (1) logarithmic superadditivity of a normalized sequence of
moments of exponentially randomized local time of a fractional Brownian
motion; (2) logarithmic subadditivity of a normalized sequence of moments
of exponentially randomized intersection local time of Riemann–Liouville
processes; (3) comparison of local and intersection local times based on em-
bedding of a part of a fractional Brownian motion into the reproducing kernel
Hilbert space of the Riemann–Liouville process.

1. Introduction. Let BH(t), t ≥ 0, be a standard d-dimensional fractional
Brownian motion with index H ∈ (0,1). That is, BH(t) is a zero-mean Gaussian
process with stationary increments and covariance function

E[BH(t)BH (s)�] = 1
2{|t |2H + |s|2H − |t − s|2H }Id,

where Id is the identity matrix of size d . BH(t) is also a self-similar process with
index H . The local time Lx

t (B
H ) of BH(t) at x ∈ R

d is defined heuristically as

Lx
t (B

H ) =
∫ t

0
δx(B

H (s)) ds, t ≥ 0.

It is known that Lx
t (B

H ) exists and is jointly continuous in (t, x) as long as

Hd < 1. By the self-similarity of a fractional Brownian motion, Lx
t (B

H )
d=
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t1−HdL
x/tH

1 (BH ). In particular,

L0
t (B

H )
d= t1−HdL0

1(B
H ).(1.1)

Our first goal is to investigate large deviations associated with tail probabilities
of L0

t (B
H ). By the scaling given above, we may consider only t = 1. In the clas-

sical case, when H = 1/2 and d = 1, it is well known (see the book of Revuz and

Yor [37], page 240) that L0
1(B

1/2)
d= |U | with U ∼ N (0,1). Consequently,

lim
a→∞a−2 log P{L0

1(B
1/2) ≥ a} = −1

2 .

In Theorem 2.1 we prove that for a fractional Brownian motion a nontrivial limit

lim
a→∞a−1/Hd log P{L0

1(B
H ) ≥ a}

exists and we give bounds for this limit.
Closely related to the fractional Brownian motion is the Riemann–Liouville

process WH(t) with index H > 0 which is defined as a stochastic convolution

WH(t) =
∫ t

0
(t − s)H−1/2 dB(s), t ≥ 0,(1.2)

where B(t) is a d-dimensional standard Brownian motion. {WH(t)}t≥0 is a self-
similar zero-mean Gaussian process with index H , as is BH(t), but WH(t) does
not have stationary increments and there is no upper bound restriction on index
H > 0. If L0

t (W
H ) denotes the local time of WH(t) at 0, then by the self-similarity

we also have

L0
t (W

H )
d= t1−HdL0

1(W
H).(1.3)

The relation between WH(t) and BH(t) becomes transparent when we write a
moving average representation of BH(t), t ∈ R, in the form

BH(t) = cH

∫ t

−∞
[(t − s)H−1/2 − (−s)

H−1/2
+ ]dB(s),(1.4)

where

cH = √
2H2HB(1 − H,H + 1/2)−1/2,(1.5)

and B(·, ·) denotes the beta function. The analytic derivation of cH is given for
completeness in the Appendix (a different but equivalent form of cH is also derived
in Mishura [34], Lemma A.0.1, by a Fourier analytic method). From (1.4), we have
a decomposition

c−1
H BH(t) = WH(t) + ZH(t),(1.6)

where

ZH(t) =
∫ 0

−∞
[(t − s)H−1/2 − (−s)H−1/2]dB(s)(1.7)
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is a process independent of WH(t).
This moving average representation for fractional Brownian motion was intro-

duced in the pioneering work of Mandelbrot and Van Ness [32] and used exten-
sively by many authors, sometimes with different normalizing constant cH in (1.5)
(e.g., Li and Linde [28] uses �(H + 1/2)−1 for cH ).

We will show that paths of ZH(t), away from t = 0, can be matched with
functions in the reproducing kernel Hilbert space of WH(t) (Proposition 3.5,
Section 3.2). This and the independence of ZH(t) from WH(t) will allow us
to show that large deviation constants of tail probabilities of L0

1(W
H) and of

L0
1(c

−1
H BH) = cd

HL0
1(B

H ) are the same (Theorem 2.2). In this context, we also
want to mention Theorem 3.22 of Xiao [42], who established bounds for tail prob-
abilities of the local time L0

1 of the general Gaussian processes in the form

−C1 ≤ lim inf
a→∞

1

φ(a)
log{L0

1 ≥ a} ≤ lim sup
a→∞

1

φ(a)
log{L0

1 ≥ a} ≤ −C2

and raised a question on the existence of the limit (Question 3.25, [42]). Further,
we cite the paper by Baraka, Mountford and Xiao [4] for some similar tail estimate
of the local time of multi-parameter fractional Brownian motions.

Next, we will consider p independent copies BH
1 (t), . . . ,BH

p (t) of a standard
d-dimensional fractional Brownian motion BH(t). Throughout this paper,

p∗ := p/(p − 1)

will stand for the conjugate to p > 1. Our next and main goal is to investigate
large deviations for intersection local time αH (·) of BH

1 (t), . . . ,BH
p (t), which is a

random measure on (R+)p given heuristically by

αH (A) =
∫
A

p−1∏
j=1

δ0
(
BH

j (sj ) − BH
j+1(sj+1)

)
ds1 · · · dsp, A ⊂ (R+)p.

Quantities measuring the amount of self-intersection of a random walk, or of mu-
tual intersection of several independent random walks, have been studied inten-
sively for more than twenty years; see, for example, [9, 10, 13, 19, 25, 26, 33].
This research is motivated by the role these quantities play in quantum field theory
(see, e.g., [14]) in our understanding of self-avoiding walks and polymer models
(see, e.g., [21, 31]) or in the analysis of stochastic processes in random environ-
ments (see, e.g., [2, 15, 16, 20]). In the latter models, dependence between a mov-
ing particle and a random environment frequently comes from the particle’s ability
to revisit sites with an attractive (in some sense) environment. Consequently, mea-
sures of self-intersection quantify the degree of dependence between movement
and environment. Typically, in high dimensions, this dependence gets weaker, as
the movements become more transient and self-intersections less likely. Investiga-
tion of large deviations for intersection local times is closely related to asymptotics
of the partition functions in above models.
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There are two equivalent ways to construct αH (A) rigorously. In the first way,
αH (A) is defined as the local time at zero of the multi-parameter process

X(t1, . . . , tp) = (
BH

1 (t1) − BH
2 (t2), . . . ,

(1.8)
BH

p−1(tp−1) − BH
p (tp)

)
, (t1, . . . , tp) ∈ (R+)p.

More precisely, consider the occupation measure

μA(B) =
∫
A

1B

(
BH

1 (s1) − BH
2 (s2), . . . ,

BH
p−1(sp−1) − BH

p (sp)
)
ds1 · · · dsp, B ⊂ R

d(p−1).

By Theorem 7.1, as Hd < p∗, there is a density function αH (A, ·) of μA(·) such
that if A = [0, t1] × · · · × [0, tp], then αH ([0, t1] × · · · × [0, tp], x) is jointly con-
tinuous in (t1, . . . , tp, x). We define αH (A) := αH (A,0).

For the second way of constructing αH (A), write for any ε > 0

αH
ε (A) =

∫
Rd

∫
A

p∏
j=1

pε

(
BH

j (sj ) − x
)
ds1 · · · dsp dx,(1.9)

where pε are probability densities approximating δ0 as ε → 0. Notice that

αH
ε (A) =

∫
A

hε

(
BH

1 (s1) − BH
2 (s2), . . . ,B

H
p−1(sp−1) − BH

p (sp)
)
ds1 · · · dsp

=
∫

Rd(p−1)
hε(x)αH (A,x) dx,

where

hε(x1, . . . , xp−1) =
∫

Rd
pε(−x)

p−1∏
j=1

pε

(p−1∑
k=j

xk − x

)

is an probability density on R
d(p−1) approaching δ0(x1, . . . , xp−1) as ε → 0+.

By the continuity of αH (A,x), limε→0+ αH
ε (A) = αH (A) almost surely. Ap-

plying Proposition 3.1 to the Gaussian field given in (1.8), the convergence is also
in Lm for all positive m. This way of constructing αH (A) justifies the symbolic
notation

αH (A) =
∫

Rd

∫
A

p∏
j=1

δ0
(
BH

j (sj ) − x
)
ds1 · · · dsp dx.

In the special case p = 2 and Hd < 2, Nualart and Ortiz-Latorre [35] proved
that αH

ε ([0, t1] × [0, t2]) converges in L2 as ε → 0+, with

pε(x) = (2επ)−d/2 exp{−|x|2/2ε}.(1.10)
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For the Riemann–Liouville process WH(t) an analogous construction of the
intersection local time

α̃H (A) =
∫
A

p−1∏
j=1

δ0
(
WH

j (sj ) − WH
j+1(sj+1)

)
ds1 · · · dsp

=
∫

Rd

∫
A

p∏
j=1

δ0
(
WH

j (sj ) − x
)
ds1 · · · dsp dx, A ⊂ (R+)p,

can be done under the same condition Hd < p∗.
By the self-similarity of BH(t) and WH(t), for any t > 0

αH ([0, t]p)
d= tp−Hd(p−1)αH ([0,1]p)(1.11)

and

α̃H ([0, t]p)
d= tp−Hd(p−1)α̃H ([0,1]p).(1.12)

Finally, we would like to discuss this research in a more general context
of Markovian versus non-Markovian structures. Naturally, most of the existing
results on large deviation for (intersection) local time have been obtained for
Markov processes such as Brownian motions, Lévy stable processes, general Lévy
processes and random walks. The underlying Markovian structure has been es-
sential for the methods in these studies; see Chen [10] for references and a sys-
tematical account of such works. Departures from Markovian models are often
driven by the underlying physics to match the required level of dependence (mem-
ory) and smoothness/roughness of sample paths. Fractional Brownian motion and
Riemann–Liouville processes are the most natural candidates as extensions of
Brownian motion into the non-Markovian world. They offer the existence of the
intersection local time for any number p of processes in any dimension d as long
as H is sufficiently small. Therefore, they may help scientists to build more realis-
tic and robust models while posing serious challenge to mathematicians due to the
non-Markovian nature.

In this paper, we mainly use Gaussian techniques motivated from the study of
continuity properties of local time, and more generally, from theory of Gaussian
processes. It is also helpful to see connections between small ball probability es-
timates and tail behavior of the local time. Indeed, large value of the local time at
zero means that the process stayed for a long time in a small neighborhood of zero.
By this analogy, Propositions 3.1 and 3.3 can be motivated by the corresponding
results for small balls (see comments preceding these propositions in Section 3.1).

2. Main results.

THEOREM 2.1. Let BH(t) be a standard d-dimensional fractional Brownian
motion with index H such that Hd < 1. Then the limit

lim
a→∞a−1/(Hd) log P{L0

1(B
H ) ≥ a} = −θ(H,d)(2.1)
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exists and θ(H,d) satisfies the following bounds:

(πc2
H/H)1/(2H)θ0(Hd) ≤ θ(H,d) ≤ (2π)1/(2H)θ0(Hd),(2.2)

where cH is given by (1.5) and

θ0(κ) = κ

(
(1 − κ)1−κ

�(1 − κ)

)1/κ

.(2.3)

Notice that in the classical case of one-dimensional Brownian motion, (2.2)
becomes the equality. The fact that the lower bound is less than or equal to the
upper bound in (2.2) is equivalent to c2

H ≤ 2H , which can also be seen directly.
Indeed, from (3.16)

c2
H

2H
= Var(BH (1)|BH(s), s ≤ 0) ≤ Var(BH (1)) = 1.(2.4)

The equality only holds for a Brownian motion, that is, H = 1/2.

THEOREM 2.2. Let WH(t) be a d-dimensional Riemann–Liouville process as
in (1.2) such that Hd < 1. Then the limit

lim
a→∞a−1/(Hd) log P{L0

1(W
H) ≥ a} = −θ̃ (H, d)(2.5)

exists with

θ̃ (H, d) = (cH )−1/H θ(H,d),(2.6)

where θ(H,d) is as in Theorem 2.1 and cH is given by (1.5).

THEOREM 2.3. Let α̃H (·) be the intersection local time of p-independent
d-dimensional Riemann–Liouville process WH

1 (t), . . . ,WH
p (t), where Hd < p∗.

Then the limit

lim
a→∞a−p∗/(Hdp) log P{α̃H ([0,1]p) ≥ a} = −K̃(H,d,p)(2.7)

exists and K̃(H,d,p) satisfies the following bounds:

p
Hd

p∗
(

1 − Hd

p∗
)1−p∗/(Hd)( π

H

)1/(2H)

pp∗/(2Hp)�

(
1 − Hd

p∗
)−p∗/(Hd)

≤ K̃(H,d,p)
(2.8)

≤ p
Hd

p∗
(

1 − Hd

p∗
)1−p∗/(Hd)( 2π

c2
Hp∗

)1/(2H)

×
(∫ ∞

0
(1 + t2H)−d/2e−t dt

)−p∗/(Hd)

,

where cH is given by (1.5).
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There is a direct way to show that the lower bound is less than or equal
to the upper bound in (2.8). Observe that by Hölder’s inequality, 1 + t2H ≥
p1/p(p∗)1/p∗

t2H/p∗
which leads to∫ ∞

0
(1 + t2H )−d/2e−t dt ≤ p−d/(2p)(p∗)−d/(2p∗)�(1 − Hd/p∗).

After cancellation on both sides of (2.8), the problem is then reduced to examining
the relation c2

H ≤ 2H , which is given in (2.4).

THEOREM 2.4. Let αH (·) be the intersection local time of p-independent
standard d-dimensional fractional Brownian motions BH

1 (t), . . . ,BH
p (t), where

Hd < p∗. Then the limit

lim
a→∞a−p∗/(Hdp) log P{αH ([0,1]p) ≥ a} = −K(H,d,p)(2.9)

exists with

K(H,d,p) = c
1/H
H K̃(H,d,p).(2.10)

Our results seem to be closely related to the large deviations of the self-
intersection local times heuristically written as

βH ([0, t]p<) =
∫
[0,t]p<

p−1∏
j=1

δ0
(
BH(sj ) − BH(sj+1)

)
ds1 · · · dsp,

where

[0, t]p< = {(s1, . . . , sp) ∈ [0, t]p; s1 < · · · < sp}.
In the case when Hd < 1, we can rewrite

βH ([0, t]p<) = 1

p!
∫

Rd
[Lx

t (B
H )]p dx.

To see the connection between αH and βH , notice that by Hölder’s inequality and
arithmetic and geometric mean inequality,

(αH ([0,1]p))1/p =
(∫

Rd

p∏
j=1

Lx
1(BH

j ) dx

)1/p

≤ 1

p

p∑
j=1

(∫
Rd

[Lx
1(BH

j )]p dx

)1/p

.

Thus, for any θ > 0,

E exp
{
θa(p∗−Hd)/(Hdp)(αH ([0,1]p))1/p}

≤
[
E exp

{
θp−1a(p∗−Hd)/(Hdp)

(∫
Rd

[Lx
1(BH )]p dx

)1/p}]p

.
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On the other hand, by Theorem 2.4 and Varadhan’s integral lemma,

lim
a→∞a−p∗/(Hdp) log E exp

{
θp−1a(p∗−Hd)/(Hdp)(αH ([0,1]p))1/p}

= sup
λ>0

{
θp−1λ1/p − K(H,d,p)λp∗/(Hdp)}

= (
Hd/(p∗K(H,d,p))

)Hd/(p∗−Hd)
(1 − Hd/p∗)(θ/p)p

∗/(p∗−Hd).

Consequently,

lim inf
a→∞ a−p∗/(Hdp) log E exp

{
θa(p∗−Hd)/(Hdp)

(∫
Rd

[Lx
1(BH )]p dx

)1/p}
≥ p−1(

Hd/(p∗K(H,d,p))
)Hd/(p∗−Hd)(2.11)

× (1 − Hd/p∗)(θ/p)p
∗/(p∗−Hd).

If this can be strengthened into equality with limits, then by Gärtner–Ellis theo-
rem, for any λ > 0,

lim
a→∞a−p∗/(Hdp) log P

{(∫
Rd

[Lx
1(BH )]p dx

)1/p

≥ λa1/p

}
= − sup

θ>0

{
λθ − p−1(

Hd/(p∗K(H,d,p))
)(Hd)/(p∗−Hd)

×(1 − Hd/p∗)(θ/p)p
∗/(p∗−Hd)}

= −p−1K(H,d,p)λp∗/(Hd).

In particular,

lim
a→∞a−p∗/(Hdp) log P

{∫
Rd

[Lx
1(BH )]p dx ≥ a

}
= −p−1K(H,d,p).(2.12)

The conjecture (2.12) is partially supported by a recent result of Hu, Nualart
and Song (Theorem 1, [23]) which states that when Hd < 1 and p = 2,

E

{∫
Rd

[Lx
1(BH )]2 dx

}n

≤ Cn(n!)Hd, n = 1,2, . . . ,

for some C > 0. Indeed, a standard application of Chebyshev inequality and Stir-
ling formula leads to the upper bound of the form

lim sup
a→∞

a−1/(Hd) log P

{∫
Rd

[Lx
1(BH )]2 dx ≥ λa

}
≤ −l,

where l is a positive constant. This rate of decay of tail probabilities is sharp by
comparing it with (2.11) for p = 2.
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In the case Hd ≥ 1, βH ([0, t]p<) cannot be properly defined. On the other hand,
this problem can be fixed in some cases by renormalization. For simplicity we
consider the case p = 2. Hu and Nualart prove (Theorem 1, [22]) that for 1 ≤
Hd < 3/2, the renormalized self-intersection local time formally given as

γ H ([0, t]2
<) =

∫∫
{0≤r<s≤t}

δ0
(
BH(r) − BH(s)

)
dr ds

− E

∫∫
{0≤r<s≤t}

δ0
(
BH(r) − BH(s)

)
dr ds

exists with the scaling property

γ H ([0, t]2
<)

d= t2−Hdγ H ([0,1]2
<).(2.13)

We also point that an earlier work by Rosen [38] in the special case d = 2.
Based on a similar but more heuristic reasoning, it seems plausible to expect

that

lim
a→∞a−1/(Hd) log P{γ H ([0,1]2

<) ≥ a} = −2(Hd)−1−1K(H,d,2).(2.14)

We refer the interested reader to Theorem 4, [23] for some exponential integrabil-
ities established by Hu, Nualart and Song based on Clark–Ocone’s formula. We
leave these problems for future investigation.

Our large deviations estimates can be applied to obtain the law of the iterated
logarithm.

THEOREM 2.5. When Hd < 1,

lim sup
t→∞

t−(1−Hd)(log log t)−HdL0
t (B

H ) = θ(H,d)−Hd a.s.,(2.15)

lim sup
t→∞

t−(1−Hd)(log log t)−HdL0
t (W

H ) = θ̃ (H, d)−Hd a.s.(2.16)

When Hd < p∗,

lim sup
t→∞

t−p(1−Hd/p∗)(log log t)−Hd(p−1)αH ([0, t]p)

(2.17)
= K(H,d,p)−Hd(p−1) a.s.,

lim sup
t→∞

t−p(1−Hd/p∗)(log log t)−Hd(p−1)α̃H ([0, t]p)

(2.18)
= K̃(H,d,p)−Hd(p−1) a.s.,

Even with the large deviations stated in Theorem 2.1–2.4, the proof of The-
orem 2.5 appears to be highly nontrivial due to long-range dependency of the
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model. Here, we mention some previous results given in Baraka and Mount-
ford [3], Baraka, Mountford and Xiao [4]. Using the large deviation estimate sim-
ilar to (2.1), Baraka, Mountford and Xiao were able to establish some laws of the
iterated logarithm which describe the short term behaviors (as t → 0+) of the local
times of fractional Brownian motions. As pointed out by Baraka and Mountford
(page 163, [3]), their method does not lead to the laws of the iterated logarithm of
large time given in Theorem 2.5.

Theorem 2.5 will be proved in Section 6. The proof of the lower bound appears
to be highly nontrivial due to long-range dependency of the model. The approach
relies on a quantified use of Cameron–Martin formula.

Since all main theorems stated in this section have been known in the classic
case H = 1/2 (see, e.g., [9] and [12]), we assume H �= 1/2 in the remainder of the
paper.

3. Basic tools. In this section, we provide some basic results that will be used
in our proofs. We state them separately for a convenient reference.

3.1. Comparison of local times. We will give general comparison results for
local times for Gaussian processes. They are based on the standard Fourier analytic
approach but go far beyond, motivated mainly by similar small deviation estimates.
We start with an outline of the analytic method typically used in the study of local
times for Gaussian processes, in particular on its the moments; see Berman [7] and
Xiao [42].

For a fixed sample function and fixed time t > 0, the Fourier transform on space
variable x ∈ R

d is the function of λ ∈ R
d ,∫

Rd
eiλ·xL(t, x) dx =

∫ t

0
eiλ·X(s) ds.

Thus, the local time L(t, x) can be expressed as the inverse Fourier transform:

L(t, x) = 1

(2π)d

∫
Rd

e−iλ·x
∫ t

0
eiλ·X(s) ds dλ.

The mth power of L(t, x) is

L(t, x)m

= 1

(2π)md

∫
Rmd

e−ix·∑m
k=1 λk

×
∫
[0,t]m

exp

(
i

m∑
k=1

λk · X(sk)

)
ds1 · · · dsm dλ1 · · · dλm.

Take the expected value under the sign of integration: the second exponential in the
above integral is replaced by the joint characteristic function of X(s1), . . . ,X(sm).
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In the Gaussian case, we obtain

EL(t, x)m

= 1

(2π)md

×
∫

Rmd
e−ix·∑m

k=1 λk

×
∫
[0,t]m

exp

(
−1

2
Var

(
m∑

k=1

λk · X(sk)

))
ds1 · · · dsm dλ1 · · · dλm.

Interchanging integration and applying the characteristic function inversion for-
mula, we can get a more explicit (but somewhat less useful) expression in terms of
integration associated with det(EX(si)X(sj ))

−1/2. Estimates of the moments of
local time L(t, x) thus depend on the rate of decrease to 0 of det(EX(si)X(sj )) as
sj − sj−1 → 0 for some j . Here in our approach, we have to make proper adjust-
ment by approximating L(t, x).

Consider now random fields X(t) taking values in R
d , where t = (t1, . . . , tp) ∈

(R+)p . For a fixed Borel set A ⊂ (R+)p , recall that the local time formally given
as

LX(A,x) =
∫
A

δx(X(s)) ds(3.1)

is defined as the density of the occupation measure

μA(B) =
∫
A

1B(X(s)) ds, B ⊂ R
d,

if μA(·) is absolutely continuous with respect to the Lebesgue measure on R
d .

Given a nondegenerate Gaussian probability density h(x) on R
d and ε > 0,

the function hε(x) = ε−d/2h(ε−1/2x) is also a probability density. Define the
smoothed local time

LX(A,x, ε) =
∫
A

hε

(
X(s) − x

)
ds.(3.2)

Our first proposition provides moment comparison (3.6) which can be viewed
as analogy of Anderson’s inequality in the small ball analog: For independent
Gaussian vectors X, Y , X symmetric,

P(‖X + Y‖ ≤ ε) ≤ P(‖X‖ ≤ ε).

See Li and Shao [30] for various application of this useful inequality.

PROPOSITION 3.1. Let A ⊂ (R+)p be a fixed bounded Borel set. Let X(t)
[t = (t1, . . . , tp) ∈ (R+)p] be a zero-mean R

d -valued Gaussian random field with
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the local time LX(A,x) continuous in x ∈ R
d . Assume that for every m = 1,2, . . . ,∫

Am
ds1 · · · dsm

∫
(Rd )m

dλ1 · · · dλm exp

{
−1

2
Var

(
m∑

k=1

λk · X(sk)

)}
< ∞.(3.3)

Then LX(A,0) ∈ Lm (i.e., finite mth moment), with

ELX(A,0)m = 1

(2π)md

∫
Am

ds1 · · · dsm

(3.4)

×
∫
(Rd )m

dλ1 · · · dλm exp

{
−1

2
Var

(
m∑

k=1

λk · X(sk)

)}

and

lim
ε→0+ E|LX(A,0, ε) − LX(A,0)|m = 0.(3.5)

If Y(t) [t = (t1, . . . , tp) ∈ (R+)p] is another zero-mean R
d -valued Gaussian

random field independent of X(t) such that the local time LX+Y (A,x) of X(t) +
Y(t) is continuous in x, then

E[LX+Y (A,0)m] ≤ E[LX(A,0)m].(3.6)

PROOF. By Fourier inversion, we have from (3.2)

LX(A,0, ε) = 1

(2π)d

∫
Rd

dλ exp
{
−ε

2
(λ · �λ)

}∫
A

e−iλ·X(s) ds,

where � is the covariance matrix of Gaussian density h(x). Using Fubini’s theo-
rem,

ELX(A,0, ε)m = 1

(2π)md

∫
Am

ds1 · · · dsm

×
∫
(Rd )m

dλ1 · · · dλm

× exp

{
−ε

2

m∑
k=1

λk · �λk

}
E exp

{
−i

m∑
k=1

λk · X(sk)

}
(3.7)

= 1

(2π)md

∫
Am

ds1 · · · dsm

×
∫
(Rd )m

dλ1 · · · dλm

× exp

{
−ε

2

m∑
k=1

λk · �λk

}
exp

{
−1

2
Var

(
m∑

k=1

λk · X(sk)

)}
.
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By monotonic convergence theorem, the right-hand side converges to the right-
hand side of (3.4) as ε → 0+. In particular, the family

ELX(A,0, ε)m (ε > 0)

is bounded for m = 1,2, . . . . Consequently, this family is uniformly integrable
for m = 1,2, . . . . Therefore, (3.4) and (3.5) follow from the fact that LX(A,0, ε)

converges to LX(A,0), which is led by the continuity of LX(A,x).
Finally, (3.6) follows from the comparison∫

Am
ds1 · · · dsm

∫
(Rd )m

dλ1 · · · dλm exp

{
−1

2
Var

(
m∑

k=1

λ · (
X(sk) + Y(sk)

))}

≤
∫
Am

ds1 · · · dsm

∫
(Rd )m

dλ1 · · · dλm exp

{
−1

2
Var

(
m∑

k=1

λ · X(sk)

)}
.

�

In certain situations we can also reverse bound in (3.6) as a result of the
Cameron–Martin formula. In small ball setting, this is motivated by the Chen–
Li’s inequality [11] which can be used to estimate small ball probabilities under
any norm via a relatively easier L2-norm estimate. See also the survey of Li and
Shao [30]. Let X and Y be any two centered independent Gaussian random vectors
in a separable Banach space B with norm ‖ · ‖. We use | · |μ(X) to denote the inner
product norm induced on Hμ by μ = L(X). Then for any λ > 0 and ε > 0,

P(‖X + Y‖ ≤ ε) ≥ P(‖X‖ ≤ ε) · E exp
{−2−1|Y |2μ(X)

}
and

P(‖Y‖ ≤ ε) ≥ P(‖X‖ ≤ λε) · E exp
{−2−1λ2|Y |2μ(X)

}
.

Next, we provide the local time counterpart of this inequality, which is crucial in
our estimates. Suppose that the process X(t), t ∈ [0,T], where T = (T1, . . . , Tp) ∈
(R+)p , can be viewed as a Gaussian random vector in a separable Banach space
B such that the evaluations x �→ x(t) are measurable (say B = C([0,T];R

d), for
concreteness). Let H(X) denote the reproducing kernel Hilbert space (RKHS) of
X(t), t ∈ [0,T], equipped with the norm ‖ ·‖. Now we will make a crucial assump-
tion that the independent process Y(t), t ∈ [0,T], has almost all paths in H(X).

PROPOSITION 3.2. In the above setting, under the assumptions of Proposi-
tion 3.1, we have

E[LX+Y (A,0)m] ≥ Ee−1/2‖Y‖2
E[LX(A,0)m](3.8)

for every A ⊂ [0,T] and m ∈ N.
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PROOF. Applying Lemma 3.7(ii), for g(x) = ∏m
k=1 hε(x(sk)), x ∈ B , we get

E[LX+Y (A,0, ε)m] =
∫
Am

ds1 · · · dsm E

m∏
k=1

hε

(
X(sk) + Y(sk)

)

≥ Ee−1/2‖Y‖2
∫
Am

ds1 · · · dsm E

m∏
k=1

hε(X(sk))

= Ee−1/2‖Y‖2
E[LX(A,0, ε)m].

Applying (3.5) for both processes, X and X + Y , we get (3.8). �

3.2. RKHS of WH(t) and the remainder ZH(t). Let H ∈ (0,1/2) ∪ (1/2,1)

and recall decomposition (1.6):

c−1
H BH(t) = WH(t) + ZH(t), t ≥ 0,

where the remainder process ZH(t) can be written as

ZH(t) =
∫ ∞

0
{(t + s)H−1/2 − sH−1/2}dB̄(s),(3.9)

with B̄(s) := B(−s), s ≥ 0. Clearly, ZH(t) is a self-similar process with index H

and the processes WH(t) and ZH(t) are independent. In this section, we develop
a technique allowing us to treat sample paths of ZH(t) as, essentially, elements of
the reproducing kernel Hilbert space (RKHS) of WH(t).

The RKHS H[0, T ] of the the Riemann–Liouville process {WH(t)}t∈[0,T ] with
index H > 0, viewed as a random element in C[0, T ], follows standard theory of
RKHS; see [5] and [29]. Van der Vaart and van Zanten [40], Lemma 10.2, proved
that

H[0, T ] = I
H+1/2
0+ (L2[0, T ]),(3.10)

where

Iα
0+f (t) = 1

�(α)

∫ t

0
(t − s)α−1f (s) ds, t ∈ [0, T ],(3.11)

is the Riemann–Liouville fractional integral of order α > 0; for α = 0, I 0
0+f := f .

PROPOSITION 3.3. {ZH(t)}t≥a has C∞-sample paths a.s. for any a > 0.
However, for every T > 0,

P
({ZH(t)}t∈[0,T ] ∈ H[0, T ]) = 0.

PROOF. Formal n-tuple differentiation of ZH(t) gives

∂n

∂tn
ZH (t) =

n∏
k=1

(
H − 2k − 1

2

)∫ ∞
0

(t + s)H−(2n+1)/2 dB̄(s), t > 0.
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The right-hand side is a well-defined Gaussian process with locally square inte-
grable sample paths. By consecutive integration of this process over [a, t], we
prove that {ZH(t)}t≥a has C(n−1)-sample paths, n ≥ 1, which proves the first part
of the proposition.

To prove the second part, observe that

ZH(t) = (I
H+1/2
0+ V H)(t), t ≥ 0,(3.12)

where V H(t) is a Gaussian process given by

V H(t) = H − 1/2

�(3/2 − H)

∫ ∞
0

t−H−1/2uH−1/2

t + u
dB̄(u), t ≥ 0.

Direct computation gives E[(V H (t))2] = Ct−1, where C depends only on H .
Hence, E‖V H‖2

L2[0,T ] = ∞ but E‖V H‖L1[0,T ] < ∞. Combining the fact that

I
H+1/2
0+ is one-to-one on L1[0, T ] (see [39], Theorem 2.4) with (3.10) and (3.12)

we get

P
({ZH(t)}t∈[0,T ] ∈ H[0, T ]) = P

({V H(t)}t∈[0,T ] ∈ L2[0, T ]) = 0,

where the last equality follows from a zero-one law and integrability of Gaussian
norms. �

Direct verification whether a given function belongs to H[0, T ] can be difficult.
Therefore, we give below a simple to check sufficient condition. Let ACm

2 [0, T ]
denote the space of functions f which have continuous derivatives up to order m−
1 on [0, T ], with f (m−1) absolutely continuous on [0, T ], and f (m) ∈ L2[0, T ],
m ∈ N.

PROPOSITION 3.4. Let m = �H + 1/2�. If f ∈ ACm
2 [0, T ] is such that

f (k)(0) = 0 for 0 ≤ k < m, then f ∈ H[0, T ] and

‖f ‖H[0,T ] = kH

∥∥Im−(H+1/2)
0+ f (m)

∥∥
L2[0,T ],(3.13)

where kH = �(H + 1/2)−1.

PROOF. By our assumption f = Im
0+f (m), where f (m) ∈ L2[0, T ]. Put g =

I
m−(H+1/2)
0+ f (m). Since the operators of fractional integration {Iα

0+ :α ≥ 0} form
a strongly continuous semigroup on L2[0,1] (see [39], Theorem 2.6), we get that
g ∈ L2[0, T ] and

I
H+1/2
0+ g = I

H+1/2
0+

(
I

m−(H+1/2)
0+ f (m)) = Im

0+f (m) = f.

In view of (3.10), f ∈ HT and from [40], Lemma 10.2,

‖f ‖H[0,T ] = kH‖g‖L2[0,T ] = kH

∥∥Im−(H+1/2)
0+ f (m)

∥∥
L2[0,T ]. �

The remainder ZH is not in H[0, T ] by Proposition 3.3. The next result shows
the way to circumvent this problem, which is crucial to our technique.
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PROPOSITION 3.5. For any a > 0, there is a Gaussian process {ZH
a (t)}t≥0

such that:

(i) ZH
a (t) = ZH(t) for all t ≥ a;

(ii) for any T > 0

P
({ZH

a (t)}t∈[0,T ] ∈ H[0, T ]) = 1.

PROOF. First, consider H ∈ (0, 1
2), so that m = �H + 1/2� = 1. Define

ZH
a (t) =

{
At, 0 ≤ t ≤ a,
ZH(t), t > a,

where A = a−1ZH(a). Since ZH
a (t) has paths in AC1

2 [0, T ] (see the first part of
Proposition 3.3) and ZH

a (0) = 0, (ii) holds by Proposition 3.4.
Now we consider H ∈ (1

2 ,1), so that m = �H + 1/2� = 2. Define

ZH
a (t) =

{
B1t

2 + B2t
3, 0 ≤ t ≤ a,

ZH(t), t > a,

where B1 = 3a−2ZH(a) − a−1ŻH (a), B2 = −2a−3ZH(a) + a−2ŻH (a) and
ŻH (t) := ∂

∂
ZH (t). As in the previous case, part (ii) follows by Proposition 3.4.

Indeed, ZH
a (t) has paths in AC2

2 [0, T ], ZH
a (0) = 0 and ŻH

a (0) = 0. �

The above method of modifying of ZH in a neighborhood of 0 will also be used
in Section 6 for other processes and the H[0, T ]-norm of such modifications will
to be estimated. For this purpose, the next lemma will be useful.

LEMMA 3.6. Let m = �H + 1/2�. If f ∈ ACm
2 [0, T ] and f (k)(0) = 0 for

0 ≤ k < m, then for every a ∈ (0, T )

‖f ‖2
H[0,T ] ≤ C

{
(T 2m−2H − a2m−2H )

∥∥f (m)
∥∥2
L∞[0,a]

+
∫ T

a

∣∣∣∣∫ T

a
(t − s)m−H−3/2f (m)(s) ds

∣∣∣∣2 dt

}
,

where C depends only on H .

PROOF. Put κ = m − (H + 1/2). In view of (3.13), we get

‖f ‖2
H[0,T ] = k2

H

∥∥I κ
0+

(
f (m)1[0,a] + f (m)1[a,T ]

)∥∥2
L2[0,T ]

≤ 2k2
H

∥∥I κ
0+1[0,a]

∥∥2
L2[0,T ]

∥∥f (m)
∥∥2
L∞[0,a] + 2k2

H

∥∥I κ
0+

(
f (m)1[a,T ]

)∥∥2
L2[0,T ]

≤ C(T 2m−2H − a2m−2H )
∥∥f (m)

∥∥2
L∞[0,a]

+ 2k2
H

∫ T

a

∣∣∣∣∫ T

a
(t − s)κ−1f (m)(s) ds

∣∣∣∣2 dt. �
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3.3. Technical lemmas. The following auxiliary results and formulas are used
in the proofs of the main theorems. They are given here for a convenient reference.

LEMMA 3.7. Let μ be a centered Gaussian measure in a separable Banach
space B . Let g :B �→ R+ be a measurable function. Then:

(i) if {x ∈ B :g(x) ≥ t} is symmetric and convex for every t > 0, then for every
y ∈ B ∫

B
g(x + y)μ(dx) ≤

∫
B

g(x)μ(dx);
(ii) if g is symmetric [g(−x) = g(x), x ∈ B], then for every y in the RKHS Hμ

of μ ∫
B

g(x + y)μ(dx) ≥ exp
{
−1

2
‖y‖2

μ

}∫
B

g(x)μ(dx),

where ‖y‖μ denotes the norm in Hμ.

PROOF. Part (i) follows from Anderson’s inequality∫
B

g(x + y)μ(dx) =
∫ ∞

0
μ{x ∈ B :g(x + y) ≥ t}dt

≤
∫ ∞

0
μ{x ∈ B :g(x) ≥ t}dt =

∫
B

g(x)μ(dx).

Part (ii) uses Cameron–Martin formula and the convexity of exponential func-
tion ∫

B
g(x + y)μ(dx) =

∫
B

g(x) exp
{
〈x, y〉μ − 1

2
‖y‖2

μ

}
μ(dx)

= 1

2

∫
B

g(x) exp
{
〈x, y〉μ − 1

2
‖y‖2

μ

}
μ(dx)

+ 1

2

∫
B

g(x) exp
{
−〈x, y〉μ − 1

2
‖y‖2

μ

}
μ(dx)

≥ exp
{
−1

2
‖y‖2

μ

}∫
B

g(x)μ(dx). �

The next lemma is well known and goes back at least to 1950s in equivalent
forms; see Anderson [1], page 42, Berman [6], page 293, and [7], page 71. The
basic fact is that conditional distribution of Xk given all the Xi,1 ≤ i < k, is a
univariate Gaussian distribution with (conditional) mean E(Xk|X1, . . . ,Xk−1) and
(conditional) variance

det(Cov(X1, . . . ,Xk))/det(Cov(X1, . . . ,Xk−1))

for 1 ≤ k ≤ m.
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LEMMA 3.8. Let (X1, . . . ,Xm) be a mean-zero Gaussian random vector.
Then

det(Cov(X1, . . . ,Xm)) = Var(X1)Var(X2|X1) · · ·Var(Xm|Xm−1, . . . ,X1).

Let BH(t) be given by its moving average representation (1.4). By the decon-
volution formula of Pipiras and Taqqu [36], we also have

B(t) = c∗
H

∫ t

−∞
(
(t − s)

1/2−H
+ − (−s)

1/2−H
+

)
dBH(s),(3.14)

where c∗
H = {cH�(H +1/2)�(3/2−H)}−1 and the integral with respect to BH(t)

is well-defined in the L2-sense. It follows from (1.4) and (3.14) that for every t ∈ R

Ft := σ {BH(s); −∞ < s ≤ t} = σ {B(s); −∞ < s ≤ t},(3.15)

where the second equality holds modulo sets of probability zero. Then for every
s < t

E(BH (t)|Fs) = cH

∫ s

−∞
(
(t − u)H−1/2 − (−u)

H−1/2
+

)
dB(u).(3.16)

If d = 1, then for every s < t

Var(BH (t)|Fs) = E{[BH(t) − E(BH (t)|Fs)]2|Fs}
= E

{∫ t

s
(t − u)H−1/2 dB(u)|Fs

}
(3.17)

= c2
H

∫ t

s
(t − u)2H−1 du = c2

H

2H
(t − s)2H .

For the reader’s convenience, we also quote the following lemma due to König
and Mörters [24], Lemma 2.3.

LEMMA 3.9. Let Y ≥ 0 be a random variable and let γ > 0. If

lim
m→∞

1

m
log

(
1

(m!)γ EYm

)
= κ(3.18)

for some κ ∈ R, then

lim
y→∞

1

y1/γ
log P{Y ≥ y} = −γ e−κ/γ .(3.19)

4. Large deviations for local times.

4.1. Proof of Theorem 2.1—Superadditivity argument. In light of Lemma 3.9,
it is enough to show that the limit in (3.18) exists for Y = L0

1(B
H ) and for γ =

Hd . We will prove it by a superadditivity argument. Let τ be an exponential time
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independent of BH(t). We will first show that for any integer m,n ≥ 1,

E[L0
τ (B

H )m+n] ≥
(
m + n

m

)
E[L0

τ (B
H )m]E[L0

τ (B
H )n].(4.1)

Let t > 0 be fixed. Notice that by Theorem 7.1, the Gaussian process BH(t)

satisfies the condition (3.3) posted in Proposition 3.1. By (3.4), therefore,

E[L0
t (B

H )m] = 1

(2π)md

∫
[0,t]m

ds1 · · · dsm

×
∫
(Rd )m

dλ1 · · · dλm exp

{
−1

2
Var

(
m∑

k=1

λk · BH(sk)

)}

= 1

(2π)md

∫
[0,t]m

ds1 · · · dsm

×
[∫

Rm
dλ1 · · · dλm exp

{
−1

2
Var

(
m∑

k=1

λkB
H
0 (sk)

)}]d

,

where BH
0 (t) is 1-dimensional fractional Brownian motion.

By integration with respect to Gaussian measures,∫
Rm

dλ1 · · · dλm exp

{
−1

2
Var

(
m∑

k=1

λkB
H
0 (sk)

)}

= (2π)m/2 det{Cov(BH
0 (s1), . . . ,B

H
0 (sm))}−1/2.

Therefore,

E[L0
t (B

H )m] = m!
(2π)md/2

∫
[0,t]m<

ds1 · · · dsm

(4.2)
× det{Cov(BH

0 (s1), . . . ,B
H
0 (sm))}−d/2.

In (4.2) and elsewhere, for any A ⊂ R
+ and an integer m ≥ 1, we define

Am
< = {(s1, . . . , sm) ∈ Am; s1 < · · · < sm}.

Put

A(s1, . . . , sk) = σ {BH
0 (s1), . . . ,B

H
0 (sk)}, k = 1, . . . ,m,

and A(s1, . . . , sk) = {∅,�} when k = 0. By Lemma 3.8,

E[L0
t (B

H )m] = m!
(2π)md/2

∫
[0,t]m<

ds1 · · · dsm ϕm(s1, . . . , sm),

where

ϕm(s1, . . . , sm) =
m∏

k=1

Var(BH
0 (sk)|BH

0 (s1), . . . ,B
H
0 (sk−1))

−d/2
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with the convention that the first term is Var(BH
0 (s1)) for k = 1. We are ready

to establish (4.1). Let m,n ≥ 1 be integers. Then, for any s1 < · · · < sn+m and
n + 1 ≤ k ≤ n + m,

Var(BH
0 (sk)|BH

0 (s1), . . . ,B
H
0 (sk−1))

= Var
(
BH

0 (sk) − BH
0 (sn)|BH

0 (s1), . . . ,B
H
0 (sk−1)

)
= Var

(
BH

0 (sk) − BH
0 (sn)|BH

0 (s1), . . . ,B
H
0 (sn),

BH
0 (sn+1) − BH

0 (sn), . . . ,B
H
0 (sk−1) − BH

0 (sn)
)

≤ Var
(
BH

0 (sk) − BH
0 (sn)|BH

0 (sn+1) − BH
0 (sn), . . . ,B

H
0 (sk−1) − BH

0 (sn)
)

= Var
(
BH

0 (sk − sn)|BH
0 (sn+1 − sn), . . . ,B

H
0 (sk−1 − sn)

)
,

where the last step follows from the stationarity of increments. Thus,

ϕn+m(s1, . . . , sn+m) ≥ ϕn(s1, . . . , sn)ϕm(sn+1 − sn, . . . , sn+m − sn).

Notice that from (4.2)

E[L0
τ (B

H )m] = m!
(2π)md/2 E

∫
[0,τ ]m<

ds1 · · · dsm ϕm(s1, . . . , sm)

= m!
(2π)md/2 E

∫
s1<···<sm

1sm<τ ds1 · · · dsm ϕm(s1, . . . , sm)(4.3)

= m!
(2π)md/2

∫
(R+)m<

ds1 · · · dsm ϕm(s1, . . . , sm)e−sm.

Consequently,

E[L0
τ (B

H )n+m]
= (n + m)!

(2π)(n+m)d/2

∫
(R+)n+m

<

ds1 · · · dsn+m ϕn+m(s1, . . . , sn+m)e−sn+m

≥ (n + m)!
(2π)(n+m)d/2

∫
(R+)n+m

<

ds1 · · · dsn+m

× ϕn(s1, . . . , sn)e
−snϕm(sn+1 − sn, . . . , sn+m − sn)e

−(sn+m−sn)

= (n + m)!
(2π)(n+m)d/2

∫
(R+)n<

ds1 · · · dsn ϕn(s1, . . . , sn)e
−sn

×
∫
(R+)m<

dt1 · · · dtm ϕm(t1, . . . , tm)e−tm

=
(
n + m

m

)
E[L0

τ (B
H )n]E[L0

τ (B
H )m].
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We proved relation (4.1) which says that the sequence m �→ log( 1
m!E[L0

τ (B
H )m])

is super-additive. By Fekete’s lemma, the limit

lim
m→∞

1

m
log

(
1

m!E[L0
τ (B

H )m]
)

= sup
m≥1

1

m
log

(
1

m!E[L0
τ (B

H )m]
)

(4.4)
= logL,

exists, possibly as an extended number. By the scaling property (1.1),

E[L0
τ (B

H )m] = E
[
τ (1−Hd)m]

E[L0
1(B

H )m]
= �

(
1 + (1 − Hd)m

)
E[L0

1(B
H )m].

From (4.4) and Stirling’s formula, we get

lim
m→∞

1

m
log

(
1

(m!)Hd
E[L0

1(B
H )m]

)
= log

{
(1 − Hd)−(1−Hd)L

}
.(4.5)

Applying Lemma 3.9, we establish (2.1) with

θ(H,d) = Hd(1 − Hd)−1+1/HdL−1/Hd.(4.6)

To obtain (2.2) and complete the proof it is enough to show that

(2π)−d/2�(1 − Hd) ≤ L ≤ (H−1πc2
H )−d/2�(1 − Hd).(4.7)

By (4.1)
1

m!E[L0
τ (B

H )m] ≥ {EL0
τ (B

H )}m = {(2π)−d/2�(1 − Hd)}m,

where the equality comes from (4.3) (for m = 1). This proves the lower bound in
(4.7).

To prove the upper bound, we first notice that

Var(BH
0 (sk)|BH

0 (s1), . . . ,B
H
0 (sk−1))

≥ Var(BH
0 (sk)|B0(s), s ≤ sk−1)(4.8)

= c2
H

2H
(sk − sk−1)

2H ,

where we used (3.17). Hence, the function ϕ defined above satisfies, with s0 = 0,

ϕm(s1, . . . , sm) ≤ (2H/c2
H )md/2

m∏
k=1

(sk − sk−1)
−Hd,

and by (4.3),

(πc2
H/H)md/2

E[L0
τ (B

H )m] ≤ m!
∫
(R+)m<

ds1 · · · dsm

m∏
k=1

(sk − sk−1)
−Hde−sm

= m!
{∫ ∞

0
t−Hde−t dt

}m

(4.9)

= m!�(1 − Hd)m.
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This establishes (4.7) and completes the proof.

4.2. Proof of Theorem 2.2—Comparison argument. First, we note that

L0
t (c

−1
H BH) = cd

HL0
t (B

H ).(4.10)

Thus, from the decomposition (1.6) and (3.6) for every m ∈ N,

cmd
H E[L0

1(B
H )m] ≤ E[L0

1(W
H)m].(4.11)

To prove a reverse inequality (up to a multiplicative constant) we use notation (3.1).
Fix a ∈ (0,1) and let let ZH

a (t), t ≥ 0, be the process specified in Proposition 3.5
that is also independent of WH(t), t ≥ 0. We have

cd
HL0

1(B
H ) = L

c−1
H BH ([0,1],0) ≥ L

c−1
H BH ([a,1],0) = LWH +ZH

a
([a,1],0).

Thus, by (3.8) we get

cmd
H E[L0

1(B
H )m] ≥ E[LWH +ZH

a
([a,1],0)m]

≥ KaE[LWH ([a,1],0)m]
= KaE

[(
L0

1(W
H) − L0

a(W
H)

)m]
≥ Ka{E[L0

1(W
H)m]1/m − E[L0

a(W
H)m]1/m}m

= Ka(1 − a1−Hd)mE[L0
1(W

H)m],
where the last equality uses self-similarity (1.3) and Ka = E exp{−1

2‖ZH
a ‖2}. Here

‖ZH
a ‖ < ∞ a.s. is the RKHS norm associated with {WH(t)}t∈[0,1] and computed

for paths of {ZH
a (t)}t∈[0,1]. This together with (4.11) yields

cmd
H E[L0

1(B
H )m] ≤ E[L0

1(W
H)m] ≤ K−1

a (1 − a1−Hd)−mcmd
H E[L0

1(B
H )m].

Applying the limit as in (4.5) to both sides and then passing a → 0 gives

lim
m→∞

1

m
log

(
1

(m!)Hd
E[L0

1(W
H)m]

)
= log

{
cd
H (1 − Hd)−(1−Hd)L

}
.

Therefore, by Lemma 3.9, the limit in (2.5) exists and θ̃ (H, d) = c
−1/H
H θ(H,d)

by (4.6).

5. Large deviations for intersection local times.

5.1. Proof of Theorem 2.3—Subadditivity argument. Let α̃H
ε (A) be defined

analogously to (1.9) by

α̃H
ε (A) =

∫
Rd

∫
A

p∏
j=1

pε

(
WH

j (sj ) − x
)
ds1 · · · dsp dx,
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where pε is as in (1.10). We will first prove the subadditivity property: for every
m,n ∈ N,

E
[
α̃H

ε ([0, τ1] × · · · × [0, τp])m+n]
≤

(
m + n

m

)p

E
[
α̃H

ε ([0, τ1] × · · · × [0, τp])m]
(5.1)

× E
[
α̃H

ε ([0, τ1] × · · · × [0, τp])n]
,

where τ1, . . . , τp are i.i.d. exponential random variables with mean 1 and indepen-
dent of WH

1 (t), . . . ,WH
p (t). Indeed, since

α̃H
ε ([0, t1] × · · · × [0, tp])m

=
∫
(Rd )m

dx1 · · · dxm

p∏
j=1

m∏
k=1

∫ tj

0
pε

(
WH

j (sj,k) − xk

)
dsj,k,

we can write

E
[
α̃H

ε ([0, τ1] × · · · × [0, τp])m+n]
(5.2)

=
∫
(Rd )m+n

dx1 · · · dxm+n ξ(x1, . . . , xm+n)
p,

where

ξ(x1, . . . , xm+n) =
∫ ∞

0
dt e−t

∫
[0,t]m+n

ds1 · · · dsm+n E

m+n∏
k=1

pε

(
WH(sk) − xk

)
.

Let

Dt = {
(s1, . . . , sm+n) ∈ [0, t]m+n : max{s1, . . . , sm} ≤ min{sm+1, . . . , sm+n}}.

There are exactly
(m+n

m

)
permutations σi of {1, . . . ,m + n} such that

⋃
i σ

−1
i Dt =

[0, t]m+n and σ−1
i Dt are disjoint modulo sets of measure zero [here, σ(s1,

. . . , sm+n) := (sσ(1), . . . , sσ(m+n))]. Therefore,∫
[0,t]m+n

ds1 · · · dsm+n E

m+n∏
k=1

pε

(
WH(sk) − xk

)

= ∑
i

∫
σ−1

i Dt

ds1 · · · dsm+n E

m+n∏
k=1

pε

(
WH(sk) − xk

)

= ∑
i

∫
Dt

ds1 · · · dsm+n E

m+n∏
k=1

pε

(
WH(sk) − xσi(k)

)
,
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which gives by Hölder’s inequality

ξ(x1, . . . , xm+n)
p

=
{∑

i

∫ ∞
0

dt e−t
∫
Dt

ds1 · · · dsm+n E

m+n∏
k=1

pε

(
WH(sk) − xσi(k)

)}p

≤
(
m + n

m

)p−1

× ∑
i

{∫ ∞
0

dt e−t
∫
Dt

ds1 · · · dsm+n E

m+n∏
k=1

pε

(
WH(sk) − xσi(k)

)}p

.

Substituting into (5.2) yields

E
[
α̃H

ε ([0, τ1] × · · · × [0, τp])m+n]
≤

(
m + n

m

)p−1

× ∑
i

∫
(Rd )m+n

dx1 · · · dxm+n

×
{∫ ∞

0
dt e−t

∫
Dt

ds1 · · · dsm+n E

m+n∏
k=1

pε

(
WH(sk) − xσi(k)

)}p

=
(
m + n

m

)p ∫
(Rd )m+n

dx1 · · · dxm+n

×
{∫ ∞

0
dt e−t

∫
Dt

ds1 · · · dsm+n E

m+n∏
k=1

pε

(
WH(sk) − xk

)}p

.

Since the last integrand can be written as{∫ ∞
0

dt e−t
∫
Dt

ds1 · · · dsm+n E

m+n∏
k=1

pε

(
WH(sk) − xk

)}p

=
∫
(R+)p

dt1 · · · dtp e−(t1+···+tp)

×
∫
Dt1×···×Dtp

( p∏
j=1

dsj,1 · · · dsj,m+n

)
E

m+n∏
k=1

p∏
j=1

pε

(
WH

j (sj,k) − xk

)
,
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after integrating with respect to x1, . . . , xm+n we get

E
[
α̃H

ε ([0, τ1] × · · · × [0, τp])m+n] ≤
(
m + n

m

)p ∫
(R+)p

dt1 · · · dtp e−(t1+···+tp)

×
∫
Dt1×···×Dtp

( p∏
j=1

dsj,1 · · · dsj,m+n

)
(5.3)

× E

m+n∏
k=1

gε(W
H
1 (s1,k), . . . ,W

H
p (sp,k)),

where

gε(y1, . . . , yp) :=
∫

Rd

p∏
j=1

pε(yj − x)dx

= (2πε)−dp/2
∫

Rd
e−(|x|2−2x·y+p−1 ∑p

i=1 |yi |2)p/(2ε)(5.4)

= (2πε)−d(p−1)/2p−d/2 exp

{
− 1

2ε

p∑
j=1

|yj − y|2
}
,

and y := p−1 ∑p
i=1 yi for y1, . . . , yp ∈ R

d . Moreover,∫
Dt1×···×Dtp

( p∏
j=1

dsj,1 · · · dsj,m+n

)
E

m+n∏
k=1

gε(W
H
1 (s1,k), . . . ,W

H
p (sp,k))

=
∫
[0,t]m

( p∏
j=1

dsj,1 · · · dsj,m

)∫
[0,t−s∗]n

( p∏
j=1

dsj,m+1 · · · dsj,m+n

)
(5.5)

× E

m∏
k=1

gε(W
H
1 (s1,k), . . . ,W

H
p (sp,k))

×
m+n∏

k=m+1

gε

(
WH

1 (s∗
1 + s1,k), . . . ,W

H
p (s∗

p + sp,k)
)
,

where
t = (t1, . . . , tp), s∗ = (s∗

1 , . . . , s∗
p)

and
s∗
j = max{sj,k : 1 ≤ k ≤ m}.

Assuming that WH
j (t) are given by (1.2) with independent Brownian motions

Bj(t), define Fs∗ = σ {Bj(uj ) :uj ≤ s∗
j , j = 1, . . . , p}. Put also

Yj (s
∗
j , s) =

∫ s∗
j +s

s∗
j

(s∗
j + s − u)H−1/2 dBj (u)
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and

Z(s∗
j , s) =

∫ s∗
j

0
(s∗

j + s − u)H−1/2 dBj (u),

so that Wj(s
∗
j + s) = Yj (s

∗
j , s) + Zj(s

∗
j , s). The last expectation can be written as

E

{
m∏

k=1

gε(W
H
1 (s1,k), . . . ,W

H
p (sp,k))

× E

[
m+n∏

k=m+1

gε

(
YH

1 (s∗
1 , s1,k) + ZH

1 (s∗
1 , s1,k), . . . ,

YH
p (s∗

p, sp,k) + ZH
p (s∗

p, sp,k)
)∣∣∣Fs∗

]}

≤ E

[
m∏

k=1

gε(W
H
1 (s1,k), . . . ,W

H
p (sp,k))

]

× E

[
m+n∏

k=m+1

gε(Y
H
1 (s∗

1 , s1,k), . . . , Y
H
p (s∗

p, sp,k))

]

= E

[
m∏

k=1

gε(W
H
1 (s1,k), . . . ,W

H
p (sp,k))

]

× E

[
m+n∏

k=m+1

gε(W
H
1 (s1,k), . . . ,W

H
p (sp,k))

]
,

where the inequality follows from Lemma 3.7(i) [see the evaluation of gε in (5.4)
and the positive quadratic form associated with it] and the last equality follows
from

(Y1(s
∗
1 , s1,k), . . . , Yp(s∗

p, sp,k))
d= (WH

1 (s1,k), . . . ,W
H
p (sp,k)).

Combining the above bound with (5.5) and then with (5.3) we obtain

E
[
α̃H

ε ([0, τ1] × · · · × [0, τp])m+n]
≤

(
m + n

m

)p ∫
(R+)p

dt1 · · · dtp e−(t1+···+tp)

×
∫
[0,t]m

( p∏
j=1

dsj,1 · · · dsj,m

)
E

m∏
k=1

gε(W
H
1 (s1,k), . . . ,W

H
p (sp,k))

×
∫
[0,t−s∗]n

( p∏
j=1

dsj,m+1 · · · dsj,m+n

)
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× E

m+n∏
k=m+1

gε(W
H
1 (s1,k), . . . ,W

H
p (sp,k))

=
(
m + n

m

)p ∫
(R+)m

( p∏
j=1

dsj,1 · · · dsj,m

)

× E

m∏
k=1

gε(W
H
1 (s1,k), . . . ,W

H
p (sp,k))e

−(s∗
1 +···+s∗

p)

×
∫
[s∗,∞]p

dt1 · · · dtp e−[(t1−s∗
1 )+···+(tp−s∗

p)]

×
∫
[0,t−s∗]n

( p∏
j=1

dsj,m+1 · · · dsj,m+n

)

× E

m+n∏
k=m+1

gε(W
H
1 (s1,k), . . . ,W

H
p (sp,k))

=
(
m + n

m

)p

E
[
α̃H

ε ([0, τ1] × · · · × [0, τp])m]
× E

[
α̃H

ε ([0, τ1] × · · · × [0, τp])n]
,

where in the last equality we use

e−(s∗
1 +···+s∗

p) =
∫
(R+)p

e−(t1+···+tp)
m∏

k=1

1[s∗,t](s1,k, . . . , sp,k) dt1 · · · dtp

and the definition of gε in (5.4). The subadditivity (5.1) is thus proved for any
ε > 0.

Now we would like to take ε → 0+ on the both sides of (5.1) in an attempt to
establish

Eα̃H ([0, τ1] × · · · × [0, τp])m+n ≤
(
m + n

n

)p

Eα̃H ([0, τ1] × · · · × [0, τp])m
(5.6)

× Eα̃H ([0, τ1] × · · · × [0, τp])n.
To this end, we need to show that for any m ≥ 1, α̃H ([0, τ1] × · · · × [0, τp]) is
indeed in Lm(�, A,P) and

lim
ε→0+ E

[
α̃H

ε ([0, τ1] × · · · × [0, τp])m] = E
[
α̃H ([0, τ1] × · · · × [0, τp])m]

.(5.7)

Indeed, using (5.1) repeatedly we have that

E
[
α̃H

ε ([0, τ1] × · · · × [0, τp])m] ≤ (m!)pE
[
α̃H

ε ([0, τ1] × · · · × [0, τp])].
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Notice that

E
[
α̃H

ε ([0, τ1] × · · · × [0, τp])] =
∫

Rd

[∫ ∞
0

e−t
Epε

(
WH(t) − x

)
dt

]p

dx

=
∫

Rd

[∫ ∞
0

e−t
∫

Rd
pε(y − x)pt∗(y) dy

]p

dx,

where t∗ = (2H)−1t2H and the last step follows from the easy-to-check fact that
WH(t) ∼ N(0, (2H)−1t2HId). By Jensen’s inequality, the right-hand side is less
than or equal to∫

Rd

∫
Rd

pε(y − x)

[∫ ∞
0

e−t
∫

Rd
pt∗(y) dy

]p

dy dx

=
∫ ∞

0
· · ·

∫ ∞
0

dt1 · · · dtp e−(t1+···+tp)
∫

Rd

p∏
j=1

pt∗j (x) dx

= (H/π)d(p−1)/2

×
∫ ∞

0
· · ·

∫ ∞
0

e−(t1+···+tp)

( p∑
j=1

∏
1≤k �=j≤p

t2H
k

)−d/2

dt1 · · · dtp,

where the last step follows from a routine Gaussian integration.
By arithmetic-geometric mean inequality,

1

p

p∑
j=1

∏
1≤k �=j≤p

t2H
k ≥

p∏
j=1

∏
1≤k �=j≤p

t
2H/p
k =

p∏
j=1

t
2H(p−1)/p
k .

So we have

E
[
α̃H

ε ([0, τ1] × · · · × [0, τp])] ≤ (H/π)d(p−1)/2p−d/2
(∫ ∞

0
t−Hd(p−1)/pe−t dt

)p

= (H/π)d(p−1)/2p−d/2�(1 − Hd/p∗)p.

Summarizing our computation, we obtain

(m!)−p
E

[
α̃H

ε ([0, τ1] × · · · × [0, τp])m]
(5.8)

≤ (
(H/π)d(p−1)/2p−d/2�(1 − Hd/p∗)p

)m
.

By Theorem 7.1, the process

XH(t1, . . . , tp) = (
WH

1 (t1) − WH
2 (t2), . . . ,W

H
p−1(tp−1) − WH

p (tp)
)

satisfies the condition (3.3) with A = [0, t] = [0, t1] × · · · × [0, tp] for any
t1, . . . , tp ≥ 0 and

α̃H
ε ([0, t1] × · · · × [0, tp])

=
∫
[0,t]

hε

(
WH

1 (s1) − WH
2 (s2), . . . ,W

H
p−1(sp−1) − WH

p (sp)
)
ds1 · · · dsp,
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where

hε(x1, . . . , xp−1) =
∫

Rd
pε(−x)

p−1∏
j=1

p1

(p−1∑
k=j

xk − x

)
dx

is a nondegenerate normal density on R
d(p−1). By Proposition 3.1, α̃H

ε ([0, t1] ×
· · · × [0, tp]) ∈ Lm(�, A,P) and

lim
ε→0+ E

[
α̃H

ε ([0, t1] × · · · × [0, tp])m] = E
[
α̃H ([0, t1] × · · · × [0, tp])m]

.(5.9)

In addition, by the representation (3.7) one can see that for any ε′ < ε,

E
[
α̃H

ε ([0, t1] × · · · × [0, tp])m] ≤ E
[
α̃H

ε′ ([0, t1] × · · · × [0, tp])m]
.

Thus, (5.7) follows from monotonic convergence theorem and the identities

E
[
α̃H

ε ([0, τ1] × · · · × [0, τp])m]
(5.10)

=
∫
(R+)p

e−(t1+···+tp)
E

[
α̃H

ε ([0, t1] × · · · × [0, tp])m]
dt1 · · · dtp

and

E
[
α̃H ([0, τ1] × · · · × [0, τp])m]

=
∫
(R+)p

e−(t1+···+tp)
E

[
α̃H ([0, t1] × · · · × [0, tp])m]

dt1 · · · dtp.

Further, by (5.8) we obtain the bound

(m!)−p
E

[
α̃H ([0, τ1] × · · · × [0, τp])m]

(5.11)
≤ (

(H/π)d(p−1)/2p−d/2�(1 − Hd/p∗)p
)m

.

Inequality (5.6) implies that the sequence m �→ log((m!)−p
Eα̃H ([0, τ1]× · · ·×

[0, τp])m) is sub-additive. Hence, the limit

lim
m→∞

1

m
log

(
(m!)−p

Eα̃H ([0, τ1] × · · · × [0, τp])m) = c(H,d,p)(5.12)

exists, possibly as an extended number. Further, by (5.11),

c(H,d,p) ≤ log
{
(H/π)d(p−1)/2p−d/2�(1 − Hd/p∗)p

}
.(5.13)

Now we will deduce the moments behavior of α̃H ([0,1]p).
Notice that τ∗ = min{τ1, . . . , τp} is an exponential time with parameter p:

Eα̃H ([0, τ1] × · · · × [0, τp])m ≥ Eα̃H ([0, τ∗]p)m

= Eτ (p−Hd(p−1))m∗ Eα̃H ([0,1]p)m

= p−(p−Hd(p−1))m�
(
1 + (

p − Hd(p − 1)
)
m

)
× Eα̃H ([0,1]p)m.
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By Stirling’s formula,

lim sup
m→∞

1

m
log

{
(m!)−Hd(p−1)

Eα̃H ([0,1]p)m
}

≤ c(H,d,p) − p(1 − Hd/p∗) log(1 − Hd/p∗).
On the other hand, for every t1, . . . , tp > 0,

Eα̃H
ε ([0, t1] × · · · × [0, tp])m

=
∫
(Rd )m

dx1 · · · dxm

p∏
j=1

∫
[0,tj ]m

ds1 · · · dsm E

m∏
k=1

pε

(
WH(sk) − xk

)

≤
p∏

j=1

{∫
(Rd )m

dx1 · · · dxm

(∫
[0,tj ]m

ds1 · · · dsm E

m∏
k=1

pε

(
WH(sk) − xk

))p}1/p

=
p∏

j=1

{Eα̃H
ε ([0, tj ]p)m}1/p.

Letting ε → 0+, from (5.9) we get

Eα̃H ([0, t1] × · · · × [0, tp])m ≤
p∏

j=1

{Eα̃H ([0, tj ]p)m}1/p

= Eα̃H ([0,1]p)m ·
p∏

j=1

t
m(1−Hd/p∗)
j ,

where the last equality uses self-similarity (1.12). Hence,

Eα̃H ([0, τ1] × · · · × [0, τp])m

=
∫
(R+)p

dt1 · · · dtp e−(t1+···+tp)
Eα̃H ([0, t1] × · · · × [0, tp])m

(5.14)
≤ Eα̃m([0,1]p)m

∫
(R+)p

dt1 · · · dtp e−(t1+···+tp)(t1 · · · tp)m(1−Hd/p∗)

= Eα̃H ([0,1]p)m�
(
1 + m(1 − Hd/p∗)

)p
.

By Stirling’s formula again,

lim inf
m→∞

1

m
log

{
(m!)−Hd(p−1)

Eα̃H ([0,1]p)m
}

≥ c(H,d,p) − p(1 − Hd/p∗) log(1 − Hd/p∗).
We have shown that

lim
m→∞

1

m
log

{
(m!)−Hd(p−1)

Eα̃H ([0,1]p)m
} = C(H,d,p),(5.15)
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where by (5.13),

C(H,d,p) = c(H,d,p) − p(1 − Hd/p∗) log(1 − Hd/p∗)
≤ log

{
(H/π)d(p−1)/2p−d/2�(1 − Hd/p∗)p(5.16)

× (1 − Hd/p∗)−p(1−Hd/p∗)}.
On the other hand, let ᾱH (A) be the intersection local time generated by

c−1
H BH

1 (t), . . . , c−1
H BH

p (t). We have that

ᾱH (A) = c
d(p−1)
H αH (A), A ⊂ (R+)p.(5.17)

In view of the decomposition (1.6), by Proposition 3.1 we have that

E[α̃H ([0,1]p)m] ≥ E[ᾱH ([0,1]p)m] = c
d(p−1)m
H E[αH ([0,1]p)m].(5.18)

It follows from (5.24) below that

C(H,d,p) ≥ p log
{
c
d/p∗
H (1 − Hd/p∗)−(1−Hd/p∗)

(
p∗

2π

)d/(2p∗)

(5.19)

×
∫ ∞

0
(1 + t2H )−d/2e−t dt

}
.

Applying Lemma 3.9 leads the first conclusion (2.7) of our theorem with

K̃(H,d,p) = Hd(p − 1) exp
{
−C(H,d,p)

Hd(p − 1)

}
and therefore the bounds given in (2.8) follows from (5.16) and (5.19).

5.2. Proof of Theorem 2.4—Comparison argument. In connection to (5.15),
we first show that

lim
m→∞

1

m
log

{
(m!)−Hd(p−1)

EαH ([0,1]p)m
}

(5.20)
= C(H,d,p) − d(p − 1) log cH .

The upper bound follows immediately from (5.15) and the comparison (5.18).
To establish the lower bound, we once again consider the intersection local time
ᾱH (A) generated by the normalized fractional Brownian motions

B̄H
1 (t) = c−1

H BH
1 (t), . . . , B̄H

p (t) = c−1
H BH

p (t).

For any ε > 0, define

ᾱH
ε (A) =

∫
Rd

∫
A

p∏
j=1

pε

(
B̄H

j (sj ) − x
)
ds1 · · · dsp dx,(5.21)
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Let 0 < δ < 1 be a small but fixed number. Notice

EᾱH
ε ([0,1]p)m ≥ EαH

ε ([δ,1]p)m

=
∫
([δ,1]p)m

ds1 · · · dsm E

m∏
k=1

gε(B̄
H
1 (s1,k), . . . , B̄

H
p (sp,k))

where gε(x1, . . . , xp) is defined by (5.4) and we adopt the notation sk = (s1,k, . . . ,

sp,k).
Consider (WH

1 (t1), . . . ,W
H
p (tp)) (t = (t1, . . . , tp) ∈ [0,1]p) as a Gaussian ran-

dom variable taking values in the Banach space
⊗p

j=1 C{[0,1]p,R
d}. Then the

reproducing kernel Hilbert space of (WH
1 (t1), . . . ,W

H
p (tp)) is H̃W = ⊗p

j=1 HW .

For each (f1(t1), . . . , fp(t)) ∈ H̃W

‖(f1(t1), . . . , fp(t))‖2
H̃W

=
p∑

j=1

‖fj‖2
HW

,

where ‖ · ‖HW
is the reproducing kernel Hilbert norm of HW .

Let ZH
δ,1(t), . . . ,Z

H
δ,p(t) be the processes constructed in Lemma 3.5 (with a =

δ) by ZH
1 (t), . . . ,ZH

p (t), respectively. For each (s1, . . . , sm) ∈ ([δ,1]p)m by the
decomposition (1.6) we have

E

m∏
k=1

gε(B̄
H
1 (s1,k), . . . , B̄

H
p (sp,k))

= E

m∏
k=1

gε

(
WH

1 (s1,k) + ZH
δ,1(s1,k), . . . ,W

H
p (sp,k) + ZH

δ,p(sp,k)
)
.

Fixed (s1, . . . , sm) ∈ ([δ,1]p)m. Applying Lemma 3.7(ii) to the functional
g(f1, . . . , fp) on

⊗p
j=1 C{[0,1]p,R

d} defined by

g(f1, . . . , fp) ≡
m∏

k=1

gε(f1(s1,k), . . . , fp(sp,k)),

(f1, . . . , fp) ∈
p⊗

j=1

c{[0,1]p,R
d},

then the right-hand side is greater than(
E exp

{
−1

2
‖ZH

δ ‖2
HW

})p

Eg(WH
1 , . . . ,WH

p )

=
(

E exp
{
−1

2
‖ZH

δ ‖2
HW

})p

E

m∏
k=1

gε(W
H
1 (s1,k), . . . ,W

H
p (sp,k)).
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Summarizing our estimate, we have

EᾱH
ε ([0,1]p)m

≥
(

E exp
{
−1

2
‖ZH

δ ‖2
HW

})p

×
∫
([δ,1]p)m

ds1 · · · dsm E

m∏
k=1

gε(W
H
1 (s1,k), . . . ,W

H
p (sp,k))

=
(

E exp
{
−1

2
‖ZH

δ ‖2
HW

})p

Eα̃H
ε ([δ,1]p)m.

By Proposition 3.1, letting ε → 0+ on both sides yields

EᾱH ([0,1]p)m ≥ (
E exp

{−1
2‖ZH

δ ‖2
HW

})p
Eα̃H

ε ([δ,1]p)m.

In view of (5.17),

lim inf
m→∞

1

m
log

(
(m!)−Hd(p−1)

E[αH ([0,1]p)m])
(5.22)

≥ −d(p − 1) log cH + lim inf
m→∞

1

m
log

(
(m!)Hd(p−1)

E[α̃H ([δ,1]p)m]).
To establish the lower bound for (5.20), therefore, it remains to show that

lim inf
δ→0+ lim inf

m→∞
1

m
log

1

(m!)Hd(p−1)
E[α̃H ([δ,1]p)m] ≥ C(H,d,p).(5.23)

Write

α̃H ([0,1]p) = α̃H ([δ,1] × [0,1]p−1) + α̃H ([0, δ] × [0,1]p−1).

By the triangular inequality,

{E[α̃H ([0,1]p)m]}1/m

≤ {
E

[
α̃H ([δ,1] × [0,1]p−1)m

]}1/m + {
E

[
α̃H ([0, δ] × [0,1]p−1)m

]}1/m
.

Given ε > 0,

E
[
α̃H

ε ([δ,1] × [0,1]p−1)m
]

=
∫
(Rd )m

dx1 · · · dxm

[∫
[δ,1]m

E

m∏
k=1

pε

(
WH(sk) − xk

)
ds1 · · · dsm

]

×
[∫

[0,1]m
E

m∏
k=1

pε

(
WH(sk) − xk

)
ds1 · · · dsm

]p−1

≤
{∫

(Rd )m
dx1 · · · dxm

[∫
[δ,1]m

E

m∏
k=1

pε

(
WH(sk) − xk

)
ds1 · · · dsm

]p}1/p
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×
{∫

(Rd )m
dx1 · · · dxm

×
[∫

[0,1]m
E

m∏
k=1

pε

(
WH(sk) − xk

)
ds1 · · · dsm

]p}(p−1)/p

= {E[α̃H
ε ([δ,1]p)m]}1/p{E[α̃H

ε ([0,1]p)m]}(p−1)/p.

Letting ε → 0+ yields

E
[
α̃H ([δ,1] × [0,1]p−1)m

] ≤ {E[α̃H ([δ,1]p)m]}1/p{E[α̃H ([0,1]p)m]}(p−1)/p.

Similarly,

E
[
α̃H ([0, δ] × [0,1]p−1)m

] ≤ {E[α̃H ([0, δ]p)m]}1/p{E[α̃H ([0,1]p)m]}(p−1)/p.

So we have

{E[α̃H ([0,1]p)m]}1/mp ≤ {E[α̃H ([δ,1]p)m]}1/mp + {E[α̃H ([0, δ]p)m]}1/mp.

By scaling,

E[α̃H ([0, δ]p)m] = δ(p−Hd(p−1))m
E[α̃H ([0,1]p)m].

Thus,

E[α̃H ([δ,1]p)m] ≥ [
1 − δ1−Hd(p−1)/p]mp

E[α̃H ([0,1]p)m].
Therefore, (5.23) follows from (5.15).

To bound the limit in (5.20) from below, we claim that

lim
m→∞

1

m
log

{
(m!)−Hd(p−1)

EαH ([0,1]p)m
}

≥ p log
{
(1 − Hd/p∗)−(1−Hd/p∗)(p∗)d/(2p∗)(2π)−d/(2p∗)(5.24)

×
∫ ∞

0
(1 + t2H )−d/2e−t dt

}
.

Let τ1, . . . , τp be i.i.d. exponential times independent of BH
1 (t), . . . ,BH

p (t).
Given ε > 0,

E
[
αH

ε ([0, τ1] × · · · × [0, τp])m] =
∫
(Rd )m

dx1 · · · dxm Qp
ε (x1, . . . , xm),

where

Qε(x1, . . . , xm) =
∫ ∞

0
e−t

[∫
[0,t]m

ds1 · · · dsm E

m∏
k=1

pε

(
BH(sk) − xk

)]
dt.
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Let f (x1, . . . , xm) be a rapidly decreasing function on (Rd)m such that∫
(Rd )m

|f (x1, . . . , xm)|p∗
dx1 · · · dxm = 1.

By Hölder’s inequality,{
E

[
αH

ε ([0, τ1] × · · · × [0, τp])]m}1/p

≥
∫
(Rd )m

dx1 · · · dxm f (x1, . . . , xm)Qε(x1, . . . , xm)

=
∫ ∞

0
e−t

∫
[0,t]m

[∫
(Rd )m

dx1 · · · dxm f (x1, . . . , xm)

× Hs,ε(x1, . . . , xm)

]
ds1 · · · dsm dt,

where

Hs,ε(x1, . . . , xm) = E

m∏
k=1

pε

(
BH(sk) − xk

)
, s = (s1, . . . , sm).

Consider the Fourier transform

f̂ (λ1, . . . , λm) =
∫
(Rd )m

dx1 · · · dxm f (x1, . . . , xm) exp

{
i

m∑
k=1

λk · xk

}
.

It is easy to see that

Ĥs,ε(λ1, . . . , λm) = exp

{
−ε

2

m∑
k=1

|λk|2 − 1

2
Var

(
m∑

k=1

λk · BH(sk)

)}
.

By Parseval’s identity,∫
(Rd )m

dx1 · · · dxm f (x1, . . . , xm)Hs,ε(x1, . . . , xm)

= 1

(2π)md

∫
(Rd )m

dλ1 · · · dλm f̂ (λ1, . . . , λm)

× exp

{
−ε

2

m∑
k=1

|λk|2 − 1

2
Var

(
m∑

k=1

λk · BH(sk)

)}
.

Thus, {
E

[
αH

ε ([0, τ1] × · · · × [0, τp])]m}1/p

≥ 1

(2π)md

∫ ∞
0

e−t dt

∫
[0,t]m

ds1 · · · dsm
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×
[∫

(Rd )m
dλ1 · · · dλmf̂ (λ1, . . . , λm)

× exp

{
−ε

2

m∑
k=1

|λk|2 − 1

2
Var

(
m∑

k=1

λk · BH(sk)

)}]
.

We now let ε → 0+ on the both hand sides. Noticing that the left-hand side falls
into an obvious similarity to (5.7),{

E
[
αH ([0, τ1] × · · · × [0, τp])]m}1/p

≥ 1

(2π)md

∫ ∞
0

e−t dt

∫
[0,t]m

ds1 · · · dsm

(5.25)

×
[∫

(Rd )m
dλ1 · · · dλmf̂ (λ1, . . . , λm)

× exp

{
−1

2
Var

(
m∑

k=1

λk · BH(sk)

)}]
.

We now specify the function f (x1, . . . , xm) as

f (x1, . . . , xm) = Cm
m∏

k=1

p1(xk),

where

C = (p∗)d/(2p∗)(2π)d(p∗−1)/(2p∗).

We have∫
(Rd )m

dλ1 · · · dλm f̂ (λ1, . . . , λm) exp

{
−1

2
Var

(
m∑

k=1

λk · BH(sk)

)}

= Cm

[∫
Rm

dγ1 · · · dγm exp

{
−1

2

m∑
k=1

γ 2
k − 1

2
Var

(
m∑

k=1

γkB
H
0 (sk)

)}]d

,

where BH
0 (t) is an 1-dimensional fractional Brownian motion.

Let ξ1, . . . , ξm be i.i.d. standard normal random variable independent of BH
0 (t).

Write

ηk = ξk + BH
0 (sk), k = 1, . . . ,m.

We have

1

2

m∑
k=1

γ 2
k + 1

2
Var

(
m∑

k=1

γkB
H
0 (sk)

)
= 1

2
Var

(
m∑

k=1

γkηk

)
.
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And thus by Gaussian integration,∫
Rm

dγ1 · · · dγm exp

{
−σ 2

2

m∑
k=1

γ 2
k − 1

2
Var

(
m∑

k=1

γkB
H
0 (sk)

)}

= (2π)m/2 det{Cov(η1, . . . , ηm)}−1/2,

with convention that s0 = 0.
Write s0 = 0 and assume s1 < · · · < sm. By Lemma 3.8,

det{Cov(η1, . . . , ηm)} = Var(η1)

m∏
k=2

Var(ηk|η1, . . . , ηk−1)

= {1 + Var(B0(s1))}

×
m∏

k=2

{1 + Var(BH
0 (sk)|BH

0 (s1), . . . ,B
H
0 (sk−1))}

≤
m∏

k=1

{1 + (sk − sk−1)
2H },

where the last step follows from the computation

Var(BH
0 (sk)|BH

0 (s1), . . . ,B
H
0 (sk−1))

= Var
(
BH

0 (sk) − BH
0 (sk−1)|BH

0 (s1), . . . ,B
H
0 (sk−1)

)
≤ Var

(
BH

0 (sk) − BH
0 (sk−1)

) = (sk − sk−1)
2H .

Summarizing our argument since (5.25), we obtain{
E

[
αH ([0, τ1] × · · · × [0, τp])]m}1/p

≥ m!(C(2π)−d/2)m
∫ ∞

0
e−t dt

∫
[0,t]m<

ds1 · · · dsm

×
m∏

k=1

{1 + (sk − sk−1)
2H }−d/2

= m!(C(2π)−d/2)m
[∫ ∞

0
(1 + t2H )−d/2e−t dt

]m

.

Equivalently,

E
[
αH ([0, τ1] × · · · × [0, τp])]m

(5.26)

≥ (m!)p(C(2π)−d/2)mp

[∫ ∞
0

(1 + t2H )−d/2e−t dt

]pm

.
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On the other hand, with obvious similarity to (5.14)

E
[
αH ([0, τ1] × · · · × [0, τp])]m

≤ E[αH ([0,1]p)]m{
�

(
1 + m(1 − Hd/p∗)

)}p
.

Hence, (5.24) follows from (5.26) and Stirling’s formula.
By (5.16) and (5.24), the limit given in (5.20) is finite. By Lemma 3.9, the large

deviation given in (2.9) holds with

K(H,d,p) = Hd(p − 1) exp
{
−C(H,d,p) − d(p − 1) log cH

Hd(p − 1)

}
= c

1/H
H K̃(H,d,p).

6. The law of the iterated logarithm. We will prove Theorem 2.5 in this
section. Due to the similarity of arguments, we will only establish (2.18). By the
self-similarity property (1.12), the large deviation limit of Theorem 2.3 can be
rewritten as

lim
t→∞(log log t)−1 log P

{
α̃H ([0, t]p) ≥ λtp−Hd(p−1)(log log t)Hd(p−1)}

(6.1)
= −K̃(H,d,p)λp∗/Hdp (λ > 0).

Therefore, the upper bound

lim sup
t→∞

tHd(p−1)−p(log log t)−Hd(p−1)α̃H ([0, t]p)

≤ K̃(H,d,p)−Hd(p−1) a.s.

is a consequence of the standard argument using Borel–Cantelli lemma.
To show the lower bound, we proceed in several steps. First, let N > 1 be a

large but fixed number and write tn = Nn (n = 1,2, . . .). Define the d-dimensional
process

QH
n (t) =

∫ tn

0
(t + u)H−1/2 dB(u), t ≥ 0,

where B(u) is a standard d-dimensional Brownian motion. Recall that H[0, T ]
denotes the RKHS of {WH(t)}t∈[0,T ]. Combining Propositions 3.3 and 3.5 we can
deduce that {QH

n (t)}t∈[0,T ] is not in H[0, T ], T > 0. For that reason, similarly as
in Proposition 3.5, we define the following modifications of QH

n (t). When H ∈
(0,1/2), put

GH
n (t) =

{
Ant, 0 ≤ t ≤ tn,
QH

n (t), t > tn,

where An = t−1
n QH

n (tn). When H ∈ (1
2 ,1), put

GH
n (t) =

{
B1,nt

2 + B2,nt
3, 0 ≤ t ≤ tn,

QH
n (t), t > tn,
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where B1,n = 3t−2
n QH

n (tn) − t−1
n Q̇H

n (tn) and B2,n = −2t−3
n QH

n (tn) + t−2
n Q̇H

n (tn).

LEMMA 6.1. For every n ≥ 1, P({GH
n (t)}t∈[0,tn+1] ⊂ H[0, tn+1]) = 1. Fur-

thermore,

sup
n

E‖GH
n ‖2

H[0,tn+1] < ∞.(6.2)

PROOF. Obviously, it suffices to consider the case d = 1. The first part of the
lemma follows by the same argument as in Proposition 3.5. For the second part,
we use Lemma 3.6 with a = tn and T = tn+1. A constant C > 0 below will depend
only on H but it will be allowed to be different at different places.

First, consider H ∈ (0,1/2), so that m = �H + 1/2� = 1. In this case, we get

‖ĠH
n ‖L∞[0,tn] = |An|

and ∫ tn+1

tn

∣∣∣∣∫ t

tn

(t − s)−H−1/2ĠH
n (s) ds

∣∣∣∣2 dt

= C

∫ tn+1

tn

∣∣∣∣∫ tn

0

(∫ t

tn

(t − s)−H−1/2(s + u)H−3/2 ds

)
dB(u)

∣∣∣∣2 dt.

Therefore,

E‖ĠH
n ‖2

L∞[0,tn] = t−2
n EQH

n (tn)
2 = Ct2H−2

n ,(6.3)

and

E

∫ tn+1

tn

∣∣∣∣∫ t

tn

(t − s)−H−1/2ĠH
n (s) ds

∣∣∣∣2 dt

= C

∫ tn+1

tn

∫ tn

0

(∫ t

tn

(t − s)−H−1/2(s + u)H−3/2 ds

)2

dudt

= C

∫ tn+1

tn

∫ tn

0

(t − tn)
1−2H (u + tn)

2H−1

(t + u)2 dudt

(6.4)

≤ C

∫ tn+1

tn

(
t

tn
− 1

)1−2H tn

t2 dt

≤ C

(
tn+1

tn
− 1

)1−2H ∫ tn+1

tn

1

t
dt

≤ C

(
tn+1

tn

)1−2H

log
tn+1

tn
.



768 CHEN, LI, ROSIŃSKI AND SHAO

Using bounds (6.3)–(6.4) with Lemma 3.6, we get

E‖GH
n ‖2

H[0,tn+1] ≤ C(t2−2H
n+1 − t2−2H

n )t2H−2
n + C(tn+1/tn)

1−2H log(tn+1/tn)

≤ C(N2−2H + N1−2H logN),

which proves (6.2) in the case H ∈ (0,1/2). The proof in the case H ∈ (1/2,1)

follows the same line of computations, and thus is omitted. �

For simplicity of notation, from now on write Hn for H[0, tn+1]. Define the
sigma field

Ft = σ {(B1(s), . . . ,Bp(s)); s ≤ t}.
To complete the proof of Theorem 2.5, that is, to establish the lower bound in
(2.18), it is enough to show that for any λ < K̃(H,d,p)−Hd(p−1) there is an N ,
sufficiently large, such that∑

n

P
{
α̃H ([2tn, tn+1]p)

(6.5)
≥ λt

p−Hd(p−1)
n+1 (log log tn+1)

Hd(p−1)|Ftn

} = ∞ a.s.

Indeed, by [8], Corollary 5.29, page 96, (6.5) implies that

lim sup
n→∞

t
Hd(p−1)−p
n+1 (log log tn+1)

−Hd(p−1)α̃H ([2tn, tn+1]p) ≥ λ a.s.

which leads to

lim sup
t→∞

tHd(p−1)−p(log log t)−Hd(p−1)α̃H ([0, t]p) ≥ λ a.s.

Letting λ → K̃(H,d,p)−Hd(p−1) on the right-hand side yields the lower bound
as claimed.

Now let ε > 0 be fixed and write

α̃H
ε ([2tn, tn+1]p) =

∫
[2tn,tn+1]p

ds1 · · · dsp gε(W
H
1 (s1), . . . ,W

H
p (sp))

=
∫
[tn,tn+1−tn]p

ds1 · · · dsp gε

(
WH

1 (tn + s1), . . . ,W
H
p (tn + sp)

)
=

∫
[tn,tn+1−tn]p

ds1 · · · dsp

× gε

(
YH

1 (s1) + ZH
1 (s1), . . . , Y

H
p (sp) + ZH

p (sp)
)
,

where gε(x1, . . . , xp) is given in (5.4) and for j = 1, . . . , p,

YH
j (t) =

∫ tn+t

tn

(tn + t − s)H−1/2 dBj (s),

ZH
j (t) =

∫ tn

0
(tn + t − s)H−1/2 dBj (s).
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Consider a symmetric set A ⊂ ⊗p
j=1 C{[0, tn+1],R

d} defined by

A =
{
(f1, . . . , fp) ∈

p⊗
j=1

C{[0, tn+1],R
d};

∫
[tn,tn+1−tn]p

ds1 · · · dsp gε(f1(s1), . . . , fp(sp))

≥ λt
p−Hd(p−1)
n+1 (log log tn+1)

Hd(p−1)

}
.

For any (f1, . . . , fp) ∈ ⊗p
j=1 Hn, applying Lemma 3.7(ii) to the indicator of A

leads to

P{(WH
1 + f1, . . . ,W

H
p + fp) ∈ A}

≥ exp

{
−1

2

p∑
j=1

‖f ‖2
Hn

}
P{(WH

1 , . . . ,WH
p ) ∈ A},

if f1, . . . , fp ∈ Hn.
Notice that

{ZH(t); tn ≤ t ≤ tn+1} d= {QH
n (t); tn ≤ t ≤ tn+1}

= {GH
n (t); tn ≤ t ≤ tn+1},

{YH (t); tn ≤ t ≤ tn+1} d= {WH(t); tn ≤ t ≤ tn+1}
and YH (t) and ZH(t) are independent. By Lemma 6.1,

P{(YH
1 + ZH

1 , . . . , YH
p + ZH

p ) ∈ A|Ftn}

≥ exp

{
−1

2

p∑
j=1

‖GH
n,j‖2

Hn

}
P{(WH

1 , . . . ,WH
p ) ∈ A}

or

P
{
α̃H

ε ([2tn, tn+1]p) ≥ λt
p−Hd(p−1)
n+1 (log log tn+1)

Hd(p−1)|Ftn

}
≥ exp

{
−1

2

p∑
j=1

‖GH
n,j‖2

Hn

}

× P
{
α̃H

ε ([tn, tn+1 − tn]p) ≥ λt
p−Hd(p−1)
n+1 (log log tn+1)

Hd(p−1)}.
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Letting ε → 0+ on both sides yields

P
{
α̃H ([2tn, tn+1]p) ≥ λt

p−Hd(p−1)
n+1 (log log tn+1)

Hd(p−1)|Ftn

}
≥ exp

{
−1

2

p∑
j=1

‖GH
n,j‖2

Hn

}

× P
{
α̃H ([tn, tn+1 − tn]p) ≥ λt

p−Hd(p−1)
n+1 (log log tn+1)

Hd(p−1)}.
By (6.1) and by an argument similar to the one used for (5.23), for λ <

K̃(H,d,p)−Hd(p−1) and any small δ > 0, one can take N sufficiently large so
that, for large n,

P
{
α̃H ([tn, tn+1 − tn]p) ≥ λt

p−Hd(p−1)
n+1 (log log tn+1)

Hd(p−1)}
≥ exp{−(1 − δ) log log tn+1} = (n logN)−1+δ.

To establish (6.5), therefore, it suffices to show that for any ε, δ > 0,∑
n

1

n1−δ
1

{ p∑
j=1

‖GH
n,j‖2

Hn
≤ ε log log tn+1

}
= ∞ a.s.(6.6)

Indeed, by Lemma 6.1, GH
n can be viewed as a Gaussian sequence taking values

in Hn. By the Gaussian tail estimate (see [27], page 59) there is u = u(ε) > 0 such
that

P

{ p∑
j=1

‖GH
n,j‖2

Hn
≥ ε log log tn+1

}
≤ 1

nu

for large n. Then for 0 < δ < u, we obtain (6.6), which yields (6.5). The proof is
complete.

7. Local times of Gaussian fields. We begin by mentioning the work of Ge-
man, Horowitz and Rosen [17] on the condition for the existence and continuity of
the local times of the Gaussian fields; see also recent work of Wu and Xiao [41].
Let X(t) [t ∈ (R+)p] be a mean zero Gaussian field taking values in R

d such that
there is a γ > 0 such that for any t > 0 and m ∈ N,∫

([0,t]p)m
ds1 · · · dsm

(7.1)

×
∫
(Rd )m

dλ1 · · · dλm

(
m∏

k=1

|λk|γ
)

exp

{
−1

2
Var

(
m∑

k=1

λk · X(sk)

)}
< ∞.

Geman, Horowitz and Rosen (Theorem 2.8 in [17]) proved that the occupation
time

μt(B) =
∫
[0,t]

1{X(s)∈B} ds, B ⊂ R
d,
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is absolutely continuous with respect to the Lebesgue measure on R
d . Further, the

correspondent density function formally written as

α([0, t], x) =
∫
[0,t]

δx(X(s)) ds

is jointly continuous in (t, x). For fixed x, the distribution function α([0, t], x)

[t ∈ (R+)p] generates a (random) measure α(A,x) [A ⊂ (R+)p] on (R+)p which
is called the local time of X(t).

In this paper, the result of Geman, Horowitz and Rosen is applied to the follow-
ing four Gaussian fields:

1. The d-dimensional fractional Brownian motion X1(t) = BH(t).
2. The d-dimensional Riemann–Liouville process X2(t) = WH(t).
3. The d(p − 1)-dimension Gaussian field

X3(t1, . . . , tp) = (
BH

1 (t1) − BH
2 (t2), . . . ,B

H
p−1(tp−1) − BH

p (tp)
)
.

4. The d(p − 1)-dimension Gaussian field

X4(t1, . . . , tp) = (
WH

1 (t1) − WH
2 (t2), . . . ,W

H
p−1(tp−1) − WH

p (tp)
)
.

THEOREM 7.1. Under Hd < 1, X1(t) and X2(t) satisfy condition (7.1); un-
der Hd < p∗, X3(t) and X4(t) satisfy condition (7.1). Consequently, X1, X2, X3
and X4 have continuous (jointly in time and space variables) local times.

PROOF. Due to similarity we only verify (7.1) for X3, which becomes∫
([0,t]p)m

ds1 · · · dsm

(7.2)

×
∫
(Rd(p−1))m

dλ̃1 · · · dλ̃m exp

{
−1

2
Var

(
m∑

k=1

λ̃k · X(sk)

)}
m∏

k=1

|λ̃k|γ <∞,

where we use the notation

sk = (sk,1, . . . , sk,p) and λ̃k = (λk,1, . . . , λk,p−1).

Notice that

Var

(
m∑

k=1

λ̃k · X(sk)

)
=

p∑
j=1

Var

(
m∑

k=1

(λk,j − λk,j−1) · BH(sk,j )

)

with the convention λk,0 = λk,p = 0. By suitable substitution and using the bound

|λ̃k| ≤ C

p∏
j=1

max{1, |λk,j − λk,j−1|},
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we have ∫
(Rd(p−1))m

dλ̃1 · · · dλ̃m exp

{
−1

2
Var

(
m∑

k=1

λ̃k · X(sk)

)}
m∏

k=1

|λ̃k|γ

≤ C

∫
(Rmd)p−1

dλ̄1 · · · dλ̄p−1

p∏
j=1

Hj(λ̄j ),

where

Hj(λ̄j ) =
(

m∏
k=1

max{1, |λk,j |γ }
)

exp

{
−1

2
Var

(
m∑

k=1

λk,j · BH(sk,j )

)}
for λ̄j = (λ1,j , . . . , λm,j ) (1 ≤ j ≤ p − 1) and λ̄p = −(λ̄1 + · · · + λ̄p−1).

Write
p∏

j=1

Hj(λ̄j ) =
p∏

j=1

∏
1≤k �=j≤p

Hk(λ̄k)
1/(p−1).

By Hölder’s inequality,∫
(Rmd)p−1

dλ̄1 · · · dλ̄p−1

p∏
j=1

Hj(λ̄j )

≤
p∏

j=1

{∫
(Rmd)p−1

dλ̄1 · · · dλ̄p−1
∏

1≤k �=j≤p

Hk(λ̄k)
p∗

}1/p

.

When j = p,∫
(Rmd)p−1

dλ̄1 · · · dλ̄p−1
∏

1≤k<p

Hk(λ̄k)
p∗ =

p−1∏
k=1

∫
Rmd

Hk(λ̄)p
∗
dλ̄.

As for 1 ≤ j ≤ p − 1, recall that λ̄p = −(λ̄1 + · · · + λ̄p−1). By translation
invariance, ∫

Rmd
Hp(λ̄p)p

∗
dλ̄j =

∫
Rmd

Hp(λ̄)p
∗
dλ̄.

By Fubini’s theorem, for fixed j ,∫
(Rmd)p−1

dλ̄1 · · · dλ̄p−1
∏

1≤k �=j≤p

Hk(λ̄k)
p∗ = ∏

1≤k �=j≤p

∫
Rmd

Hk(λ̄)p
∗
dλ̄.

Summarizing our argument, the left-hand side of (7.2) is bounded by

C

{∫
[0,t]m

ds1 · · · dsm

[∫
(Rd )m

dλ1 · · · dλm

(
m∏

k=1

max{1, |λk|p∗γ }
)

× exp

{
−p∗

2
Var

(
m∑

k=1

λk · BH(sk)

)}]1/p∗}p

.
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Hence, all we need is to find γ > 0 such that∫
[0,t]m

ds1 · · · dsm

[∫
(Rd )m

dλ1 · · · dλm

(
m∏

k=1

|λk|γ
)

(7.3)

× exp

{
−p∗

2
Var

(
m∑

k=1

λk · BH(sk)

)}]1/p∗

< ∞

for all m ∈ N. Further separating variable and substituting variable, the above is
reduced to∫

[0,t]m
ds1 · · · dsm

[∫
Rm

dλ1 · · · dλm

(
m∏

k=1

|λk|γ
)

(7.4)

× exp

{
−1

2
Var

(
m∑

k=1

λkB
H
0 (sk)

)}]d/p∗

< ∞.

By (4.8), for any 0 = s0 < s1 < · · · < sk ,

Var
(
BH

0 (sk) − BH
0 (sk−1)|BH

0 (s1), . . . ,B
H
0 (sk−1)

)
≥ 1

2H
(sk − sk−1)

2H = 1

2H
Var

(
BH

0 (sk) − BH
0 (sk−1)

)
.

This property is generalized into the notion known as local nondeterminism. By
Lemma 2.3 in Berman [7], there is constant cm > 0 such that for any λ1, . . . , λm ∈
R and any s1 < · · · < sm

Var

(
m∑

k=1

λk

(
BH

0 (sk) − BH
0 (sk−1)

)) ≥ cm

m∑
k=1

(sk − sk−1)
2Hλ2

k.

Consequently, with notation λ0 = 0,∫
Rm

dλ1 · · · dλm

(
m∏

k=1

|λk|γ
)

exp

{
−1

2
Var

(
m∑

k=1

λkB
H
0 (sk)

)}

=
∫

Rm
dλ1 · · · dλm

(
m∏

k=1

|λk − λk−1|γ
)

× exp

{
−1

2
Var

(
m∑

k=1

λk

(
BH

0 (sk) − BH
0 (sk−1)

))}

≤
∫

Rm
dλ1 · · · dλm

(
m∏

k=1

|λk − λk−1|γ
)

exp

{
−cm

m∑
k=1

(sk − sk−1)
2Hλ2

k

}
.
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Using the triangle inequality (for which we take γ ≤ 1),
m∏

k=1

|λk − λk−1|γ ≤
m∏

k=1

(|λk|γ + |λk−1|γ ) = ∑
j1,...,jm

m∏
k=1

|λk|δjk ,

where δjk
= 0, γ or 2γ . Notice that

m∏
k=1

|λk|δjk ≤
m∏

k=1

(1 ∨ |λk|)δjk ≤
m∏

k=1

(1 ∨ |λk|)2γ .

Notice the number of the terms in the previous summation is at most 2m. Thus,
m∏

k=1

|λk − λk−1|γ ≤ 2m
m∏

k=1

(1 ∨ |λk|)2γ .

In this way, the problem is reduced to finding γ > 0 such that∫
[0,t]m<

ds1 · · · dsm

[∫
Rm

dλ1 · · · dλm

(
m∏

k=1

|λk|γ
)

(7.5)

× exp

{
−cm

m∑
k=1

(sk − sk−1)
2Hλ2

k

}]d/p∗

< ∞.

Observe that∫
Rm

dλ1 · · · dλm

(
m∏

k=1

|λk|γ
)

exp

{
−cm

m∑
k=1

(sk − sk−1)
2Hλ2

k

}

=
m∏

k=1

∫ ∞
−∞

|λ|γ e−cm(sk−sk−1)
2H λ2

dλ

=
{∫ ∞

−∞
|λ|γ e−cmλ2

dλ

}m m∏
k=1

(sk − sk−1)
−(1+γ )H .

Therefore, we need to choose γ > 0 such that∫
[0,t]m<

ds1 · · · dsm

m∏
k=1

(sk − sk−1)
−(1+γ )Hd/p∗

< ∞.

This is always possible because Hd < p∗, so that (1+γ )Hd < p∗ for some γ > 0.
The proof is complete. �

APPENDIX

LEMMA A.1. Let {BH(t)}t∈R be a standard fractional Brownian motion
given by

BH(t) = cH

∫ t

−∞
(
(t − s)H−1/2 − (−s)

H−1/2
+

)
dB(s),(A.1)
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where {B(t)}t∈R is a standard Brownian motion. Then

cH = √
2H2HB(1 − H,H + 1/2)−1/2,(A.2)

where B(a, b) = ∫ 1
0 xa−1(1 − x)b−1 dx is the usual beta function.

PROOF. Since Var(BH (1)) = 1 we get

cH =
{∫ ∞

0

(
(1 + x)H−1/2 − xH−1/2)2

dx + 1

2H

}−1/2

.(A.3)

Put

I =
∫ ∞

0

(
(1 + x)H−1/2 − xH−1/2)2

dx.

Then

I = lim
μ→0+

∫ ∞
0

(
(1 + x)H−1/2 − xH−1/2)2

e−μx dx

= lim
μ→0+

{
(eμ + 1)μ−2H�(2H) − eμμ−2Hγ (2H,μ)

− 2
∫ ∞

0
(1 + x)H−1/2xH−1/2e−μx dx

}
= − 1

2H
+ lim

μ→0+

{
2eμ/2μ−2H�(2H) − 2

∫ ∞
0

(1 + x)H−1/2xH−1/2e−μx dx

}

= − 1

2H
+ lim

μ→0+

{
2eμ/2μ−2H�(2H) − 2√

π
eμ/2�

(
H + 1

2

)
μ−HK−H

(
μ

2

)}
,

where γ (z, x) and Kν(z) are the incomplete gamma function and modified Bessel
function of the second kind, respectively. The third equality uses the facts that
eμμ−2Hγ (2H,μ) = 1

2H
+ o(1), and that (eμ + 1)μ−2H = 2eμ/2μ−2H + o(1) for

H < 1, as μ → 0. The forth equality applies formula 3.3838 in [18].

Using the duplication formula �(2H) = 22H−1√
π

�(H)�(H + 1
2) (see [18], for-

mula 8.3351), we get

I = − 1

2H
+ 1√

π
�

(
H + 1

2

)
lim

μ→0+

{
μ−2H 22H�(H) − 2μ−HKH

(
μ

2

)}
.

Since

μ−2H 22H�(H) =
∫ ∞

0
xH−1e−(μ2)/(4)x dx

and

Kν(z) = 1

2

(
z

2

)ν ∫ ∞
0

t−ν−1e−t−z2/(4t) dt
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(see [18], formula 3.4326), we obtain

I = − 1

2H
+ 1√

π
�

(
H + 1

2

)
lim

μ→0+

∫ ∞
0

xH−1e−(μ2)/(4)x(
1 − e−1/(4x))dx

= − 1

2H
+ 1√

π
�

(
H + 1

2

)∫ ∞
0

xH−1(
1 − e−1/(4x))dx(A.4)

= − 1

2H
+ �(1 − H)�(H + 1/2)√

π4HH
.

Combining (A.4) with (A.3) and using the well-known formula B(x, y) = �(x)�(y)
�(x+y)

(see, e.g., [18], formula 8.3841), we get (A.2). �
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