
The Annals of Probability
2011, Vol. 39, No. 2, 549–586
DOI: 10.1214/10-AOP558
© Institute of Mathematical Statistics, 2011

THE ALGEBRAIC DIFFERENCE OF TWO RANDOM CANTOR
SETS: THE LARSSON FAMILY
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Technical University of Delft, Technical University of Budapest and
Technical University of Budapest

In this paper, we consider a family of random Cantor sets on the line and
consider the question of whether the condition that the sum of the Hausdorff
dimensions is larger than one implies the existence of interior points in the
difference set of two independent copies. We give a new and complete proof
that this is the case for the random Cantor sets introduced by Per Larsson.

1. Introduction. Algebraic differences of Cantor sets occur naturally in the
context of the dynamical behavior of diffeomorphisms. From these studies orig-
inated a conjecture by Palis and Takens [8], relating the size of the arithmetic
difference

C2 − C1 = {y − x :x ∈ C1, y ∈ C2}
to the Hausdorff dimensions of the two Cantor sets C1 and C2: if

dimH C1 + dimH C2 > 1,(1)

then, generically, it should be true that

C2 − C1 contains an interval.

For generic dynamically generated nonlinear Cantor sets, this was proven in 2001
by de Moreira and Yoccoz [1]. The problem is open for generic linear Cantor sets.
The problem was put into a probabilistic context by Per Larsson in his thesis [5]
(see also [6]). He considers a two-parameter family of random Cantor sets Ca,b,
and claims to prove that the Palis conjecture holds for all relevant choices of the
parameters a and b. Although the main idea of Larsson’s argument is brilliant,
unfortunately, the proof contains significant gaps and incorrect reasoning. The aim
of the present paper is to give a correct proof of this theorem. The most important
error made by Larsson is as follows: during the construction, a multitype branching
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FIG. 1. Regions described by equations (3) and (4).

process with uncountably many types appears naturally. The number of individuals
in the nth generation having types which fall into the set A is denoted Zn(A) and
the probability measure describing the branching process starting with a single
type-x individual is denoted by Px . The argument presented in Larsson’s paper
requires that for some positive δ, q , ρ > 1 and for a set A of which the interior
contains 0, we have that, uniformly, both in x and in n, the following holds:

Px

(
Zn(A) > δ · ρn)> q.(2)

However, the main result in the theory of general multitype branching processes
[4], Theorem 14.1, invoked by Larsson implies (2) without any uniformity.

Further (as shown in [3]), the idea presented in Larsson’s paper works only in
the region (see also Figure 1) where

1 − 4a − 2b + 3a2 − 6ab > 0.(3)

Although we use a different setup, the main idea presented here follows the line
of Larsson’s proof.

We remark that for linear Cantor sets of a different nature, the first two authors
investigated the same problem in [2]. Further developments in this direction in
[7] lead us to conjecture that in the critical case, that is, dimH(Ca,b) = 1/2, the
difference set will a.s. contain no interval.

1.1. Larsson’s random Cantor sets. It is assumed throughout this paper that

a > 1
4 and 3a + 2b < 1.(4)
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FIG. 2. The construction of the Cantor set Ca,b . The figure shows C1
a,b, . . . ,C4

a,b .

The first condition is a growth condition and since

dimH Ca,b = − log 2

loga
,

this condition is equivalent to dimH Ca,b > 1/2, which is equivalent to (1). The
second condition is a geometric condition: Larsson’s Cantor set is a natural ran-
domization of the classical Cantor set; see Figure 2. In the first step of the construc-
tion, intervals of length a are put into the intervals [b, 1

2 − a
2 ] and [1

2 + a
2 ,1 − b].

Dismissing the trivial case 3a + 2b = 1, this obviously requires 3a + 2b < 1. We
remark that it is useful to force a forbidden zone of length at least a in the middle
since otherwise the Newhouse thickness of the Cantor set would be larger than
1, which yields an interval in the difference set by Newhouse’s theorem (see [8],
page 63). The two intervals of length a each have room to move in an interval of
length 1

2 − a
2 − b, that is, there is a free space of size 1

2 − a
2 − b − a and we denote

this gap by g:

g := 1 − 3a − 2b

2
.

The construction is as follows: first, remove the middle a part, then the b parts
from both the beginning and the end of the unit interval. Then, place intervals
of length a according to a uniform distribution in the remaining two open spaces
[b, 1

2 − a
2 ] and [1

2 + a
2 ,1 − b]. These two randomly chosen intervals of length a

are called the level-one intervals of the random Cantor set Ca,b. We write C1
a,b for

their union. In both of the two level-one intervals, we repeat the same construction
independently of each other and of the previous step. In this way, we obtain four
disjoint intervals of length a2. We emphasize that, because of independence, the
relative positions of these second level intervals in the first level ones are, in gen-
eral, completely different. Similarly, we construct the 2n level-n intervals of length
an. We call their union Cn

a,b. Larsson’s random Cantor set is then defined by

Ca,b :=
∞⋂

n=1

Cn
a,b.

See Figure 2.
The next theorem was stated by P. Larsson.
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THEOREM 1. Let C1, C2 be independent random Cantor sets having the same
distribution as Ca,b defined above. Then, the algebraic difference C2 − C1 almost
surely contains an interval.

This paper is organized as follows. In the next section, we give an elementary
proof of the fact that the probability that C2 − C1 contains an interval is either
0 or 1. For the main part of the proof, our starting point is the observation that
C2 − C1 can be viewed as a 45◦ projection of the product set C1 × C2. This leads,
in Section 3.1, to the introduction of the level-n squares formed as the product of
level-n intervals of the Cantor sets C1,C2. We remark that Larsson does not use
these squares at all. Then, based on the family of these squares we will construct
the intrinsic branching process and state our Main Lemma, which will replace (2).
In Section 4, we prove Theorem 1, assuming the Main Lemma. In Sections 5–10,
we give a proof of the Main Lemma.

2. A 0–1 law. Undoubtedly, Larsson introduced his Cantor sets as a natural
randomization of the classical triadic Cantor set. Actually, these sets can also be
considered as very simple examples of statistically self-similar sets, which permits
us to give a simple proof of the 0–1 law for the interval property. A set C is sta-
tistically self-similar if there is a collection of m random functions {ϕ1, . . . , ϕm}
such that

C =
m⋃

i=1

ϕi(Ci),

where the Ci are independent random sets with the same distribution as C. For
Larsson’s sets, m = 2 and the random functions are the affine functions

ϕ1(x) = ax + b + U1 and ϕ2(x) = ax + (1 + a)/2 + U2,

where U1 and U2 are independent random variables, both uniformly distributed
over [0,g].

PROPOSITION 1. P(C2 − C1 ⊃ I ) = 0 or 1.

PROOF. For 1 ≤ i, j ≤ 2, let Ci,j be independent copies of C = Ca,b and let

C1 = ϕ1(C1,1) ∪ ϕ2(C1,2), C2 = ϕ1(C2,1) ∪ ϕ2(C2,2)

be the self-similarity equations for C1 and C2. We will also write “C2 −C1 contains
an interval” equivalently as “C2 − C1 has nonempty interior.”

Using the facts that for arbitrary subsets A,B,C and D of R,

(A ∪ B) − (C ∪ D) ⊃ (A − C) ∪ (B − D),
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that ϕ(A − B) = ϕ(A) − ϕ(B) for affine functions ϕ : R → R and that affine func-
tions are continuous, we can set up the following chain of (in)equalities:

p := P(C2 − C1 ⊃ I )

= 1 − P
(
Int(C2 − C1) = ∅

)
≥ 1 − P

(
Int

(
ϕ1(C2,1) − ϕ1(C1,1)

)= ∅, Int
(
ϕ2(C2,2) − ϕ2(C1,2)

)= ∅
)

= 1 − P
(
Int

(
ϕ1(C2,1) − ϕ1(C1,1)

)= ∅
)
P
(

Int
(
ϕ2(C2,2) − ϕ2(C1,2)

)= ∅
)

= 1 − P
(
Int

(
ϕ1(C2,1 − C1,1)

)= ∅
)
P
(
Int

(
ϕ2(C2,2 − C1,2)

)= ∅
)

= 1 − P
(
Int

(
C2,1 − C1,1) = ∅

)
P
(
Int(C2,2 − C1,2) = ∅

)
= 1 − (1 − p)2.

This implies that p ≤ p2 and hence p = 0 or 1. �

3. Notation and the Main Lemma. In the remainder of the paper, we fix a
pair (a, b) satisfying condition (4) and always deal with Larsson’s Cantor sets, so
we will suppress the labels a, b.

3.1. The geometry of the algebraic difference C2 − C1. The 45◦ projection of
a point (x1, x2) ∈ R

2 onto the x2-axis is denoted by Proj45◦ . That is,

Proj45◦(x1, x2) := x2 − x1.

The following trivial fact is the motivation for constructing our branching
process of labeled squares:

x ∈ Proj45◦(C1 × C2) if and only if x ∈ C2 − C1.

So,

C2 − C1 =
∞⋂

n=0

Proj45◦(Cn
1 × Cn

2 ).

We can naturally label the squares in Cn
1 ×Cn

2 as follows: we call the upper-left
first level square Q1 and continue labeling the first level squares Q2,Q3,Q4 in the
clockwise direction; then, within each of these squares, we continue in this way;
see Figure 3.

For an x ∈ [−1,1], we write e(x) for that line with slope 1 which intersects the
vertical axis at x. As we observed above

x ∈ C2 − C1 if and only if e(x) ∩ (C1 × C2) �= ∅.(5)

Fix x and an arbitrary n. Let Sn be the set of all an × an squares contained
in [0,1]2. Note that for every Q ∈ Sn, by the statistical self-similarity of the con-
struction, the probability of the event e(x) ∩ (Q ∩ (C1 × C2)) �= ∅ conditional
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FIG. 3. The first level squares Q1, . . . ,Q4 and four second level squares Q21, Q22, Q23, Q24.

on Q ⊂ Cn
1 × Cn

2 is equal to the probability of the event e(�) ∩ (C1 × C2) �= ∅,
where we construct � = �(Q,x) as follows: we rescale the square Q (which is an
an × an square) by the factor 1/an, then we choose � such that the line segment
e(�) ∩ [0,1]2 is the rescaled copy of e(x) ∩ Q; see Figure 4. More precisely, if
(u, v) is the lower-left corner of Q, that is, Q = [u,u + an] × [v, v + an], then we
define

�(Q,x) :=
{ u − v + x

an
, if e(x) intersects Q,

�, otherwise,
(6)

where � is a symbol representing the emptiness of the intersection. Observe that
�(Q,x) > 0 if and only if the center of Q is located below the line e(x) and e(x)

meets Q. Further, �(Q,x) = 1 if e(x) intersects Q at the upper-left corner and
�(Q,x) = −1 if e(x) intersects Q at the lower-right corner.

3.2. The probability space. We write T := ⋃∞
n=0{1,2}n for the dyadic tree,

with nodes in = i1i2 . . . in, where ik is 1 or 2, and root �. For the construction of
Larsson’s Cantor set, the probability space is �1 = [0,g]T [recall that g = (1 −
3a − 2b)/2]. An element of �1 is denoted by U , that is, the value at the node
i1i2 . . . in is Ui1i2...in . The corresponding σ -algebra is B1 := ∏

T B[0,g]. Finally,
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FIG. 4. A level-n square Q and its rescaled type �(Q,x).

the probability measure for Larsson’s Cantor set is

P1 := δ0 × ∏
T \{�}

Uniform[0,g],

where δ0 is the Dirac mass at 0 associated with the mass at the root �. Note that
the randomness starts at level 1. So, the probability space for C1 ×C2 is as follows:

� := �1 × �1, B := B1 × B1, P := P1 × P1.(7)

An element of � is a pair of labeled binary trees. The 4n level-n pairs
of indices (i1i2 . . . in, j1j2 . . . jn) are naturally associated with level-n squares
Q′

(i1i2...in,j1j2...jn) of size an ×an whose relative positions are given by Ui1i2...in and
Uj1j2...jn . Note, however, that (to simplify the notation) we have given new indices
to these squares and positions: Q1 := Q′

1,2, Q2 := Q′
2,2, Q3 := Q′

2,1, Q4 := Q′
1,1

and similarly for higher order squares and their positions (see Figure 3).

3.3. The branching process. On the probability space �, we define a mul-
titype branching process Z = (Zn)

∞
n=0. For a Borel set A, the natural number

Zn(A) represents the number of objects in generation n whose type falls into the
set A. The type space T is a subset of [−1,1], but for the moment we can think
of T = [−1,1]. The objects of the nth generation are squares Q ∈ Sn and, given a
fixed x ∈ [−1,1], their type is �(Q,x), as defined in (6). Note that although we
speak of � as a type, it is not an element of T .

The process (Zn) is a Markov chain whose states are collections of squares
labeled by their types. The transition mechanism is as described in Section 3.1.
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The initial condition of the chain is the square [0,1] × [0,1], with type x (also
called the ancestor of the branching process). As usual, we then write, for n ≥ 1,

Px

(
Zn(A1) = r1, . . . , Zn(Ak) = rk

)
= P

(
Zn(A1) = r1, . . . , Zn(Ak) = rk|Z0({x}) = 1

)
for all k ≥ 1, A1, . . . ,Ak ⊂ T and nonnegative integers r1, . . . , rk .

A collection of squares all with type � is an absorbing state: it only generates
squares with type �. This is obvious from the definition of �(Q,x), but we will
extend this property to the case of smaller type spaces T , where, by definition, a
square has type � if its type is not in T (this will be further explained in Sec-
tion 6.1).

A major role in our analysis is played by the expectations Ex[Zn(A)] for A ⊂ T ,
n ≥ 1. Let us define, for i = 1,2,3,4,

Z i
1(A) =

{
1, if �(Qi, x) ∈ A,
0, otherwise.

(8)

Then, Z1(A) = Z 1
1 (A) + · · · + Z 4

1 (A) and so

Ex[Z1(A)] =
∫
�

Z1(A)dPx =
∫
�

4∑
i=1

Z i
1(A)dPx

=
4∑

i=1

Px

(
�(Qi, x) ∈ A

)=
4∑

i=1

∫
A

fx,i(y)dy,

where the fx,i are the densities of the random variables �(Qi, x) (apart from an
atom in �). In Section 5.2, these densities will be determined explicitly. It follows
that for n = 1,

Mn(x,A) := Ex[Zn(A)]
has a density m1(x, y), called the kernel of the branching process, given by

m(x,y) := m1(x, y) =
4∑

i=1

fx,i(y).(9)

We remark that if M1 has a density, then Mn also has a density. Let us write
mn(x, ·) for the density of Mn(x, ·). The branching structure of Z yields (see [4],
page 67)

mn+1(x, y) =
∫
T

mn(x, z)m1(z, y)dz.(10)

The main problem to be solved is that the natural choice of T = [−1,1] as type
space does not work because of condition (C) below and because we need the
uniformity alluded to in equation (2).

Since the definition of T is complicated, we postpone it to Section 6. However,
here we collect the most important properties of T :
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(A) T is the disjoint union of finitely many closed intervals;
(B) there exists a K > 0 such that [−K,K] ⊂ T ;
(C) the kernel mn(x, y) defined in (10) is uniformly positive on T × T [see

condition (C1) below] and it has Perron–Frobenius eigenvalue greater than 1 [see
condition (C2) below].

3.4. The asymptotic behavior of the branching process Z . We will prove in
Sections 6, 7 and 8 that there exists an integer n0 such that mn0 is a uniformly
bounded function, that is, there exist 0 < amin < amax such that for all x, y ∈ T ,

we have

0 < amin ≤ mn0(x, y) ≤ amax < ∞.(C1)

In the next step, we consider the following two operators:

g(x) �→
∫

R

m1(x, y) · g(y)dy, h(y) �→
∫

R

h(x) · m1(x, y)dx.(11)

We cite the following theorem from [4], Theorem 10.1.

THEOREM 2 (Harris). It follows from (C1) that the operators in (11) have a
common dominant eigenvalue ρ. Let μ(x) and ν(y) be the corresponding eigen-
functions of the first and second operator in (11), respectively. Then, the functions
μ(x) and ν(y) are bounded and uniformly positive. Moreover, apart from a scal-
ing, μ and ν are the only nonnegative eigenfunctions of these operators. Further,
if we normalize μ and ν so that

∫
μ(x)ν(x)dx = 1, which will be henceforth as-

sumed, then, for all x, y ∈ T , as n → ∞,∣∣∣∣mn(x, y)

ρn
− μ(x)ν(y)

∣∣∣∣≤ C1μ(x)ν(y)�n,

where the bound � < 1 can be taken independently of x and y, and the constant
C1 is independent of x, y and n.

Later in this paper, we will prove that in our case, this Perron–Frobenius eigen-
value is greater than one:

ρ > 1.(C2)

Using Theorem 2, Harris proves that Zn(A) in fact grows exponentially with
rate ρ. Introducing

Wn(A) := Zn(A)

ρn
,

he obtains (see [4], Theorem 14.1) the following result.
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THEOREM 3 (Harris). If

sup
x∈T

Ex[Z1(T )2] < ∞,(C3)

then it follows from (C1) and (C2) that for all x ∈ T ,

Px

(
lim

n→∞Wn(A) =: W(A)
)

= 1.(12)

Further, for every Borel measurable A ⊂ T with Leb1(A) > 0, we have

Px

(
W(A) > 0

)
> 0.(13)

Moreover, let A and B be subsets of T such that their Lebesgue measures are
positive. Then, the relation

W(B) =
∫
B ν(y)dy∫
A ν(y)dy

W(A)

holds Px almost surely for any x ∈ T .

We are going to use this theorem to prove our Main Lemma, which summa-
rizes everything we need concerning our branching process. Roughly speaking, the
Main Lemma says that for the branching process associated to Larsson’s Cantor
set, the statement in Theorem 3 holds uniformly both in n and x for an appropri-
ately chosen small interval of x’s.

MAIN LEMMA. There exist positive numbers δ and q , an N ∈ N and a small
interval [−K,K] ⊂ T centered at the origin such that the following inequality
holds:

inf
n≥N

inf
x∈[−K,K] Px

(
Zn([−K,0]) > δρn, Zn([0,K]) > δρn)≥ q.(14)

4. The proof of Theorem 1. In Section 3.1, we defined the type of a square
Q by means of its intersection with a line e(x). Here, we will elaborate on this
intersection.

4.1. Nice intersection of a square with a line e(x). We say that a square Q has
a nice intersection with e(x) if

�(Q,x) ∈ [−K,K],
where K comes from Main Lemma. For small K, this means that the center of Q

is close to the line e(x).
Let A0 = {[0,1]2}, An be the set {Q ∈ Sn :Q ⊂ Cn

1 × Cn
2 } and An

x be the set of
squares from An having nice intersection with e(x). That is, for x ∈ T and n ≥ 1,

we define

An
x := {Q ∈ An : |�(Q,x)| ≤ K}.
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Moreover, for m ≥ 0 and a square Q ∈ Am
x , we write l+n (Q,x) and (l−n (Q,x)) for

the numbers of level-(m + n) squares contained in Q which have nice intersection
with e(x) with center below and above the line e(x), respectively. That is, for a
Q = Qi1...im , let

l+n (Q,x) = #{Qi1...imj1...jn ∈ Am+n : 0 ≤ �(Qi1...imj1...jn, x) ≤ K}.
Similarly, let

l−n (Q,x) = #{Qi1...imj1...jn ∈ Am+n :−K ≤ �(Qi1...imj1...jn, x) ≤ 0}.
Finally, for every n ≥ 1, x ∈ T and Q ∈ Am

x , we define the event

An(Q,x) := {l−n (Q,x) > δρn, l+n (Q,x) > δρn},
where δ comes from the Main Lemma. Note that the self-similarity of the con-
struction of the squares and the Main Lemma for the underlying branching process
imply the following: for n ≥ N and a square Q ∈ Sm, we have

P(An(Q,x)|Q ∈ Am
x )

(15)
= P�(Q,x)

(
Zn([−K,0]) > δρn, Zn([0,K]) > δρn)≥ q.

4.2. The difference set C2 −C1 contains an interval with positive P probability.
We introduce the interval

I := [−KaN,KaN ]
with N and K from the Main Lemma. Note that |I | := Leb1(I ) = 2KaN .

Our goal is to prove that

P(C2 − C1 ⊃ I ) > 0.

First, we divide the interval I into 42N intervals Ii1 of equal length with indices
±1, . . . ,±1

242N . Then, we divide all of these intervals into 43N intervals Ii1i2 of
equal length. If we have already defined the (k−1)th level intervals, then we define
the kth level intervals Ii1...ik by subdividing each (k − 1)th level interval Ii1...ik−1

into 4(k+1)N intervals of equal length with indices ±1, . . . ,±1
24(k+1)N . We denote

the center of Ii1...ik by zi1...ik . That is,

Ii1...ik = [
zi1...ik − KaN4−[2+···+(k+1)]N, zi1...ik + KaN4−[2+···+(k+1)]N ],

where the zi1...ik are equally spaced in Ii1...ik−1 .
Note that the interval Ii1...ik has length

|Ii1...ik | = 2KaN4−[2+···+(k+1)]N < 2Kagk ,(16)

where we put

gk := (1 + · · · + (k + 1))N = 1
2(k + 1)(k + 2)N.

In the following, we will go from generation gk−1 to generation gk .
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FIG. 5. Event Bk(zi1...ik ): there is a level-gk−1 square Q in which the number of striped level-gk

squares (the nicely intersecting ones) is at least δρN(k+1), both for the squares with center above
and the squares with center below the line e(zi1...ik ).

DEFINITION 1. We say that the event Bk(zi1...ik ) occurs if there exists
some square Q ∈ Agk−1 , itself having nice intersection with e(zi1...ik ), such that
A(k+1)N(Q, zi1...ik ) holds—cf. Figure 5. In formulae,

Bk(zi1...ik ) = ⋃
Q∈Agk−1

zi1...ik

A(k+1)N(Q, zi1...ik ).(17)

The following lemma is one of the key statements of the argument.

LEMMA 1. Assume that Bk(zi1...ik ) occurs with the square Q. Let Q+ and
Q− be the collections of level-gk squares within Q having nice intersection with
e(zi1...ik ) with center below and above the line e(zi1...ik ), respectively. Then,

(1)

Proj45◦
( ⋃

Q̃∈Q+
Q̃

)
⊃ Ii1...ik , Proj45◦

( ⋃
Q̃∈Q−

Q̃

)
⊃ Ii1...ik .

(2) For every ik+1 = ±1, . . . ,±1
24(k+2)N , the line e(zi1...ikik+1) has nice inter-

section with all squares from either Q+ or Q−. Thus, the line e(zi1...ikik+1) has
nice intersection with at least δρ(k+1)N squares contained in Q such that either all
have center below the line e(zi1...ik ) or all have center above the line e(zi1...ik ).

PROOF. Choose an arbitrary y ∈ Ii1...ik . Without loss of generality, we may
assume that y ≤ zi1...ik . Then, to show both (1) and (2), it is enough to prove that
e(y) has nice intersection with all squares from Q+.
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FIG. 6. Nice intersections.

Fix an arbitrary Q ∈ Q+. By the definition of Q+, the square Q is a level-gk

square such that its lower-left corner is in between the parallel lines e(zi1...ik ) and
e(zi1...ik − Kagk). So, for every point y∗ ∈ [zi1...ik − Kagk , zi1...ik ], the line e(y∗)
has nice intersection with Q; see Figure 6.

To show that for any y ∈ Ii1...ik ∩ (−∞, zi1...ik ], e(y) has nice intersection with
all squares from Q+, it is enough to prove that

Ii1...ik ∩ (−∞, zi1...ik ] ⊂ [zi1...ik − Kagk , zi1...ik ],
based on the previous paragraph. However, since

|Ii1...ik ∩ (−∞, zi1...ik ]| = 1
2 |Ii1...ik | < Kagk ,

this follows using (16). �

DEFINITION 2. Let E0 := AN([0,1]2,0) and let Ek :=⋂
i1...ik

Bk(zi1...ik ).

LEMMA 2. The following inequality holds:

P(C2 − C1 ⊃ I ) ≥ q
∏
k≥1

P(Ek|Ek−1).(18)

PROOF. Using the fact that I = [−KaN,KaN ] =⋃
i1...ik

Ii1...ik , it follows im-
mediately from Lemma 1 that if the event Ek holds, then the event

Sk := {Proj45◦(C
gk

1 × C
gk

2 ) ⊃ I }
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will hold. Therefore, Ek ⊂ Sk . Since the sets C
gk

1 × C
gk

2 are decreasing, we obtain
that Sk ⊃ Sk+1. Thus,

P(C2 − C1 ⊃ I ) = P

(⋂
k≥1

Sk

)
= lim

k→∞P(Sk) ≥ inf
k≥1

P(Ek)

≥ P(E0)
∏
k≥1

P(Ek|Ek−1).

The last inequality holds since

P(E0)
∏
i≥1

P(Ei |Ei−1) ≤ P(E0)P(E1|E0) · · ·P(Ek|Ek−1)

= pP(EkEk−1) ≤ P(Ek),

where

p = P(E0)

P(E0)

P(E1E0)

P(E1)
· · · P(Ek−1Ek−2)

P(Ek−1)
≤ 1.

Since the Main Lemma yields P(E0) ≥ q, one obtains the statement of the lemma.
�

In Lemma 3, we give a lower bound for P(Ek|Ek−1) for every k.

LEMMA 3. For any k ≥ 1, we have

P(Ek|Ek−1) ≥ 1 − 42N+···+(k+1)N(1 − q)δρ
kN

.

PROOF. We recall that Ek was defined as

Ek := ⋂
i1...ik

Bk(zi1...ik ).

Therefore, we have to prove that

P

( ⋃
i1...ik

Bc
k (zi1...ik )

∣∣∣Ek−1

)
≤ 42N+···+(k+1)N(1 − q)δρ

kN

.

Note that the number of indices i1 . . . ik on the left-hand side is equal to
42N+···+(k+1)N . Therefore, it is enough to show that for each index i1 . . . ik, we
have

P(Bc
k (zi1...ik )|Ek−1) ≤ (1 − q)δρ

kN

.

By Definition 1, to see this, we have to prove that

P

( ⋂
Q∈Agk−1

zi1...ik

Ac
(k+1)N (Q, zi1...ik )

∣∣∣Ek−1

)
≤ (1 − q)δρ

kN

.(19)
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We assume Ek−1, so, in particular, we know that Bk−1(zi1...ik−1) holds. That is,
there exists a level-gk−2 square Qbig such that the event AkN(Qbig, zi1...ik−1) holds.
By definition, this means that we can find at least [δρkN ] + 1 squares in Qbig in
Agk−1

zi1...ik−1
having center below, and at least as many squares having center above,

the line e(zi1...ik−1). Using the second part of Lemma 1 (for k instead of k + 1), we
obtain that the line e(zi1...ik ) has nice intersection with either all the squares above
or with all the squares below the line e(zi1...ik−1). Without loss of generality, we
may assume the former.

However, for all these squares Q, the events Ac
(k+1)N (Q, zi1...ik ) are (condition-

ally) independent, so, to obtain (19), it is enough to show that

P
(
Ac

(k+1)N (Q, zi1...ik )|Q ∈ Agk−1
zi1...ik

)≤ 1 − q(20)

and this follows directly from equation (15). �

LEMMA 4. For all n ≥ 1, we have

∞∏
j=1

(
1 − 4[2+···+(j+1)]n(1 − q)δρ

jn)
> 0.(21)

PROOF. We have to show that
∑∞

j=1 aj converges, where

aj = 4(1/2)j (j+1)n(1 − q)δρ
jn

.

It is therefore sufficient that aj ≤ e−j for all large j . This is true since

1

j
logaj = 1

2
(j + 1)n log 4 + 1

j
δ(ρn)j log(1 − q) ≤ −1,

which holds for j large enough since ρn > 1 and log(1 − q) < 0. �

Therefore, using Lemmas 2, 3 and 4, we obtain that

P(C2 − C1 ⊃ I ) ≥ q

∞∏
k=1

(
1 − 4[2+···+(k+1)]N(1 − q)δρ

kN )
> 0.

Combining this with Proposition 1 from Section 2, this completes the proof of
Theorem 1.

In the next six sections, we prove our Main Lemma.

5. Distribution of types. In this section, the density function of �(Q,x) will
be determined for the four squares Q from S1.
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5.1. The distribution of �(Q,x). Let U1,U2,U3,U4 be four independent
Uniform([0,g])-distributed random variables. The left corners of the two level-one
intervals of the random Cantor set Ci are determined by U2i−1,U2i for i = 1,2.
Let (ui, vi) be the lower-left corner of the squares Qi , i = 1, . . . ,4 (see Figure 7).
Then,

(u1, v1) =
(
b + U1,

1

2
+ a

2
+ U4

)
,

(u2, v2) =
(

1

2
+ a

2
+ U2,

1

2
+ a

2
+ U4

)
,

(u3, v3) =
(

1

2
+ a

2
+ U2, b + U3

)
,

(u4, v4) = (b + U1, b + U3).

For an x ∈ [−1,1], we define �i(x) := �(Qi, x). From (6), simple computa-
tions yield

�1(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

a

(
−1

2
− a

2
+ b + U1 − U4 + x

)
,

if
1

a

(
−1

2
− a

2
+ b + U1 − U4 + x

)
∈ [−1,1],

�, otherwise,
(22)

�2(x) =
⎧⎨⎩

1

a
(U2 − U4 + x), if

1

a
(U2 − U4 + x) ∈ [−1,1],

�, otherwise
and, similarly,

�3(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

a

(
1

2
+ a

2
− b + U2 − U3 + x

)
,

if
1

a

(
1

2
+ a

2
− b + U2 − U3 + x

)
∈ [−1,1],

�, otherwise,
(23)

�4(x) =
⎧⎨⎩

1

a
(U1 − U3 + x), if

1

a
(U1 − U3 + x) ∈ [−1,1],

�, otherwise.
To get a better geometric understanding of the distribution of the random vari-

ables �i(x), we define the three slanted stripes Sk , k = 1,2,3 (see Figure 8), in
such a way that Sk ⊂ [−1,1]2 is bounded by the lines �2k−1, �2k , where

�1(x) = 1

a
x + 1

a
(1 − a − 2b), �2(x) = 1

a
x + 2, �3(x) = 1

a
x + g

a
,

(24)

�4(x) = 1

a
x − g

a
, �5(x) = 1

a
x − 2, �6(x) = 1

a
x − 1

a
(1 − a − 2b).

An immediate calculation shows that the following result holds.
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FIG. 7. If x is an element of the bold vertical line, then the line e(x) intersects exactly two squares.
If x is an element of one of the two plain vertical lines, then e(x) intersects one square. If x is an
element of one of the four dotted vertical lines, then e(x) intersects at most one square. If x is such
that a ≤ x ≤ 1 − 2a − 2b or −1 + 2a + 2b ≤ x ≤ −a, then e(x) intersects at most two squares with
probability one. If x is such that − 1

2 + 5a
2 +b ≤ x ≤ a or −a ≤ x ≤ 1

2 − 5a
2 −b, then e(x) intersects

exactly two squares.

LEMMA 5. For every x ∈ [−1,1] and every i = 1, . . . ,4, if �i(x) �= �, then

(x,�i(x)) ∈ S1 ∪ S2 ∪ S3.
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FIG. 8. The support of the density functions in the simple case.

Let us call �j the graph of the function �j (x). Observe that the reflection in
the origin of �j is �7−j for j = 1, . . . ,6. For a point (x1, x2) ∈ R

2, we write
πm(x1, x2) := xm, m = 1,2. We then define c > 0 by

−1 + c := π1(�1 ∩ {y = x})
and obtain c = 2b

1−a
. By symmetry, it follows that

1 − c = π1(�6 ∩ {y = x}).
Using the fact that −1 + 2b = π1(�1 ∩ {y = −1}), it follows from the symmetry
mentioned above that

x /∈ (−1 + 2b,1 − 2b)
(25)

�⇒ e(x) does not intersect any level-one square.

The functions �1(x), �6(x) have repelling fixed point −1 + c, 1 − c, respectively.
Therefore,

x ∈ [−1,−1 + c) ∪ (1 − c,1]
(26)

�⇒ ∃n such that (x) ∩ Q = ∅ for all Q ∈ Sn.
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With probability 1, no line e(x) can intersect more than two descendants, in fact,
[−1+2b,1−2b] can be partitioned into five sets, according to which descendants
can be produced, given by (see also Figure 7)

A−
1 =

[
−1 + 2b,−1

2
+ a

2
+ b

)
, A+

1 =
(

1

2
− a

2
− b,1 − 2b

]
,

A−
2 =

[
−1

2
+ a

2
+ b,−a

)
, A+

2 =
(
a,

1

2
− a

2
− b

]
,(27)

A3 =
[
−a, a

]
.

LEMMA 6. If x ∈ A3, then x can only produce descendants with type �2(x)

and/or �4(x). If x ∈ A+
1 (resp. x ∈ A−

1 ), then x can produce at most one descen-
dant with type �1(x) [resp. �3(x)]. If x ∈ A+

2 , then there are two possibilities.
First, if x produces �1(x), then �2(x) and �4(x) cannot be born. Second, if x

produces any of �2(x) and �4(x), then �1(x) cannot be born. If x ∈ A−
2 , then

there are two similar possibilities.

PROOF. In Figure 7, observe that Proj45◦(Q1) ∩ Proj45◦(Q4) �= ∅ can hap-
pen only in the extreme situation if the bottom of the square Q1 is the same
as the bottom of the dotted square which contains Q1 on Figure 3. This means
that U4 = 0, which happens with probability zero. Similarly, Proj45◦(Q3) ∩
Proj45◦(Q4) �= ∅ happens only if U2 = 0, which also has probability zero.
Proj45◦(Q1) ∩ Proj45◦(Q3) = ∅ always holds, which completes the proof of our
lemma. �

5.2. The density functions. In this subsection, we will determine the density
functions f�i(x)(y) of the random variables �i(x), i = 1,2,3,4, given explicitly
by (22) and (23). We do not call them probability density functions since the �i(x)

may be equal to � with positive probability for some x. The probability density
function of the difference of two independent Uniform([0,g])-distributed random
variables is the triangular distribution given by f�(z) = 0 if |z| > g and for 0 ≤
|z| ≤ g by

f�(z) = 1

g2 (g − |z|).(28)

To get f�i(x)(y), we apply simple transformations to f�(z) and find

f�i(x)(y) = af�(ay + ci − x)1[−1,1](y)(29)

with c1 = −c3 = 1
2 + a

2 − b and c2 = c4 = 0.
From the definition,

P
(
�i(x) = �

)= 1 −
∫
[−1,1]

f�i(x)(y)dy.
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6. A uniformly positive kernel. Here, and in the next two sections, we are
going to define the type space T of the branching process introduced in Section 3.3.
In order to ensure that conditions (C1), (C2), (C3) of Section 3.4 hold, we introduce
a type space T which also satisfies properties (A), (B), (C) of Section 3.3. It follows
from (26) that we must choose our type space T ⊂ [−1 + c,1 − c].

Unfortunately, the construction of the type space T satisfying the above con-
ditions is quite involved and technical for those values of the parameters a, b

which do not satisfy (3). Therefore, we split the presentation into two parts. In
this section, we present the construction of T across three lemmas: Lemmas 7A,
8A and 9A. In the next section, we present the general case with the corresponding
Lemmas 7, 8 and 9. The main difference between these lemmas lies in the proofs
of Lemmas 7 and 7A. Lemma 8 is almost the same as Lemma 8A. Finally, the
proof of Lemma 9 follows the same line as the proof of Lemma 9A, but is more
technical.

6.1. Descendant distributions and the kernel of the branching process. We
introduce the random variables X1(x),X2(x),X3(x),X4(x) for 1 ≤ i ≤ 4 by

Xi(x) =
{

�i(x), if �i(x) ∈ T ,
�, otherwise.

(30)

So, the density of Xi(x) is

fx,i(y) := f�i(x)(y)1T (y)(31)

for i = 1, . . . ,4. In general, Xi(x) also has an atom: P(Xi(x) = �) = 1 −∫
T fx,i(y)dy.

Recall [see equation (9)] that the kernel of the branching process can be ex-
pressed as the sum of the density functions of the random variables Xi(x),
i = 1, . . . ,4:

m(x,y) = fx,1(y) + fx,2(y) + fx,3(y) + fx,4(y).

The structure of the support of this kernel is very important for the sequel. Since
the functions fx,i(y) (i = 1,2,3,4) are piecewise continuous on [−1,1], m(·, ·)
is piecewise continuous on [−1,1] × [−1,1]. The support of m(·, ·) is a subset of
the three slanting stripes Sk , k = 1,2,3, introduced earlier; see also Figure 8.

6.2. The possible holes in the support of the kernel of Z . We have seen in (26)
that the branching process with ancestor type in the set [−1,−1 + c] or [1 − c,1]
dies out in a finite number of generations almost surely. Therefore, it is reasonable
to restrict the type space to [−1 + c + ε,1 − c − ε] for some small positive ε.
However, in some cases, we have to make further restrictions. Namely, for i = 1,2,

we define

ui := π1(�2i ∩ {y = 1 − c}), vi := π1(�2i+1 ∩ {y = −1 + c});(32)
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see Figure 8. Clearly, u1 − v1 = u2 − v2 and an easy calculation shows that

v1 < u1 ⇐⇒ c <
g

2a
.(33)

We remark that this condition is equivalent to the condition in equation (3) (see
also Figure 1). On the other hand, if ui < vi , i = 1,2, holds, then, for x ∈ [ui, vi],
the set

E1(x) := {y :m(x,y) > 0}(34)

is contained in [−1,−1 + c] ∪ [1 − c,1]. This implies that the process dies out
in finitely many steps for x ∈ [ui, vi] (see Figure 9). Therefore, if the condition
stated in (33) does not hold, then we have to make more restrictions on our type
space [−1 + c + ε,1 − c − ε]. This is what we are going to do in Section 8. For

FIG. 9. Some points and lines related to the kernel m(x,y) if l = 1.
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the convenience of the reader, in Section 7, we treat the simpler case when (33)
holds.

7. A uniformly positive kernel in the simple case. In the remainder of this
section, we will prove that if (33) holds, that is, v1 < u1, then we can choose a
sufficiently small ε0 > 0 such that

T = [−1 + c + ε0,1 − c − ε0]
satisfies conditions (C1), (C2) and (C3) [and also properties (A), (B), (C)]. The
kernel in the simple case is illustrated in Figure 8.

LEMMA 7A. Assume that v1 < u1. Fix an ε > 0 satisfying

ε <
g

2a
− c.(35)

Further, in this simpler case, let

T = T (ε) = [−1 + c + ε,1 − c − ε].(36)

Then, the kernel m(x,y) of the branching process Z has the following property:

∃κ > 0 such that ∀x ∈ T , the set E1(x) contains an interval of length κ.(37)

PROOF. There are two possibilities for the shape of E1(x) [defined in (34)]:

(1) E1(x) consists of two intervals: [−1+c+ε, �2k+1(x))∪ (�2k(x),1−c−ε]
(for k = 1 or k = 2). The length of one of these intervals is at least half of �3(u

1)−
(−1 + c + ε), that is, κ1 = 1

2 · (g
a

− 2c).
(2) E1(x) = (�2k−1(x), �2k(x)) (for some 1 ≤ k ≤ 3) is an open interval with

length κ2 = 4
a
g.

Summarizing these cases, define κ = min{κ1, κ2}. �

LEMMA 8A. Let mε be the kernel in Lemma 7A with type space T = T (ε), as
in (36). One can choose ε > 0 which satisfies (35) such that the largest eigenvalue
of mε is larger than 1. From now on, we fix such an ε and call it ε0.

PROOF. Let T (0) := [−1 + c,1 − c], with corresponding kernel m0. Define
[as in (11)] the operator Tε for all ε ≥ 0 by

Tεh(y) =
∫

R

h(x)mε(x, y)dx

for functions with supp(h) ⊂ T (ε).
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We shall prove that 4a is an eigenvalue of the operator T0 with eigenfunction
h(x) = 1T (0)(x):

T0h(y) =
∫

R

h(x)m0(x, y)dx

=
∫

R

h(x)

( 4∑
i=1

fx,i(y)

)
1T (0)(y)dx

= 4ah(y)

∫
T (0)

4∑
i=1

f�(ay + ci − x)dx

= 4ah(y),

provided we show that for all i = 1,2,3,4,∫
[−1+c,1−c]

f�(ay + ci − x)dx = 1.

Since f� is a probability density with support lying in [−g,g], it then suffices to
show that for all y ∈ [−1 + c,1 − c] and for i = 1,2,3,4, we have

ay + ci − 1 + c ≤ −g and ay + ci + 1 − c ≥ g.

Taking the worst case for y, this boils down to showing

a(1 − c) + ci − 1 + c ≤ −g and a(−1 + c) + ci + 1 − c ≥ g.

For i = 1, we have c1 = (a + 1)/2 − b, so there we have to check that

(1 − c)(a − 1) + a + 1

2
− b ≤ −g and (1 − c)(1 − a) + a + 1

2
− b ≥ g.

First, note that since c3 = −c1, the case i = 3 is covered by the case i = 1. Further,
note that the left inequality implies the right one since a + 1 > 2b always holds.
Moreover, a+1 > 2b also gives that the left inequality will imply both inequalities
for i = 2,4. The calculation is then completed by substituting c = 2b/(1 − a) in
the left inequality, which turns out to be an equality.

The conclusion of the lemma follows from a simple fact noted by Larsson [6]: if
the two kernels m0 and mε are close to each other in L2-sense, then the eigenvalues
of the operators T0 and Tε are close to each other. �

LEMMA 9A. Let T be as in Lemma 8A. Then there exists an index n such that
for all x ∈ T , {y :mn(x, y) > 0} = T .

Since the function mn(·, ·) is piecewise continuous on the compact set T ,
Lemma 9A implies that there exists an amin > 0 such that m(x,y) ≥ amin for any
x, y ∈ T . Further, using the fact that m(x, ·) is bounded, we immediately obtain
that amax := supx∈T Ex Z 2

1 (T ) is finite. Therefore, we have the following result.
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COROLLARY 1. Let T be as in Lemma 8A. The branching process Z with
type space T satisfies conditions (C1) and (C3).

PROOF OF LEMMA 9A. Basically, we will prove that if (37) holds, then
Lemma 9A also holds since the slope of the lines �i is equal to 1

a
, which is bigger

than one. Let En(x) = {y :mn(x, y) > 0}. We will prove that in both cases of the
proof of Lemma 7A, the sequence (En(x)) reaches the whole type space in a finite
number of steps, uniformly in n and x ∈ T .

We can derive En+1(x) from En(x) by means of the equation

mn+1(x, y) =
∫
T

mn(x, z)m1(z, y)dz,

which implies that

En+1(x) = ⋃
y∈En(x)

E1(y).(38)

In the proof of Lemma 7A, we treated two separate cases. We continue this proof
according to those two cases:

(1) E1(x) consists of two intervals. Take the longer one, so its length is at least
κ1 = 1

2 · (
g
4a

− 2c). The following two facts hold. This interval contains either
−1 + c + ε or 1 − c − ε, and if En(x) contains one of these points, then En+1(x)

also contains the same point because of (38). Therefore, if En(x) �= T and is of
the form, for example, [−1 + c + ε,−1 + c + ε + s) for some positive s, then
En+1(x) ⊃ [−1 + c + ε,−1 + c + ε + 1

a
s) or En+1(x) = T . Hence, if E1(x) =

[−1 + c + ε,−1 + c + ε + s), then in

n1(x) =
⌈

log1/a

(
2(1 − c − ε)

s

)⌉
steps, En(x) reaches T , that is, En1(x)(x) = T . s ≥ κ1 implies that n1(x) ≤
�log1/a(

2(1−c−ε)
κ1

)� = n∗
1.

(2) E1(x) = (�2k−1(x), �2k(x)) (for some 1 ≤ k ≤ 3) is an open interval with
length κ2 = 4

a
g. If, for some n, En(x) does not contain either −1 + c + ε or 1 −

c − ε, then we have three possibilities for En+1(x): (i) it does not contain any
of these two points; (ii) it contains one of them; (iii) it equals T . In case (iii) we
obtained what we wanted. In case (i), the length of En+1(x) equals 1

a
|En(x)|+ 2g

a
;

in case (ii), we have En+n∗
1
(x) = T by (1) above, so we estimate the number of

necessary iterations from below if we suppose that case (i) happens in each step
then case (ii) in n∗

1 number of steps. As in (1), we have a uniform bound for the
number of iterations in (2): n∗

2 = �log1/a(
2(1−c−ε)

κ2
)�. Therefore, in this case, we

have En∗
1+n∗

2
(x) = T for any x.

Summarizing these considerations, one obtains that for n ≥ n∗
1 + n∗

2, one has
En(x) = T . �
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8. A uniformly positive kernel in the general case. The construction of T

consists of two steps. We will call any open subset of [−1,1] a pre-type space.
First, we inductively construct a sequence of pre-type spaces T 0 ⊃ T 1 ⊃ · · · ⊃ T l

and prove that T r , r = 0, . . . , l, consists of 3r disjoint open intervals of equal
length. Those elements of T l which are “far” from the endpoints of the com-
ponents of T l satisfy (39). Unfortunately, the same does not hold for the points
close to the the boundary of the components of T l . So, as a second step of the
construction of T , we remove a small neighborhood of the boundary of T l from
T l .

LEMMA 7. There exists a restriction of the pre-type space (−1 + c,1 − c) to
a closed set T such that the kernel m of the branching process Z with type space
T satisfies

∃κ > 0 such that ∀x ∈ T , the set E1(x) contains an interval of length κ.(39)

Further, T consists of 3l disjoint closed intervals of equal length for some l ∈ N.
Moreover, 0 is contained in the interior of T .

PROOF. We recall that u1, v1 were defined in (32) and we take the pre-type
space T 0 := (−1 + c,1 − c). If vk < uk , then we define l := 0 and the proof of
(39) was achieved in Lemma 7A. So, we can assume that uk ≤ vk , k = 1,2. To
ensure that (39) holds, we need to remove the intervals [u1, v1] and [u2, v2] from
the pre-type space T 0 (see Figure 9). So, we restrict ourselves to the next pre-type
space: T 1 = T 0 \ {[u1, v1] ∪ [u2, v2]}. The size of each of the intervals removed is
�1 := v1 − u1 = v2 − u2. We define the second generation endpoints ui1k and vi1k

as follows:

ui1k = π1({y = ui1} ∩ �2k) and vi1k = π1({y = vi1} ∩ �2k−1),

where i1 = 1,2 and k = 1,2,3; see Figure 9. If vi1k < ui1k , then we define l := 1.
Otherwise, we continue defining the sets T r and the endpoints of the subtracted
intervals vi1...ir and ui1...ir (i1 = 1,2, i2, . . . , ir = 1,2,3) as follows: assuming that
ui1...ir−1 ≤ vi1...ir−1 , we define the level-r endpoints as

ui1...ir−1k = π1({y = ui1...ir−1} ∩ �2k) and
(40)

vi1...ir−1k = π1({y = vi1...ir−1} ∩ �2k−1)

for i1 = 1,2 and i2, . . . , ir−1, k = 1,2,3. Put

Tr = Tr−1 \ {[ui1i2...ir , vi1i2...ir ], i1 = 1,2, i2, . . . , ir = 1,2,3}.(41)

The size of each of the intervals removed is �r := vi1i2...ir − ui1i2...ir . Using
�2k(x)− �2k−1(x) = 2g/a (see also the left-hand side of Figure 10), one can easily
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FIG. 10. The recursion of {ρr }r . On the left-hand side, r ≤ l − 1.

check that

∀r ≥ 1, ρr+1 = aρr − 2g and ρ1 = v1 − u1.(42)

Consider the smallest r ≥ 1 for which vi1...ir+1 < ui1...ir+1 or, equivalently,
ρr+1 < 0. We then set l = r and the recursion ends. The fact that l is finite is
immediate from (42).

We can represent T l−1 and T l as follows:

T l−1 =
3l−1⋃
j=1

(γj , δj ), T l =
3l⋃

i=1

(αi, θi).

Using (40), it follows from elementary geometry (see Figure 10) that

∀i,∃j,∃k: αi = π1
({(x, y) :y = γj } ∩ �2k−1

)
,

(43)
θi = π1

({(x, y) :y = δj } ∩ �2k

)
.

We need further restrictions because condition (39) is not satisfied around the
endpoints αi, βi . Therefore, we remove sufficiently small intervals from both ends
of each of the 3l intervals of T l . Namely, we define the type space of the process
by

T (ε) :=
3l⋃

i=1

[αi + ε,βi − ε],(44)

where

0 < ε <
g

a
− 1

2
ρl.(45)
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This bound will be used in part (c) at the end of this proof. For any j ∈
{1, . . . ,3l−1}, we can find i′ ∈ {1, . . . ,3l} such that

[γj + ε, δj − ε] =
2⋃

m=0

[αi′+m + ε,βi′+m − ε] ∪
2⋃

h=1

R
(j)
h ,(46)

where R
(j)
h , h = 1,2, are intervals of length ρl + 2ε; see Figure 10. Further, for

every 1 ≤ i ≤ 3l ,1 ≤ j ≤ 3l−1, the set (αi + ε,βi − ε)× (γj + ε, δj − ε)∩T (ε)×
T (ε) consists of three congruent squares aligned on top of each other, of side-
length

s := βi − αi − 2ε.

The distance between two neighboring squares is ρl + 2ε.
We now prove that (39) holds. That is, we want to estimate the length of the

longest interval in E1(x) from below. The argument uses only elementary geome-
try.

For any x ∈ T (ε), there is a unique k ∈ {1,2,3} such that E1(x) ⊆ (�2k(x),

�2k−1(x)) holds. Using (24), one can immediately see that the length of the interval
(�2k(x), �2k−1(x)) is 2g

a
. Geometrically, this means that the vertical line through x

intersects the stripe Sk in a (vertical) interval of length 2g
a

.
Since there are many holes in T (ε), for some x ∈ T (ε), the set E1(x) consists

of at most three subintervals of (�2k(x), �2k−1(x)); see Figure 10. We prove that
the maximum length of these intervals is uniformly bounded away from zero.

Fix a component [αi + ε,βi − ε] ⊂ T (ε) and let x ∈ [αi + ε,βi − ε]. For this i,

we choose j and k according to the formula (43). We now distinguish three possi-
bilities for x ∈ T (ε):

(a) first we assume that the intersection of the vertical line through x with
the stripe Sk is not contained in the rectangle [αi + ε,βi − ε] × [γj + ε, δj − ε]
[see Figure 10], then, using the fact that the slope of the lines �m, m = 1, . . . ,6, is
1/a > 3, by elementary geometry, we obtain that the set E1(x) contains an interval
of length κ := 1

a
ε − ε > 2ε > 0 (see Figure 10B);

(b) next, we assume that there exists m ∈ {0,1,2} such that the intersection
of the vertical line through x with the stripe Sk is contained in the square [αi +
ε,βi − ε] × [αi′+m + ε,βi′+m − ε], where i ′ is defined as in (46)—in this case,
the set E1(x) = (�2k(x), �2k−1(x)) and then the assertion holds with the choice of
κ := 2g

a
> 0 [see (45)];

(c) finally, we assume that the intersection of the vertical line through x with
the stripe Sk has a nonempty intersection with one of the rectangles [αi + ε,βi −
ε]×R

(j)
h , h = 1,2—in this case, by elementary geometry (see Figure 10A), E1(x)
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contains an interval of length at least

κ := min
{
s,

1

2
· (�2k−1(x) − �2k(x)

)− (ρl + 2ε)

}
= min

{
s,

1

2

(
2g

a
− (ρl + 2ε)

)}
.

It follows from (45) that κ > 0. �

We will now deal with the problem of still having a kernel with largest eigen-
value larger than 1.

LEMMA 8. Let mε be the kernel in Lemma 7 with type space T = T (ε). One
can choose ε so small that the largest eigenvalue of mε is larger than 1.

PROOF. Changing T 0 to T l in the proof of Lemma 8A, we obtain the proof
of Lemma 8. More precisely, it is enough to prove that 4a is an eigenvalue of the
operator Tl with eigenfunction h(x) = 1T l (x), where T l is defined in the proof of
Lemma 7:

Tlh(y) =
∫

R

h(x)m(x, y)dx

=
∫

R

h(x)

( 4∑
i=1

fx,i(y)

)
1T l (y)dx

= 4ah(y)

∫
T l

4∑
i=1

f�(ay + ci − x)dx

= 4ah(y),

provided we show that for all i = 1,2,3,4 and for all y ∈ T l,∫
T l

f�(ay + ci − x)dx = 1.

So, we have to show that for all y ∈ T l and for i = 1,2,3,4, we have

{x :f�(ay + ci − x) > 0} ⊂ T l.(47)

This holds since we have constructed the intermediate type space T l so that this
property is satisfied; see the left figure in Figure 11. We have subtracted intervals
of the form (ui1...ir k, vi1...ir k) in (41) during the construction of successive inter-
mediate type spaces T r+1, r = 0, . . . , l − 1. If y ∈ T r+1, then each interval of
the form (ui1...ir k, vi1...ir k) is disjoint from [�−1

2k−1(y), �−1
2k (y)] for all y ∈ T l and

k = 1,2,3. Therefore, for any y ∈ T l , we have [�−1
2k−1(y), �−1

2k (y)] ⊂ T l . Further,
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FIG. 11. Stripe Sk and level-l squares.



578 M. DEKKING, K. SIMON AND B. SZÉKELY

for any i = 1,2,3,4, there exists a positive integer ki (k1 = 1, k2 = k4 = 2, k3 = 3)
such that

{x : f�(ay + ci − x) > 0} = (�−1
2ki−1(y), �−1

2ki
(y)).

Hence, (47) holds.
The proof is now completed analogously to the proof of Lemma 8A. �

LEMMA 9. Let T be as in Lemma 8. There then exists an n such that for all
x ∈ T , {y : mn(x, y) > 0} = T .

Since the function mn(·, ·) is piecewise continuous on the compact set T ,
Lemma 9 implies that there exists an amin > 0 such that m(x,y) ≥ amin for any
x, y ∈ T . Further, using the fact that m(x, ·) is bounded, we immediately obtain
that amax := supx∈T Ex[Z 2

1 (T )] is finite. Therefore, we have the following result.

COROLLARY 2. Let T be as in Lemma 8. The branching process Z with type
space T satisfies the conditions (C1) and (C3).

PROOF OF LEMMA 9. We will prove the lemma in two steps. Recall the defi-
nition of En(x): En(x) = {y :mn(x, y) > 0}.

STEP 1. ∀x ∈ T ,∃i, n such that [αi + ε,βi − ε] ⊂ En(x) implies that
En+l(x) = T .

STEP 2. There exists an N such that for every x ∈ T , we can find a positive
integer n(x) ≤ N such that the following holds:

∃i, [αi + ε,βi − ε] ⊂ En(x)(x).

As a corollary of these two statements, we obtain that the assertion of the lemma
holds with the choice n = N + l. Namely, for any x ∈ T , we have EN+l(x) = T .

PROOF OF STEP 1. To verify Step 1, we first observe that by (38), we have

En+1(x) = ⋃
y∈En(x)

E1(y)

(48)
= ⋃

y∈En(x)

(
(�2(y), �1(y)) ∪ (�4(y), �3(y)) ∪ (�6(y), �5(y))

)∩ T .

Fix an i ∈ {1, . . . ,3l}. First, we define αi,l−r and βi,l−r for r = 0, . . . , l, induc-
tively. For r = 0, let (αi,l, βi,l) := (αi, βi). Assume that we have already defined
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(αi,l−r , βi,l−r ). Using (40), we define αi,l−(r+1) and βi,l−(r+1) as the unique num-
bers satisfying

αi,l−r = π1
({

(x, y) :y = αi,l−(r+1)

}∩ �2k(r)−1
)
,

(49)
βi,l−r = π1

({
(x, y) :y = βi,l−(r+1)

}∩ �2k(r)

)
,

where k(r) = 1,2,3. Then, by the construction, we have (αi,0, βi,0) = (−1+c,1−
c). Let x ∈ T . According to the assumption of Step 1, we can find i, n such that

[αi + ε,βi − ε] = (αi, βi) ∩ T ⊂ En(x)(50)

holds. Using induction, we prove that

En+r (x) ⊃ (αi,l−r , βi,l−r ) ∩ T for 0 ≤ r ≤ l.(51)

Namely, for r = 0, the assertion in the induction is identical to (50). We now
suppose that (51) holds for r < l. By (48) and (49), we have

En+r+1(x) = ⋃
y∈En+r (x)

E1(y)

⊃ ⋃
y∈(αi,l−r ,βi,l−r )∩T

(
�2k(r)(y), �2k(r)−1(y)

)∩ T

= (
αi,l−(r+1), βi,l−(r+1)

)∩ T ,

which completes the proof of (51). We apply (51) for r = l. This yields that En+l =
(−1 + c,1 − c) ∩ T = T holds. �

PROOF OF STEP 2. First, observe that the largest interval in E1(x) either
has an endpoint that is an endpoint of a connected component of T [this hap-
pens in case (a) and (c) in the end of the proof of Lemma 7] or E1(x) =
(�2k1(x), �2k1−1(x)) [which is case (b) in the same proof]. However, in the last
case, using (48), after N1 steps, where N1 is the smallest solution of the inequality
( 2
a
)N1 · 2g

a
> s, we obtain that the largest interval contained in EN1(x) has an end-

point of a connected component of T (see Figure 10) and its length is greater than
κ . In this way, because of the symmetry between the endpoints of the connected
components of T , from now on, we may assume that [αi +ε,αi +ε+z1) ⊂ E1(x),

where z1 ≥ κ . Using (48), we can write

E2(x) ⊃ ⋃
y∈[αi+ε,αi+ε+z1)

(�2k1(y), �2k1−1(y)) ∩ T

= (
�2k1(αi + ε), �2k1−1(αi + ε + z1)

)∩ T(52)

= [
α(2) + ε,α(2) + ε + z2

)∩ T

for some k1 ∈ {1,2,3}, left endpoint α(2) ∈ T and z2 > 1
a
z1 ≥ 1

a
κ . If z2 < s, then

the largest connected component of E2(x) has a left endpoint of one of the con-
nected components of T , α(2), but the other endpoint is in the interior of the same
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connected component of T . If z2 ≥ s, then E2(x) clearly contains a connected
component of T . For En(x), n ≥ 3, we can inductively define kn, left endpoint
α(n) and length zn in the same way as above. Observe that zn > ( 1

a
)n−1κ for any

n ≥ 2. Let N2 the smallest solution of the inequality ( 1
a
)N2−1κ > s. Then, EN2(x)

contains a connected component of T .
Let N = N1 + N2. Then, EN(x) contains a connected component of T . �

9. Uniform exponential growth. In this section, we want to prove an ex-
tension of Theorem 3 stating that the population can grow uniformly exponen-
tially starting from any element of a special interval. For the precise statement, see
Lemma 12.

First, we will determine the density of the measure Px(Z1(A) ∈ ·). We use the
notation of Lemma 6 and define, for x1, x2 ∈ T ,

Px1,x2 := Px1 ⊗ Px2,

the convolution of the measures Px1 and Px2 . Recalling the definitions of A+
1 , A+

2 ,
A3, A−

2 , A−
1 in equation (27) and the definition of fx,i , i = 1,2,3,4, in equation

(31), we can state the following lemma.

LEMMA 10. For x ∈ T ,A ⊂ T and a natural number L, we have the follow-
ing equation for any n ≥ 1:

Px

(
Zn+1(A) = L

)=
∫
T

Pz

(
Zn(A) = L

)
h1(x, z)dz

(53)
+
∫
T

∫
T

Pz1,z2

(
Zn(A) = L

)
h2(x, z1, z2)dz1 dz2,

where h1(x, z) :T × T → R+ and h2(x, z1, z2) :T × T × T → R+ are defined as

h1(x, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fx,1(z), if x ∈ A+
1 ∩ T ,

fx,1(z) + 2fx,2(z)

(
1 −

∫
T

fx,4(y)dy

)
, if x ∈ A+

2 ∩ T ,

2fx,2(z)

(
1 −

∫
T

fx,4(y)dy

)
, if x ∈ A3 ∩ T ,

fx,3(z) + 2fx,2(z)

(
1 −

∫
T

fx,4(y)dy

)
, if x ∈ A−

2 ∩ T ,

fx,3(z), if x ∈ A−
1 ∩ T

and

h2(x, z1, z2) =
{

2fx,2(z1)fx,4(z2), if x ∈ (A3 ∪ A+
2 ∪ A−

2 ) ∩ T ,
0, otherwise.

Both are bounded and piecewise uniformly continuous functions in x on T for any
fixed z, z1, z2 ∈ T .
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PROOF. The decomposition (53) is obtained from the Chapman–Kolmogorov
equation, that is, by conditioning on the first generation. In the corresponding for-
mula (54), we use one of the conclusions of Lemma 6, that is, that exactly two
squares in generation 1 can only be generated by Q2 and Q4:

Px

(
Zn+1(A) = L

)=
∫
T

Pz

(
Zn(A) = L

)
Px

(
Z1(dz) = 1

)
(54)

+
∫
T

∫
T

Pz1,z2

(
Zn(A) = L

)
Px

(
Z 2

1 (dz1) = 1, Z 4
1 (dz2) = 1

)
.

We have to determine the density function h1(x, z) of exactly one descendant with
type dz and the density function h2(x, z1, z2) of exactly two descendants with type
dz1 dz2. To perform the computation, we note that the statement of Lemma 6 re-
mains valid if we replace �i(x) by Xi(x) because of the definition of Xi(x) in
equation (30). One can decompose the probability of having exactly one descen-
dant such that the type of this descendant falls into the set (−∞, z] (for any real z)
as follows:

Px

(
Z1((−∞, z]) = 1

)=
4∑

i=1

P
(
Xi(x) ∈ (−∞, z],Xj (x) = �,∀j �= i

)
.

The decomposition in Lemma 6, together with the remark in the first para-
graph of this proof, implies that {X2(x) �= �} ∪ {X4(x) �= �}, {X1(x) �= �} and
{X3(x) �= �} are disjoint events for any x ∈ T . Therefore, one obtains

Px

(
Z1((−∞, z]) = 1

)= P
(
X1(x) ∈ (−∞, z])

+ 2P
(
X2(x) ∈ (−∞, z])P(X4(x) = �

)
+ P

(
X3(x) ∈ (−∞, z]),

using the fact that X2(x) and X4(x) are independent and identically distributed.
Since Xi(x) has density fx,i , one gets that this equals∫

(−∞,z]
fx,1(y)dy · 1(A+

1 ∪A+
2 )∩T (x)

+ 2
∫
(−∞,z]

fx,2(y)dy

(
1 −

∫
T

fx,4(y)dy

)
· 1(A3∪A+

2 ∪A−
2 )∩T (x)

+
∫
(−∞,z]

fx,3(y)dy · 1(A−
1 ∪A−

2 )∩T (x)

=
∫
(−∞,z]

h1(x, y)dy.

Let us next deal with exactly two descendants with types falling into (−∞, z1]
(resp. (−∞, z2]). This probability equals

2P
(
X2(x) ∈ (−∞, z1],X4(x) ∈ (−∞, z2]).
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Since X2(x) and X4(x) are independent and identically distributed, one obtains
that this equals

2
∫
(−∞,z1]

fx,2(y)dy

∫
(−∞,z2]

fx,4(y)dy · 1(A3∪A+
2 ∪A−

2 )∩T (x)

=
∫
(−∞,z1]

∫
(−∞,z2]

h2(x, y1, y2)dy1 dy2.

Summarizing these considerations, one obtains (53).
The piecewise continuity of h1(x, z) and h2(x, z1, z2) in x follows from the

definitions of h1 and h2, respectively. Since they have compact support, h1 and h2
are piecewise uniformly continuous in x. �

Let A ⊂ T such that the Lebesgue measure of A is positive. Let Wn(A) =
Zn(A)ρ−n and W(A) = limn→∞ Wn(A), which almost surely exists by Theo-
rem 3. We need a stronger result: the random variable W(A) is strictly separated
from 0 with uniformly positive probability for some neighborhood of the initial
type 0. This is shown in the next lemma.

LEMMA 11. For some neighborhood J ⊂ T of 0 and positive numbers y

and r, we have

inf
x∈J

Px

(
W(A) > y

)≥ r.(55)

PROOF. Lemma 10 implies that

Px

(
Wn+1(A) ≤ y

)= Px

(
Zn+1(A) ≤ ρn+1y

)
=
∫
T

Pz

(
Wn(A) ≤ ρy

)
h1(x, z)dz(56)

+
∫
T

∫
T

Pz1,z2

(
Wn(A) ≤ ρy

)
h2(x, z1, z2)dz1 dz2.

We will investigate the convergence of the last two terms in (56).
Theorem 3 implies that we have, for all z ∈ T ,

lim
n→∞ Pz

(
Wn(A) ≤ y

)= Pz

(
W(A) ≤ y

)
(57)

if y ∈ Cont(Pz,A), where Cont(Pz,A) denotes the set of continuity points of the
distribution function on the right-hand side of (57).

Next, we seek the weak convergence of the measure Pz1,z2(Wn(A) ∈ ·), which
is the convolution of the measures Pz1(Wn(A) ∈ ·) and Pz2(Wn(A) ∈ ·). Since they
are weakly convergent, the convolution is also weakly convergent. So,

lim
n→∞ Pz1,z2

(
Wn(A) ≤ y

)= Pz1,z2

(
W(A) ≤ y

)
(58)

if y ∈ Cont(Pz1,z2,A).
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Let, for z, z1, z2 ∈ T , y > 0 and ε a small positive number (to be chosen later),
ty := t (z, z1, z2;y, ε) be a real number such that

y ≤ ty < y + ε and ρty ∈ Cont(Pz,A) ∩ Cont(Pz1,z2,A),

and let us define the following two functions:

θn+1(x, y,A) =
∫
T

Pz

(
Wn(A) ≤ ρty

)
h1(x, z)dz

+
∫
T

∫
T

Pz1,z2

(
Wn(A) ≤ ρty

)
h2(x, z1, z2)dz1 dz2,

θ(x, y,A) =
∫
T

Pz

(
W(A) ≤ ρty

)
h1(x, z)dz

+
∫
T

∫
T

Pz1,z2

(
W(A) ≤ ρty

)
h2(x, z1, z2)dz1 dz2.

Using the decomposition (56), the definition of ty and the right-continuity of dis-
tribution functions, we can derive the following bounds:

Px

(
Wn+1(A) ≤ y

)≤ θn+1(x, y,A) ≤ Px

(
Wn+1(A) ≤ y + ε

)
.

By using (57), (58) and the bounded convergence theorem, we get that θn(x, y,A)

converges as n → ∞, so

Px

(
W(A) ≤ y

)≤ θ(x, y,A) ≤ Px

(
W(A) ≤ y + ε

)
.(59)

Using the piecewise continuity of h1 and h2 in x (Lemma 10) and bounded con-
vergence, one can see that θn(x, y,A) and θ(x, y,A) are piecewise continuous on
T in x.

Using inequality (13) in Theorem 3 and the right-continuity of distribution func-
tions, we can find two positive numbers r, u such that P0(W(A) > u) > 2r or,
equivalently, P0(W(A) ≤ u) ≤ 1 − 2r . Let y = u − ε for some positive ε < u.
Using the second inequality of (59), one gets θ(0, y,A) ≤ P0(W(A) ≤ y + ε) ≤
1−2r . Since θ(x, y,A) is piecewise continuous on T , there exist an interval J ⊂ T

which is a neighborhood of 0 such that the bound θ(x, y,A) is uniformly smaller
than 1 on this interval, that is, supx∈J θ(x, y,A) ≤ 1 − r . The first inequality of
(59) implies that supx∈J Px(W(A) ≤ y) ≤ supx∈J θ(x, y,A) ≤ 1− r, which yields
the required bound in (55). �

LEMMA 12. There exist two positive numbers η, r , an integer N and a number
K with 0 < K < 1

8 such that

inf
n≥N

inf
x∈[−K,K] Px

(
Zn([−K,K]) > ηρn)>

r

2
.
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PROOF. We apply Lemma 11 with A = T and obtain the numbers y, r and the
set J . Let K be a positive number such that K < 1

8 and [−K,K] ⊂ J . We then
have

inf
x∈[−K,K] Px

(
W(T ) > y

)≥ r.

Using Theorem 3, we get that

W([−K,K]) = γW(T )

holds Px almost surely for any x ∈ T , where

γ =
∫
[−K,K] ν(z)dz∫

T ν(z)dz
.

Hence, we have the bound

inf
x∈[−K,K] Px

(
W([−K,K]) > η + ε

)
> r,

where η + ε = γy for some positive η and ε. This and the second inequality of
(59) together imply that θ(x, η, [−K,K]) is uniformly smaller than 1:

sup
x∈[−K,K]

θ(x, η, [−K,K]) ≤ sup
x∈[−K,K]

Px

(
W([−K,K]) ≤ η + ε

)≤ 1 − r.(60)

We will show that θn(x, η, [−K,K]) converges uniformly to θ(x, η, [−K,K])
on [−K,K] as n tends to infinity. Writing

En := Wn([−K,K]) ≤ ρηt and E := W([−K,K]) ≤ ρηt ,

using trivial estimations, one gets the following chain of inequalities:

sup
x∈[−K,K]

|θn+1(x, η, [−K,K]) − θ(x, η, [−K,K])|

≤ sup
x∈[−K,K]

∫
T

|Pz(En)Pz(E)|h1(x, z)dz

+ sup
x∈[−K,K]

∫
T

∫
T

|Pz1,z2(En) − Pz1,z2(E)|h2(x, z1, z2)dz1 dz2

≤ sup
x,z∈T

h1(x, z) ·
∫
T

|Pz(En) − Pz(E)|dz

+ sup
x,z1,z2∈T

h2(x, z1, z2) ·
∫
T

∫
T

|Pz1,z2(En) − Pz1,z2(E)|dz1 dz2.

By bounded convergence, both integrals in the last expression converge to 0.
The suprema are finite since h1 and h2 are bounded (see Lemma 11). So,
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θn(x, η, [−K,K]) uniformly converges to θ(x, η, [−K,K]) on [−K,K]. There-
fore, there exists an index N such that for n ≥ N,

sup
x∈[−K,K]

|θn(x, η, [−K,K]) − θ(x, η, [−K,K])| ≤ r

2
.

Using the first inequality of (59), the triangular inequality, (60) and Lemma 11,
one can write

sup
x∈[−K,K]

Px

(
Wn([−K,K]) ≤ η

)≤ sup
x∈[−K,K]

θn(x, η, [−K,K])

≤ sup
x∈[−K,K]

θ(x, η, [−K,K])

+ sup
x∈[−K,K]

|θn(x, η, [−K,K])

− θ(x, η, [−K,K])|
≤ 1 − r + r

2
= 1 − r

2

for n ≥ N . This gives the conclusion of the lemma. �

10. The proof of the Main Lemma. We first repeat the Main Lemma.

MAIN LEMMA. There exist three positive numbers δ, q , K and an index N

such that

inf
n>N

inf
x∈[−K,K] Px

(
Zn([0,K]) > δρn & Zn([−K,0]) > δρn)> q.

PROOF. Take K as defined in Lemma 12. Since [−K,K] = [−K,0] ∪ [0,K]
and type 0 has probability 0 to occur, it follows directly from Lemma 12 that one
of Px(Zn([0,K]) > δρn) and Px(Zn([−K,0]) > δρn) is larger than r/4 for all
x ∈ [−K,K] and n > N . But, then, by symmetry, both of these probabilities are
larger than r/4.

Now, take any x ∈ [−K,K]. Since K < 1
8 , it follows that with a positive prob-

ability denoted by p2,4, in the first generation, the squares Q2 and Q4—with re-
spective types x2 and x4 from a subinterval of [−K,K]—will be present. But, by
the above, these two squares will, independently of each other and with probability
at least r/4, generate more than δρn squares with type in [0,K] (resp. [−K,0]) in
generation n + 1. Thus, for all x ∈ [−K,K] and n > N,

Px

(
Zn+1([0,K]) > δρn & Zn+1([−K,0]) > δρn)> p2,4 · r

4
· r

4
.

So, replacing δ by δ/ρ, N by N + 1 and defining q = p2,4r
2/16, this proves the

Main Lemma. �
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