
The Annals of Probability
2010, Vol. 38, No. 6, 2295–2321
DOI: 10.1214/10-AOP540
© Institute of Mathematical Statistics, 2010

CONSTRUCTION OF AN EDWARDS’ PROBABILITY
MEASURE ON C(R+,R)

BY JOSEPH NAJNUDEL

Universität Zürich

In this article, we prove that the measures QT associated to the one-
dimensional Edwards’ model on the interval [0, T ] converge to a limit mea-
sure Q when T goes to infinity, in the following sense: for all s ≥ 0 and
for all events �s depending on the canonical process only up to time s,
QT (�s) → Q(�s).

Moreover, we prove that, if P is Wiener measure, there exists a martingale
(Ds)s∈R+ such that Q(�s) = EP(1�s

Ds), and we give an explicit expres-
sion for this martingale.

1. Introduction and statement of the main theorems. Edwards’ model is a
model for polymers chains, which is defined by considering Brownian motion “pe-
nalized” by the “quantity” of its self-intersections (see also [4]). More precisely,
for d ∈ N∗, and T > 0, let P

(d)
T be Wiener measure on the space C([0, T ],Rd), and

(X
(d)
t )t∈[0,T ] the corresponding canonical process. The d-dimensional Edwards’

model on [0, T ] is defined by the probability measure Q
(d),β
T on C([0, T ],Rd)

such that, very informally,

Q
(d),β
T = exp(−β

∫ T
0

∫ T
0 δ(X

(d)
s − X

(d)
u ) ds du)

P
(d)
T [exp(−β

∫ T
0

∫ T
0 δ(X

(d)
s − X

(d)
u ) ds du)] · P

(d)
T ,(1)

where β is a strictly positive parameter, and δ is Dirac measure at zero.
(In this article, we always denote by Q[V ] the expectation of a random variable

V under the probability Q.)
Of course, (1) is not really the definition of a probability measure, since the

integral with respect to Dirac measure is not well defined. However, it has been
proven that one can define rigorously the measure Q

(d),β
T for d = 1,2,3, by giving

a meaning to (1) (for d ≥ 4, the Brownian path has no self-intersection, so the
measure Q

(d),β
T has to be equal to P

(d)
T ).

In particular, for d = 1, one has formally the equality∫ T

0

∫ T

0
δ
(
X(1)

s − X(1)
u

)
ds du =

∫ ∞
−∞

(L
y
T )2 dy,(2)
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where (L
y
T )y∈R is the continuous family of local times of (X

(1)
s )s≤T (which is

P
(1)
T -almost surely well defined).
Therefore, one can take the following (rigorous) definition:

Q
(1),β
T = exp(−β

∫ ∞
−∞(L

y
T )2 dy)

P
(1)
T [exp(−β

∫ ∞
−∞(L

y
T )2 dy)] · P

(1)
T .

Under Q
(1),β
T , the canonical process has a ballistic behavior; more precisely, West-

water (see [22]) has proven that for T → ∞, the law of
X

(1)
T
T

under Q
(1),β
T tends to

1
2(δb∗β1/3 + δ−b∗β1/3), where δx is Dirac measure at x and b∗ is a universal constant
(approximately equal to 1.1).

This result was improved in [18] (see also [17]), where van der Hofstad, den

Hollander and König show that
|X(1)

T |−b∗β1/3T√
T

tends in law to a centered Gaussian
variable, which has a variance equal to a universal constant (approximately equal
to 0.4; in particular, smaller than one).

Moreover, in [19], the authors prove large deviation results for the variable XT

under Q
(1),β
T .

In dimension 2, the problem of the definition of Edwards’ model was solved by
Varadhan (see [8, 10, 16]). In this case, it is possible to give a rigorous definition of
I := ∫ T

0
∫ T

0 δ(X
(2)
s − X

(2)
u ) ds du, but this quantity appears to be equal to infinity.

However, if one formally subtracts its expectation (i.e., one considers the quantity:
I − P

(2)
T [I ]), one can define a finite random variable which has negative exponen-

tial moments of any order; therefore, if we replace
∫ T

0
∫ T

0 δ(X
(2)
s − X

(2)
u ) ds du by

this random variable in (1), we obtain a rigorous definition of Q
(2),β
T . Moreover,

this probability is absolutely continuous with respect to Wiener measure.
In dimension 3 (the most difficult case), subtracting the expectation (this tech-

nique is also called “Varadhan renormalization”) is not sufficient to define Ed-
wards’ model. However, by a long and difficult construction, Weswater (see [20,
21]) has proven that it is possible to define the probability Q

(3),β
T ; this construction

has been simplified by Bolthausen in [1] (at least if β is small enough). More-
over, the measures (Q

(3),β
T )β∈R∗+ are mutually singular, and singular with respect

to Wiener measure.
The behavior of the canonical process under Q

(d),β
T , as T → ∞, is essentially

unknown for d = 2 and d = 3. One conjectures that the following convergence
holds:

Q
(3),β
T [‖XT ‖] → DT ν,

where D > 0 depends only on d and β , and where ν is equal to 3/4 for d = 2 and
approximately equal to 0.588 for d = 3 (see [17], Chapter 1).

At this point, we note that all the measures considered above are defined on
finite interval trajectories [exactly, on C([0, T ],R)].
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An interesting question is the following: is it possible to define Edwards’ model
on trajectories indexed by R+?

More precisely, if P(d) is Wiener measure on C(R+,Rd) and (X
(d)
s )s∈R+ the

corresponding canonical process, is it possible to define a measure Q(d),β (for all
β > 0) such that, informally,

Q(d),β = exp(−β
∫ ∞

0
∫ ∞

0 δ(X
(d)
s − X

(d)
u ) ds du)

P(d)[exp(−β
∫ ∞

0
∫ ∞

0 δ(X
(d)
s − X

(d)
u ) ds du)] · P(d)?

In this article, we give a positive answer to this question in dimension one. The
construction of the corresponding measure is analogous to the construction given
by Roynette, Vallois and Yor in their articles about penalisation (see [11–14]).

More precisely, let us replace the notation P(1) by P for the standard Wiener
measure and the notation (X

(1)
s )s∈R+ by (Xs)s∈R+ for the canonical process. If

(Fs)s∈R+ is the natural filtration of X, and if for all T ∈ R+, the measure Q
β
T is

defined by

Q
β
T = exp(−β

∫ ∞
−∞(L

y
T )2 dy)

P[exp(−β
∫ ∞
−∞(L

y
T )2 dy)] · P,

where (L
y
T )T ∈R+,y∈R is the jointly continuous version of the local times of X (P-

almost surely well defined), the following theorem holds.

THEOREM 1.1. For all β > 0, there exists a unique probability measure Qβ

such that for all s ≥ 0, and for all events �s ∈ Fs ,

Q
β
T (�s) −→

T →∞Qβ(�s).(3)

Theorem 1.1 is the main result of our article.
Let us remark that if �s ∈ Fs (s ≥ 0) and P(�s) = 0, then Q

β
T (�s) = 0, since

Q
β
T is, by definition, absolutely continuous with respect to P. Hence, if Theo-

rem 1.1 is assumed, Qβ(�s) is equal to zero.
Therefore, the restriction of Qβ to Fs is absolutely continuous with respect to

the restriction of P to Fs , and there exists a P-martingale (D
β
s )s≥0 such that, for

all s,

Q
β
|Fs

= Dβ
s · P|Fs .

In our proof of Theorem 1.1, we obtain an explicit formula for the martingale
(D

β
s )s≥0. However, we need to define other notation before giving this formula.
Let ν be the measure on R∗+, defined by ν(dx) = x dx, and let L2(ν) be the set

of functions g from R∗+ to R such that∫ ∞
0

[g(x)]2ν(dx) < ∞,
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equipped with the scalar product

〈g|h〉 =
∫ ∞

0
g(x)h(x)ν(dx).

The operator K defined from L2(ν) ∩ C 2(R∗+) to C(R∗+) by

[K(g)](x) = 2g′′(x) + 2g′(x)

x
− xg(x)(4)

is the infinitesimal generator of the process 2R killed at rate x at level x, where R

is a Bessel process of dimension two; it is a Sturm–Liouville operator, and there
exists an orthonormal basis (en)n∈N of L2(ν), consisting of eigenfunctions of K,
with the corresponding negative eigenvalues: −ρ0 > −ρ1 ≥ −ρ2 ≥ −ρ3 ≥ · · · ,
where ρ := ρ0 is in the interval [2.18,2.19].

Moreover, the functions (en)n∈N are analytic and bounded (they tend to zero
at infinity, faster than exponentially), and e0 is strictly positive (these properties
are quite classical, and they are essentially proven in [17], Chapters 2 and 3; see
also [6]).

Now, for l ∈ R+, let us denote by (Y
y
l )y∈R a process from R to R+ such that:

• (Y
−y
l )y≥0 is a squared Bessel process of dimension zero, starting at l.

• (Y
y
l )y≥0 is an independent squared Bessel process of dimension two.

Moreover, let f be a continuous function with compact support from R to R+, and
let M be a strictly positive real such that f (x) = 0 for all x /∈ [−M,M]. We define
the following quantities:

A
β,M
+ (f ) =

∫ ∞
0

dl E
[
e

∫ M
−∞[−β(Y

y
l +f (y))2+ρβ2/3Y

y
l ]dye0(β

1/3YM
l )

]
,

A
β,M
− (f ) = A

β,M
+ (f̃ ),

where f̃ is defined by f̃ (x) = f (−x), and

Aβ,M(f ) = A
β,M
+ (f ) + A

β,M
− (f ).

With this notation, we can state the following theorem, which gives an explicit
formula for the martingale (D

β
s )s≥0.

THEOREM 1.2. For all β > 0 and for all continuous and positive functions f

with compact support, the quantity Aβ,M(f ) is finite, different from zero, and does
not depend on the choice of M > 0 such that f = 0 outside the interval [−M,M];
therefore, we can write: Aβ(f ) := Aβ,M(f ). Moreover, for all s ≥ 0, the density
D

β
s of the restriction of Qβ to Fs , with respect to the restriction of P to Fs , is given

by the equality

Dβ
s = eρβ2/3s · Aβ(L

•+Xs
s )

Aβ(0)
,(5)
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where L
•+Xs
s denotes the function F [which depends on the trajectory (Xu)u≤s ]

such that F(y) = L
y+Xs
s for all y ∈ R.

REMARK. The independence of Aβ,M(f ) with respect to M (provided the
support of f is included in [−M,M]) can be checked directly by using the fact
that (

exp
(∫ x

0
[−β(Y

y
l )2 + ρβ2/3Y

y
l ]dy

)
e0(β

1/3Yx
l )

)
x≥0

(6)

is a martingale, property which can be easily proven by using the differential equa-
tion satisfied by e0.

For l > 0, μ ∈ R and v > 0, let us now define the following quantity:

K
(μ)
l (v) = αl(v)eμvE[e−2

∫ v
0 V

(l/2,v)
u du],(7)

where αl(v) = l√
8πv3

e−l2/8v denotes the density of the first hitting time of zero of
a Brownian motion starting at l/2 (or equivalently, the density of the last hitting
time of l/2 of a standard Bessel process of dimension 3), and (V

(l/2,v)
u )u≤v is the

bridge of a Bessel process of dimension 3 on [0, v], starting at l/2 and ending at 0.
To simplify the notation, we set

Kl(v) = K
(0)
l (v).

Moreover, let us consider, for v > 0, the function χv defined by

χv(l) = Kl(v)

l
= 1√

8πv3
e−l2/8vE[e−2

∫ v
0 V

(l/2,v)
u du](8)

for l > 0.
With this notation, Theorem 1.2 is a essentially a consequence of the two propo-

sitions stated below.

PROPOSITION 1.3. When T goes to infinity,

eρT P
[
e− ∫ ∞

−∞[Ly
T +f (y)]2 dy1XT ∈[0,M]

] −→ 0.(9)

PROPOSITION 1.4. When T goes to infinity,

eρT P
[
e− ∫ ∞

−∞[Ly
T +f (y)]2 dy1XT ≥M

] −→ KA
1,M
+ (f ) < ∞,(10)

where K ∈ R∗+ is a universal constant (in particular, K does not depend on f

and M).
Moreover, for all v > 0, χv ∈ L2(ν) and the constant K is given by the formula

K =
∫ ∞

0
eρv〈χv|e0〉dv < ∞.
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In the proof of these two propositions, we use essentially the same tools as in
the papers by van der Hofstad, den Hollander and König. In particular, for f = 0,
Propositions 1.3 and 1.4 are consequences of Proposition 1 of [18].

However, for a general function f , it is not obvious that one can deduce directly
our results from the material of [18] and [19], since for XT > 0, one has to deal
with the family of local times of the canonical process on the intervals R−, [0,XT ]
and [XT ,∞) as for f = 0, but also on the support of f . Moreover, some typos in
[18] make the argument as written incorrect. For this reason, we present a proof of
this result in a different way than was done in [18].

The next sections of this article are organized as follows. In Section 2, we prove
that Propositions 1.3 and 1.4 imply Theorems 1.1 and 1.2; in Section 3, we prove
Proposition 1.3. The proof of Proposition 1.4 is split into two parts: the first one is
given in Section 4; the second one, for which one needs some estimates of different
quantities, is given in Section 6, after the proof of these estimates in Section 5. In
Section 7, we make a conjecture on the behavior of the canonical process under
the limit measure Qβ .

2. Proof of Theorems 1.1 and 1.2 by assuming Propositions 1.3 and 1.4.
Let us begin to prove the following result, which is essentially a consequence of
Brownian scaling.

PROPOSITION 2.1. Let us assume Propositions 1.3 and 1.4. For any positive
continuous function f with compact support included in [−M,M], and for all
β > 0,

eρβ2/3T P
[
e−β

∫ ∞
−∞[Ly

T +f (y)]2 dy] −→ Kβ1/3Aβ,M(f ) < ∞,(11)

when T goes to infinity.

PROOF. Propositions 1.3 and 1.4 imply

eρT P
[
e− ∫ ∞

−∞[Ly
T +f (y)]2 dy1XT ≥0

] −→
T →∞KA

1,M
+ (f ) < ∞.

Now, ((L
−y
T )y∈R,−XT ) and ((L

y
T )y∈R,XT ) have the same law; hence,

eρT P
[
e− ∫ ∞

−∞[Ly
T +f (y)]2 dy1XT ≤0

]
= eρT P

[
e− ∫ ∞

−∞[L−y
T +f (y)]2 dy1−XT ≤0

]
= eρT P

[
e− ∫ ∞

−∞[Ly
T +f (−y)]2 dy1XT ≥0

] −→
T →∞KA

1,M
+ (f̃ )

= KA
1,M
− (f ),

which is finite.
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Therefore,

eρT P
[
e− ∫ ∞

−∞[Ly
T +f (y)]2 dy] −→

T →∞KA1,M(f ) < ∞.

Now, let us set: α = β1/3. By Brownian scaling, (L
yα

T α2)y∈R and (αL
y
T )y∈R have

the same law. Consequently,

eρα2T P
[
e−β

∫ ∞
−∞[Ly

T +f (y)]2 dy]
= eρα2T P

[
e
−α

∫ ∞
−∞[Lyα

T α2+αf (y)]2 dy]
= eρα2T P

[
e
− ∫ ∞

−∞[Lz

T α2+αf (zα−1)]2 dz] −→
T →∞KA1,Mα(fα)

< ∞,

where fα , defined by fα(z) = αf (zα−1), has a support included in [−Mα,Mα].
Therefore, Proposition 2.1 is proven if we show that A1,Mα(fα) = αAβ,M(f ).
Now, by change of variable and scaling property of squared Bessel processes,

A
1,Mα
+ (fα) =

∫ ∞
0

dl E
[
e

∫ Mα
−∞[−(Y

y
l +αf (yα−1))2+ρY

y
l ]dye0(Y

Mα
l )

]
=

∫ ∞
0

dl E
[
eα

∫ M
−∞[−(Y zα

l +αf (z))2+ρY zα
l ]dze0(Y

Mα
l )

]
=

∫ ∞
0

dl E
[
e
β

∫ M
−∞[−(Y z

lα−1+f (z))2+ρα−1Y z

lα−1 ]dz
e0(αYM

lα−1)
]

(12)

= α

∫ ∞
0

dl E
[
eβ

∫ M
−∞[−(Y z

l +f (z))2+ρα−1Y z
l ]dze0(αYM

l )
]

= αA
β,M
+ (f ).

By replacing f by f̃ , one obtains

A
1,Mα
− (fα) = αA

β,M
− (f ),(13)

and by adding (12) and (13),

A1,Mα(fα) = αAβ,M(f ),

which proves Proposition 2.1. �

At this point, we remark that Aβ(f ) := Aβ,M(f ) does not depend on M (as
written in Theorem 1.2), since M does not appear in the left-hand side of (11).

Now, let T > s be in R+. One has, for all y ∈ R,

L
y
T = Ly

s + L̃
y−Xs

T −s ,

where L̃ is the continuous family of local times of the process (Xs+u − Xs)u≥0.
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Therefore, for all β > 0,

P
[
e−β

∫ ∞
−∞(L

y
T )2 dy |Fs

] = P
[
e−β

∫ ∞
−∞(L

y
s +L̃

y−Xs
T −s )2 dy |Fs

]
= P

[
e−β

∫ ∞
−∞(L

y+Xs
s +L̃

y
T −s )

2 dy |Fs

]
.

Under P and conditionally on Fs , (L
y+Xs
s )y∈R is fixed and by Markov property,

(Xs+u − Xs)u≥0 is a standard Brownian motion.
Hence, if we assume Propositions 1.3 and 1.4, we obtain, by using Proposi-

tion 2.1,

eρ(T −s)α2
P

[
e−β

∫ ∞
−∞(L

y
T )2 dy |Fs

] −→
T →∞KαAβ(L•+Xs

s ).

Moreover,

eρ(T −s)α2
P

[
e−β

∫ ∞
−∞(L

y
T )2 dy |Fs

] ≤ eρ(T −s)α2
P

[
e−β

∫ ∞
−∞(L̃

y
T −s )

2 dy |Fs

]
= eρ(T −s)α2

P
[
e−β

∫ ∞
−∞(L

y
T −s )

2 dy]
≤ 2KαAβ(0) < ∞,

if T − s is large enough. On the other hand,

eρT α2
P

[
e−β

∫ ∞
−∞(L

y
T )2 dy] −→

T →∞KαAβ(0),

and for T large enough,

eρT α2
P

[
e−β

∫ ∞
−∞(L

y
T )2 dy] ≥ K

2
αAβ(0).

Now, for all β and f , Aβ(f ) is different from zero (as written in Theorem 1.2),
since it is the integral of a strictly positive quantity. Therefore,

P[e−β
∫ ∞
−∞(L

y
T )2 dy |Fs]

P[e−β
∫ ∞
−∞(L

y
T )2 dy]

−→
T →∞ eρα2s Aβ(L

•+Xs
s )

Aβ(0)
,

and for s fixed and T large enough

P[e−β
∫ ∞
−∞(L

y
T )2 dy |Fs]

P[e−β
∫ ∞
−∞(L

y
T )2 dy]

≤ 4eρα2s < ∞.

Consequently, for all s ≥ 0 and �s ∈ Fs , by dominated convergence

P

[
1�s

P[e−β
∫ ∞
−∞(L

y
T )2 dy |Fs]

P[e−β
∫ ∞
−∞(L

y
T )2 dy]

]
−→
T →∞P

[
1�se

ρα2s Aβ(L
•+Xs
s )

Aβ(0)

]
.

Hence,

Q
β
T (�s) −→

T →∞ P(1�sD
β
s ),
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where D
β
s is defined by (5):

Dβ
s = eρβ2/3s · Aβ(L

•+Xs
s )

Aβ(0)
.

This convergence implies Theorems 1.1 and 1.2.

3. Proof of Proposition 1.3. If f is a continuous function from R to R+ with
compact support included in [−M,M], one has

P
[
e− ∫ ∞

−∞[Ly
T +f (y)]2 dy1XT ∈[0,M]

] ≤ P
[
e− ∫ ∞

−∞(L
y
T )2 dy1XT ∈[0,M]

]
(14)

= P
[
e−T 3/2 ∫ ∞

−∞(L
y
1)2 dy1

X1∈[0,M/
√

T ]
]

by scaling properties of Brownian motion.
Hence, the right-hand side of (14) is decreasing with T , which implies (for

T > 1)

eρT P
[
e− ∫ ∞

−∞[Ly
T +f (y)]2 dy1XT ∈[0,M]

]
≤ eρT

∫ T

T −1
duP

[
e− ∫ ∞

−∞(L
y
u)2 dy1Xu∈[0,M]

]

≤ eρ
∫ T

T −1
duP

[
e

∫ ∞
−∞[−(L

y
u)2+ρL

y
u]dy1Xu∈[0,M]

]
by using the equality ∫

R
ρLy

u dy = ρu.

By dominated convergence, Proposition 1.3 is proven if we show that∫ ∞
0

duP
[
e

∫ ∞
−∞[−(L

y
u)2+ρL

y
u]dy1Xu∈[0,M]

]
< ∞.(15)

In order to estimate the left-hand side of (15), we need the following lemma.

LEMMA 3.1. For every positive and measurable function G on R× C(R,R+)∫ ∞
0

P[G(Xu,L
•
u)]du =

∫
R

da

∫ ∞
0

dl E[G(a,Y •
l,a)],

where the law of the process (Y
y
l,a)y∈R is defined in the following way:

• for a ≥ 0, (Y
−y
l,a )y≥0 is a squared Bessel process of dimension zero, starting at l;

• for a ≥ 0, (Y
y
l,a)y≥0 is an independent inhomogeneous Markov process,

which has the same infinitesimal generator as a two-dimensional squared
Bessel process for y ∈ [0, a] and the same infinitesimal generator as a zero-
dimensional squared Bessel process for y ≥ a;
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• for a ≤ 0, (Y
y
l,a)y∈R has the same law as (Y

−y
l,−a)y∈R.

PROOF. For a ≥ 0, let B be a standard Brownian motion, B(a) an independent
Brownian motion starting at a, and let us denote by (τl)l≥0 the inverse local time
of B at level 0, and T

(a)
0 the first time when B(a) reaches zero.

By [7] and [3], for every process (Fu)u≥0 on the space C(R+,R), which is
progressively measurable with respect to the filtration (Fu)u≥0,∫ ∞

0
duE[Fu(B)] =

∫ ∞
0

dl

∫ ∞
−∞

da E
[
F

τl+T
(a)
0

(
Z(l,a))],(16)

where Z(l,a) is a process such that Z
(l,a)
r = Br for r ≤ τl and Z

(l,a)

τl+T
(a)
0 −s

= B
(a)
s

for s ≤ T
(a)

0 .
By applying (16) to the process defined by Fu(X) = G(Xu,L

•
u), and by using

Ray–Knight theorems, one obtains Lemma 3.1. �

An immediate application of this lemma is the following equality:∫ ∞
0

duP
[
e

∫ ∞
−∞[−(L

y
u)2+ρL

y
u]dy1Xu∈[0,M]

]
(17)

=
∫ ∞

0
dl

∫ M

0
da E

[
e

∫ ∞
−∞[−(Y

y
l,a)2+ρY

y
l,a]dy]

.

In order to majorize this expression, let us prove another result, which is also used
in the proof of Proposition 1.4.

LEMMA 3.2. For all l > 0, μ ∈ R and for all measurable functions g from
R+ to R+, the following equality holds:

E

[
e

∫ ∞
0 [−(Y

y
l,0)

2+μY
y
l,0]dy

g

(∫ ∞
0

Y
y
l,0 dy

)]
=

∫ ∞
0

K
(μ)
l (v)g(v) dv,(18)

where K
(μ)
l (v) is defined by (7).

In particular,

E
[
e

∫ ∞
0 [−(Y

y
l,0)

2+ρY
y
l,0]dy] = K̄

(ρ)
l ,

where

K̄
(ρ)
l =

∫ ∞
0

K
(ρ)
l (v) dv.

Moreover, K̄
(ρ)
l is bounded by a universal constant and∫ ∞

0
K̄

(ρ)
l dl < ∞.
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PROOF. The process Yl,0 is a local martingale with bracket given, for y ≥ 0,
by

〈Yl,0, Yl,0〉y = 4
∫ y

0
Yx

l,0 dx.

Therefore,

Y
y
l,0 = 2B

(l/2)∫ y
0 Yx

l,0 dx

where B(l/2) is a Brownian motion starting at l/2. Moreover, since Yl,0 stays at
zero when it hits 0, the hitting time of zero for B(l/2) is S = ∫ ∞

0 Yx
l,0 dx. Hence, the

change of variable s = ∫ y
0 Yx

l,0 dx gives

∫ ∞
0

(μ − Y
y
l,0)Y

y
l,0 dy =

∫ S

0

(
μ − 2B(l/2)

s

)
ds.

Therefore, one has the equalities

E

[
e

∫ ∞
0 [−(Y

y
l,0)

2+μY
y
l,0]dy

g

(∫ ∞
0

Y
y
l,0 dy

)]

= E
[
e

∫ S
0 (μ−2B

(l/2)
s ) dsg(S)

]
=

∫ ∞
0

eμvg(v)E[e− ∫ v
0 2B

(l/2)
s ds |S = v]P[S ∈ dv].

Now, this formula implies (18), since the density at v of the law of S is equal to
αl(v) and the law of (B

(l/2)
s )s≤v , conditionally on S = v, is equal to the law of

V (l/2,v) (see, e.g., [5]).
It only remains to prove the integrability of K̄

(ρ)
l . One easily checks that

K̄
(ρ)
l = E

[
e

∫ S
0 (ρ−2B

(l/2)
s ) ds].

Hence, if one sets

f (x) = Ai
(
2−1/3(2x − ρ)

)
,

for the Airy function Ai [which is, up to a multiplicative constant, the unique
bounded solution of the differential equation Ai′′(x) = x Ai(x)], the process N

defined by

Nt = f
(
B

(l/2)
t

)
exp

(∫ t

0

(
ρ − 2B(l/2)

s

)
ds

)

is a local martingale.
Moreover, since ρ is smaller than −21/3 times the largest zero of Airy function,

the function f is strictly positive on R+ and N is positive. By stopping N at
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time S, one gets a true martingale since 0 ≤ Nt∧S ≤ ‖f ‖∞eρt , and by Doob’s
stopping theorem and Fatou’s lemma, one has

K̄
(ρ)
l ≤ f (l/2)

f (0)
.

Since Airy function decays faster than exponentially at infinity, the boundedness
and the integrability of K̄

(ρ)
l are proven. �

It is now easy to prove that Lemma 3.2 implies Proposition 1.3: by using this
lemma, the definition of Yl,a and Markov property at level a, one can see that the
left-hand side of (17) is equal to∫ ∞

0
dl

∫ M

0
da K̄

(ρ)
l E

[
e

∫ a
0 [−(Y

y
l )2+ρY

y
l ]K̄(ρ)

Y a
l

]
.(19)

Now, K̄
ρ

Y a
l

is uniformly bounded and −x2 + ρx ≤ ρ2

4 for all x ∈ R; hence, the
quantity (19) is bounded by a constant times

eMρ2/4
∫ M

0
da

∫ ∞
0

dl K̄
(ρ)
l ,

which is finite.
Hence, one has (15), and finally Proposition 1.3.

REMARK. Proposition 1.3 remains true if one replaces ρ by any real ρ′ which
is strictly smaller than −21/3 times the largest zero of Airy function (e.g., one can
take ρ′ = 2.9).

4. Proof of Proposition 1.4 (first part). The purpose of this first part is to
prove the following proposition, which, in particular, gives another expression for
the left-hand side of (10).

PROPOSITION 4.1. For u, v, t, l > 0, let us define the quantities

Jl(u, v) = E
[
e−2

∫ u
0 R

(l/2)
w dwχv

(
2R(l/2)

u

)]
,(20)

where χv is given by (8) and (R
(l/2)
w )w≥0 is a Bessel process of dimension 2, start-

ing at l/2;

Jl(t) :=
∫ t

0
Jl(t − v, v) dv(21)

and for all t ∈ R,

J
(ρ)
l (t) = eρt1t>0Jl(t).
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Then, there exists a subset E of R+, such that the complement of E is Lebesgue-
negligible, and for all T ∈ E,

eρT P
[
e− ∫ ∞

−∞[Ly
T +f (y)]2 dy1XT ≥M

]
(22)

=
∫ ∞

0
dl E

[
e

∫ M
−∞(−[Yy

l +f (y)]2+ρY
y
l ) dyJ

(ρ)

YM
l

(
T −

∫ M

−∞
Y

y
l dy

)]
.

Moreover, for all measurable functions h from (R+)2 to R+, and for all l > 0,∫ ∞
0

dbE

[
e
− ∫ ∞

0 (Y
y
l,b)

2 dy
h

(∫ b

0
Y

y
l,b dy,

∫ ∞
b

Y
y
l,b dy

)]
(23)

=
∫
(R+)2

h(u, v)Jl(u, v) dudv

and for all measurable functions g from R+ to R+,∫ ∞
0

dbE

[
e
− ∫ ∞

0 (Y
y
l,b)

2 dy
g

(∫ ∞
0

Y
y
l,b dy

)]
=

∫ ∞
0

g(t)Jl(t) dt.(24)

REMARK. In Proposition 4.1, it is natural to expect that E is empty, even if
we do not need it to prove our main result.

PROOF OF PROPOSITION 4.1. Equation (22) is a consequence of (23) and
(24); therefore, we begin our proof by these two equalities. By monotone class
theorem, it is sufficient to prove (23) for functions h of the form: h(x, y) =
h1(x)h2(y), where h1 and h2 are measurable functions from R+ to R+.

By Lemma 3.2, for all l > 0,

E

[
e
− ∫ ∞

0 (Y
y
l,0)

2 dy
h2

(∫ ∞
0

Y
y
l,0 dy

)]
=

∫ ∞
0

Kl(v)h2(v) dv.

Hence, by applying Markov property to the process Yl,b at level b,∫ ∞
0

dbE

[
e
− ∫ ∞

0 (Y
y
l,b)

2 dy
h1

(∫ b

0
Y

y
l,b dy

)
h2

(∫ ∞
b

Y
y
l,b dy

)]

=
∫ ∞

0
dbE

[
e− ∫ b

0 (Y
y
l )2 dyh1

(∫ b

0
Y

y
l dy

)∫ ∞
0

KYb
l
(v)h2(v) dv

]
(25)

=
∫ ∞

0
dv h2(v)E

[∫ ∞
0

db e− ∫ b
0 (Y

y
l )2 dyh1

(∫ b

0
Y

y
l dy

)
KYb

l
(v)

]
.

Now, the function ỹ from R+ to R+, given by

ỹ(s) = inf
{
y ∈ R+,

∫ y

0
Y

y′
l dy′ = s

}

is well defined, continuous, strictly increasing and tending to infinity at infinity.
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Hence, one can consider the process (Q̃
(l)
s )s≥0 such that

Q̃(l)
s = Y

ỹ(s)
l .

One has

dỹ(s) = ds

Y
ỹ(s)
l

= ds

Q̃
(l)
s

,

and the s.d.e.

dQ̃(l)
s = 2

√
Y

ỹ(s)
l dB̂ỹ(s) + 2dỹ(s) = 2dBs + 2ds

Q̃
(l)
s

,

where B̂ and B are Brownian motions: the processes Q̃(m) and 2R(m/2) have the
same law.

By a change of variable in (25) [b = ỹ(s), y = ỹ(u)],∫ ∞
0

dbE

[
e
− ∫ ∞

0 (Y
y
l,b)

2 dy
h1

(∫ b

0
Y

y
l,b dy

)
h2

(∫ ∞
b

Y
y
l,b dy

)]

=
∫ ∞

0
dv h2(v)E

[∫ ∞
0

dỹ(s)e− ∫ s
0 (Y

ỹ(u)
l )2 dỹ(u) h1(s)KY

ỹ(s)
l

(v)

]

=
∫ ∞

0
dv h2(v)E

[∫ ∞
0

ds h1(s)e
−2

∫ s
0 R

(l/2)
u du

K
2R

(l/2)
s

(v)

2R
(l/2)
s

]
,

which implies (23).
The equality (24) is easily obtained by applying (23) to the function h : (u, v) →

g(u + v).
Now, it remains to deduce (22) from (23) and (24).
For all measurable and positive functions g, one has, by Lemma 3.1,∫ ∞

0
dT g(T )P

[
e− ∫ ∞

−∞[Ly
T +f (y)]2 dy1XT ≥M

]

=
∫ ∞

0
dl

∫ ∞
M

da E

[
e
− ∫ ∞

−∞[Yy
l,a+f (y)]2 dy

g

(∫ ∞
−∞

Y
y
l,a dy

)]
.

On the other hand, by applying Markov property (for the process Yl,a , at level M),
and by using the fact that f (y) = 0 for y ≥ M , one obtains, for all positive and
measurable functions h1 and h2,∫ ∞

0
dl

∫ ∞
M

da E

[
e
− ∫ ∞

−∞[Yy
l,a+f (y)]2 dy

h1

(∫ M

−∞
Y

y
l,a dy

)
h2

(∫ ∞
M

Y
y
l,a dy

)]

=
∫ ∞

0
dl

∫ ∞
0

dbE

[
e− ∫ M

−∞[Yy
l +f (y)]2 dyh1

(∫ M

−∞
Y

y
l dy

)
· · ·(26)

× E

[
e
− ∫ ∞

0 (Ŷ
y

YM
l

,b
)2 dy

h2

(∫ ∞
0

Ŷ
y

YM
l ,b

dy

)∣∣∣YM
l

]]
,
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where ŶYM
l ,b is a process which has, conditionally on YM

l = l′, the same law as
Yl′,b.

Now, by putting the integral with respect to db just before the second expecta-
tion in the right-hand side of (26), and by applying (24) to g = h2, one obtains that
the left-hand side of (26) is equal to∫ ∞

0
dl E

[
e− ∫ M

−∞[Yy
l +f (y)]2 dyh1

(∫ M

−∞
Y

y
l dy

)∫ ∞
0

h2(t)JYM
l

(t) dt

]
.

Hence, by monotone class theorem, for all measurable functions h from R2+ to R+,∫ ∞
0

dl

∫ ∞
M

da E

[
e
− ∫ ∞

−∞[Yy
l,a+f (y)]2 dy

h

(∫ M

−∞
Y

y
l,a dy,

∫ ∞
M

Y
y
l,a dy

)]

=
∫ ∞

0
dl E

[
e− ∫ M

−∞[Yy
l +f (y)]2 dy

∫ ∞
0

h

(∫ M

−∞
Y

y
l dy, t

)
JYM

l
(t) dt

]
.

By applying this equality to the function h : (u, v) → g(u + v), we obtain∫ ∞
0

dT g(T )P
[
e− ∫ ∞

−∞[Ly
T +f (y)]2 dy1XT ≥M

]

=
∫ ∞

0
dT g(T )

∫ ∞
0

dl E

[
e− ∫ M

−∞[Yy
l +f (y)]2 dy · · ·

× JYM
l

(
T −

∫ M

−∞
Y

y
l dy

)
1∫ M

−∞ Y
y
l dy<T

]
.

Since this equality is true for all g, there exists a subset E of R+, such that the
complement of E is Lebesgue-negligible, and for all T ∈ E,

P
[
e− ∫ ∞

−∞[Ly
T +f (y)]2 dy1XT ≥M

]
=

∫ ∞
0

dl E

[
e− ∫ M

−∞[Yy
l +f (y)]2 dyJYM

l

(
T −

∫ M

−∞
Y

y
l dy

)
1∫ M

−∞ Y
y
l dy<T

]
,

which implies (22). �

5. Some estimates. In this section, we prove the following propositions,
which give estimates for the different quantities introduced earlier in this paper.
In the sequel of this paper, C denotes a universal and strictly positive constant,
which may change from line to line.

PROPOSITION 5.1. For all l, v > 0, μ ∈ R, one has the majorization

K
(μ)
l (v) ≤ Clv−3/2e(μ−2.9)v−l2/8v,(27)

where K
(μ)
l (v) is defined by (7).
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PROPOSITION 5.2. For all M > 0, the random variable
∫ M

0 Y
y
0 dy admits a

density DM with respect to Lebesgue measure, such that for all u ≥ 0,(
DM ∗ K

(ρ)
l

)
(u) ≤ CMe−νMl,

where CM,νM > 0 depend only on M .

PROPOSITION 5.3. For all l, u, v > 0

Jl(u, v) ≤ Ce−2.9v

(u + v)
√

v
e−l2/8(u+v)(28)

and

Jl(u, v) ≤ C√
v
e−2.8v−ρu,(29)

if u ≥ 2 [recall that Jl(u, v) is defined by (20)].
Moreover, the function χv from R∗+ to R [recall that χv(l) = Kl(v)

l
], is in L2(ν),

and for fixed l, v > 0 and u going to infinity,

eρuJl(u, v) −→ 〈χv|e0〉e0(l).(30)

PROPOSITION 5.4. For all t > 0

eρtJl(t) ≤ C

(
1 + 1√

t

)
,

where Jl(t) is defined by (21).
Moreover, for l fixed and t going to infinity

eρtJl(t) −→ Ke0(l),(31)

where K is the universal constant defined in Proposition 1.4.

PROOF OF PROPOSITION 5.1. For all l ≥ 0, the process V (l/2,v) is, by cou-
pling, stochastically larger than V (l/2,v). Therefore, by scaling property,

E[e−2
∫ v

0 V
(l/2,v)
u du] ≤ E[e−2

∫ v
0 V

(0,v)
u du] = E[e−2v3/2 ∫ 1

0 V
(0,1)
u du].

Now, the Laplace transform of
∫ 1

0 V
(0,1)
u du (the area under a normalized Brownian

excursion) is known (see, e.g., [9]); one has, for λ > 0,

E[e−λ
∫ 1

0 V
(0,1)
u du] = √

2πλ

∞∑
n=1

e−un(λ2/2)1/3
,

where −u1 > −u2 > −u3 > · · · are the (negative) zeros of the Airy function.
Therefore,

E[e−2
∫ v

0 V
(l/2,v)
u du] ≤

√
8πv3

∞∑
n=1

e−21/3unv
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and

E[e−2
∫ v

0 V
(l/2,v)
u du] ≤ (Ce−2.9v)

∞∑
n=1

e−(21/3un−2.91)v,(32)

since v3/2 is dominated by e0.01v .
Now, 21/3u1 > 2.91; hence, for v > 1, the infinite sum in (32) is smaller than

∞∑
n=1

e−(21/3un−2.91),

which is finite, since un grows sufficiently fast with n (as n2/3). Consequently, for
v ≥ 1,

E[e−2
∫ v

0 V
(l/2,v)
u du] ≤ Ce−2.9v.

This majorization, which remains obviously true for v ≤ 1 if we choose C > e2.9,
implies easily (27). �

PROOF OF PROPOSITION 5.2. In [2], the density of the law of
∫ 1

0 Y
y
0 dy is

explicitly given:

D1(x) = π

∞∑
n=0

(−1)n
(
n + 1

2

)
e−(n+1/2)2π2x/2.

This formula proves that D1 is continuous on R∗+ and that for x ≥ 1

D1(x) ≤ πe−π2(x−1)/8
∞∑

n=0

(
n + 1

2

)
e−(n+1/2)2π2/2 ≤ Ce−x.(33)

Moreover, D1 satisfies the functional equation

D1(x) =
(

2

πx

)3/2

D1

(
4

π2x

)
,

which proves that, for x ≤ 4
π2 ,

D1(x) ≤ Cx−3/2e−4/π2x ≤ C.

This inequality and the continuity of D1 imply that (33) applies for all x ∈ R∗+.
By scaling property of squared Bessel processes, the density DM exists and one

has

DM(x) = 1

M2 D1

(
x

M2

)
,

which implies

DM(x) ≤ C

M2 e−x/M2
.
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Therefore, for all u ≥ 0,

(
DM ∗ K

(ρ)
l

)
(u) =

∫ u

0
DM(u − v)K

(ρ)
l (v) dv

≤ C

M2

∫ u

0
e−(u−v)/M2

lv−3/2e(ρ−2.9)v−l2/8v dv

≤ C

M2 e−(0.7∧1/M2)u
∫ u

0
lv−3/2e−l2/8v dv.

The last inequality comes from the fact that ρ − 2.9 ≤ 0.7, which implies, for
0 ≤ u ≤ v,

−u − v

M2 + (ρ − 2.9)v ≤ −
(

u − v

M2 + 0.7v

)
≤ −

(
0.7 ∧ 1

M2

)
u.

Now, the integral
∫ u

0 lv−3/2e−l2/8v dv is proportional to the probability that a
Brownian motion starting at l/2 reaches zero before time u.

Hence, ∫ u

0
lv−3/2e−l2/8v dv ≤ Ce−l2/8u,

and finally

(
DM ∗ K

(ρ)
l

)
(u) ≤ C

M2 e−0.7u/(1+M2)−l2/8u

≤ C

M2 e−2
√

(0.7u/(1+M2))(l2/8u)

≤ C

M2 e−l/(2(1+M)),

which proves Proposition 5.2. �

PROOF OF PROPOSITION 5.3. By definition of Jl(u, v), one has

Jl(u, v) ≤ E
[
χv

(
2R(l/2)

u

)]
.

Now, the majorization (27) implies

χv

(
2R(l/2)

u

) ≤ Cv−3/2e−2.9ve−(R
(l/2)
u )2/2v.

By using the explicit expression of the Laplace transform of the squared bidimen-
sional Bessel process (see, e.g., [15]), one obtains

Jl(u, v) ≤ Cv−3/2e−2.9v v

u + v
e−l2/8(u+v),

which implies (28).
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In order to prove (29), let us consider, on the set of measurable functions from
R∗+ to R+, the semigroup of operators (�s)s≥0 associated to the process 2R (twice
a Bessel process of dimension 2), and the semigroup (�̃s)s≥0 associated to the
same process, killed at rate x at level x.

For all positive and measurable functions ψ , and for all l > 0, one has

[�s(ψ)](l) = E
[
ψ

(
2R(l/2)

s

)]
,(34)

[�̃s(ψ)](l) = E
[
e−2

∫ s
0 R

(l/2)
u duψ

(
2R(l/2)

s

)]
.(35)

Now, let us observe that the measure ν on R∗+ is reversible, and hence invariant by
the semigroup of 2R. Since, for every measurable and positive function ψ ,

(�̃s(ψ))2 ≤ (�s(ψ))2 ≤ �s(ψ2),

one gets

‖�̃s(ψ)‖2
L2(ν)

≤
∫

R∗+
ψ2 dν = ‖ψ‖2

L2(ν)
.(36)

Inequality (36) proves that the semigroup (�̃s)s≥0 can be considered as a semi-
group of continuous linear operators on L2(ν).

Moreover, the infinitesimal generator of 2R, killed at rate x at level x, is the op-
erator K defined at the beginning of our paper. Hence, if (en)n∈N is an orthonormal
basis of L2(ν) such that en is an eigenvector of K, corresponding to the eigenvalue
−ρn (−ρ = −ρ0 > −ρ1 ≥ −ρ2 ≥ −ρ3 ≥ · · ·), one has, for all n,

�̃s(en) = e−ρnsen.

Now, for all ψ ∈ L2(ν), one has the representation

ψ = ∑
n≥0

〈ψ |en〉en,

and, by linearity and continuity of �̃s ,

�̃s(ψ) = ∑
n≥0

e−ρns〈ψ |en〉en.(37)

In particular,

‖�̃s(ψ)‖2
L2(ν)

= ∑
n≥0

e−2ρns(〈ψ |en〉)2 ≤ e−2ρs
∑
n≥0

(〈ψ |en〉)2,

which implies

‖�̃s(ψ)‖L2(ν) ≤ e−ρs‖ψ‖L2(ν).(38)

Moreover, one has the equality

eρs�̃s(ψ) − 〈ψ |e0〉e0 =
∞∑

n=1

e(ρ−ρn)s〈ψ |en〉en,
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which implies that

eρs�̃s(ψ) −→
s→∞〈ψ |e0〉e0

in L2(ν).
Now, by definition

Jl(u, v) = (�̃u(χv))(l),(39)

where χv ∈ L2(ν), by the majorization (27).
Hence, in L2(ν),

eρuJ•(u, v) −→
s→∞〈χv|e0〉e0,

where J•(u, v) is the function defined by

(J•(u, v))(l) = Jl(u, v).

In order to prove the corresponding pointwise convergence [which is (30)], let us
observe that for all ψ ∈ L2(ν), l > 0,

|[�̃1(ψ)](l)| ≤ E
[∣∣ψ(

2R
(l/2)
1

)∣∣] ≤ (
E

[(
ψ

(
2R

(l/2)
1

))2])1/2

≤
[∫ ∞

0
p

(2)
1

(
l

2
, x

)
(ψ(2x))2 dx

]1/2

(40)

≤
[∫ ∞

0
x(ψ(2x))2 dx

]1/2

≤ ‖ψ‖L2(ν).

Here, we use the majorization p
(2)
1 (x, y) ≤ y, which comes from the fact that the

transition densities of a bidimensional Brownian motion are uniformly bounded
by 1/2π at time 1.

By (40), one has for s > 1, l > 0, ψ ∈ L2(ν),

|eρs(�̃s(ψ))(l) − 〈ψ |e0〉e0(l)| = ∣∣(eρs�̃s(ψ) − 〈ψ |e0〉e0
)
(l)

∣∣
= eρ

∣∣(�̃1(
eρ(s−1)�̃s−1(ψ) − 〈ψ |e0〉e0

))
(l)

∣∣
≤ eρ

∥∥eρ(s−1)�̃s−1(ψ) − 〈ψ |e0〉e0
∥∥
L2(ν)

−→
s→∞ 0.

By applying this convergence to χv , one obtains the pointwise (and in fact uniform)
convergence (30).

Now, it remains to prove (29).
For s ≥ 1, l > 0, by (38) and (40),

|[�̃s(ψ)](l)| = |[�̃1(�̃s−1(ψ))](l)| ≤ ‖�s−1(ψ)‖L2(ν)
(41)

≤ e−ρ(s−1)‖ψ‖L2(ν).
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By (39), and by semigroup property of �̃, one has for u > 1, l, v > 0,

Jl(u, v) = [�̃u−1(J•(1, v))](l).(42)

Moreover, by (28),

Jl(1, v) ≤ Ce−2.9vv−1/2e−l2/8(1+v),

which implies

‖J•(1, v)‖2
L2(ν)

≤ Ce−5.8v
∫ ∞

0

l

v
e−l2/4(1+v) dl

≤ Ce−5.8v 1 + v

v

≤ C

v
e−5.6v

and

‖J•(1, v)‖L2(ν) ≤ C√
v
e−2.8v.

For u ≥ 2, we can combine (41) and (42), and we obtain

Jl(u, v) ≤ Ce−ρ(u−2)‖J•(1, v)‖L2(ν) ≤ C√
v
e−ρu−2.8v,

which is (29).
The proof of Proposition 5.3 is now complete. �

PROOF OF PROPOSITION 5.4. Let us split the integral corresponding to Jl(t)

into two parts:

A(t) :=
∫ (t−2)+

0
Jl(t − v, v) dv,

B(t) :=
∫ t

(t−2)+
Jl(t − v, v) dv.

One has

eρtA(t) =
∫ ∞

0
1t−v≥2Jl(t − v, v)eρt dv;

where, by (30),

1t−v≥2Jl(t − v, v)eρt −→ eρv〈χv|e0〉e0(l),

for l, v fixed and t tending to infinity. Moreover, by (29) and the fact that ρ −2.8 <

−0.6,

1t−v≥2Jl(t − v, v)eρt ≤ C√
v
e−2.8v−ρ(t−v)+ρt ≤ C√

v
e−0.6v,



2316 J. NAJNUDEL

which is integrable on R+.
Hence,

eρtA(t) ≤ C,(43)

and by dominated convergence,

eρtA(t) −→
t→∞Ke0(l),(44)

where l is fixed and

K =
∫ ∞

0
eρv〈χv|e0〉dv

is the constant defined in Proposition 1.4. The majorization (43) implies that K is
necessarily finite.

The integral B(t) can be estimated in the following way: by (28),

eρtB(t) ≤ eρt
∫ t

(t−2)+

Ce−2.9v

t
√

v
e−l2/8t dv

≤ Ce−0.7t

t
e−l2/8t

∫ t

0

dv√
v

(45)

≤ Ce−0.7t

√
t

e−l2/8t

≤ C√
t
.

Proposition 5.4 is a consequence of (43), (44) and (45). �

The estimates given in this section are used in the second part of the proof of
Proposition 1.4.

6. Proof of Proposition 1.4 (second part). In this section, we estimate the
right-hand side of (22), which is, by Proposition 4.1, equal to the left-hand side of
(10) in Proposition 1.4.

We need the following lemma.

LEMMA 6.1. For all M > 0, and all functions f,g from R+ to R+,∫ ∞
0

dl E

[
e

∫ M
−∞(−[Yy

l +f (y)]2+ρY
y
l ) dyg

(∫ M

−∞
Y

y
l dy

)]
≤ C′

M

∫ ∞
0

g,

where C′
M > 0 is finite and depends only on M .
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PROOF. One has the following majorization:∫ ∞
0

dl E

[
e

∫ M
−∞(−[Yy

l +f (y)]2+ρY
y
l ) dyg

(∫ M

−∞
Y

y
l dy

)]
(46)

≤ eMρ2/4
∫ ∞

0
dl E

[
e

∫ 0
−∞[−(Y

y
l )2+ρY

y
l ]dyg

(∫ M

−∞
Y

y
l dy

)]

since f is nonnegative and −x2 + ρx ≤ ρ2/4 for all x ∈ R.
Now, for all positive and measurable functions h1 and h2,∫ ∞

0
dl E

[
e

∫ 0
−∞[−(Y

y
l )2+ρY

y
l ]dyh1

(∫ 0

−∞
Y

y
l dy

)
h2

(∫ M

0
Y

y
l dy

)]

=
∫ ∞

0
dl E

[
e

∫ ∞
0 [−(Y

y
l,0)

2+ρY
y
l,0]dy

h1

(∫ ∞
0

Y
y
l,0 dy

)]
E

[
h2

(∫ M

0
Y

y
l dy

)]

=
∫ ∞

0
dl

∫ ∞
0

K
(ρ)
l (v)h1(v) dv E

[
h2

(∫ M

0
Y

y
l dy

)]
,

by Lemma 3.2.
By additivity properties of squared Bessel processes, the law of

∫ M
0 Y

y
l dy is the

convolution of the law σ1 of
∫ M

0 Y
y
l,0 dy and the law σ2 of

∫ M
0 Y

y
0 dy.

Since by Proposition 5.2, σ2 has the density DM with respect to Lebesgue mea-
sure, we have the equality

E

[
h2

(∫ M

0
Y

y
l dy

)]
=

∫ ∞
0

dt h2(t)

∫ t

0
σ1(du)DM(t − u),

which implies∫ ∞
0

dl E

[
e

∫ 0
−∞[−(Y

y
l )2+ρY

y
l ]dyh1

(∫ 0

−∞
Y

y
l dy

)
h2

(∫ M

0
Y

y
l dy

)]

=
∫ ∞

0
dl

∫ ∞
0

K
(ρ)
l (v)h1(v) dv

∫ ∞
0

dt h2(t)

∫ t

0
σ1(du)DM(t − u).

By monotone class theorem and easy computations, for all positive and measurable
functions g, ∫ ∞

0
dl E

[
e

∫ 0
−∞[−(Y

y
l )2+ρY

y
l ]dyg

(∫ M

−∞
Y

y
l dy

)]

=
∫ ∞

0
dt g(t)

∫ ∞
0

dl

∫ t

0
σ1(du)

(
K

(ρ)
l ∗ DM

)
(t − u).

Now, by Proposition 5.2,(
K

(ρ)
l ∗ DM

)
(t − u) ≤ CMe−νMl
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and ∫ t

0
σ1(du) ≤ 1,

since σ1 is a probability measure.
Hence, ∫ ∞

0
dl E

[
e

∫ 0
−∞[−(Y

y
l )2+ρY

y
l ]dyg

(∫ M

−∞
Y

y
l dy

)]
≤ CM

νM

∫ ∞
0

g.(47)

The majorizations (46) and (47) imply Lemma 6.1. �

After proving this lemma, let us take T ∈ E and ε > 0; by splitting the right-
hand side of (22) into two parts, we obtain

eρT P
[
e− ∫ ∞

−∞[Ly
T +f (y)]2 dy1XT ≥M

] = I1,ε + I2,ε,

where

I1,ε =
∫ ∞

0
dl E

[
e

∫ M
−∞(−[Yy

l +f (y)]2+ρY
y
l ) dy · · ·

× J
(ρ)

YM
l

(
T −

∫ M

−∞
Y

y
l dy

)
1∫ M

−∞ Y
y
l dy /∈[T −ε,T ]

]

and

I2,ε =
∫ ∞

0
dl E

[
e

∫ M
−∞(−[Yy

l +f (y)]2+ρY
y
l ) dy · · ·

× J
(ρ)

YM
l

(
T −

∫ M

−∞
Y

y
l dy

)
1∫ M

−∞ Y
y
l dy∈[T −ε,T ]

]
.

By Proposition 5.4,

J
(ρ)

YM
l

(
T −

∫ M

−∞
Y

y
l dy

)
1∫ M

−∞ Y
y
l dy /∈[T −ε,T ] −→

T →∞Ke0(Y
M
l )

and

J
(ρ)

YM
l

(
T −

∫ M

−∞
Y

y
l dy

)
1∫ M

−∞ Y
y
l dy /∈[T −ε,T ] ≤ C

(
1 + 1√

ε

)
.

Since ∫ ∞
0

dl E
[
e

∫ M
−∞(−[Yy

l +f (y)]2+ρY
y
l ) dy]

≤ eMρ2/4
∫ ∞

0
dl E

[
e

∫ ∞
0 [−(Y

y
l,0)

2+ρY
y
l,0]dy]

= eMρ2/4
∫ ∞

0
K̄

(ρ)
l dl < ∞,
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one obtains

I1,ε −→
T →∞ K

∫ ∞
0

dl E
[
e

∫ M
−∞(−[Yy

l +f (y)]2+ρY
y
l ) dye0(Y

M
l )

]
(48)

= KA
1,M
+ (f ) < ∞,

by dominated convergence.
On the other hand, by Proposition 5.4,

I2,ε ≤ C

∫ ∞
0

dl E

[
e

∫ M
−∞(−[Yy

l +f (y)]2+ρY
y
l ) dy · · ·

×
(

1 +
(
T −

∫ M

−∞
Y

y
l dy

)−1/2)
1∫ M

−∞ Y
y
l dy∈[T −ε,T ]

]
,

and by applying Lemma 6.1 to the function g : t → (1 + (T − t)−1/2)1t∈[T −ε,T ],
I2,ε ≤ CC′

M

(
ε + √

ε
)
.(49)

Therefore, by combining (48) and (49),

lim sup
T ∈E,T →∞

∣∣eρT P
[
e− ∫ ∞

−∞[Ly
T +f (y)]2 dy1XT ≥M

] − KA
1,M
+ (f )

∣∣ ≤ CC′
M

(
ε + √

ε
)
,

and by taking ε → 0,

eρT P
[
e− ∫ ∞

−∞[Ly
T +f (y)]2 dy1XT ≥M

] −→
T ∈E,T →∞KA

1,M
+ (f ).(50)

Now, let us prove the continuity, with respect to T , of the left-hand side of (50).
If T0 ∈ R+ and T ≤ T0 + 1 tends to T0, then P-almost surely, L

y
T tends to L

y
T0

and L
y
T ≤ L

y
T0+1 for all y ∈ R.

Since y → L
y
T0+1 + f (y) is square-integrable, by dominated convergence,∫ ∞
−∞

[Ly
T + f (y)]2 dy −→

T →T0

∫ ∞
−∞

[Ly
T0

+ f (y)]2 dy.

Another application of dominated convergence gives∣∣P[
e− ∫ ∞

−∞[Ly
T +f (y)]2 dy1XT0≥M

] − P
[
e
− ∫ ∞

−∞[Ly
T0

+f (y)]2 dy
1XT0≥M

]∣∣ −→
T →T0

0.(51)

Moreover,

P[|1XT0≥M − 1XT ≥M |] ≤ P
[∃t ∈ [T0, T ],Xt = M

] −→
T →T0

P[XT0 = M] = 0,

which implies∣∣P[
e− ∫ ∞

−∞[Ly
T +f (y)]2 dy1XT ≥M

] − P
[
e− ∫ ∞

−∞[Ly
T +f (y)]2 dy1XT0≥M

]∣∣ −→
T →T0

0.(52)

The convergences (51) and (52) imply the continuity of

T −→ eρT P
[
e− ∫ ∞

−∞[Ly
T +f (y)]2 dy1XT ≥M

]
.

Since E is dense in R+, we can remove the condition T ∈ E in (50), which com-
pletes the proof of Proposition 1.4.
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7. A conjecture about the behavior of Qβ . In this paper, we have proven
that one can construct a probability measure corresponding to the one-dimensional
Edwards’ model, for polymers of infinite length.

Moreover, there is an explicit expression for this probability Qβ .
Now, the most natural question one can ask is the following: what is the behavior

of the canonical process X under Qβ?
At this moment, we are not able to answer this question, which seems to be very

difficult, because of the complicated form of the density D
β
s of Q

β
|Fs

, with respect
to P|Fs .

However, it seems to be reasonable to expect that XT has a ballistic behavior,
as in the case of Edwards’ model on [0, T ]; one can also expect a central-limit
theorem.

Therefore, we can state the following conjecture.

CONJECTURE. Under Qβ , the process X is transient, and

Qβ(
Xt −→

t→∞+∞) = Qβ(
Xt −→

t→∞−∞) = 1/2.

Moreover, there exist universal positive constants a and σ such that

|Xt |
t

−→
t→∞aβ1/3

a.s., and such that the random variable

|Xt | − aβ1/3t√
t

converges in law to a centered Gaussian variable of variance σ 2 (the factor β1/3

comes from the Brownian scaling).

It is possible that the constants in these convergences are the same as in [18],
despite the fact that we don’t have any argument to support this. It can also be in-
teresting to study some large deviation results for the canonical process under Qβ ,
and to compare them with the results given in [19]. On the other hand, if the proof
of the conjecture above is too hard to obtain, it is perhaps less difficult to prove, by
using Ray–Knight theorems, some properties of the total local times (L

y∞)y∈R of
X, which are expected to be finite because of the transience of X.
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