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THE SKOROHOD OBLIQUE REFLECTION PROBLEM IN
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The deterministic Skorohod problem plays an important role in the con-
struction and analysis of diffusion processes with reflection. In the form stud-
ied here, the multidimensional Skorohod problem was introduced, in time-
independent domains, by H. Tanaka [61] and further investigated by P.-L.
Lions and A.-S. Sznitman [42] in their celebrated article. Subsequent results
of several researchers have resulted in a large literature on the Skorohod prob-
lem in time-independent domains. In this article we conduct a thorough study
of the multidimensional Skorohod problem in time-dependent domains. In
particular, we prove the existence of càdlàg solutions (x,λ) to the Skorohod
problem, with oblique reflection, for (D,�,w) assuming, in particular, that D

is a time-dependent domain (Theorem 1.2). In addition, we prove that if w is
continuous, then x is continuous as well (Theorem 1.3). Subsequently, we
use the established existence results to construct solutions to stochastic dif-
ferential equations with oblique reflection (Theorem 1.9) in time-dependent
domains. In the process of proving these results we establish a number of
estimates for solutions to the Skorohod problem with bounded jumps and, in
addition, several results concerning the convergence of sequences of solutions
to Skorohod problems in the setting of time-dependent domains.

1. Introduction. In time-independent domains the Skorohod problem, in the
form studied in this article, goes back to Tanaka [61], who established existence
and uniqueness of solutions to the Skorohod problem in convex domains with nor-
mal reflection. These results were subsequently generalized to wider classes of
time-independent domains by, in particular, Lions and Sznitman [42] and Saisho
[53]. By imposing an admissibility condition on the domain, Lions and Sznitman
[42] proved existence and uniqueness of solutions to the Skorohod problem in two
different cases. The first of the two cases considered normal reflection on domains
satisfying a uniform exterior sphere condition, meaning that the domain is smooth
except for “convex corners.” Moreover, the second case considered smoothly vary-
ing (possibly oblique) directions of reflection on smooth domains. In addition, for
smoothly varying directions of reflection on domains satisfying a uniform exterior
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sphere condition, existence and uniqueness results were obtained in the special
case when the oblique reflection cone can be transformed into the normal cone by
multiplication by a smooth matrix function. Saisho [53] later showed that in the
first case considered in [42], that is, for normal reflection, the admissibility condi-
tion is not necessary and can be removed. Moreover, concerning oblique reflection,
that is, when the cone of reflection differs from the cone of inward normals, we
note that in the case of an orthant with constant directions of reflection on the
sides, Harrison and Reiman [33] found sufficient conditions for the existence and
uniqueness of solutions to the Skorohod problem as well as for continuity of the
reflection map. In this context we also mention that Bernard and El Kharroubi [6]
provided necessary and sufficient conditions for the existence of solutions to the
Skorohod problem in an orthant with constant directions of reflection on each face.
The most general results so far concerning the existence of solutions to the Sko-
rohod problem with oblique reflection in time-independent domains were derived
by Costantini [15]. Costantini [15] proved existence of solutions to the Skorohod
problem for domains satisfying a uniform exterior sphere condition with a nontan-
gential reflection cone given as a continuous transformation of the normal cone.
Note that this allowed for discontinuous directions of reflection at the corners. The
question of uniqueness of solutions to the Skorohod problem with oblique reflec-
tion is, in general, still an open question and has been settled only in some specific
cases. For example, Dupuis and Ishii [17] obtained uniqueness for a convex poly-
hedron with constant directions of reflection on the faces assuming the existence
of a certain convex set, defined in terms of the normal directions and the direc-
tions of reflection. Dupuis and Ishii [18, 19] later extended this result to piecewise
smooth domains with smoothly varying directions of reflection on each face. In
addition, we here also mention the work of Dupuis and Ramanan [21, 22] based
on convex duality techniques. In particular, in [22] convex duality is used to trans-
form the condition of Dupuis and Ishii [17] into one that is much easier to verify.
Before we proceed, we here note that the outline above is an attempt to briefly
discuss relevant previous developments concerning the Skorohod problem in the
form studied in this article. In particular, the study of reflected diffusion based on
Skorohod problems was first introduced by Skorohod [57] and this approach has,
as briefly described, subsequently been developed in many articles, including [15,
17, 33, 42, 53] and [61]. However, we emphasize that the literature devoted to
Skorohod problems, their extensions and applications is much larger than what is
conveyed above and, in fact, many more researcher have contributed to this rich
field. In particular, applied areas where Skorohod problems occur include heavy
traffic analysis of queueing networks (see, e.g, [2, 20, 24, 40, 47, 48, 51, 52]),
control theory, game theory and mathematical economics (see, e.g., [3, 37, 49, 50,
58]), image processing (see, e.g., [8]) and molecular dynamics (see, e.g., [54–56]).
For further results concerning Skorohod problems, as well as applications of Sko-
rohod problems, we also refer to [1, 4, 5, 14, 23, 25, 29, 31, 35, 38, 44, 46] and
[60].
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An important novelty of this article is that we conduct a thorough study of the
Skorohod problem, and the subsequent applications to stochastic differential equa-
tions reflected at the boundary, in the setting of time-dependent domains. To our
knowledge, the Skorohod problem is indeed less developed in time-dependent do-
mains. In particular, a first treatment of the Skorohod problem in time-dependent
domains was given by Costantini, Gobet and El Karoui [16], who proved exis-
tence and uniqueness of solutions to the Skorohod problem with normal reflection
in smooth time-dependent domains. Moreover, existence and uniqueness for deter-
ministic problems of Skorohod type in time-dependent intervals have recently also
been established by Burdzy, Chen and Sylvester [9], Burdzy, Kang and Ramanan
[12]. The main contribution of this article is that we are able to generalize the re-
sults in [15], concerning càdlàg solutions to the Skorohod problem with oblique
reflection, to time-dependent domains assuming less regularity on the domains
compared to [16]. Note also that in [45] we use the results of this article to con-
struct a numerical method for weak approximation of stochastic differential equa-
tions with oblique reflection in time-dependent domains. Finally, as in [12], we
note, in particular, that reflecting Brownian motions in time-dependent domains
arise in queueing theory (see, e.g., [36, 43]), statistical physics, (see, e.g., [13,
59]), control theory (see, e.g., [27, 28]) and finance (see, e.g., [26]). In particular,
in future articles we hope to be able to further explore the results and techniques
developed in this article in several applications.

To properly formulate the multidimensional Skorohod problem considered in
this article, and our results, we in the following first have to introduce some no-
tation. Given d ≥ 1, we let 〈·, ·〉 denote the standard inner product on Rd and we
let |z| = 〈z, z〉1/2 be the Euclidean norm of z. Whenever z ∈ R

d, r > 0, we let
Br(z) = {y ∈ R

d : |z − y| < r} and Sr(z) = {y ∈ R
d : |z − y| = r}. Moreover, given

D ⊂ R
d+1, E ⊂ R

d , we let D̄, Ē be the closure of D and E, respectively, and we
let d(y,E) denote the Euclidean distance from y ∈ R

d to E. Given d ≥ 1, T > 0
and an open, connected set D′ ⊂ R

d+1, we will refer to

D = D′ ∩ ([0, T ] × R
d),(1.1)

as a time-dependent domain. Given D and t ∈ [0, T ], we define the time sections
of D as Dt = {z : (t, z) ∈ D}, and we assume that

Dt 	= ∅ and that Dt is bounded and connected for every t ∈ [0, T ].(1.2)

We let ∂D and ∂Dt , for t ∈ [0, T ], denote the boundaries of D and Dt , respec-
tively. A convex cone of vectors in R

d is a subset � ⊂ R
d such that αu + βv ∈ �

for all α,β ∈ R+ and all u, v ∈ �. We let � = �t(z) = �(t, z) be a function
defined on R

d+1 such that �t(z) is a closed convex cone of vectors in R
d for

every z ∈ ∂Dt , t ∈ [0, T ]. To give an example of a closed convex cone, we con-
sider the set C = C� = {λγ :λ > 0, γ ∈ �}, where � is a closed, connected
subset of S1(0) satisfying γ1 · γ2 > −1 for all γ1, γ2 ∈ �. Given C, we define
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C∗ = {αu + βv :α,β ∈ R+, u, v ∈ C}. Then C∗ is an example of a closed convex
cone and we note that C∗ = C∗

�∗ , where �∗ can be viewed as the “convex hull”
of � on S1(0). Given � = �t(z), we let �1

t (z) := �t(z) ∩ S1(0). Given T > 0, we
let D([0, T ],R

d) denote the set of càdlàg functions w = wt : [0, T ] → R
d , that is,

functions which are right continuous with left limits. For w ∈ D([0, T ],R
d) we

introduce the norm

‖w‖t1,t2 = sup
t1≤r≤s≤t2

|ws − wr |(1.3)

for 0 ≤ t1 ≤ t2 ≤ T and, given δ > 0, we let

Dδ([0, T ],R
d) =

{
w ∈ D([0, T ],R

d) : sup
t

|wt − wt−| < δ
}

(1.4)

denote the set of càdlàg functions with jumps bounded by δ. We denote the set of
functions λ = λt : [0, T ] → R

d with bounded variation by B V ([0, T ],R
d) and we

let |λ| denote the total variation of λ ∈ B V([0, T ],R
d).

In this article we consider the Skorohod problem in the following form.

DEFINITION 1.1. Let d ≥ 1 and T > 0. Let D ⊂ R
d+1 be a time-dependent

domain satisfying (1.2) and let � = �t(z) be, for every z ∈ ∂Dt , t ∈ [0, T ], a closed
convex cone of vectors in R

d . Given w ∈ D([0, T ],R
d), with w0 ∈ D0, we say that

the pair (x, λ) is a solution to the Skorohod problem for (D,�,w), on [0, T ], if
(x, λ) ∈ D([0, T ],R

d)× B V ([0, T ],R
d) and if (w,x,λ) satisfies, for all t ∈ [0, T ],

xt = wt + λt , xt ∈ Dt,(1.5)

λt =
∫ t+

0
γs d|λ|s, γs ∈ �1

s (xs) d|λ|-a.e on
⋃

s∈[0,t]
∂Ds(1.6)

and

d|λ|({t ∈ [0, T ] : (t, xt ) ∈ D}) = 0.(1.7)

The main results of this article will be proved for time-dependent domains
D ⊂ R

d+1 satisfying (1.2). However, several additional restrictions will be im-
posed on D, on the cones of reflection � as well as on the interaction between D

and �. In the following we will outline these assumptions in order to be able to
properly state our existence result concerning the Skorohod problem with oblique
reflection. However, while these assumptions are introduced quite briefly here, the
intuition behind the assumptions, as well as the implications of the assumptions, is
explained in more detail in Section 3.2 below.
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Geometry of the time-slice Dt . We let Nt(z) denote the cone of inward normal
vectors at z ∈ ∂Dt , t ∈ [0, T ]; see (3.11) below for a definition. In particular, we
assume that Nt(z) 	= ∅ whenever z ∈ ∂Dt , t ∈ [0, T ]. Note that we allow for the
possibility of several inward normal vectors at the same boundary point. Given
Nt(z), we let N1

t (z) := Nt(z) ∩ S1(0). Then the spatial domain Dt is said to verify
the uniform exterior sphere condition if there exists a radius r0 > 0 such that

Br0(z − r0n) ⊆ ([0, T ] × R
d \ Dt) ∩ (Rd+1 \ D),(1.8)

whenever z ∈ ∂Dt , n ∈ N1
t (z). Note that Br0(z − r0n) is the open Euclidean ball

with center z− r0n and radius r0. We say that a time-dependent domain D satisfies
a uniform exterior sphere condition in time if the uniform exterior sphere condition
in (1.8) holds, with the same radius r0, for all spatial domains Dt , t ∈ [0, T ].

Temporal variation of the domain. Following [16], we let

l(r) = sup
s,t∈[0,T ]
|s−t |≤r

sup
z∈Ds

d(z,Dt)(1.9)

be the modulus of continuity of the variation of D in time. In particular, in several
of our estimates related to the Skorohod problem we will assume that

lim
r→0+ l(r) = 0.(1.10)

Cones of reflection. Following [15], we assume that

γ1 · γ2 > −1 holds whenever γ1, γ2 ∈ �1
t (z) and

(1.11)
for all z ∈ ∂Dt, t ∈ [0, T ].

The assumption in (1.11) eliminates the possibility of � containing vectors in op-
posite directions. We also assume that the set

G� = {(t, z, γ ) :γ ∈ �t(z), z ∈ ∂Dt, t ∈ [0, T ]} is closed.(1.12)

The interpretation of the condition in (1.12) is discussed in Section 3.2. In addition,
we need the following assumption concerning the variation of the cones �t(z). Let

h(E,F ) = max(sup{d(z,E) : z ∈ F }, sup{d(z,F ) : z ∈ E})(1.13)

denote the Hausdorff distance between the sets E,F ⊂ R
d . Moreover, let {(sn, zn)}

be a sequence of points in R
d+1, sn ∈ [0, T ], zn ∈ ∂Dsn , such that limn→∞ sn =

s ∈ [0, T ], limn→∞ zn = z ∈ ∂Ds . We assume, for any such sequence of points
{(sn, zn)}, that

lim
n→∞h(�sn(zn),�s(z)) = 0.(1.14)
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Interaction between the geometry and the cones of reflection. For z ∈ ∂Ds ,
s ∈ [0, T ], and ρ,η > 0 we define

as,z(ρ, η) = max
u∈S1(0)

min
s≤t≤s+η

min
y∈∂Dt∩Bρ(z)

min
γ∈�1

t (y)
〈γ,u〉(1.15)

and

cs,z(ρ, η) = max
s≤t≤s+η

max
y∈∂Dt∩Bρ(z)

max
ẑ∈Dt∩Bρ(z),ẑ 	=y

max
γ∈�1

t (y)

(〈γ, y − ẑ〉
|y − ẑ| ∨ 0

)
.(1.16)

For technical reasons we also introduce the quantity

es,z(ρ, η) = cs,z(ρ, η)

(as,z(ρ, η))2 ∨ as,z(ρ, η)/2
.(1.17)

In the proof of certain a priori estimates for the Skorohod problem, established in
the bulk of the article, we will consider time-dependent domains satisfying (1.2)
and the uniform exterior sphere condition in time, with radius r0. In addition, we
will assume that there exist 0 < ρ0 < r0 and η0 > 0, such that

inf
s∈[0,T ] inf

z∈∂Ds

as,z(ρ0, η0) = a > 0,(1.18)

sup
s∈[0,T ]

sup
z∈∂Ds

es,z(ρ0, η0) = e < 1.(1.19)

Interpretations of (1.15), (1.16), (1.18) and (1.19) are given in Section 3.2.

Existence of good projections. Let 0 < δ0 < r0, h0 > 1 and let � = �t(z) =
�(t, z) be given for all z ∈ ∂Dt , t ∈ [0, T ]. We say that ([0, T ] × R

d) \ D has the
(δ0, h0)-property of good projections along � if there exists, for any y ∈ R

d \ Dt ,
t ∈ [0, T ], such that

d(y,Dt) < δ0,(1.20)

at least one projection of y onto ∂Dt along �t , denoted π
�t

∂Dt
(y), which satisfies

|y − π
�t

∂Dt
(y)| ≤ h0d(y,Dt).(1.21)

Concerning the existence and continuity of solutions to the Skorohod problem,
as defined in Definition 1.1, we prove the following two theorems.

THEOREM 1.2. Let T > 0 and let D ⊂ R
d+1 be a time-dependent domain

satisfying (1.2), (1.10) and a uniform exterior sphere condition in time with ra-
dius r0 in the sense of (1.8). Let � = �t(z) be a closed convex cone of vectors
in R

d for every z ∈ ∂Dt , t ∈ [0, T ], and assume that � satisfies (1.11), (1.12)
and (1.14). Assume that (1.18) and (1.19) hold for some 0 < ρ0 < r0, η0 > 0,
a and e. Finally, assume that ([0, T ] × R

d) \ D has the (δ0, h0)-property of good
projections along �, for some 0 < δ0 < ρ0, h0 > 1, as defined in (1.20) and (1.21).
Then, given w ∈ D(δ0/4∧ρ0/(4h0))([0, T ],R

d), with w0 ∈ D0, there exists a solution
(x, λ) to the Skorohod problem for (D,�,w), in the sense of Definition 1.1, with
x ∈ Dρ0([0, T ],R).
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THEOREM 1.3. Assume that the assumptions stated in Theorem 1.2 are sat-
isfied and let ρ0 be as in the statement of Theorem 1.2. Let w : [0, T ] → R

d be
a continuous function and let (x, λ) be any solution to the Skorohod problem for
(D,�,w) in the sense of Definition 1.1. If x ∈ Dρ0([0, T ],R

d), then x is continu-
ous.

In the following remarks we have gathered comments concerning the impor-
tance of the assumptions imposed in Theorems 1.2 and 1.3, as well as comments
concerning situations when these assumptions are fulfilled.

REMARK 1.4. Our proofs of Theorems 1.2 and 1.3 rely, as outlined below, on
certain a priori estimates proved in Section 4. These estimates are proved assuming
that D ⊂ R

d+1 is a time-dependent domain satisfying (1.2), (1.10) and a uniform
exterior sphere condition in time with radius r0 in the sense of (1.8). Furthermore,
to derive these estimates, we also assume that (1.18) and (1.19) hold for some
0 < ρ0 < r0, η0 > 0, a and e and that ([0, T ] × R

d) \ D has the (δ0, h0)-property
of good projections along �, for some 0 < δ0 < ρ0, h0 > 1, as defined in (1.20)
and (1.21). In particular, we do not have to assume that � = �t(z) satisfies (1.11),
(1.12) and (1.14) in order to derive the results in Section 4.

REMARK 1.5. In Section 5 we proceed toward the final proof of Theorem 1.2.
In particular, we use the a priori estimates of Section 4 to derive general results
concerning the convergence of solutions to Skorohod problems in time-dependent
domains. We note that our assumptions on D do not exclude the possibility of holes
in D and Dt , for some t ∈ [0, T ]. Nevertheless, the assumptions on D ensure that
the number of holes in Dt stays the same for all t ∈ [0, T ] and that these holes
cannot shrink too much as time changes. This observation, Lemma 3.1 below and
its proof allow us to conclude the validity of the conclusion in Remark 3.2, which,
in turn, is used to complete the proofs in Section 5. Simple examples show that the
conclusion in Remark 3.2 would not hold if we, for instance, allowed the number
of holes in Dt to change as a function of t and if we, in particular, allowed the
holes to vanish.

REMARK 1.6. The assumption that � = �t(z) satisfies (1.11), (1.12) and
(1.14) is used to complete the proofs in Section 5. In particular, focusing on The-
orem 5.3, which is the convergence result actually used in the proof of Theo-
rem 1.2, we note that we need to assume (1.14) in order to be able derive (5.69).
We then use (1.12) to complete the argument in the proof of Theorem 5.3. Note
also the difference between (1.12) and (1.14). Assumption (1.12) simply states that
if (sn, zn, γn) is a sequence such that γn ∈ �sn(zn), zn ∈ ∂Dsn, sn ∈ [0, T ], and if
(sn, zn, γn) → (t, z, γ ) in R × R

d × R
d , for some (s, z, γ ) ∈ R × R

d × R
d , then

γ ∈ �s(z), z ∈ ∂Ds, s ∈ [0, T ]. Assumption (1.14), on the other hand, is a state-
ment concerning the convergence, in the Hausdorff distance sense, of the cones
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{�sn(zn)}. Finally, to comment on assumption (1.11), which was also imposed in
[15], we note that (1.11) is only used in the proofs of Theorems 5.1 and 5.3 and,
in particular, in the verification of (5.51) and (5.52). Assumption (1.11) eliminates
the possibility of � containing vectors in opposite directions and we have not been
able to complete our argument without this assumption. However, there are articles
dealing with Skorohod type lemmas and reflected Brownian motion; see [14], in
particular, where this assumption is not required. As noted in [14], the inclusion of
vectors in opposite directions can be viewed as a critical case and [14] considers
a related problem in a particular setting in the plane. In our general case we leave
this question as a subject for future research.

REMARK 1.7. For examples of cases when the geometric assumptions im-
posed in Theorems 1.2 and 1.3 are fulfilled, we refer to Appendix. However, we
here briefly discuss Theorems 1.2 and 1.3 in the context of convex domains. In
particular, let T > 0 and let D ⊂ R

d+1 be a time-dependent domain satisfying
(1.2) and (1.10). Assume, in addition, that Dt is convex whenever t ∈ [0, T ]. Let
� = �t(z) be as in the statement of Theorem 1.2. Assume that

lim
η→0

lim
ρ→0

inf
s∈[0,T ] inf

z∈∂Ds

as,z(ρ, η) = a > 0,(1.22)

lim
η→0

lim
ρ→0

sup
s∈[0,T ]

sup
z∈∂Ds

es,z(ρ, η) = e < 1.(1.23)

If Dt is convex whenever t ∈ [0, T ], then there exists, for every 0 < δ0 given,
h0 > 1 such that ([0, T ] × R

d) \ D has the (δ0, h0)-property of good projections
along � as defined in (1.20) and (1.21). In this case the conclusion of Theorem 1.2
is, as can be seen from the proofs below, that given w ∈ D([0, T ],R

d), with w0 ∈
D0, there exists a solution (x, λ) to the Skorohod problem for (D,�,w), in the
sense of Definition 1.1, with x ∈ D([0, T ],R). Moreover, if w is a continuous
function, then x is continuous. In particular, if the time-slices {Dt } are convex,
then the restrictions, in Theorems 1.2 and 1.3, on the jump-sizes in terms of δ0,
ρ0 can be removed. Moreover, this is consistent with the results in [15] valid in
time-independent domains; see Theorem 4.1 and Proposition 2.3 in [15].

We next formulate a subsequent application of Theorems 1.2 and 1.3 to the
problem of constructing weak solutions to stochastic differential equations in
D with reflection along �t on ∂Dt for all t ∈ [0, T ]. Given T > 0, we let
C([0, T ],R

d) denote the class of continuous functions from [0, T ] to R
d . In the

following, we let m be a positive integer and we let b : R+ × R
d → R

d and
σ : R+ × R

d → R
d×m be given functions which are bounded and continuous.

DEFINITION 1.8. Let d ≥ 1 and T > 0. Let D ⊂ R
d+1 be a time-dependent

domain satisfying (1.2), let � = �t(z) be a closed convex cone of vectors in R
d

for every z ∈ ∂Dt , t ∈ [0, T ], and let ẑ ∈ D0. A weak solution to the stochastic
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differential equation in D with coefficients b and σ , reflection along �t on ∂Dt , t ∈
[0, T ], and with initial condition ẑ at t = 0, is a stochastic process (X0,ẑ,�0,ẑ) with
paths in C([0, T ],R

d) × B V([0, T ],R
d), which is defined on a filtered probability

space (�, F ,{Ft },P ) and satisfies, P -almost surely, whenever t ∈ [0, T ],
X

0,ẑ
t = ẑ +

∫ t

0
b(s,X0,ẑ

s ) ds +
∫ t

0
σ(s,X0,ẑ

s ) dWs + �
0,ẑ
t ,(1.24)

�
0,ẑ
t =

∫ t

0
γs d|�0,ẑ|s, γs ∈ �s(X

0,ẑ
s ) ∩ S1(0), d|�0,ẑ|-a.e.,(1.25)

X
0,ẑ
t ∈ Dt, d|�0,ẑ|({t ∈ [0, T ] :X0,ẑ

t ∈ Dt }) = 0.(1.26)

Here W is a m-dimensional Wiener process on (�, F ,{Ft },P ) and (X0,ẑ,�0,ẑ) is
{Ft }-adapted.

Concerning weak solutions to stochastic differential equations in D with
oblique reflection along ∂D, we prove the following theorem.

THEOREM 1.9. Let T > 0, D ⊂ R
d+1 and � = �t(z) be as in the statement of

Theorem 1.2. Let b : R+ × R
d → R

d and σ : R+ × R
d → R

d×m be given, bounded
and continuous functions on D and let ẑ ∈ D0. Then there exists a weak solution,
in the sense of Definition 1.8, to the stochastic differential equation in D with coef-
ficients b and σ , reflection along �t on ∂Dt , t ∈ [0, T ], and with initial condition ẑ

at t = 0.

We note that Theorem 1.9 generalizes the corresponding results in [15, 16] and
[53]. Furthermore, we note that there has recently been considerable activity in
the study of reflected diffusions in time-dependent intervals. In particular, in this
context we mention [9–11] and [12] and we refer the interested reader to these
articles for more information as well as for references to other related articles.

The rest of the article is organized as follows. In Section 2 we first briefly out-
line two general and important themes present in the proofs of the results in this
article. The first theme concerns a priori estimates and compactness for solutions
to Skorohod problems and the second theme concerns convergence results for se-
quences of solutions to Skorohod problems. Second, we discuss the proofs of The-
orems 1.2, 1.3 and 1.9 and we try to point out the new difficulties occurring due
to the time-dependent character of the domain. This section is included for further
reference and, in particular, to convey some of the ideas to the reader. In Section 3
we introduce additional notation, outline the restrictions imposed on D and � and
collect a few notions and facts from the Skorohod topology. There is also an ap-
pendix attached to Section 3, Appendix. In Appendix we state sufficient condi-
tions for the (δ0, h0)-property of good projections along � and we give examples
of time-dependent domains satisfying the assumptions stated in Theorems 1.2, 1.3
and 1.9. Section 4 is devoted to estimates for solutions to the Skorohod problem,
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with oblique reflection, which have bounded jumps and also to the correspond-
ing estimates for certain approximations of the Skorohod problem. In Section 5
we first prove Theorem 5.1, containing a general result concerning convergence
of solutions to Skorohod problems in time-dependent domains. Furthermore, we
establish the somewhat similar result for certain approximations of the Skorohod
problem. The latter estimates are then used in the proof of Theorem 1.2. The final
proofs of Theorems 1.2, 1.3 and 1.9 are given in Section 6. The article ends with
the Appendix, discussed above.

2. A brief outline of proofs and our contribution. Concerning proofs, we
note that the arguments in this article follow two general and important themes
which we here, to start with, briefly outline.

A priori estimates and compactness. To explain the a priori estimates, we let
T > 0, D ⊂ R

d+1 and � = �t(z) be as in the statement of Theorem 1.2, and we let
w ∈ D([0, T ],R

d) with w0 ∈ D0. Assume that (x, λ) is a solution to the Skorohod
problem for (D,�,w) such that x ∈ Dρ0([0, T ],R

d). Under these assumptions,
we prove (see Theorem 4.2 below) that there exist positive constants L1(w,T ),
L2(w,T ), L3(w,T ) and L4(w,T ) such that

‖x‖t1,t2 ≤ L1(w,T )‖w‖t1,t2 + L2(w,T )l(t2 − t1),
(2.1)

|λ|t2 − |λ|t1 ≤ L3(w,T )‖w‖t1,t2 + L4(w,T )l(t2 − t1),

whenever 0 ≤ t1 ≤ t2 ≤ T . Furthermore, we prove that if W ⊂ D([0, T ],R
d) is

relatively compact in the Skorohod topology and w0 ∈ D0, whenever w ∈ W , then
there exist positive constants LT

1 , LT
2 , LT

3 and LT
4 , such that

sup
w∈W

Li(w,T ) ≤ LT
i < ∞ for i = 1,2,3,4.(2.2)

Convergence results for sequences of solutions to Skorohod problems. The
a priori estimates and compactness result in (2.1) and (2.2) are useful for prov-
ing convergence of solutions to Skorohod problems. To explain this further, let
{Dn}∞n=1 be a sequence of time-dependent domains Dn ⊂ R

d+1 satisfying (1.2)
and let {�n}∞n=1 = {�n

t (z)}∞n=1 be a sequence of closed convex cones of vectors in
R

d . Assume that {Dn}∞n=1 and {�n}∞n=1 satisfy the conditions stated in Theorem 1.2
with constants that are “uniform with respect to n” in a sense made precise in Sec-
tion 5. Let {wn}, with wn

0 ∈ Dn
0 , be a sequence in D([0, T ],R

d) which is relatively
compact in the Skorohod topology and which converges to w ∈ D([0, T ],R

d)

with w0 ∈ D0. Furthermore, let D ⊂ R
d+1 be a time-dependent domain satisfy-

ing (1.2), let � = �t(z) be, for every z ∈ ∂Dt , t ∈ [0, T ], a closed convex cone of
vectors in R

d satisfying (1.11) and (1.12). Assume that the sequences {Dn}∞n=1
and {�n}∞n=1 converge to D and �, respectively, in a sense specified in Theo-
rem 5.1. If there exists, for all n ≥ 1, a solution (xn, λn) to the Skorohod problem
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for (Dn,�n,wn) such that xn
t ∈ Dn

t , for all t ∈ [0, T ], and xn ∈ Dρ0([0, T ],R
d),

then it follows, using (2.1) and (2.2), that {(wn, xn, λn, |λn|)} is relatively com-
pact in D([0, T ],R

d) × D([0, T ],R
d) × D([0, T ],R

d) × D([0, T ],R+). Hence,
we are able to conclude that {(xn, λn)} converges to some (x, λ) ∈ D([0, T ],R

d)×
D([0, T ],R

d) with x ∈ D and we can, in addition, prove that (x, λ) is indeed a so-
lution to the Skorohod problem for (D,�,w). This result, found in Theorem 5.1
below, constitutes a general convergence result for sequences of solutions to Sko-
rohod problems based on the a priori estimates and compactness result in (2.1)
and (2.2).

Although Theorem 1.2 does not follow directly from the results outlined above,
we claim that (2.1), (2.2) and Theorem 5.1, stated below, are of independent in-
terest and may be useful in other applications involving the Skorohod problem.
To start an outline of the actual proofs of Theorems 1.2, 1.3 and 1.9, we note
that to prove Theorem 1.2 we use arguments similar to those outlined above,
but in this case we have to construct, given (D,�,w), an approximating se-
quence {(Dn,�n,wn)} such that a solution (xn, λn) to the Skorohod problem for
(Dn,�n,wn) can be found explicitly.

Proof of Theorems 1.2, 1.3 and 1.9. To discuss the construction of {(Dn,�n,

wn)} and {(xn, λn)} used in the proof of Theorem 1.2, we consider w ∈
D([0, T ],R

d), with w0 ∈ D0 and with jumps bounded by some constant, and we
now let {τk}Nk=0 define a partition � of the interval [0, T ], that is, 0 = τ0 < τ1 <

· · · < τN−1 < τN = T . Given �, we let

�∗ := max
k∈{0,...,N−1} τk+1 − τk,(2.3)

and, given � and w, we define

w�
t = wτk−1 whenever t ∈ [τk−1, τk), k ∈ {1, . . . ,N},(2.4)

and w�
T = wT . Then w� ∈ D([0, T ],R

d) is a step function approximation of w.
Furthermore, assume that � and w� are such that

‖w�‖τk−1,τk
+ l(�∗) < δ0,(2.5)

whenever k ∈ {1, . . . ,N}. Recall that δ0 is the constant appearing in the notion of
the (δ0, h0)-property of good projections. We next define

D�
t = Dτk−1,

(2.6)
��

t = �τk−1 whenever t ∈ [τk−1, τk), k ∈ {1, . . . ,N},
and D�

T = DT ,��
T = �T . Given w�, D� and �� as above, we define a pair of

processes (x�,λ�) as follows. We let

x�
t = w0, λ�

t = 0 for t ∈ [0, τ1).(2.7)
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If x�
τk−1

∈ D�
τk−1

for some k ∈ {1, . . . ,N}, then, by the triangle inequality and (2.5),

d(x�
τk−1

+ w�
τk

− w�
τk−1

,D�
τk

) ≤ ‖wn‖τk−1,τk
+ l(�∗) < δ0.(2.8)

Hence, by the (δ0, h0)-property of good projections, it follows that if x�
τk−1

+w�
τk

−
w�

τk−1
/∈ D�

τk
, then there exists a point

π
��

τk

∂D�
τk

(x�
τk−1

+ w�
τk

− w�
τk−1

) ∈ ∂D�
τk

,(2.9)

which is the projection of x�
τk−1

+ w�
τk

− w�
τk−1

onto ∂D�
τk

along ��
τk

. Furthermore,

if x�
τk−1

+ w�
τk

− w�
τk−1

∈ D�
τk

, then we let

π
��

τk

∂D�
τk

(x�
τk−1

+ w�
τk

− w�
τk−1

) = x�
τk−1

+ w�
τk

− w�
τk−1

.(2.10)

Based on this argument, we define, whenever t ∈ [τk, τk+1), k ∈ {1, . . . ,N − 1},

x�
t = π

��
τk

∂D�
τk

(x�
τk−1

+ w�
τk

− w�
τk−1

),

(2.11)
λ�

t = λ�
τk−1

+ (
x�
t − (x�

τk−1
+ w�

τk
− w�

τk−1
)
)
.

Finally, we define x�
T and λ�

T as in (2.11) by putting k = N in (2.11). By construc-
tion, the pair (x�,λ�) is a solution to the Skorohod problem for (D�,��,w�).
Moreover, using the assumption on the size of the jumps of w stated in Theo-
rem 1.2, we will be able to make the construction so that we can conclude that
x� ∈ Dρ0([0, T ],R

d). As the next step we then apply Theorem 4.6 stated below,
showing the existence of positive constants L̂1(w,T ), L̂2(w,T ), L̂3(w,T ) and
L̂4(w,T ) such that

‖x�‖t1,t2 ≤ L̂1(w,T )‖w‖t1,t2 + L̂2(w,T )
(
l(t2 − t1) + l(�∗)

)
,

(2.12)
|λ�|t2 − |λ�|t1 ≤ L̂3(w,T )‖w‖t1,t2 + L̂4(w,T )

(
l(t2 − t1) + l(�∗)

)
,

whenever 0 ≤ t1 ≤ t2 ≤ T . Provided with the estimates in (2.12), we are then able
to prove Theorem 1.2 by means of compactness arguments similar to those out-
lined above. Indeed, we construct an appropriate sequence of partitions {�n}∞n=1,
based on w, such that x�n ∈ Dρ0([0, T ],R

d) for n larger than some n0 and such
that (x�n, λ�n) is a solution to the Skorohod problem for (D�n,��n,w�n) for
n ≥ n0. Then, using (2.12), we conclude that {(w�n, x�n, λ�n, |λ�n |)} is a rel-
atively compact sequence in the Skorohod topology and that {(x�n, λ�n)} con-
verges in the sense of the Skorohod topology to a pair of functions (x, λ). Note
that an important difference here, compared to the situation outlined above, is that
D� and �� as defined in (2.6) are discontinuous in time. To be able to handle this
situation, we employ some additional arguments, similar to the ones in the proof of
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Theorem 5.1, in order to prove that (x, λ) is a solution to the Skorohod problem for
(D,�,w) on [0, T ]. This completes the proof of Theorem 1.2. Concerning The-
orem 1.3, we see that this theorem follows immediately from the continuity of w

and (1.10) using the estimates in (2.1). To prove Theorem 1.9, we argue somewhat
similarly as in the proof of Theorem 1.2 and we refer to the bulk of the article for
details.

To conclude, we note that the proof of Theorem 1.2 is more involved compared
to the proof of the corresponding result for time-independent domains established
in [15] and that new difficulties occur, naturally, due to the fact that we are con-
sidering time-dependent domains. In the time-independent case a solution (x, λ)

to the Skorohod problem for (D,�,w) is constructed as the limit of a sequence
{(x�n, λ�n)}, where (x�n, λ�n) is a solution to a Skorohod problem based on w�n .
In this case (x�n, λ�n) is a solution to a Skorohod problem for (D,�,w�n), while
in our case (x�n, λ�n) is a solution to a Skorohod problem for (D�n,��n,w�n).
Hence, in the time-dependent case we, at each step, also have to discretize and
approximate D and � due to the time-dependent character of the domain. In par-
ticular, the fact that D�n and ��n , as defined in (2.6), are discontinuous in time
induces several new difficulties which we have to overcome in order to complete
the proof of Theorem 1.2.

3. Preliminaries. In this section we introduce notation, collect a number of
preliminary results concerning the geometry of time-dependent domains and recall
a few notions and facts from the Skorohod topology.

3.1. Notation. Points in Euclidean (d +1)-space R
d+1 are denoted by (t, z) =

(t, z1, . . . , zd). Given a differentiable function f = f (t, z) defined on R × R
d , we

let ∂zi
f (t, z) denote the partial derivative of f at (t, z) with respect to zi and we

let ∇zf denote the gradient (∂z1f, . . . , ∂zd
f ). Higher order derivatives of f with

respect to the space variables will often be denoted by ∂zizj
f (t, z), ∂zizj zk

f (t, z)

and so on. Furthermore, given a multi-index β = (β1, . . . , βd), βi ∈ Z+, we de-
fine |β| = β1 + · · · + βd and we let ∂

β
z f (t, z) denote the associated partial deriv-

ative of f (t, z) with respect to the space variables. Time derivatives of f will
be denoted by ∂

j
t f (t, z) where j ∈ Z+. As in the Introduction, we let 〈·, ·〉 de-

note the standard inner product on R
d and we let |z| = 〈z, z〉1/2 be the Euclidean

norm of z. Whenever z ∈ R
d, r > 0, we let Br(z) = {y ∈ R

d : |z − y| < r} and
Sr(z) = {y ∈ R

d : |z − y| = r}. In addition, dz denotes the Lebesgue d-measure
on R

d . Moreover, given E ⊂ R
d , we let Ē and ∂E be the closure and boundary

of E, respectively, and we let d(z,E) denote the Euclidean distance from z ∈ R
d

to E. Given (t, z), (s, y) ∈ R
d+1, we let dp((t, z), (s, y)) = max{|z−y|, |t − s|1/2}

denote the parabolic distance between (t, z) and (s, y) and for F ⊂ R
d+1, we

let dp((t, z),F ) denote the parabolic distance from (t, z) ∈ R
d+1 to F . More-

over, for (t, z) ∈ R
d+1 and r > 0, we introduce the parabolic cylinder Cr(t, z) =



SKOROHOD PROBLEM IN TIME-DEPENDENT DOMAINS 2183

{(s, y) ∈ R
d+1 : |y − z| < r, |t − s| < r2}. Given two real numbers a and b, we let

a ∨ b = max{a, b} and a ∧ b = min{a, b}. Finally, given a Borel set E ⊂ R
d+1, we

let χE denote the characteristic function associated to E.
Given a time-dependent domain D′, a function f defined on D′ and a constant

α ∈ (0,1], we adopt the definition on page 46 in [41] and introduce

|f |1+α,D′ = ∑
|β|≤1

sup
D′

|∂β
z f | + sup

(t,z)∈D′
sup

(s,z)∈D′\{(t,z)}
|f (t, z) − f (s, z)|

|t − s|(α+1)/2

(3.1)

+ ∑
|β|=1

sup
(t,z)∈D′

sup
(s,y)∈D′\{(t,z)}

|∂β
z f (t, z) − ∂

β
z f (s, y)|

[dp((t, z), (s, y))]α .

The third term on the right-hand side of |f |1+α,D′ is superfluous for our purposes,
but we include it here for agreement with the theory of partial differential equations
in time-dependent domains (see [45]). Using the norm |f |1+α,D′ , we let H1+α(D′)
denote the Banach space of functions f on D′ with finite |f |1+α,D′ -norm.

3.2. Geometry of time-dependent domains. We here outline the geometric re-
strictions which we impose on the time-dependent domains and cones of reflec-
tions. Concerning D, we first prove the following auxiliary lemma.

LEMMA 3.1. Let T > 0 and let D ⊂ R
d+1 be a time-dependent domain sat-

isfying (1.2) and (1.10) and assume that D satisfies a uniform exterior sphere
condition in time with radius r0 in the sense of (1.8). Let

l̂(r) := sup
s,t∈[0,T ]
|s−t |≤r

sup
z∈∂Ds

d(z, ∂Dt).(3.2)

Then, l(r) = l̂(r) for all r > 0 such that l(r) < r0.

PROOF. In the following we let ε > 0 be arbitrary and we consider r small
enough to ensure that l(r) < r0. With ε and r fixed, we let s, t ∈ [0, T ], |s − t | ≤ r ,
be such that

l̃1 ≤ l̂(r) ≤ l̃1 + ε where l̃1 = sup
z∈∂Ds

d(z, ∂Dt).(3.3)

Naturally,

l̃1 = max
{

sup
z∈∂Ds∩(Rd\Dt)

d(z, ∂Dt), sup
z∈∂Ds∩Dt

d(z, ∂Dt)
}
.(3.4)

Assume z ∈ ∂Ds ∩ (Rd \ Dt). Then we immediately obtain

sup
z∈∂Ds∩(Rd\Dt )

d(z, ∂Dt) = sup
z∈∂Ds∩(Rd\Dt )

d(z,Dt) ≤ sup
z∈Ds

d(z,Dt) ≤ l(r).(3.5)
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Assume, on the contrary, that z ∈ ∂Ds ∩ Dt . In this case, as l(r) < r0 and Ds sat-
isfies the uniform exterior sphere condition with radius r0, we can conclude that
there exists at least one point yz ∈ ∂Dt ∩ {z + nλ ∈ R

d : nλ ∈ Ns(z) ∩ Sλ(0),0 <

λ < r0} and obviously d(z, ∂Dt) ≤ |z − yz|. Furthermore, again applying the uni-
form exterior sphere condition, we see that z minimizes the distance from yz ∈ ∂Dt

to Ds . Hence,

sup
z∈∂Ds∩Dt

d(z, ∂Dt) ≤ sup
z∈∂Ds∩Dt

|z − yz| ≤ sup
z∈∂Ds∩Dt

d(yz,Ds)

(3.6)
≤ sup

yz∈∂Dt

d(yz,Ds) ≤ sup
y∈Dt

d(y,Ds) ≤ l(r).

Combining (3.4)–(3.6), we conclude that l̃1 ≤ l(r). Using (3.3), it is clear that
l̂(r) ≤ l(r)+ε and then, as ε is arbitrary, l̂(r) ≤ l(r). We next consider the opposite
inequality. With ε and r fixed, we let s, t ∈ [0, T ], |s − t | ≤ r , be such that

l̃2 ≤ l(r) ≤ l̃2 + ε where l̃2 = sup
z∈Ds

d(z,Dt).(3.7)

In this case we have

l̃2 = max
{

sup
z∈Ds∩(Rd\Dt)

d(z,Dt),0
}

= max
{

sup
z∈Ds∩(Rd\Dt)

d(z, ∂Dt),0
}

(3.8)

and in the following we can assume, without loss of generality, that l̃2 > 0. Then,
by the uniform exterior sphere condition, and the fact that l(r) < r0, we see that
every point z ∈ Ds ∩ (Rd \ Dt) can be written as z = yz + nλ for some yz ∈ ∂Dt

and some nλ ∈ Nt(yz) ∩ Sλ(0), 0 < λ < r0. Furthermore, there exists a point z̃ =
yz + nλ̃ ∈ ∂Ds , with 0 < λ < λ̃ < r0. Once again applying the uniform exterior
sphere condition, we see that yz minimizes the distance from z̃ to ∂Dt and we
obtain

sup
z∈Ds∩(Rd\Dt)

d(z, ∂Dt) ≤ sup
z∈Ds∩(Rd\Dt )

|z − yz|
(3.9)

≤ sup
z∈Ds∩(Rd\Dt )

|z̃ − yz| ≤ sup
z̃∈∂Ds

d(z̃, ∂Dt) ≤ l̂(r).

Combining (3.8)–(3.9), we conclude that l̃2 ≤ l̂(r). Using (3.7), it is clear that
l(r) ≤ l̂(r) + ε and then, as ε is arbitrary, l(r) ≤ l̂(r). This completes the proof of
the lemma. �

REMARK 3.2. Note also that the prerequisites of Lemma 3.1 ensure that the
number of holes in Dt stays the same for all t ∈ [0, T ] and, in particular, that these
holes cannot shrink too much as time changes. Furthermore, Lemma 3.1 and its
proof allow us to conclude that

h(Ds,Dt) = h(Ds,Dt) = h(∂Ds, ∂Dt)(3.10)

whenever s, t ∈ [0, T ], |s − t | ≤ r , l(r) < r0.



SKOROHOD PROBLEM IN TIME-DEPENDENT DOMAINS 2185

Concerning �, we let � = �t(z) = �(t, z) be a function defined on R
d+1 such

that �t(z) is a closed convex cone of vectors in R
d for every z ∈ ∂Dt , t ∈ [0, T ] and

we assume that � satisfies (1.11) and (1.12). To understand the condition in (1.12),
that is, the assumption that the graph G� is closed, we observe that one motivation
for using a cone of reflection, rather than a single-valued direction of reflection,
is to be able to deal with discontinuities in the direction of reflection. Such dis-
continuities arise, for instance, in the normal direction for a convex polygon. At a
point of discontinuity of the direction of reflection one can use the cone generated
by all the limit vectors (if they exist) of the direction of reflection. For a cone of
reflection, the assumption that the graph G� is closed provides a form of continu-
ity of the cone. In fact, for a cone of the form �t(z) = {λγt (z), λ ≥ 0}, for some
R

d -valued function γt (z), the assumption that G� is closed is equivalent to the
assumption that the function γt (z) is continuous as a function of (t, z).

The cone Nt(z) of inward normal vectors at z ∈ ∂Dt , t ∈ [0, T ], is defined as
being equal to the set consisting of the union of the set {0} and the set

{v ∈ R
d :v 	= 0,∃ρ > 0 such that Bρ(z − ρv/|v|) ⊂ ([0, T ] × R

d) \ D}.(3.11)

Note that this definition does not rule out the possibility of several unit inward
normal vectors at the same boundary point. Given Nt(z), we let N1

t (z) := Nt(z) ∩
S1(0), so that N1

t (z) contains the set of vectors in Nt(z) with unit length. Moreover,
based on Nt(z), we introduce the set

GN = {(t, z, n) :n ∈ Nt(z), z ∈ ∂Dt , t ∈ [0, T ]}.(3.12)

The spatial domain Dt is said to verify the uniform exterior sphere condition if
there exists a radius r0 > 0 such that (1.8) holds. It is easy to see that (1.8) is
equivalent to the statement that

〈n,y − z〉 + 1

2r0
|y − z|2 ≥ 0(3.13)

for all y ∈ Dt , n ∈ N1
t (z) and z ∈ ∂Dt . Moreover, as deduced from Remark 2.1 in

[15], the uniform exterior sphere condition in time asserts that Nt(z) is a closed
convex cone for all z ∈ ∂Dt , t ∈ [0, T ] and that GN is closed.

For z ∈ ∂Ds , s ∈ [0, T ], and ρ,η > 0, recall the definition of the quantity
as,z(ρ, η) introduced in (1.15),

as,z(ρ, η) = max
u∈S1(0)

min
s≤t≤s+η

min
y∈∂Dt∩Bρ(z)

min
γ∈�1

t (y)
〈γ,u〉.

The vector u that maximizes the minimum of 〈γ,u〉 over all vectors γ ∈ �1
t (y)

in a time–space neighborhood of a point (s, z), z ∈ ∂Ds , s ∈ [0, T ], can be re-
garded as the best approximation of the �1

t (y)-vectors in that neighborhood. With
this interpretation as,z(ρ, η) represents the cosine of the largest angle between the
best approximation and a �1

t (y)-vector in the neighborhood. Hence, in a sense,
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as,z(ρ, η) quantifies the variation of � in a space–time neighborhood of (s, z). For
z ∈ ∂Ds , s ∈ [0, T ] and ρ,η > 0, recall the definition of the quantity cs,z(ρ, η)

introduced in (1.16),

cs,z(ρ, η) = max
s≤t≤s+η

max
y∈∂Dt∩Bρ(z)

max
ẑ∈Dt∩Bρ(z),ẑ 	=y

max
γ∈�1

t (y)

( 〈γ, y − ẑ〉
|y − ẑ| ∨ 0

)
.

This quantity is close to one if the vectors γ ∈ �1
t (y), in a time–space neighbor-

hood, deviate much from the normal vectors and/or the domain is very concave.
Hence, in a sense, cs,z(ρ, η) quantifies the skewness of � and the concavity of D.
Note that (1.16) implies

〈γ, ẑ − y〉 + cs,z(ρ, η)|y − ẑ| ≥ 0(3.14)

for all y ∈ ∂Dt ∩ Bρ(z), ẑ ∈ Dt ∩ Bρ(z), ẑ 	= y and γ ∈ �1
t (y) with z ∈ ∂Dt ,

t ∈ [s, s+η] ⊂ [0, T ]. This condition exhibits some similarity with the uniform ex-
terior sphere property (3.13). Finally, recall the definition of the quantity es,z(ρ, η)

introduced in (1.17),

es,z(ρ, η) = cs,z(ρ, η)

(as,z(ρ, η))2 ∨ as,z(ρ, η)/2
.

Furthermore, as stated in the Introduction, in the subsequent section we prove esti-
mates related to the Skorohod problem in time-dependent domains satisfying (1.2)
and the uniform exterior sphere condition in time, with radius r0. Moreover, to de-
rive these estimates, we also assume that there exist 0 < ρ0 < r0 and η0 > 0, such
that the assumptions in (1.18) and (1.19) hold, that is,

inf
s∈[0,T ] inf

z∈∂Ds

as,z(ρ0, η0) = a > 0,

sup
s∈[0,T ]

sup
z∈∂Ds

es,z(ρ0, η0) = e < 1.

REMARK 3.3. The function as,z(ρ, η) is a straightforward generalization of
the function

αz(ρ) = max
u∈S1(0)

min
y∈∂�∩Bρ(z)

min
n∈N1(y)

〈n,u〉,(3.15)

introduced by Tanaka [61] in his treatment of the Skorohod problem. Here � ⊂ R
d

is a bounded spatial domain and N1(y) is the set of unit inward normals at y ∈ ∂�.
In [15, 42, 53] and [61] the condition

lim
ρ→0

inf
z∈∂�

αz(ρ) = α > 0(3.16)

is used to rule out the case of tangential normal directions (see [15] for equivalent
characterizations of domains satisfying this criterion).
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REMARK 3.4. The functions cs,z(ρ, η) and es,z(ρ, η), introduced in (1.16)
and (1.17), are straightforward generalizations of the functions c̃ and ẽ, respec-
tively, introduced in [15]. Moreover, the related functions c and e, also intro-
duced in [15], are useful only in the context of convex domains. Hence, as we
here consider general (possibly nonconvex) domains, only generalizations of the
functions c̃ and ẽ are useful. For notational simplicity, we have removed the tilde
in our definition of the generalized versions of c̃ and ẽ.

Given T > 0, let D ⊂ R
d+1 be a time-dependent domain satisfying (1.2) and

a uniform exterior sphere condition in time with radius r0 in the sense of (1.8).
Given a point (t, z) ∈ ([0, T ] × R

d) \ D in a neighborhood of D, in this article
we heavily use the projection of (t, z) onto ∂D along the vectors in the cone �.
While such projections can be defined in several ways, in this article we here only
consider projections in space along vectors γ ∈ �t(y), y ∈ ∂Dt , onto ∂Dt . With
this restriction, the analysis of Section 4 in [15] can be used to derive sufficient
conditions for the existence of a projection of a point z ∈ R

d \Dt , onto ∂Dt , along
�t . In other words, we can determine whether or not there exist, for a given point
z ∈ R

d \ Dt , a point y ∈ ∂Dt and a vector γ ∈ �t(y) such that y − z ‖ γ . In partic-
ular, it can be understood when, for 0 < δ0 < r0, h0 > 1 and � = �t(z) = �(t, z)

given, ([0, T ] × R
d) \ D has the (δ0, h0)-property of good projections along � in

the sense defined in the introduction; see (1.20) and (1.21). We refer to the Appen-
dix, for more on this, as well as for a discussion of examples of time-dependent
domains satisfying the restrictions imposed in Theorems 1.2, 1.3 and 1.9.

3.3. Càdlàg functions and the Skorohod topology. Let T > 0 and let x ∈
D([0, T ],R

d). Given a bounded set I ⊂ [0, T ], we let

ŵ(x, I ) = sup
u,r∈I

|xu − xr |.(3.17)

Then, using Lemma 1 on page 122 in [7], we see that there exists, for ε > 0 given,
a sequence of points t0, . . . , tν , such that

0 = t0 < t1 < · · · < tν = T , ŵ(x, [ti−1, ti)) < ε.(3.18)

In particular, there can only be finitely many points t ∈ [0, T ] at which the jump
|xt −xt−| exceeds a given positive number. To proceed, in the following we use the
notation and exposition of Chapter 3 in [30]. We let q(x, y) = |x −y|∧1 whenever
x, y ∈ R

d and we let dD([0, T ], x, y) be the metric on the space D([0, T ],R
d) in-

troduced, for the interval [0, T ], as in display (5.2) in [30]. Then, by Theorem 5.6
in [30], we see that (D([0, T ],R

d), dD([0, T ], ·, ·)) is a complete metric space and
the topology on D([0, T ],R

d), induced by the metric dD([0, T ], ·, ·), is known
as the Skorohod topology on D([0, T ],R

d). Recall that if x, y ∈ D([0, T ],R
d),

then dD([0, T ], x, y) = 0 implies that xt = yt for every t . Furthermore, if {xn}
is a sequence in D([0, T ],R

d) and x ∈ D([0, T ],R
d), then the statement that
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dD([0, T ], xn, x) → 0 as n → ∞ is equivalent to the statement that there exists
{λn} ⊂ � (see [30] for the definition of the space �) such that (5.6) in [30] holds
and such that

lim
n→∞ sup

0≤t≤T

∣∣xn
t − xλn(t)

∣∣ = 0.(3.19)

For a proof of this result we refer to Proposition 5.3 in [30]. Furthermore, to under-
stand the relatively compact sets in D([0, T ],R

d), we introduce and use a modulus
of continuity. In particular, for x ∈ D([0, T ],R

d) and δ > 0 we define the quantity

w′(x, δ, T ) = inf{ti}
max

i
sup

u,r∈[ti ,ti+1)

|xu − xr |,(3.20)

where the infimum is taken with respect to all partitions of the form 0 = t0 <

t1 < · · · < tn−1 < T ≤ tn, with mini |ti − ti−1| > δ. Furthermore, given W ⊂
D([0, T ],R

d), we let

μ(W, δ, T ) = sup
w∈W

w′(w, δ, T ).(3.21)

Using this notation, we first quote Theorem 6.3 in [30] which states that W ⊂
D([0, T ],R

d) is relatively compact in the Skorohod topology if and only if for
every rational t ∈ [0, T ] there exists a relatively compact set At ⊂ R

d such that
wt ∈ At for all w ∈ W and such that

lim
δ→0

μ(W, δ, T ) = 0.(3.22)

Finally, we also note the following. Given δ′ > δ, let

w̃′(x, δ, δ′, T ) = inf{ti}
max

i
sup

u,r∈[ti ,ti+1)

|xu − xr |,(3.23)

where the infimum is taken with respect to all partitions as above but with the addi-
tional restriction that maxi |ti − ti−1| < δ′. Furthermore, given W ⊂ D([0, T ],R

d),
we let

μ̃(W, δ, δ′, T ) = sup
w∈W

w̃′(w, δ, δ′, T ).(3.24)

Then

w̃′(x, δ, δ′, T ) = w′(x, δ, T ) and μ̃(W, δ, δ′, T ) = μ(W, δ, T ).(3.25)

4. Estimates for solutions and approximations to Skorohod problems. In
this section we first prove certain estimates for solutions to the Skorohod problem
for (D,�,w), assuming that D satisfies the assumptions stated in Theorem 1.2
and that w ∈ D([0, T ],R

d) with w0 ∈ D0. In particular, we prove that the modu-
lus of continuity of càdlàg solutions to the Skorohod problem for (D,�,w), with
bounded jumps, can be estimated from above by the modulus of continuity of w

and the modulus of continuity l. This result is derived in two steps. In the first step



SKOROHOD PROBLEM IN TIME-DEPENDENT DOMAINS 2189

we prove (see Lemma 4.1 below) a local compactness result which is valid in a
spatial neighborhood of a given boundary point and on a constructed time interval.
In the second step we then prove that corresponding global estimates (see Theo-
rem 4.2 below) can be derived based on the local compactness result. In particular,
Theorem 4.2 is the main result we establish in this context. In Section 4.1 we derive
these estimates for solutions to the Skorohod problem and in Section 4.2 we estab-
lish the corresponding results for approximations to the Skorohod problem. In par-
ticular, given w ∈ D([0, T ],R

d) with w0 ∈ D0 and a partition {τk}Nk=0, which we
denote by �, of the interval [0, T ], we define w�, D�, ��, x� and λ� as in (2.4),
(2.6), (2.7) and (2.11). Then, by construction, the pair (x�,λ�) is a solution to the
Skorohod problem for (D�,��,w�). In Lemma 4.5 and Theorem 4.6 we prove
estimates for solutions to the Skorohod problem for (D�,��,w�), which are
similar to the ones established in Lemma 4.1 and Theorem 4.2 for the Skorohod
problem for (D,�,w). We note that the reason for this twofold approach is that
since we are considering time-dependent domains, the condition in (1.10) will in
general not hold for D�.

4.1. Estimates for solutions to Skorohod problems. Given a > 0 and e ∈
(0,1), we define the positive functions K1,K2,K3 and K4 as follows:

K1(a, e) = a + 2a2e + 2 + ae

a(1 − e)
, K2(a, e) = 2a2e + 2 + ae

a(1 − e)
,

(4.1)

K3(a, e) = 1 + K1(a, e)

a
, K4(a, e) = 1 + K2(a, e)

a
.

In this section we first prove the following two general results for solutions to the
Skorohod problem.

LEMMA 4.1. Let T > 0 and let D ⊂ R
d+1 be a time-dependent domain sat-

isfying (1.2), (1.10) and a uniform exterior sphere condition in time with radius r0
in the sense of (1.8). Let � = �t(z) be a closed convex cone of vectors in R

d for
every z ∈ ∂Dt , t ∈ [0, T ]. Assume that (1.18) and (1.19) hold for some 0 < ρ0 < r0,
η0 > 0, a and e. Finally, assume that ([0, T ] × R

d) \ D has the (δ0, h0)-property
of good projections along �, for some 0 < δ0 < r0, h0 > 1 as defined in (1.20)
and (1.21). Let w ∈ D([0, T ],R

d) with w0 ∈ D0 and let (x, λ) be a solution to
the Skorohod problem for (D,�,w). Consider a fixed but arbitrary s ∈ [0, T ],
such that xs ∈ ∂Ds , and note that it follows from (1.18) and (1.19) that there exist
0 < ρ < r0 and η > 0 such that

as,xs (ρ, η) > 0, es,xs (ρ, η) < 1.(4.2)

Then, for 0 ≤ s ≤ t1 ≤ t2 < τρ,η,

‖x‖t1,t2 ≤ K1(a, e)‖w‖t1,t2 + K2(a, e)l(t2 − t1),(4.3)

|λ|t2 − |λ|t1 ≤ K3(a, e)‖w‖t1,t2 + K4(a, e)l(t2 − t1),(4.4)
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where a = as,xs (ρ, η), e = es,xs (ρ, η). Here τρ,η is defined as follows. If there
exists some t such that s ≤ t < (s + η) ∧ T and |xt − xs | + l(t − s) ≥ ρ, then

τρ,η = inf{t : s ≤ t < (s + η) ∧ T , |xt − xs | + l(t − s) ≥ ρ},(4.5)

whereas if |xt − xs | + l(t − s) < ρ for all s ≤ t < (s + η) ∧ T , then

τρ,η = (s + η) ∧ T .(4.6)

THEOREM 4.2. Let T > 0, D ⊂ R
d+1, r0, � = �t(z), 0 < ρ0 < r0, η0 > 0, a,

e, δ0 and h0 be as in the statement of Lemma 4.1. Let w ∈ D([0, T ],R
d) with w0 ∈

D0 and let (x, λ) be a solution to the Skorohod problem for (D,�,w). Moreover,
assume in addition that x ∈ Dρ0([0, T ],R

d). Then there exist positive constants
L1(w,T ), L2(w,T ), L3(w,T ) and L4(w,T ) such that

‖x‖t1,t2 ≤ L1(w,T )‖w‖t1,t2 + L2(w,T )l(t2 − t1),(4.7)

|λ|t2 − |λ|t1 ≤ L3(w,T )‖w‖t1,t2 + L4(w,T )l(t2 − t1),(4.8)

whenever 0 ≤ t1 ≤ t2 ≤ T . Furthermore, if W ⊂ D([0, T ],R
d) is relatively com-

pact in the Skorohod topology and satisfies w0 ∈ D0, whenever w ∈ W , then there
exist positive constants LT

1 , LT
2 , LT

3 and LT
4 , such that

sup
w∈W

Li(w,T ) ≤ LT
i < ∞ for i = 1,2,3,4.(4.9)

REMARK 4.3. Versions of Lemma 4.1 and Theorem 4.2, valid only in the
setting of time-independent domains, are proved in Lemma 2.1, Theorems 2.2
and 2.4 in [15]. Our contribution is that we are able to establish similar results
when D ⊂ R

d+1 is a time-dependent domain. Furthermore, concerning related re-
sults in the setting of time-dependent domains, we note that if D is an H2-domain
and if �t(z) = {λγt (z), λ ≥ 0}, for some S1(0)-valued continuous function γt (z)

such that

inf
z∈∂Dt ,t∈[0,T ]〈γt (z), nt (z)〉 >

√
3

2
,(4.10)

then a version of Theorem 4.2 is proved in Theorem C.3 in [16]. Note also that if D

is an H2-domain, then there exists a unique unit inward normal, nt(z), at z ∈ ∂Dt ,
t ∈ [0, T ].

REMARK 4.4. Unlike in the statements of Theorems 1.2, 1.3 and 1.9, we
need not assume that � satisfies (1.11), (1.12) and (1.14) in the prerequisites of
Lemma 4.1 and Theorem 4.2. This remark also applies to Lemma 4.5 and Theo-
rem 4.6 stated below.
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PROOF OF LEMMA 4.1. To simplify the notation, we in the following let a =
as,xs (ρ, η), c = cs,xs (ρ) and e = es,xs (ρ, η). Moreover, we let u be a unit vector
such that

〈γr, u〉 ≥ a(4.11)

for all γr ∈ �1
r (y), y ∈ ∂Dr ∩Bρ(xs) and r ∈ [s, τρ,η] ⊂ [s, (s +η)∧T ]. The exis-

tence of such a vector follows from the definition of as,xs (ρ, η). Using properties
(1.5)–(1.6) in Definition 1.1, we see that

〈xt2 − xt1, u〉 = 〈wt2 − wt1, u〉 +
∫ t+2

t+1
〈γr, u〉︸ ︷︷ ︸

≥a

d|λ|r(4.12)

for any 0 ≤ s ≤ t1 ≤ t2 < τρ,η. Based on (4.12), we deduce that

|λ|t2 − |λ|t1 ≤ 1

a
(|wt2 − wt1 | + |xt2 − xt1 |).(4.13)

Furthermore, again using properties (1.5)–(1.6) in Definition 1.1, we also see that

|xt2 − xt1 |2 =
(
wt2 − wt1 +

∫ t+2

t+1
γr d|λ|r

)2

(4.14)

= |wt2 − wt1 |2 +
(∫ t+2

t+1
γr d|λ|r

)2

+ 2
∫ t+2

t1

〈wt2 − wt1, γr〉d|λ|r ,
whenever 0 ≤ s ≤ t1 ≤ t2 < τρ,η. Note that the integrand in the last term in this
display can be rewritten as

〈wt2 − wt1, γr〉 = 〈wt2 − wr, γr〉 + 〈wr − wt1, γr〉
(4.15)

= 〈wt2 − wr, γr〉 + 〈xr − xt1, γr〉 −
〈(∫ r+

t+1
γu d|λ|u

)
, γr

〉
.

In particular, combining (4.14) and (4.15), we see that

|xt2 − xt1 |2 = |wt2 − wt1 |2 + 2
∫ t+2

t+1
〈wt2 − wr, γr〉d|λ|r

+ 2
∫ t+2

t+1
〈xr − xt1, γr〉d|λ|r +

(∫ t+2

t+1
γr d|λ|r

)2

(4.16)

− 2
∫ t+2

t+1

〈(∫ r+

t1
+

γu(xu) d|λ|u
)
, γr

〉
d|λ|r .

We now intend to derive bounds from above for all integrals in (4.16). To do this,
we first note that the first integral on the right-hand side of (4.16) is bounded from
above by

2
∫ t+2

t+1
〈wt2 − wr, γr〉d|λ|r ≤ 2

∫ t+2

t+1
|wt2 − wr |d|λ|r .(4.17)
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To find an upper bound of the second integral in (4.16), we must take into account
that, due to the fact that our domain is time-dependent, xt1 might not belong to Dr .
Recall that we are assuming that Nr(y) 	= ∅ for all y ∈ ∂Dr , r ∈ [0, T ], and, given
r ∈ [0, T ], y ∈ R

d \ Dr , in the following we denote a projection of y onto ∂Dr

along Nr by π
Nr

∂Dr
(y). Furthermore, whenever y ∈ Dr we let π

Nr

∂Dr
(y) = y. Using

this notation, and the definition of τρ,η, we see that

|πNr

∂Dr
(xt1) − xs | ≤ |xt1 − xs | + l(r − t1) ≤ ρ.(4.18)

Equation (4.18) implies that π
Nr

∂Dr
(xt1) ∈ Bρ(xs)∩ ∂Dr ⊂ Bρ(xs)∩Dr . Next, writ-

ing

〈xr − xt1, γr〉 = 〈xr − π
Nr

∂Dr
(xt1), γr〉 + 〈πNr

∂Dr
(xt1) − xt1, γr〉,(4.19)

and using the fact that xr ∈ Bρ(xs) ∩ ∂Dr a.e. when d|λ|r 	= 0, together with a
version of (3.14), we deduce that

〈xr − π
Nr

∂Dr
(xt1), γr〉 ≤ c|xr − π

Nr

∂Dr
(xt1)| ≤ c|xr − xt1 | + cl(r − t1).(4.20)

Furthermore,

〈πNr

∂Dr
(xt1) − xt1, γr〉 ≤ |πNr

∂Dr
(xt1) − xt1 | ≤ l(r − t1).(4.21)

Using the estimates derived above, we conclude that the second integral in (4.16)
has the upper bound

2
∫ t+2

t+1
〈xr − xt1, γr〉d|λ|r ≤ 2c

∫ t+2

t+1
|xr − xt1 |d|λ|r

(4.22)
+ 2(c + 1)l(t2 − t1)(|λ|t2 − |λ|t1).

Next, we use Lemma 2.1(ii) in [53] and rewrite the third integral in (4.16) as(∫ t+2

t+1
γr d|λ|r

)2

= 2
∫ t+2

t+1

〈(∫ r+

t+1
γu(xu) d|λ|u

)
, γr

〉
d|λ|r

(4.23)
− ∑

t1<r≤t2

|γr |2︸ ︷︷ ︸
=1

(|λ|r − |λ|r−)2.

Based on the last display, it is clear that and the third and fourth integral in (4.16)
reduce to the term

− ∑
t1<r≤t2

(|λ|r − |λ|r−)2.(4.24)

Putting the relations (4.16)–(4.24) together, we obtain

|xt2 − xt1 |2 ≤ |wt2 − wt1 |2 + 2
∫ t+2

t+1
|wt2 − wr |d|λ|r + 2c

∫ t+2

t+1
|xr − xt1 |d|λ|r

(4.25)
− ∑

t1<r≤t2

(|λ|r − |λ|r−)2 + 2(c + 1)l(t2 − t1)(|λ|t2 − |λ|t1).
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If we now combine (4.25) and the properties (1.5)–(1.6) in Definition 1.1, we first
get

|xt2 − xt1 |2 ≤ |wt2 − wt1 |2 + 2
∫ t+2

t+1
|wt2 − wr |d|λ|r + 2c

∫ t+2

t+1
|wr − wt1 |d|λ|r

+ 2c

∫ t+2

t+1
(|λ|r − |λ|t1) d|λ|r − ∑

t1<r≤t2

(|λ|r − |λ|r−)2(4.26)

+ 2(c + 1)l(t2 − t1)(|λ|t2 − |λ|t1),
and then, again using Lemma 2.1(ii) in [53] as well as the fact that 0 ≤ c ≤ 1, we
conclude that

|xt2 − xt1 |2 ≤ |wt2 − wt1 |2 + 2
∫ t+2

t+1
|wt2 − wr |d|λ|r + 2c

∫ t+2

t+1
|wr − wt1 |d|λ|r

(4.27)
+ c(|λ|t2 − |λ|t1)2 + 2(c + 1)l(t2 − t1)(|λ|t2 − |λ|t1).

Relation (4.13) and the inequality in the last display yield

‖x‖2
t1,t2

≤
(

1 + 2(c + 1)

a
+ c

a2

)
‖w‖2

t1,t2
+ 2

(
c + 1

a
+ c

a2

)
‖x‖t1,t2‖w‖t1,t2

+ c

a2 ‖x‖2
t1,t2

+ 2(c + 1)

a
l(t2 − t1)‖x‖t1,t2(4.28)

+ 2(c + 1)

a
l(t2 − t1)‖w‖t1,t2 .

In addition, combining (4.13) and (4.25), we obtain

‖x‖2
t1,t2

≤
(

1 + 2

a

)
‖w‖2

t1,t2
+ 2(c + 1)

a
‖x‖t1,t2‖w‖t1,t2 + 2c

a
‖x‖2

t1,t2

(4.29)

+ 2(c + 1)

a
l(t2 − t1)‖x‖t1,t2 + 2(c + 1)

a
l(t2 − t1)‖w‖t1,t2 .

The inequalities (4.28) and (4.29) can both be written on the form

A‖x‖2
t1,t2

− B‖x‖t1,t2‖w‖t1,t2 − C‖w‖2
t1,t2

− D‖x‖t1,t2 − D‖w‖t1,t2 ≤ 0,(4.30)

where the positive constants A, B and C are easily shown to satisfy the condition
A + B = C in both cases. We claim that

‖x‖t1,t2 ≤ C

A
‖w‖t1,t2 + D

A
.(4.31)

Indeed, suppose, on the contrary, that

0 ≤ ‖w‖t1,t2 <
A

C
‖x‖t1,t2 − D

C
.(4.32)
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Then, by (4.32),

A‖x‖2
t1,t2

− B‖x‖t1,t2‖w‖t1,t2 − C‖w‖2
t1,t2

− D‖x‖t1,t2 − D‖w‖t1,t2

> A‖x‖2
t1,t2

+ B‖x‖t1,t2

(
−A

C
‖x‖t1,t2 + D

C

)
− C

(
A

C
‖x‖t1,t2 − D

C

)2

(4.33)

− D‖x‖t1,t2 + D

(
−A

C
‖x‖t1,t2 + D

C

)
= A‖x‖2

t1,t2

(
1 − B

C
− A

C

)
︸ ︷︷ ︸

=C−B−A
C

=0

+ D‖x‖t1,t2

(
B

C
+ 2A

C
− A

C
− 1

)
︸ ︷︷ ︸

=A+B−C
C

=0

= 0.

Obviously (4.33) contradicts (4.30) and, hence, the claim in (4.31) is proved. To
complete the proof of Lemma 4.1, we first note that (4.28) implies

‖x‖t1,t2 ≤ C

A
‖w‖t1,t2 + D

A

= 1 + 2(c + 1)/a + c/a2

1 − c/a2 ‖w‖t1,t2 + 2(c + 1)/a

1 − c/a2 l(t2 − t1)(4.34)

= a2 + 2ac + 2a + c

a2 − c
‖w‖t1,t2 + 2a(c + 1)

a2 − c
l(t2 − t1),

and that (4.29) implies

‖x‖t1,t2 ≤ C

A
‖w‖t1,t2 + D

A
= 1 + 2/a

1 − 2c/a
‖w‖t1,t2 + 2(c + 1)/a

1 − 2c/a
l(t2 − t1)

(4.35)

= a + 2

a − 2c
‖w‖t1,t2 + 2(c + 1)

a − 2c
l(t2 − t1).

From the definition e = c
a2∨a/2

we know that if a/2 ≤ a2, then we can set c = a2e

in (4.34) and obtain

‖x‖t1,t2 ≤ a2 + 2a3e + 2a + a2e

a2(1 − e)
‖w‖t1,t2 + 2a3e + 2a

a2(1 − e)
l(t2 − t1)

(4.36)

= a + 2a2e + 2 + ae

a(1 − e)
‖w‖t1,t2 + 2a2e + 2

a(1 − e)
l(t2 − t1),

whereas if a/2 ≥ a2, then we can set 2c = ae in (4.35) and obtain

‖x‖t1,t2 ≤ a + 2

a(1 − e)
‖w‖t1,t2 + ae + 2

a(1 − e)
l(t2 − t1).(4.37)

Hence, in either case, we arrive at

‖x‖t1,t2 ≤ a + 2a2e + 2 + ae

a(1 − e)
‖w‖t1,t2 + 2a2e + 2 + ae

a(1 − e)
l(t2 − t1),(4.38)
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and the proof of estimate (4.3) is complete. Finally, we note that estimate (4.4) now
follows directly from (4.3) and (4.13). This completes the proof of Lemma 4.1. �

PROOF OF THEOREM 4.2. We first note that the assumptions stated in Theo-
rem 4.2 ensure that there exist some a > 0 and 0 < e < 1 such that as,xs (ρ0, η0) ≥
a and es,xs (ρ0, η0) ≤ e for all xs ∈ ∂Ds , s ∈ [0, T ]. Next we recursively define two
sets of time-points {T̂i} and {Ti}. In particular, we let T̂0 = T0 = 0 and define, for
i ≥ 0, Ti+1 = T if xt ∈ Dt for all t ∈ [0, T ] and

Ti+1 = inf{t : T̂i ≤ t ≤ T ,xt ∈ ∂Dt },(4.39)

otherwise. Similarly, for i ≥ 0, we let T̂i+1 = (Ti+1 + η0) ∧ T , if |xt − xTi+1 | +
l(t − Ti+1) < ρ0 for all t such that Ti+1 ≤ t ≤ (Ti+1 + η0) ∧ T , and

T̂i+1 = inf{Ti+1 ≤ t < (Ti+1 + η0) ∧ T : |xt − xTi+1 | + l(t − Ti+1) ≥ ρ0},(4.40)

otherwise. Using (1.10) and the fact that x is a right continuous function, it fol-
lows that Ti+1 < T̂i+1 for all i ≥ 0. Moreover, using (4.39)–(4.40), we can apply
Lemma 4.1 to any pair of time points (t1, t2) such that Ti ≤ t1 ≤ t2 < T̂i and obtain

‖x‖t1,t2 ≤ K1(a, e)‖w‖t1,t2 + K2(a, e)l(t2 − t1),
(4.41)

|λ|t2 − |λ|t1 ≤ K3(a, e)‖w‖t1,t2 + K4(a, e)l(t2 − t1),

whenever Ti ≤ t1 ≤ t2 < T̂i where K1, K2, K3 and K4 are defined as in Lemma 4.1
based on a and e introduced above. Next, we want to find a similar estimate when-
ever T̂i ≤ t1 ≤ t2 < Ti+1. If T̂i = Ti+1, we are done and, hence, we assume that
T̂i < Ti+1. In that case xt ∈ Dt for all T̂i ≤ t < Ti+1 and, as a consequence, the
changes in x and w coincide on this time interval. Finally, considering the case
Ti ≤ t1 < T̂i ≤ t2 < Ti+1, we have

|xt2 − xt1 | ≤ |wt2 − w
T̂i

| + |x
T̂i

− x
T̂ −

i
| + |x

T̂ −
i

− xt1 |,
(4.42)

|λ|t2 − |λ|t1 ≤ (|λ|
T̂i

− |λ|
T̂ −

i
) + (|λ|

T̂ −
i

− |λ|t1).
The terms |x

T̂ −
i

− xt1 | and |λ|
T̂ −

i
− |λ|t1 in (4.42) can be handled using (4.41).

Regarding the terms |x
T̂i

− x
T̂ −

i
| and |λ|

T̂i
− |λ|

T̂ −
i

in (4.42), we can, since |x
T̂i

−
x
T̂ −

i
| ≤ ρ0, use (3.14) and the definition of the Skorohod problem to first conclude

that

|w
T̂i

− w
T̂ −

i
|2 = |x

T̂i
− x

T̂ −
i

|2 + ∣∣γ
T̂i

(|λ|
T̂i

− |λ|
T̂ −

i
)
∣∣2

− 2(x
T̂i

− x
T̂ −

i
) · γ

T̂i
(|λ|

T̂i
− |λ|

T̂ −
i

)

(4.43)
≥ |x

T̂i
− x

T̂ −
i

|2 + (|λ|
T̂i

− |λ|
T̂ −

i
)2

− 2c
x
T̂i

,T̂i
(ρ0, η0)|xT̂i

− x
T̂ −

i
|(|λ|

T̂i
− |λ|

T̂ −
i

).
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Then

|w
T̂i

− w
T̂ −

i
|2 ≥ (

1 − c
x
T̂i

,T̂i
(ρ0, η0)

)|x
T̂i

− x
T̂ −

i
|2

(4.44)
+ (

1 − c
x
T̂i

,T̂i
(ρ0, η0)

)
(|λ|

T̂i
− |λ|

T̂ −
i

)2,

and, as (as,y(ρ0, η0))
2 ∨ as,y(ρ0, η0)/2 ≤ 1, for all y ∈ ∂Ds , s ∈ [0, T ], we obtain

c
x
T̂i

,T̂i
(ρ0, η0) ≤

c
x
T̂i

,T̂i
(ρ0, η0)

(a
x
T̂i

,T̂i
(ρ0, η0))2 ∨ a

x
T̂i

,T̂i
(ρ0, η0)/2

(4.45)
= e

x
T̂i

,T̂i
(ρ0, η0) ≤ e.

Combining the estimates in (4.44) and (4.45), we arrive at

|x
T̂i

− x
T̂ −

i
| ≤ 1√

1 − c
x
T̂i

,T̂i
(ρ0)

|w
T̂i

− w
T̂ −

i
| ≤ 1√

1 − e
|w

T̂i
− w

T̂ −
i

|,

(4.46)

|λ|
T̂i

− |λ|
T̂ −

i
≤ 1√

1 − e
|w

T̂i
− w

T̂ −
i

|.
Introducing the notation

K1 = K1(a, e) + 1 + 1√
1 − e

, K2 = K2(a, e),

(4.47)

K3 = K3(a, e) + 1√
1 − e

, K4 = K4(a, e),

we can use the deductions in (4.41)–(4.46) to conclude that

‖x‖t1,t2 ≤ K1‖w‖t1,t2 + K2l(t2 − t1),
(4.48)

|λ|t2 − |λ|t1 ≤ K3‖w‖t1,t2 + K4l(t2 − t1),

whenever Ti ≤ t1 ≤ t2 < Ti+1. We now intend to make use of the estimates
in (4.48) to complete the proof of Theorem 4.2. Note that above we have con-
structed a set of time-points {Ti}M+1

i=0 , where M is so far undetermined, and

0 = T0 < T1 < · · · < TM < T = TM+1.(4.49)

If M ≥ 1, let

0 ≤ t1 ≤ u ≤ r ≤ t2 ≤ T , Th−1 ≤ u < Th, Tv ≤ r < Tv+1, h−1 ≤ v.(4.50)

Then, using (4.48), we have

|xr − xu| ≤ (M + 1)
(
K1‖w‖t1,t2 + K2l(t2 − t1)

) +
v∑

i=h

|xTi
− xT −

i
|,

(4.51)

|λ|r − |λ|u ≤ (M + 1)
(
K3‖w‖t1,t2 + K4l(t2 − t1)

) +
v∑

i=h

|λ|Ti
− |λ|T −

i
.
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Moreover, arguing exactly as in the deduction of (4.46), we obtain

|xTi
− xT −

i
| ≤ 1√

1 − e
|wTi

− wT −
i

|,
(4.52)

|λ|Ti
− |λ|T −

i
≤ 1√

1 − e
|wTi

− wT −
i

|,

whenever 1 ≤ i ≤ M + 1. Hence, to complete the proof of Theorem 4.2, we have
to estimate M . To do this, we consider W ⊂ D([0, T ],R

d), which is assumed to
be relatively compact in the Skorohod topology and for which w0 ∈ D0 whenever
w ∈ W . We shall prove that the M introduced above is bounded for every such
set W . To do this, we use the notation introduced in Section 3.3 concerning the
Skorohod topology. In the following let δ′ be a fixed number such that

δ′ = min{η0, δ̂
′} where δ̂′ is such that l(δ̂′) ≤ ρ0/

(
2(K2 + 1)

)
.(4.53)

Note that the existence of δ̂′ follows immediately from (1.10). Using the definition
of δ′ and the fact that W ⊂ D([0, T ],R

d) is relatively compact in the Skorohod
topology, we see, by (3.22) and (3.25), that

lim
δ→0

μ̃(W, δ, δ′, T ) = 0.(4.54)

In particular, using (4.54), we can find a 0 < δ < δ′ such that for every w ∈ W
there exists a partition {tj }Mj=0, in general depending on w, such that

δ < |tj+1 − tj | < δ′ for j ∈ {0, . . . ,M − 1}(4.55)

and

max
0≤j≤M−1

sup
u,r∈[tj ,tj+1)

|wu − wr | < ρ0

2K1
.(4.56)

We claim that none of the intervals {[tj , tj+1)} in this partition can contain more
than one point from the sequence {Ti}. To prove this, we suppose, on the contrary,
that there exist i and j such that tj ≤ Ti < Ti+1 < tj+1. Then, by construction,

tj ≤ Ti < T̂i ≤ Ti+1 < tj+1.(4.57)

We intend to estimate |x
T̂i

− xTi
| + l(T̂i − Ti). We first note that if |xt − xTi

| +
l(t − Ti) < ρ0 for all t such that Ti ≤ t ≤ (Ti + η0) ∧ T , then T̂i = (Ti + η0) ∧ T .
However, using (4.53) and (4.55), it is clear that neither T̂i = (Ti + η0) nor T̂i = T

can occur. Hence, we can assume that T̂i is given by (4.40) and, as a consequence,
that

|x
T̂i

− xTi
| + l(T̂i − Ti) ≥ ρ0.(4.58)
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But on the other hand, using (4.48), we first see that

|x
T̂i

− xTi
| + l(T̂i − Ti) ≤ ‖x‖

Ti ,T̂i
+ l(T̂i − Ti)

(4.59)
≤ K1‖w‖

Ti ,T̂i
+ (K2 + 1)l(T̂i − Ti),

and then, using (4.53), (4.55) and (4.56), we deduce

|x
T̂i

− xTi
| + l(T̂i − Ti) < K1

ρ0

2K1
+ (K2 + 1)l(δ′) < ρ0,(4.60)

which contradicts the assumption tj ≤ Ti < Ti+1 < tj+1. Hence, none of the inter-
vals {[tj , tj+1)} in the partition can contain more than one point from the sequence
{Ti} and, in particular, we conclude that

M ≤ T

δ
+ 1.(4.61)

Combining (4.51), (4.52) and (4.61), we see that

‖x‖t1,t2 ≤ (M + 1)
(
K1‖w‖t1,t2 + K2l(t2 − t1)

) + M|xTi
− xT −

i
|

≤
(

T

δ
+ 2

)(
K1‖w‖t1,t2 + K2l(t2 − t1)

) +
(

T

δ
+ 1

)
1√

1 − e
‖w‖t1,t2

(4.62)

≤
(
K1

(
T

δ
+ 2

)
+ 1√

1 − e

(
T

δ
+ 1

))
‖w‖t1,t2

+ K2

(
T

δ
+ 2

)
l(t2 − t1),

and, similarly, that

|λ|t2 − |λ|t1 ≤
(
K3

(
T

δ
+ 2

)
+ 1√

1 − e

(
T

δ
+ 1

))
‖w‖t1,t2

(4.63)

+ K4

(
T

δ
+ 2

)
l(t2 − t1).

The deductions in the last two displays complete the proof of Theorem 4.2. �

4.2. Estimates for approximations to Skorohod problems. Let T > 0, D ⊂
R

d+1 and � = �t(z) satisfy the assumptions stated in Theorem 4.2. In this section
we derive estimates for approximations to the Skorohod problem for (D,�,w). In
particular, given w ∈ D([0, T ],R

d) with w0 ∈ D0 and a partition {τk}Nk=0 of the
interval [0, T ], which we denote by �, we define w� as in (2.4). Recall that �∗
was defined in (2.3). Furthermore, in the following, we will assume that (2.5) holds
whenever k ∈ {1, . . . ,N}. Based on the assumption in (2.5), we define D�, ��,
x� and λ� as in (2.6), (2.7) and (2.11). Then, by construction, the pair (x�,λ�)

is a solution to the Skorohod problem for (D�,��,w�). In this section we prove
the following results.
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LEMMA 4.5. Let T > 0, D ⊂ R
d+1, r0, � = �t(z), 0 < ρ0 < r0, η0 > 0, a, e,

δ0 and h0 be as in the statement of Theorem 4.2. Given a > 0 and e ∈ (0,1), let the
functions K1, K2, K3 and K4 be defined as in (4.1) and let w ∈ D([0, T ],R

d) with
w0 ∈ D0. Let � = {τk}Nk=0 be a partition of the interval [0, T ], let w� be defined
as in (2.4) and assume that (2.5) holds. Given � and w�, let D�, ��, x� and λ�

be defined as in (2.6), (2.7) and (2.11). Consider a fixed but arbitrary s ∈ [0, T ],
such that x�

s ∈ ∂D�
s . Then, for 0 ≤ s ≤ t1 ≤ t2 < τ�

ρ0,η0
, (w�,x�,λ�) satisfies the

estimates

‖x�‖t1,t2 ≤ K1(a, e)‖w‖t1,t2 + K2(a, e)
(
l(t2 − t1) + l(�∗)

)
,(4.64)

|λ�|t2 − |λ�|t1 ≤ K3(a, e)‖w‖t1,t2 + K4(a, e)
(
l(t2 − t1) + l(�∗)

)
.(4.65)

Here τ�
ρ0,η0

is defined as follows. If there exists some t such that s ≤ t < (s + η0)∧
T and |x�

t − x�
s | + l(t − s) + l(�∗) ≥ ρ0, then

τ�
ρ0,η0

= inf{t : s ≤ t < (s +η0)∧T , |x�
t − x�

s |+ l(t − s)+ l(�∗) ≥ ρ0},(4.66)

whereas if |x�
t − x�

s | + l(t − s) + l(�∗) < ρ0 for all s ≤ t < (s + η0) ∧ T , then

τ�
ρ0,η0

= (s + η0) ∧ T .(4.67)

THEOREM 4.6. Let T > 0, D ⊂ R
d+1, r0, � = �t(z), 0 < ρ0 < r0, η0 > 0, a,

e, δ0 and h0 be as in the statement of Theorem 4.2. Given a > 0 and e ∈ (0,1), let
the functions K1, K2, K3 and K4 be defined as in (4.1) and let w ∈ D([0, T ],R

d)

with w0 ∈ D0. Let � = {τk}Nk=0 be a partition of the interval [0, T ], let w� be
defined as in (2.4) and assume that (2.5) holds. Let � be such that l(�∗) ≤
ρ0/(4(K2(a, e) + 1)) and let

δ′ = min{η0, δ̂
′} where δ̂′ is such that

(4.68)
l(δ̂′) + l(�∗) ≤ ρ0/

(
2
(
K2(a, e) + 1

))
.

Given � and w�, let D�, ��, x� and λ� be defined as in (2.6), (2.7) and (2.11).
Moreover, assume that x� ∈ Dρ0([0, T ],R

d). Then there exist positive constants
L̂1(w,T ) , L̂2(w,T ), L̂3(w,T ) and L̂4(w,T ), independent of �, such that

‖x�‖t1,t2 ≤ L̂1(w,T )‖w‖t1,t2 + L̂2(w,T )
(
l(t2 − t1) + l(�∗)

)
,

(4.69)
|λ�|t2 − |λ�|t1 ≤ L̂3(w,T )‖w‖t1,t2 + L̂4(w,T )

(
l(t2 − t1) + l(�∗)

)
,

whenever 0 ≤ t1 ≤ t2 ≤ T .

PROOF OF LEMMA 4.5. Naturally, the proof of this lemma is similar to the
proof of Lemma 4.1 and, thus, we only describe the main differences compared to
the proof of Lemma 4.1. First we note, by the assumptions on D and the construc-
tion of D� based on D, that there exists a unit vector u such that

〈γ �
r , u〉 ≥ a(4.70)
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for all γ �
r ∈ ��,1

r (y), y ∈ ∂D�
r ∩ Bρ0(x

�
s ) and r ∈ [s, τ�

ρ0,η0
] ⊂ [s, (s + η0) ∧ T ].

We also note that if t1 ∈ [τj , τj+1) and t2 ∈ [τk, τk+1), for some j, k ∈ {0, . . . ,N −
1}, then |x�

t2
− x�

t1
| = 0 if j = k and otherwise |x�

t2
− x�

t1
| = |x�

τk
− x�

τj
|. Now,

using the fact that (x�,λ�) solves the Skorohod problem for (D�,��,w�), we
conclude, in analogy with (4.12), that

〈x�
t2

− x�
t1

, u〉 = 〈w�
t2

− w�
t1

, u〉 +
∫ t+2

t+1
〈γ �

r , u〉︸ ︷︷ ︸
≥a

d|λ�|r(4.71)

for any 0 ≤ s ≤ t1 ≤ t2 < τ�
ρ0,η0

, where γ �
r ∈ ��,1

r (y) for some y ∈ ∂D�
r . Based

on (4.71), we obtain

|λ�|t2 − |λ�|t1 ≤ 1

a
(|w�

t2
− w�

t1
| + |x�

t2
− x�

t1
|).(4.72)

Furthermore, arguing as in the proof of Lemma 4.1, we derive

|x�
t2

− x�
t1

|2 = |w�
t2

− w�
t1

|2 + 2
∫ t+2

t+1
〈w�

t2
− w�

r , γ �
r 〉d|λ�|r

+ 2
∫ t+2

t+1
〈x�

r − x�
t1

, γ �
r 〉d|λ�|r +

(∫ t+2

t+1
γ �
r d|λ�|r

)2

(4.73)

− 2
∫ t+2

t+1

〈(∫ r+

t1
+

γ �
u d|λ�|u

)
, γ �

r

〉
d|λ�|r .

As in the proof of Lemma 4.1, we have to find upper bounds of all integrals
in (4.73) and, naturally, particular attention has to be paid to the second integral, as

x�
t1

might not belong to D�
r . For y ∈ ∂D�

t , t ∈ [0, T ], we let N�
t (y) denote the set

of inward normals at y ∈ ∂D�
t and given r ∈ [0, T ], y ∈ R

d \ D�
r in the follow-

ing we denote a projection of y onto ∂D�
r along N�

r by π
N�

r

∂D�
r
(y). Furthermore, if

y ∈ D�
r , then we let π

N�
r

∂D�
r
(y) = y. Using this notation, and the definition of τ�

ρ0,η0
,

we see that

|πN�
r

∂D�
r
(x�

t1
) − x�

s | ≤ |x�
t1

− x�
s | + l(r − t1) + l(�∗) ≤ ρ0.(4.74)

Equation (4.74) implies that π
N�

r

∂D�
r
(x�

t1
) ∈ Bρ0(x

�
s ) ∩ ∂D�

r ⊂ Bρ0(x
�
s ) ∩ D�

r . Ar-
guing as in (4.19)–(4.21), we then deduce that

〈x�
r − π

N�
r

∂D�
r
(x�

t1
), γ �

r 〉 ≤ c|x�
r − π

N�
r

∂D�
r
(x�

t1
)|

(4.75)
≤ c|x�

r − x�
t1

| + cl(r − t1) + cl(�∗),
and that

〈πN�
r

∂D�
r
(x�

t1
) − x�

t1
, γ �

r 〉 ≤ |πN�
r

∂D�
r
(x�

t1
) − x�

t1
| ≤ l(r − t1) + l(�∗).(4.76)
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Using the estimates derived above, we conclude that the second integral in (4.73)
has the upper bound

2c

∫ t+2

t+1
|x�

r − x�
t1

|d|λ�|r + 2(c + 1)
(
l(t2 − t1)+ l(�∗)

)
(|λ�|t2 − |λ�|t1).(4.77)

Equipped with (4.77), the proof of Lemma 4.5 can now be completed following
the lines of the proof of Lemma 4.1. �

PROOF OF THEOREM 4.6. Proceeding as in the proof of Theorem 4.2, we
first recursively define two sets of time-points {T̂ �

i } and {T �
i } in order to use

Lemma 4.5. In particular, we let T̂ �
0 = T �

0 = 0 and define, for i ≥ 0, T �
i+1 = T

if x�
t ∈ D�

t for all t ∈ [0, T ] and

T �
i+1 = inf{t : T̂ �

i ≤ t ≤ T ,x�
t ∈ ∂D�

t },(4.78)

otherwise. Similarly, for i ≥ 0 we let T̂ �
i+1 = (T �

i+1 + η0) ∧ T , if |x�
t − x�

Ti+1
| +

l(t −T �
i+1)+ l(�∗) < ρ0 for all t such that T �

i+1 ≤ t ≤ (T �
i+1 +η0)∧T . Moreover,

if the latter is not the case, we then define T̂ �
i+1 to equal

inf{T �
i+1 ≤ t < (T �

i+1 +η0)∧T : |x�
t −x�

Ti+1
|+ l(t −T �

i+1)+ l(�∗) ≥ ρ0}.(4.79)

We can then repeat the argument in (4.41)–(4.48) to conclude that

‖x�‖t1,t2 ≤ K1‖w‖t1,t2 + K2
(
l(t2 − t1) + l(�∗)

)
,

(4.80)
|λ�|t2 − |λ�|t1 ≤ K3‖w‖t1,t2 + K4

(
l(t2 − t1) + l(�∗)

)
,

whenever T �
i ≤ t1 ≤ t2 < T �

i+1. Furthermore, we note that the M in {Ti}M+1
i=0 is so

far undetermined and, as in (4.51)–(4.52), we derive

‖x�‖t1,t2 ≤ (M + 1)
(
K1‖w‖t1,t2 + K2

(
l(t2 − t1) + l(�∗)

))
+

√
1

1 − e

M∑
i=1

|wT �
i

− w
T

�,−
i

|,
(4.81)

|λ�|t2 − |λ�|t1 ≤ (M + 1)
(
K3‖w‖t1,t2 + K4

(
l(t2 − t1) + l(�∗)

))
+

√
1

1 − e

M∑
i=1

|wT �
i

− w
T

�,−
i

|,

whenever 0 ≤ t1 ≤ t2 ≤ T . To complete the proof of Theorem 4.6, we can now
proceed as in the proof of Theorem 4.2 and conclude that M ≤ T/δ +1, where δ is
given in the proof of Theorem 4.2. This completes the proof of Theorem 4.6. �
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5. Convergence and approximation of Skorohod problems. In the first sub-
section of this section we prove the general convergence result for sequences of
Skorohod problems (see Theorem 5.1 stated below) referred to in Section 2. Then,
in the second subsection we explicitly construct, given (D,�,w), an approxi-
mating sequence {(Dn,�n,wn)} and, for each n, an explicit solution (xn, λn) to
the Skorohod problem for (Dn,�n,wn). We then prove that the constructed se-
quence {(xn, λn)} of solutions converges to a solution to the Skorohod problem for
(D,�,w).

5.1. Convergence of a sequence of solutions to Skorohod problems. Let T > 0
and let D ⊂ R

d+1 be a time-dependent domain satisfying (1.2). Let � = �t(z) be
a closed convex cone of vectors in R

d for every z ∈ ∂Dt , t ∈ [0, T ] and assume
that � satisfies (1.11) and (1.12). Let {Dn}∞n=1 be a sequence of time-dependent
domains Dn ⊂ R

d+1 and let {�n}∞n=1 = {�n
t (z)}∞n=1 be a sequence of closed con-

vex cones of vectors in R
d . Let w ∈ D([0, T ],R

d) with w0 ∈ D0 and let {wn}
with wn

0 ∈ Dn
0 be a sequence of càdlàg functions converging to w in the Skorohod

topology. Assume that there exists a solution (xn, λn) to the Skorohod problem for
(Dn,�n,wn). Then in Theorem 5.1 we prove, by making appropriate assumptions
on D, �, {Dn}∞n=1 and {�n}∞n=1, that if Dn → D and �n → � in the sense defined
in Theorem 5.1, then (xn, λn) converges to (x, λ) and (x, λ) is a solution to the
Skorohod problem for (D,�,w). However, to state Theorem 5.1, we need to in-
troduce some additional notions and notation. In particular, in the following we let
an
s,z and en

s,z be defined as in (1.15) and (1.17) but with respect to (Dn,�n). We
assume that Dn, for n ≥ 1, satisfies the uniform exterior sphere condition in time
with radius r0, independent of n, and that there exist 0 < ρ0 < r0 and η0 > 0 such
that, for all n ≥ 1,

inf
s∈[0,T ] inf

z∈∂Dn
s

an
s,z(ρ0, η0) = an > 0,(5.1)

sup
s∈[0,T ]

sup
z∈∂Dn

s

en
s,z(ρ0, η0) = en < 1.(5.2)

Furthermore, we let

ln(r) = sup
s,t∈[0,T ]
|s−t |≤r

sup
z∈Dn

s

d(z,Dn
t ),(5.3)

and we assume that

lim
r→0+ sup

n≥1
ln(r) = 0.(5.4)

Note also that if we define l̂n(r) as in (3.2) but with D replaced by Dn, then
Lemma 3.1 and (5.4) imply that

lim
r→0+ sup

n≥1
l̂n(r) = 0.(5.5)
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Moreover, we assume that there exists R̂ > 0 such that Dn
t ⊂ B(0, R̂) and Dt ⊂

B(0, R̂), for all n ≥ 1 and t ∈ [0, T ], and we let

R = 2 sup
t∈[0,T ]

sup
n

max{diam(Dn
t ),diam(Dt)},(5.6)

where diam(Dn
t ), diam(Dt) are the Euclidean diameters of the spatial regions Dn

t

and Dt , respectively. Recalling that the set G� was introduced in (1.12), we here
also introduce, for n ≥ 1,

G�n = {(s, z, γ ) :γ ∈ �n
t (z), z ∈ ∂Dn

s , s ∈ [0, T ]},(5.7)

and we let, whenever t ∈ [0, T ],
Gt = G� ∩ ([0, t] × BR(0) × S1(0)

)
,

(5.8)
Gn

t = G�n ∩ ([0, t] × BR(0) × S1(0)
)
.

In the following we need to measure the distance between the sets GT and Gn
T

and, hence, we introduce an appropriate Hausdorff distance for subsets of [0, T ]×
BR(0) × S1(0). In particular, we let, given (s, z, γ ) ∈ [0, T ] × BR(0) × S1(0) and
(ŝ, ẑ, γ̂ ) ∈ [0, T ] × BR(0) × S1(0),

E((s, z, γ ), (ŝ, ẑ, γ̂ )) = |s − ŝ| + |z − ẑ| + |γ − γ̂ |(5.9)

denote the (Euclidean) distance between (s, z, γ ) and (ŝ, ẑ, γ̂ ). Furthermore, based
on E, we define, given F1,F2 ⊆ [0, T ] × BR(0) × S1(0) and (s, z, γ ) ∈ [0, T ] ×
BR(0) × S1(0), the distances E((s, z, γ ),F1), E((s, z, γ ),F2) and E(F1,F2) in
the natural way. Furthermore, for F1 and F2 as above, we introduce a Hausdorff
distance between F1 and F2 as

H(F1,F2) = max{A,B},
A = sup{E((s, z, γ ),F2) : (s, z, γ ) ∈ F1},(5.10)

B = sup{E((ŝ, ẑ, γ̂ ),F1) : (ŝ, ẑ, γ̂ ) ∈ F2}.
In the following we say that Gn

T converges to GT if

H(Gn
T ,GT ) → 0 as n → ∞.(5.11)

Imposing the assumptions on D, � stated above and assuming (5.11), we can,
for example, ensure that if {(sn, zn)} is a sequence of points in R

d+1, sn ∈ [0, T ],
zn ∈ ∂Dn

sn
, limn→∞ sn = s ∈ [0, T ], limn→∞ zn = z ∈ ∂Ds , then

lim
n→∞h(�n

sn
(zn),�s(z)) = 0.(5.12)

To see this, we consider, for {(sn, zn)} and (s, z) given as above, (sn, zn, γ
n
sn

) ∈ Gn
T

and (s, z, γs) ∈ GT . Given (sn, zn, γ
n
sn

) ∈ Gn
T , we let (ŝn, ẑn, γ̂

n
ŝn

) ∈ GT be a point
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on GT which minimizes the distance, as defined in (5.9), from (sn, zn, γ
n
sn

) to GT .
Then,

|γ n
sn

− γs | ≤ E((sn, zn, γ
n
sn

), (s, z, γs))

≤ E((sn, zn, γ
n
sn

), (ŝn, ẑn, γ̂
n
ŝn

)) + E((ŝn, ẑn, γ̂
n
ŝn

), (s, z, γs))(5.13)

≤ H(GT ,Gn
T ) + E((ŝn, ẑn, γ̂

n
ŝn

), (s, z, γs)).

Hence,

h(�n
sn

(zn),�s(z)) ≤ H(GT ,Gn
T ) + Rn,(5.14)

where

Rn = max{An,Bn},
An = sup{E((ŝn, ẑn, γ̂

n
ŝn

), {(s, z,�s(z))}) : γ̂ n
ŝn

∈ �n
ŝn

(ẑn)},(5.15)

Bn = sup{E({(ŝn, ẑn,�
n
ŝn

(ẑn))}, (s, z, γs)) :γs ∈ �s(z)}.
As, by assumption, GT is closed, we can now first conclude that Rn → 0 as n →
∞, and then we find, using (5.11), that h(�n

sn
(zn),�s(z)) → 0 as n → ∞. This

completes the proof of (5.12). We are now ready to formulate our convergence
result.

THEOREM 5.1. Let T > 0 and let D ⊂ R
d+1 be a time-dependent domain

satisfying (1.2). Let � = �t(z) be a closed convex cone of vectors in R
d for every

z ∈ ∂Dt , t ∈ [0, T ], and assume that � satisfies (1.11) and (1.12). Let {Dn}∞n=1 be
a sequence of time-dependent domains Dn ⊂ R

d+1 satisfying (1.2) and a uniform
exterior sphere condition in time with radius r0 in the sense of (1.8). Let {�n}∞n=1 =
{�n

t (z)}∞n=1 be a sequence of closed convex cones �n = �n
t (z) of vectors in R

d for
every z ∈ ∂Dn

t , t ∈ [0, T ]. For all n ≥ 1, Dn and �n satisfy (5.1) and (5.2) for some
0 < ρ0 < r0, η0 > 0, an, en and, moreover, ((0, T ) × R

d) \ Dn has the (δ0, h0)-
property of good projections along �n, for some 0 < δ0 < ρ0, h0 > 1. Assume that
infn{an} > 0, supn{en} < 1 and (5.4) hold. Regarding the convergence Dn → D

and �n → �, assume that

lim
n→∞ sup

t∈[0,T ]
h(Dn

t ,Dt) = 0,(5.16)

lim
n→∞ sup

t∈[0,T ]
h(∂Dn

t , ∂Dt) = 0,(5.17)

and, with GT and Gn
T defined as in (5.8), that

Gn
T converges to GT in the sense of (5.11).(5.18)

Let wn ∈ D([0, T ],R
d) with wn

0 ∈ Dn
0 and assume that there exists a solution

(xn, λn) to the Skorohod problem for (Dn,�n,wn) such that xn ∈ Dρ0([0, T ],R
d)
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for all n ≥ 1. Assume that {wn} is relatively compact in the Skorohod topology and
that {wn} converges to w ∈ D([0, T ],R

d). Then {(xn, λn)} converges to (x, λ) ∈
D([0, T ],R

d) × B V([0, T ],R
d) and (x, λ) is a solution to the Skorohod problem

for (D,�,w) with x ∈ Dρ0([0, T ],R
d).

REMARK 5.2. We note that the formulation of Theorem 5.1 contains several
subtle points. First, we do not have to assume that the elements in the sequence
{�n}∞n=1 satisfy (1.11), (1.12) and (1.14). The reason for this (see Remark 4.4) is
that Theorem 4.2 holds, with constants independent of n, for each element in the
sequence {(wn, xn, λn)} even without these assumptions. Second, we only have to
impose very modest restrictions on D but, as can be seen in the proof below, we
have to assume that � = �t(z) satisfies (1.11) and (1.12).

PROOF OF THEOREM 5.1. As {wn} is relatively compact in the Skorohod
topology, we first note that Theorem 4.2 can be used to conclude the existence of
positive constants L1, L2, L3 and L4, independent of n, such that

‖xn‖t1,t2 ≤ L1‖wn‖t1,t2 + L2ln(t2 − t1),
(5.19)

|λn|t2 − |λn|t1 ≤ L3‖wn‖t1,t2 + L4ln(t2 − t1),

whenever 0 ≤ t1 ≤ t2 ≤ T . As {wn} converges to w ∈ D([0, T ],R
d), we also

see, using (5.4) and (5.19), that {(wn, xn, λn, |λn|)} is relatively compact in
D([0, T ],R

d) × D([0, T ],R
d) × D([0, T ],R

d) × D([0, T ],R+). Furthermore,
we know that xn

t ∈ Dn for all t ∈ [0, T ], n ≥ 1. Hence, {(xn, λn)} converges to
some (x, λ) ∈ D([0, T ],R

d) × D([0, T ],R
d). We intend to prove that (x, λ) ∈

D([0, T ],R
d) × B V ([0, T ],R

d) solves the Skorohod problem for (D,�,w) and
to do this, we have to prove that

λ ∈ B V ([0, T ],R
d),(5.20)

and we have to verify that

(D,�,w) and (x, λ) satisfy properties (1.5)–(1.7) in Definition 1.1.(5.21)

We begin by verifying (1.5) in Definition 1.1. To do this, we first note, using the
convergence properties of the Skorohod topology and the fact that (xn, λn) solves
the Skorohod problem for (Dn,�n,wn), that

xt = wt + λt(5.22)

for all points of continuity and, hence, since w, x and λ are càdlàg functions,
that (5.22) holds for all t ∈ [0, T ]. Hence, to verify (1.5) in Definition 1.1, it only
remains to ensure that xt ∈ Dt for all t ∈ [0, T ]. To do this, we first note, using
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Proposition 5.3 and Remark 5.4 in Chapter 3 of [30], that there exists a sequence
{t̃n} such that

t̃n → t, xn
t̃n

→ xt , xn

t̃−n
→ xt−,

(5.23)
λn

t̃n
→ λt , λn

t̃−n
→ λt− as n → ∞.

Furthermore, using the triangle inequality, (1.10), (5.16) and (5.23), we obtain

d(xt ,Dt) ≤ |xt − xn
t̃n
| + d(xn

t̃n
,Dn

t̃n
) + h(Dn

t̃n
,Dt̃n

) + h(Dt̃n
,Dt)

(5.24)
≤ |xt − xn

t̃n
| + h(Dn

t̃n
,Dt̃n

) + l(|t̃n − t |) → 0, as n → ∞.

This proves that xt ∈ Dt for all t ∈ [0, T ] and, hence, we have verified that
(wt , xt , λt ) satisfies (1.5). We next prove (5.20), that is, that λ ∈ B V ([0, T ],R

d).
To do this, we use an argument similar to the proof of Theorem 3.1 in [15], but,
as described below, our argument is more subtle due to the fact that we consider
sequences (Dn,�n,wn) where, in particular, Dn is time-dependent. Recall that
with R as introduced in (5.6), we have

sup
n

sup
t∈[0,T ]

|xn
t | < R, sup

t∈[0,T ]
|xt | < R.(5.25)

Let G�n
, Gt and Gn

t be as in (5.7) and (5.8). By the prerequisites of Theorem 5.1
(see Remark 5.2), we have that G� is closed. We next define a positive measure μn

on [0, T ] × BR(0) × S1(0) by setting, for every Borel set A ⊂ [0, T ] × BR(0) ×
S1(0),

μn(A) =
∫ T

0
χA∩Gn

T
(s, xn

s , γ n
s ) d|λn|s,(5.26)

where γ n
s ∈ �n,1

s (xn
s ) is as in (1.6)–(1.7) for the solution (xn, λn) to the Skorohod

problem for (Dn,�n,wn) and χA∩Gn
T

is the characteristic functions for the set
A ∩ Gn

T . We then first note that

|λn|t = μn(Gn
t ) whenever t ∈ [0, T ].(5.27)

We also note that the support of μn is contained in Gn
T in the sense that μn(A) = 0

whenever A ⊂ [0, T ] × BR(0) × S1(0) is such that A ∩ Gn
T = ∅. Using this, and

the fact that (1.6) holds for λn, we see that (5.27) implies that

λn
t =

∫
[0,t]×BR(0)×S1(0)

γ dμn(s, z, γ ) whenever t ∈ [0, T ].(5.28)

Next, using (5.4), (5.19), (5.27) and the fact that {wn} converges to w ∈
D([0, T ],R

d), we conclude that

sup
n

μn(Gn
T ) < ∞,(5.29)
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which implies that {μn} is a compact set of measures, on [0, T ] × BR(0) × S1(0),
in the sense of the weak∗-topology. Therefore, by the Banach–Alaoglu theorem,
we can conclude that {μn} converges in the weak∗-topology to a measure μ such
that

μ
([0, T ] × BR(0) × S1(0)

)
< ∞.(5.30)

Moreover, since (xn, λn) converges to (x, λ) in the sense of the Skorohod topology,
we obtain, using (5.28), that

λt =
∫
[0,t]×BR(0)×S1(0)

γ dμ(s, z, γ )(5.31)

for all t ∈ [0, T ] such that λt = λt− . However, as both sides of (5.31) are right
continuous, (5.31) holds for all t ∈ [0, T ]. Having proved (5.31), we see, also us-
ing (5.30), that λ is of bounded variation and, hence, (5.20) is proved. We next
claim that

λt =
∫
Gt

γ dμ(s, z, γ ),(5.32)

that is, we claim that the support of the measure μ is the set GT in the sense that
if A ⊂ [0, T ] × BR(0) × S1(0) is such that A ∩ GT = ∅, then μ(A) = 0. To see
this, we let (ŝ, ẑ, γ̂ ) ∈ [0, T ] × BR(0) × S1(0) \ GT and we see, as GT is closed,
that if we define, for η > 0, B((ŝ, ẑ, γ̂ ), η) := {(s, z, γ ) :E((s, z, γ ), (ŝ, ẑ, γ̂ )) <

η} ∩ [0, T ] × BR(0) × S1(0), then there exists η0 > 0 such that B((ŝ, ẑ, γ̂ ),2η0) ∩
GT = ∅. Recall that E is the distance function introduced in (5.9). Furthermore,
the above setup implies that E(B((ŝ, ẑ, γ̂ ), η0),GT ) > η0 and since

E(B((ŝ, ẑ, γ̂ ), η0),G
n
T ) ≥ E(B((ŝ, ẑ, γ̂ ), η0),GT ) − H(GT ,Gn

T ),(5.33)

we can use the assumption in (5.18) to conclude that there exists n0 ∈ N such that

E(B((ŝ, ẑ, γ̂ ), η0),G
n
T ) ≥ η0/2(5.34)

for all n ≥ n0. In particular, B((ŝ, ẑ, γ̂ ), η0) ∩ Gn
T = ∅ for all n ≥ n0. Hence,

μn(B((ŝ, ẑ, γ̂ ), η0)) = 0, for all n ≥ n0, and μ(B((ŝ, ẑ, γ̂ ), η0)) = 0 by the weak∗-
convergence of μn to μ. This completes the proof of (5.32). Having proved (5.20)
and (5.32), we see that

λt =
∫ t

0
γs d|λ|s whenever t ∈ [0, T ](5.35)

for some S1(0)-valued Borel measurable function γs and, to prove (1.6), we have
to prove that γs ∈ �1

s (xs) for all s ∈ [0, T ]. To prove this and to verify (1.7), we
consider the following two cases:

Case 1. t ∈ [0, T ] is such that xt − xt− 	= 0,
(5.36)

Case 2. t ∈ [0, T ] is such that xt − xt− = 0.
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Case 1. Note that Case 1 occurs for an at most countable set of jump times of x.
Moreover, in Case 1 it is enough to prove that

λt − λt− 	= 0 implies that xt ∈ ∂Dt and that λt − λt− ∈ �t(xt ).(5.37)

We first note, as we are assuming λt − λt− 	= 0, that |λn
t̃n

− λn

t̃−n
| > 0 for n suffi-

ciently large; see (5.23) . Furthermore, since (xn, λn) solves the Skorohod problem
for (Dn,�n,wn), we have that

xn
t̃n

∈ ∂Dn
t̃n
, λn

t̃n
− λn

t̃−n
∈ �n

t̃n
(xn

t̃n
).(5.38)

Combining (5.5), (5.17), (5.23) and (5.38), we obtain

d(xt , ∂Dt) ≤ |xt − xn
t̃n
| + d(xn

t̃n
, ∂Dn

t̃n
) + h(∂Dn

t̃n
, ∂Dt̃n

) + h(∂Dt̃n
, ∂Dt)

(5.39)
≤ |xt − xn

t̃n
| + h(∂Dn

t̃n
, ∂Dt̃n

) + l̂(|t̃n − t |) → 0 as n → ∞.

Hence, using (5.39), we can, since ∂Dt is closed, conclude that

xt ∈ ∂Dt .(5.40)

We next recall that the set G� , defined in (1.12), is, by assumption, closed. Fur-
thermore, arguing as in (5.39), we first see that

d(λt − λt−,�t (xt )) ≤ |(λt − λt−) − (λn
t̃n

− λn

t̃−n
)| + d(λn

t̃n
− λn

t̃−n
,�n

t̃n
(xn

t̃n
))

+ h(�n
t̃n
(xn

t̃n
),�t (xt ))(5.41)

≤ |λt − λn
t̃n
| + |λt− − λn

t̃−n
| + h(�n

t̃n
(xn

t̃n
),�t (xt )),

and then, letting n → ∞, it follows, using (5.12), that d(λt − λt−,�t (xt )) = 0.
Applying the fact that the set G� is closed, we can therefore conclude that

λt − λt− ∈ �t(xt ).(5.42)

This concludes the proof of (5.37) and, hence, we have verified (1.6)–(1.7) in
Case 1.

Case 2. To verify (1.6)–(1.7) in Case 2, we first see, by combining (5.32) and
(5.35), that ∫ t

0
γs d|λ|s =

∫
Gt

γ dμ(s, z, γ ) whenever t ∈ [0, T ].(5.43)

We next introduce a measure ν on [0, T ] by setting

ν([0, t]) = μ(Gt) whenever t ∈ [0, T ].(5.44)

Combining (5.43) and (5.44), it is clear that ν([0, t]) = 0 implies |λ|t = 0, showing
that |λ| is absolutely continuous with respect to ν. To simplify the notation, in the
following we let, for k ∈ N,

�k =
{
(t, z, γ ) ∈ GT : inf

s∈[0,T ]
(|t − s| + (|z − xs | ∧ |z − xs−|)) >

1

k

}
.(5.45)
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Then, using Theorem 1.2.1(iii) in [32], the fact that μ(U) ≤limn→∞μn(U) for all
open sets U and the fact that xn

t converges either to xt or xt− , we can conclude that

μ
({(t, z, γ ) ∈ GT : z 	= xt , z 	= xt−})

= lim
k→∞μ(�k) ≤ lim

k→∞ lim
n→∞

μn(�k)(5.46)

≤ lim
k→∞ lim

n→∞
μn

({
(t, z, γ ) ∈ GT : |z − xn

t | > 1

2k

})
= 0.

If xt = xt− ∈ Dt , then, since z ∈ ∂Dt for all (t, z, γ ) ∈ GT , we deduce that z 	= xt

and z 	= xt− . Hence, using (5.44) and (5.46), we first see that

ν({t ∈ [0, T ] :xt = xt−, xt ∈ Dt }) = 0,(5.47)

and then, by the absolute continuity of |λ| with respect to ν, we can conclude that

|λ|({t ∈ [0, T ] :xt = xt−, xt ∈ Dt }) = 0.(5.48)

In particular, (5.48) proves (1.7). Hence, it only remains to prove that γs , as defined
in (5.35), satisfies γs ∈ �1

s (xs) for all s ∈ [0, t] and t ∈ [0, T ]. From (5.43) and the
fact that (5.46) implies that

μ
({(s, z, γ ) ∈ Gt :xs = xs− 	= z}) = 0,(5.49)

we deduce that∫
{s∈[0,t] : xs=xs−}

γs d|λ|s =
∫
{(s,z,γ )∈Gt : z=xs=xs−}

γ dμ(s, z, γ )

=
∫
{s∈[0,t] : xs=xs−}

∫
�1

s (xs)
γp(s, xs, dγ ) dν,(5.50)

whenever t ∈ [0, T ]. Note that the last equality in (5.50) follows from the definition
of ν in (5.44). Here p(s, xs, ·) is a measure on the Borel σ -algebra of S1(0), con-
centrated on �1

s (xs) for dν-almost all s ∈ [0, T ] such that xs = xs− , and p(·, ·,A)

is a nonnegative Borel measurable function for every Borel set A. Then, since |λ|
is absolutely continuous with respect to ν, the Radon–Nikodym theorem asserts
the existence of a nonnegative Borel measurable function f such that

f (s)γs =
∫
�1

s (xs)
γp(s, xs, dγ ),

(5.51)
dν-a.e. for all s ∈ {s ∈ [0, t] :xs = xs−}.

From the assumption in (1.11) we deduce that f is strictly positive. Thus, by the
convexity of �s(xs) and the absolute continuity of |λ| with respect to ν, we con-
clude that

γs ∈ �1
s (xs), d|λ|-a.e. for all s ∈ {s ∈ [0, t] :xs = xs−}.(5.52)
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In particular, (5.52) verifies the second part in (1.6) and, hence, the proof in Case 2
is also complete.

Having completed the proof of Cases 1 and 2, we conclude that the proofs
of (5.20) and (5.21) are complete. Hence, to complete the proof of Theorem 5.1,
we only have to ensure that x ∈ Dρ0([0, T ],R). However, this follows from the
assumption that xn ∈ Dρ0([0, T ],R) for all n ≥ 1 and from the fact that xn → x in
the Skorohod topology. �

5.2. Convergence of a sequence of solutions to approximating Skorohod prob-
lems. Let T > 0 and let D ⊂ R

d+1 be a time-dependent domain satisfying (1.2),
(1.10) and a uniform exterior sphere condition in time with radium r0 in the sense
of (1.8). Let � = �t(z) be a closed convex cone of vectors in R

d for every z ∈ ∂Dt ,
t ∈ [0, T ], and assume that � satisfies (1.11), (1.12) and (1.14). Assume that
(1.18) and (1.19) hold for some 0 < ρ0 < r0, η0 > 0, a and e. Finally, assume
that ([0, T ] × R

d) \ D has the (δ0, h0)-property of good projections along �, for
some 0 < δ0 < ρ0, h0 > 1 and let w ∈ D(δ0/4∧ρ0/(4h0))([0, T ],R

d) with w0 ∈ D0.
The purpose of this subsection is to construct a sequence of solutions to Sko-
rohod problems which approximate the Skorohod problem for (D,�,w). Based
on this sequence, in the next section we conclude the existence of a solution
(x, λ) to the Skorohod problem for (D,�,w), in the sense of Definition 1.1, with
x ∈ Dρ0([0, T ],R

d). This will then complete the proof of Theorem 1.2. To pro-
ceed, we let n ∈ N, n � 1, and we let {εn} be a sequence of real numbers which
tends to 0 as n → ∞. Then, for each n, we can find a partition �n = {τn

k }Nn

k=0 of the
interval [0, T ], that is, 0 = τn

0 < τn
1 < · · · < τn

Nn−1 < τn
Nn

= T , such that (5.53)–
(5.56) stated below hold. In particular,

lim
n→∞�∗

n = 0 where �∗
n := max

k∈{1,...,Nn−1} τ
n
k+1 − τn

k ,(5.53)

and, for some n0 � 1,

‖w‖τn
k ,τn

k+1
+ l(�∗

n) < min
{
δ0

2
,

ρ0

2h0

}
(5.54)

whenever n ≥ n0, k ∈ {0, . . . ,Nn − 1}.
Furthermore, we define w�n = w

�n
t , t ∈ [0, T ], as

w
�n
t = w

τ
�n
k

whenever t ∈ [τn
k , τn

k+1), k ∈ {0, . . . ,Nn − 1},(5.55)

and w
�n

T = wT , so that

w�n ∈ D(δ0/4∧ρ0/(4h0))([0, T ],R
d),

(5.56)
w

�n

0 ∈ D0 and dD([0, T ],w�n,w) ≤ εn.

In particular, w�n ∈ D([0, T ],R
d) is a step function which approximates w in

the Skorohod topology. Given �n and w�n , we define D�n and ��n as in (2.6).
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Furthermore, to obtain a more simple notation, from now on we write wn, Dn and
�n for w�n , D�n and ��n . Then, given wn, Dn and �n as above, we next define
a pair of processes (xn, λn) as follows. Let

xn
t = w0, λn

t = 0 for t ∈ [0, τn
1 ).(5.57)

If xn
τn
k−1

∈ Dn
τn
k−1

for some k ∈ {1, . . . ,Nn}, then, by the triangle inequality

and (5.54),

d(xn
τn
k−1

+ wn
τn
k

− wn
τn
k−1

,Dn
τn
k
) ≤ ‖wn‖τn

k−1,τ
n
k

+ l(�∗
n) < δ0.(5.58)

Hence, by the (δ0, h0)-property of good projections, it follows that if xn
τn
k−1

+wn
τn
k
−

wn
τn
k−1

/∈ Dn
τn
k

, then there exists a point

π
�n

τn
k

∂Dn
τn
k

(xn
τn
k−1

+ wn
τn
k

− wn
τn
k−1

) ∈ ∂Dn
τn
k
,(5.59)

which is the projection of xn
τn
k−1

+wn
τn
k

−wn
τn
k−1

onto ∂Dn
τn
k

along �τn
k

. Furthermore,

if xn
τn
k−1

+ wn
τn
k

− wn
τn
k−1

∈ Dn
τn
k

, then we let

π
�n

τn
k

∂Dn
τn
k

(xn
τn
k−1

+ wn
τn
k

− wn
τn
k−1

) = xn
τn
k−1

+ wn
τn
k

− wn
τn
k−1

.(5.60)

Based on this argument, we define, whenever t ∈ [τn
k , τn

k+1), k ∈ {1, . . . ,Nn − 1},

xn
t = π

�n
τn
k

∂Dn
τn
k

(xn
τn
k−1

+ wn
τn
k

− wn
τn
k−1

),

(5.61)
λn

t = λn
τn
k−1

+ (
xn
t − (xn

τn
k−1

+ wn
τn
k

− wn
τn
k−1

)
)
,

and, finally, we define xn
T and λn

T using (5.61) by simply setting k = Nn in (5.61).
Note that in this way we have xn

τn
k−1

∈ Dn
τn
k−1

for all k ∈ {1, . . . ,Nn}. Next, again

using the (δ0, h0)-property of good projections, we see that

|xn
τn
k

− xn
τn
k−1

| ≤ |π
�n

τn
k

∂Dn
τn
k

(xn
τn
k−1

+ wn
τn
k

− wn
τn
k−1

) − (xn
τn
k−1

+ wn
τn
k

− wn
τn
k−1

)|

+ |wn
τn
k

− wn
τn
k−1

|
≤ h0d(xn

τn
k−1

+ wn
τn
k

− wn
τn
k−1

,Dn
τn
k
) + |wn

τn
k

− wn
τn
k−1

|(5.62)

≤ h0
(‖wn‖τn

k−1,τ
n
k

+ l(�∗
n)

) + ‖wn‖τn
k−1,τ

n
k

≤ h0

(
ρ0

2h0

)
+ δ0

4
< ρ0.

Hence, xn ∈ Dρ0([0, T ],R
d). Using this notation, we next prove the following

theorem.
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THEOREM 5.3. Let T > 0, D ⊂ R
d+1, r0, � = �t(z), 0 < ρ0 < r0, η0 > 0, a,

e, δ0 and h0 be as in the statement of Theorem 1.2. Let w be as in the statement
of Theorem 1.2 and let wn, Dn, �n, xn and λn be defined as above for n ≥ 1.
Then (xn, λn) is a solution to the Skorohod problem for (Dn,�n,wn) and xn ∈
Dρ0([0, T ],R

d) for all n ≥ n0 for some n0 ∈ N. Moreover, {(xn, λn)} converges to
(x, λ) ∈ D([0, T ],R

d) × B V ([0, T ],R
d) and (x, λ) is a solution to the Skorohod

problem for (D,�,w). Furthermore, x ∈ Dρ0([0, T ],R
d).

REMARK 5.4. Note that for Theorem 5.3 we, in contrast to in Theorem 5.1,
also need to assume (1.14) in order to be able complete the proof [see (5.69) be-
low].

PROOF OF THEOREM 5.3. (xn, λn) is, by construction, a solution to the Sko-
rohod problem for (Dn,�n,wn) and the statement that xn ∈ Dρ0([0, T ],R

d) for
all n ≥ n0, for some n0 ∈ N, is proved in (5.62). Next, using Theorem 4.6, we can
conclude the existence of some positive constants L̂1(w,T ), L̂2(w,T ), L̂3(w,T )

and L̂4(w,T ) such that

‖xn‖t1,t2 ≤ L̂1(w,T )‖w‖t1,t2 + L̂2(w,T )
(
l(t2 − t1) + l(�∗

n)
)
,

(5.63)
|λn|t2 − |λn|t1 ≤ L̂3(w,T )‖w‖t1,t2 + L̂4(w,T )

(
l(t2 − t1) + l(�∗

n)
)
,

whenever 0 ≤ t1 ≤ t2 ≤ T . In particular, note that by choosing n0 sufficiently large
we can ensure, using (5.53), that l(�∗

n) ≤ ρ0/(4(K2(a, e) + 1)) and that (4.68)
holds for all n ≥ n0. Hence, Theorem 4.6 is applicable. Based on (5.63), we can
now argue as in the proof of Theorem 5.1. In particular, as {wn} converges to w ∈

D([0, T ],R
d), we see, using (5.63), that {(wn, xn, λn, |λ|n)} is relatively compact

in D([0, T ],R
d) × D([0, T ],R

d) × D([0, T ],R
d) × D([0, T ],R+). Furthermore,

we know that xn
t ∈ Dn for all t ∈ [0, T ], n ≥ 1. Hence, {(xn, λn)} converges to

some (x, λ) ∈ D([0, T ],R
d) × D([0, T ],R

d). We intend to prove that (x, λ) ∈
D([0, T ],R

d) × B V ([0, T ],R
d) solves the Skorohod problem for (D,�,w) and,

to do this, we have to prove that

λ ∈ B V([0, T ],R
d),(5.64)

and we have to verify

properties (1.5)–(1.7) in Definition 1.1.(5.65)

The proof of (5.64) and (5.65) follows along the lines of the proof of (5.20)
and (5.21) in Theorem 5.1 and we shall only outline the main differences between
the proofs. To start with, the statements in (5.22) and (5.23) remain true. How-
ever, the argument in (5.24) has to be changed. In particular, in this case we see,
using (5.23) and (5.53), that

d(xt ,Dt) ≤ |xt − xn
t̃n
| + h(Dn

t̃n
,Dt̃n

)

(5.66)
+ l(|t̃n − t |) + l(�∗

n) → 0 as n → ∞,
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which, since Dt is closed, proves that xt ∈ Dt , for all t ∈ [0, T ]. Hence, we have
verified that (wt , xt , λt ) satisfies (1.5). Next, arguing as in (5.25)–(5.35), using
(5.63) to conclude (5.29), we can conclude that (5.64) holds and that

λt =
∫ t

0
γs d|λ|s =

∫
Gt

γ dμ(s, z, γ ) whenever t ∈ [0, T ](5.67)

for some S1(0)-valued Borel measurable function γs . Hence, to prove (1.6), we
again have to prove that γs ∈ �1

s (xs) for all t ∈ [0, T ]. As in the proof of Theo-
rem 5.1, we consider Case 1 and Case 2. In fact, Case 2 can be handled exactly as
in the proof of Theorem 5.1 and hence shall only discuss the proof of Case 1. To
prove Case 1, we first see that the statements in (5.37) and (5.38) can be repeated
and, arguing as in (5.66), we obtain

d(xt , ∂Dt) ≤ |xt − xn
t̃n
| + h(∂Dn

t̃n
, ∂Dt̃n

)
(5.68)

+ l̂(|t̃n − t |) + l̂(�∗
n) → 0 as n → ∞.

Hence, since ∂Dt is closed, we can conclude that xt ∈ ∂Dt . To proceed, we deduce
as in (5.41) that

d(λt − λt−,�t (xt )) ≤ |λt − λn
t̃n
| + |λt− − λn

t̃−n
| + h(�n

t̃n
(xn

t̃n
),�t (xt )).(5.69)

Obviously the first two terms on the right-hand side in (5.69) tend to zero as n →
∞. Concerning the third term, we first note that there exists, for n large enough,
some integer k(n) such that

�n
t̃n
(xn

t̃n
) = �n

τn
k(n)

(
xn
τn
k(n)

)
.(5.70)

Hence, as |t̃n − τn
k(n)| ≤ l(�∗

n), we can conclude, using (5.23), that τn
k(n) → t as

n → ∞. Moreover, as xn
τn
k(n)

= xn
t̃n

, we can also use (5.23) to conclude that xn
τn
k(n)

→
xt as n → ∞. In particular, based on these conclusions, it follows from (1.14)
that also the third term on the right-hand side in (5.69) tends to zero as n → ∞.
Hence, having proved that d(λt − λt−,�t (xt )) = 0, the proof of Case 1 can now
be completed as in Theorem 5.1.

Having completed the proof of Cases 1 and 2, we can conclude that the proofs
of (5.64) and (5.65) are complete. Hence, to complete the proof of Theorem 5.3,
we only have to ensure that x ∈ Dρ0([0, T ],R

d). However, again this follows from
the fact that xn ∈ Dρ0([0, T ],R

d) for all n ≥ n0 and from the fact that xn → x in
the Skorohod topology. �

6. Proof of Theorems 1.2, 1.3 and 1.9.

PROOF OF THEOREM 1.2. Theorem 1.2 now follows immediately from The-
orem 5.3. �
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PROOF OF THEOREM 1.3. Using Theorem 4.2 and (1.10), we see that

lim
t2→t1

|xt2 − xt1 | ≤ lim
t2→t1

‖x‖t1,t2

≤ lim
t2→t1

(
L1‖w‖t1,t2 + L2l(|t2 − t1|))(6.1)

≤ 0 + L2 lim
t2→t1

l(|t2 − t1|) = 0.

This proves that x is continuous. �

PROOF OF THEOREM 1.9. Let W be a m-dimensional Wiener process on a
filtered probability space (�, F ,{Ft },P ) and in the following let Wt , t ∈ [0, T ],
be a continuous path of W . We define, for n ∈ N, n � 1, k ∈ {0,1, . . . ,2n − 1},

Dn
t = DkT/2n,

(6.2)
�n

t = �kT/2n whenever t ∈ [kT /2n, (k + 1)T /2n),

and Dn
T = DT ,�n

T = �T . Furthermore, we recursively define three processes Xn =
Xn

t , Zn = Zn
t and �n = �n

t , for t ∈ [0, T ], in the following way. Let

Xn
0 = ẑ, Zn

0 = ẑ, �n
0 = 0,(6.3)

and let, for k ∈ {0,1, . . . ,2n − 1},

Zn
(k+1)T /2n = Zn

kT/2n + T

2n
b(kT /2n,Xn

kT/2n)

+ σ(kT /2n,Xn
kT/2n)

(
W(k+1)T /2n − WkT/2n

)
,(6.4)

Xn
(k+1)T /2n = π

�(k+1)T /2n

∂D(k+1)T /2n

(
Xn

kT/2n + Zn
(k+1)T /2n − Zn

kT/2n

)
.

We here have to make sure that Xn
(k+1)T /2n is well defined. To do this, we note

that, either Xn
kT/2n + Zn

(k+1)T /2n − Zn
kT/2n ∈ Dn

(k+1)T /2n or Xn
kT/2n + Zn

(k+1)T /2n −
Zn

kT/2n ∈ R
d \Dn

(k+1)T /2n . In the first case we identify the projection with the point
itself, whereas, in the latter case, we have to assert the existence of appropriate
projections onto ∂Dn

(k+1)T /2n . However, assuming Xn
kT/2n ∈ Dn

kT/2n , we see that

d
(
Xn

kT/2n + Zn
(k+1)T /2n − Zn

kT/2n,D
n
(k+1)T /2n

)
≤ l(T /2n) + ∣∣Zn

(k+1)T /2n − Zn
kT/2n

∣∣(6.5)

≤ l(T /2n) + (T /2n)
(
sup
D

|b|
)

+
(
sup
D

‖σ‖
)∣∣W(k+1)T /2n − WkT/2n

∣∣.
Hence, since Wt is a continuous path, there must exist some n0 ∈ N such that

d
(
Xn

kT/2n + Zn
(k+1)T /2n − Zn

kT/2n,D
n
(k+1)T /2n

)
< δ0,(6.6)
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whenever n ≥ n0 and k ∈ {0,1, . . . ,2n − 1}. By (6.6) and the (δ0, h0)-property of

good projections, it follows that the projection π
�(k+1)T /2n

∂D(k+1)T /2n
(Xn

kT/2n +Zn
(k+1)T /2n −

Zn
kT/2n) is well defined, for n ≥ n0 , whenever Xn

kT/2n + Zn
(k+1)T /2n − Zn

kT/2n ∈
R

d \ Dn
(k+1)T /2n . Furthermore, using the definition of Zn

(k+1)T /2n in (6.4), we also
see that ∣∣Zn

(k+1)T /2n − Zn
kT/2n

∣∣ ≤ l(T /2n) + (T /2n)
(
sup
D

|b|
)

(6.7)
+

(
sup
D

‖σ‖
)∣∣W(k+1)T /2n − WkT/2n

∣∣,
and, hence, once more using that Wt is a continuous path, we can ensure that

(i) Zn ∈ D(δ0/4∧ρ0/(4h0))([0, T ],R
d),

(6.8)
(ii) h0

(‖Zn‖kT /2n,(k+1)T /2n + l(�∗
n)

) + ‖Zn‖kT /2n,(k+1)T /2n ≤ ρ0,

whenever n ≥ n0 and k ∈ {0,1, . . . ,2n − 1}. We next let, for k ∈ {0,1, . . . ,2n − 1},
�n

(k+1)T /2n = �n
kT/2n + Xn

(k+1)/2n − Xn
kT/2n − Zn

(k+1)T /2n + Zn
kT/2n.(6.9)

Finally, we define, for kT /2n ≤ t < (k + 1)T /2n, k ∈ {0,1, . . . ,2n − 1},
Xn

t = Xn
kT/2n, Zn

t = Zn
kT/2n, �n

t = �n
kT/2n.(6.10)

Then, by arguing as in the proof of (5.62), using (i) and (ii) in (6.8), we can con-
clude that

Xn ∈ Dρ0([0, T ],R
d) whenever n ≥ n0.(6.11)

Furthermore, using the definitions above, it is clear that

Zn
t = ẑ +

∫ t

0
b(s,Xn

s ) ds +
∫ t

0
σ(s,Xn

s ) dWs − εn(t),(6.12)

where

sup
t∈[0,T ]

|εn(t)| ≤
(
sup
D

|b|
) T

2n
+

(
sup
D

‖σ‖
)

sup
0≤s≤t≤T ,

|s−t |≤T/2n

|Wt − Ws |.(6.13)

By construction, (Xn,�n) solves the Skorohod problem for (Dn,�n,Zn) and us-
ing Theorem 4.6, we can conclude that there exist positive constants L̂1(Z,T ),
L̂2(Z,T ), L̂3(Z,T ) and L̂4(Z,T ), independent of n, for n ≥ n0, such that

‖Xn‖t1,t2 ≤ L̂1(Z,T )‖Z‖t1,t2 + L̂2(Z,T )
(
l(t2 − t1) + l(T /2n)

)
,

(6.14)
|�n|t2 − |�n|t1 ≤ L̂3(Z,T )‖Z‖t1,t2 + L̂4(Z,T )

(
l(t2 − t1) + l(T /2n)

)
,

whenever 0 ≤ t1 ≤ t2 ≤ T and n ≥ n0. Hence, the sequence {(Zn,Xn,�n)} is
relatively compact in the Skorohod topology and we can conclude, by the con-
struction of Zn and (6.12)–(6.13), that also the sequence {(W,Zn,Xn,�n, εn)}
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is relatively compact in the Skorohod topology. In fact, as this argument can
be repeated for each continuous path of Wt , it follows, by considering conver-
gent subsequences if necessary, that the sequence of vector valued processes
{(W,Zn,Xn,�n, εn)} defined on (�, F ,P ) converges in law to a stochastic
process (W,Z,X,�,0). Furthermore, using the Skorohod representation theorem
(see, e.g., [7] and [30]), there exists a complete probability space (�̃, F̃ , P̃ ) and
versions {(W̃ n, Z̃n, X̃n, �̃n, ε̃n)} and (W̃ , Z̃, X̃, �̃,0) of {(W,Zn,Xn,�n, εn)}
and (W,Z,X,�,0) on (�̃, F̃ , P̃ ), such that {(W̃ n, Z̃n, X̃n, �̃n, ε̃n)} converges to
(W̃ , Z̃, X̃, �̃,0) P̃ -almost surely. Moreover, using Theorem 5.3 and the fact that
(X̃n, �̃n) solves, P̃ -almost surely, the Skorohod problem for (Dn,�n, Z̃n), it fol-
lows that (X̃, �̃) solves, P̃ -almost surely, the Skorohod problem for (D,�, Z̃). In
particular, (X̃, �̃) ∈ D([0, T ],R

d) × B V ([0, T ],R
d) and

X̃t = ẑ + Z̃t + �̃t ,(6.15)

�̃t =
∫ t

0
γs d|�̃|s, γs ∈ �s(X̃s) ∩ S1(0), d|�̃|-a.e.,(6.16)

X̃t ∈ Dt, d|�̃|({t ∈ [0, T ] : X̃t ∈ Dt }) = 0(6.17)

holds P̃ -almost surely whenever t ∈ [0, T ]. We next want to verify that

Z̃t =
∫ t

0
b(s, X̃s) ds +

∫ t

0
σ(s, X̃s) dW̃s(6.18)

holds P̃ -almost surely whenever t ∈ [0, T ]. Indeed, using (6.12) and (6.13), we
can, following [15], simply quote Theorem 2.2 in [39], which in our case states that
since {(σ (s, X̃n

s ), W̃ n
s )} converges to (σ (s, X̃s), W̃s) P̃ -almost surely whenever s ∈

[0, T ], ∫ t

0
σ(s, X̃n

s ) dW̃n
s converges to

∫ t

0
σ(s, X̃s) dW̃s,

(6.19)
P̃ -almost surely,

whenever t ∈ [0, T ], as n → ∞. This proves (6.18). Now let F̃t and F̃ n
t be

the σ -algebras generated by {W̃s : s ≤ t} and {W̃n
s : s ≤ t}, respectively. We next

prove that W̃ is a m-dimensional Wiener process on the filtered probability space
(�̃, F̃ ,{F̃t }, P̃ ). To obtain this, we first note that the σ -algebra generated by
{W̃n

s − W̃n
t : s ≥ t}, for t ∈ [0, T ], is independent of F̃ n

t . Furthermore, since W̃n →
W̃ P̃ -almost surely, it follows that the σ -algebra generated by {W̃s − W̃t : s ≥ t},
for t ∈ [0, T ], is independent of F̃t . In particular, {W̃t : t ∈ [0, T ]} is a martin-
gale with respect to {F̃t : t ∈ [0, T ]} and P̃ . Now let W̃n

t = (W̃
n,1
t , . . . , W̃

n,m
t ) and

W̃t = (W̃ 1
t , . . . , W̃m

t ). Then, using essentially the same argument as in (6.19), we
also see that W̃n,iW̃ n,j → W̃ iW̃ j , P̃ -almost surely, for all i, j ∈ {1, . . . ,m}, and,
hence, as above, we can conclude that {W̃ i

t W̃
j
t − δij t : t ∈ [0, T ]}, with δij being
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the Kronecker delta, is a martingale with respect to {F̃t : t ∈ [0, T ]} and P̃ . By the
Lévy characterization of Wiener processes (see, e.g., Theorem II.6.1 in [34]), we
can thus conclude that W̃ is a m-dimensional Wiener process on (�̃, F̃ ,{F̃t }, P̃ ).
To finally conclude that (X̃, �̃) is a weak solution in the sense of Definition 1.8,
and hence to complete the proof of Theorem 1.9, it only remains to prove the ex-
istence of a version of X̃ on (�̃, F̃ , P̃ ), denoted X̂, such that X̂ ∈ C([0, T ],R

d),
P̃ -almost surely. However, using standard arguments, we first note that there exists
a version of Z̃ on (�̃, F̃ , P̃ ), denoted Ẑ, such that Ẑ ∈ C([0, T ],R

d), P̃ -almost
surely, and such that (X̃, �̃) solves, P̃ -almost surely, the Skorohod problem for
(D,�, Ẑ). Furthermore, by (6.11), it is clear that X̃ ∈ Dρ0([0, T ],R

d). Hence, by
Theorem 1.3, X̃ is continuous P̃ -almost surely. This completes the proof of Theo-
rem 1.9. �

APPENDIX: GEOMETRY OF TIME-DEPENDENT DOMAINS

Concerning the (δ0, h0)-property of good projections along �, the following
result follows immediately from Theorem 4.1 in [15].

LEMMA A.1. Let T > 0 and let D ⊂ R
d+1 be a time-dependent domain sat-

isfying (1.2) and a uniform exterior sphere condition in time with radius r0 in the
sense of (1.8). Let � = �t(z) be a closed convex cone of vectors in R

d for every
z ∈ ∂Dt , t ∈ [0, T ] and assume that � satisfies (1.11) and (1.12). Assume that there
exists a continuous map Q :GN → R

d such that

Q(t, z,Nt(z)) = �t(z) for all z ∈ ∂Dt, t ∈ [0, T ],
Q(t, z, λv) = λQ(t, z, v)(A.1)

for all λ ≥ 0, v ∈ Nt(z), z ∈ ∂Dt , t ∈ [0, T ].
Moreover, assume that

sup
t∈[0,T ],z∈∂Dt

max
v∈N1

t (z)

|Q(t, z, v)| := ‖Q‖ < ∞,

(A.2)
inf

t∈[0,T ],z∈∂Dt

min
v∈N1

t (z)
v · Q(t, z, v) := q > 0.

Let

δ0 := r0
(
1 −

√
1 − (q/‖Q‖)2

)
,

(A.3)

h0 := q/‖Q‖
1 −

√
1 − (q/‖Q‖)2

.

Then ([0, T ] × R
d) \ D has the (δ0, h0)-property of good projections along �.
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Note that in Lemma A.1 we have that q/‖Q‖ < 1, 0 < δ0 < r0 and h0 > 1 by
construction. To continue, given T > 0 and D as above, we say that D is a H1+α-
domain if we can find a ρ > 0 such that, for all z0 ∈ ∂Dt0 , t0 ∈ [0, T ], there exists
a function ψ(t, z), ψ ∈ H1+α(Cρ(t0, z0)), with the properties

D ∩ Cρ(t0, z0) = {ψ(t, z) > 0} ∩ Cρ(t0, z0),

∂D ∩ Cρ(t0, z0) = {ψ(t, z) = 0} ∩ Cρ(t0, z0),(A.4)

inf
(t,z)∈∂D∩Cρ(t0,z0)

|∇zψ(t, z)| > 0

for all (t, z) ∈ (0, T ) × R
d .

LEMMA A.2. Let T > 0 and let D ⊂ R
d+1 be a time-dependent domain sat-

isfying (1.2) and a uniform exterior sphere condition in time with radius r0 in the
sense of (1.8). Assume, in addition, that D is a H1+α-domain for some α ∈ (0,1].
Let � = �t(z) be, for every z ∈ ∂Dt , t ∈ [0, T ], a closed convex cone of vectors
in R

d with the specific form {λγt (z) :λ > 0}, for some S1(0)-valued function γt (z)

which is uniformly continuous, in both space and time, and satisfies

β = inf
t∈[0,T ] inf

z∈∂Dt

〈γt (z), nt (z)〉 > 0.(A.5)

Then D satisfies (1.18) and (1.19) and

l(r) ≤ Lrα̃ whenever r ∈ [0, T ](A.6)

for some 0 < L < ∞ and with α̃ = (1 + α)/2 ∈ (0,1].

PROOF. By the uniform continuity of γt (z) in space and time, it is clear that
the variation of γt (z) can be made arbitrarily small on temporal neighborhoods.
Following Proposition 2.5 in [15], it therefore immediately follows that crite-
ria (1.18) and (1.19) are satisfied for some 0 < ρ0 < r0 and η0 > 0. Hence, it
remains to prove (A.6) and we note that it suffices to prove (A.6) for small values
of r . Let z ∈ R

d be arbitrary and let zs ∈ ∂Ds be such that |z − zs | = d(z, ∂Ds).
We now claim that

z − zs ‖ ns(zs)(A.7)

or, in other words, that z − zs and ns(zs) are parallel. To prove this claim, we can
assume, without loss of generality, that zs = 0. As D is a time-dependent domain
of class H1+α , we can assume the existence of a function ψ , with property (A.4),
such that {ψ(s, y) = 0 :y ∈ Bρ(0)∩∂Ds}, where Bρ(0) is a (spatial) neighborhood
of the origin with the radius ρ as given in the definition of H1+α-domains. We
consider the minimization problem

min
y∈Bρ(0)∩∂Ds

|z − y|2.(A.8)
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Then, as the minimum in (A.8) is realized at the origin, we see that z = λ∇ψ(s,0)

for some Lagrange multiplier λ. Obviously, this proves (A.7). Next, by Lemma 3.1,
we see that, for r < ρ ∧ r0,

l(r) = sup
s,t∈[0,T ]
|s−t |≤r

sup
z∈Ds

d(z,Dt) = sup
0≤s≤t≤T

|s−t |≤r

|zt − zs |(A.9)

for some zs ∈ ∂Ds , zt ∈ ∂Dt such that

zt − zs ‖ ns(zs)(A.10)

and |zt − zs | < ρ ∧ r0. Furthermore, employing once more the fact that D is a
time-dependent domain of class H1+α , we conclude the existence of a function ψ ,
with the property ψ(s, zs) = ψ(t, zt ) = 0, which is continuously differentiable in
space. Taylor expanding ψ up to the first order in spatial coordinates, we obtain,
by the H1+α-regularity of ψ ,

ψ(t, zt ) − ψ(s, zs) = ψ(t, zt ) − ψ(s, zt ) + ψ(s, zt ) − ψ(s, zs)

= ψ(t, zt ) − ψ(s, zt ) + 〈zt − zs,∇zψ(s, zs)〉(A.11)

+ O(|zt − zs |1+α).

As ns(zs) = ∇zψ(s,zs)
|∇zψ(s,zs)| , it follows from (A.9)–(A.11) that

l(r) = sup
0≤s≤t≤T

|s−t |≤r

|zt − zs | = sup
0≤s≤t≤T

|s−t |≤r

|〈zt − zs,∇zψ(s, zs)〉|
|∇zψ(s, zs)|

(A.12)

≤ sup
0≤s≤t≤T

|s−t |≤r

|ψ(t, zt ) − ψ(s, zt )|
|∇zψ(s, zs)| + sup

0≤s≤t≤T

|s−t |≤r

O(|zt − zs |1+α)

|∇zψ(s, zs)| .

Furthermore, for small r , we can assume, without loss of generality, that for some
δ > 0 independent of (s, zs) we have |∇zψ(s, zs)| ≥ δ. Hence, by the H1+α-
regularity of ψ and the definition of l, we see that

l(r) ≤ cδ−1(
r(α+1)/2 + l(r)1+α)

,(A.13)

provided r < ρ ∧ r0. Finally, since l(r) → 0 as r → 0, there exists ε > 0 such that
if r ≤ ε, then cδ−1l(r)α ≤ 1/2. Combining these facts, we conclude that

l(r) ≤ Lr(α+1)/2(A.14)

for some constant L. Hence, (A.6) holds with α̃ = (α + 1)/2. �

REMARK A.3. In the following let C 1
b and C 2

b be spaces containing all func-
tions with bounded derivatives up to orders one and two, respectively. Consider a
bounded spatial domain � ⊂ R

d which is C 1
b -smooth and satisfies a uniform ex-

terior sphere condition. Moreover, assume that the cone of directions of reflection
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�(z) has the specific form {λγ (z) :λ > 0}, for some S1(0)-valued function γ (z)

which is continuous and satisfies

β := inf
z∈∂�

〈γ (z), n(z)〉 > 0.(A.15)

Then Proposition 2.5 in [15] states that the time-independent counterparts of crite-
ria (1.18) and (1.19) are satisfied. Furthermore, Theorem 4.5 in [15] states that the
time-independent counterparts of (1.18) and (1.19) are also satisfied for piecewise

C 1
b -smooth domains � if the function γ (z) is uniformly continuous on each face

of ∂� and satisfies some nondegeneracy and consistency criteria. Finally, we also
mention Theorem 4.6 in [15] which states that unique projections may be found
if � is a piecewise C 2

b -smooth domain and if γ (z) is Lipschitz continuous on each
face of ∂� and satisfies some other nondegeneracy and consistency criteria.
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