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Group therapy is a central treatment modality for behavioral health dis-
orders such as alcohol and other drug use (AOD) and depression. Group
therapy is often delivered under a rolling (or open) admissions policy, where
new clients are continuously enrolled into a group as space permits. Rolling
admissions policies result in a complex correlation structure among client
outcomes. Despite the ubiquity of rolling admissions in practice, little guid-
ance on the analysis of such data is available. We discuss the limitations
of previously proposed approaches in the context of a study that delivered
group cognitive behavioral therapy for depression to clients in residential sub-
stance abuse treatment. We improve upon previous rolling group analytic ap-
proaches by fully modeling the interrelatedness of client depressive symptom
scores using a hierarchical Bayesian model that assumes a conditionally au-
toregressive prior for session-level random effects. We demonstrate improved
performance using our method for estimating the variance of model parame-
ters and the enhanced ability to learn about the complex correlation structure
among participants in rolling therapy groups. Our approach broadly applies
to any group therapy setting where groups have changing client composition.
It will lead to more efficient analyses of client-level data and improve the
group therapy research community’s ability to understand how the dynamics
of rolling groups lead to client outcomes.

1. Introduction.

1.1. Group therapy. Group therapy is a central treatment modality for be-
havioral health disorders, such as alcohol and other drug use (AOD) disorders
[Kadden et al. (2001); Kadden and Litt (2004); Monti et al. (2002); Crits-Christoph
et al. (1999); Wells et al. (1994)] and depression [Thompson et al. (1983);
Neimeyer et al. (1989); Robinson, Berman and Neimeyer (1990); Bright, Baker
and Neimeyer (1999)]. Most community-based behavioral health treatment is pro-
vided in groups. Its therapeutic strengths include group members having opportu-
nities to develop and practice new social skills and behaviors, receiving feedback
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from other group members, learning from the shared experiences of other group
members, and providing a recovery network to clients [Neimeyer et al. (1989);
Satterfield (1994)]. Group therapy is especially relevant for treatment providers in
light of rising costs, as group therapy has clear economic advantages over indi-
vidual therapy [Jacobs and Goodman (1989); Bright, Baker and Neimeyer (1999);
Monti et al. (2002)]. These advantages are evident in our motivating study, Build-
ing Recovery by Improving Goals, Habits and Thoughts (BRIGHT). In BRIGHT,
AOD treatment clients with depressive symptoms received group cognitive behav-
ioral therapy (CBT) that was delivered by AOD treatment counselors, rather than
psychotherapists. The analytic question we consider in this paper is whether the
depressive symptoms of AOD clients decreased while attending group CBT over
an 8-week period.

1.2. Group therapy with rolling admissions. A feature of the group CBT of-
fered in BRIGHT that is shared by many therapy groups offered in other AOD
treatment settings is that clients enter group under a rolling (or open) admissions
policy. This means that clients are continuously enrolled in group as space per-
mits. Figure 1 illustrates a hypothetical rolling admission policy for two therapy
groups (labeled “GROUP 1” and “GROUP 2”), each of which has four sessions. It
is important to note the difference between groups and sessions. The two groups
in Figure 1 each have four sessions. The sessions in Group 1 are independent of
sessions in Group 2 because there is no overlap in the sets of clients who attend
the sessions in Group 1 versus Group 2—for example, in Figure 1, clients A–H at-
tend Group 1 and clients J–W attend Group 2. In contrast, the sessions within each
group are not independent since clients may attend multiple sessions within each
group. For example, clients B, C, D attend all four sessions offered in Group 1.
The “rolling” admissions policy is depicted in Figure 1, with new members indi-
cated by boldface font in the first session they attend. While new members join
the group, other members leave (e.g., client A left Group 1 after session 1 and was
replaced by client F in session 2). This structure induces a complex pattern of in-
terrelatedness among clients. Even though clients A and F in Group 1 never attend
the same session, their data could be correlated. One example of this would be if
client A were a disruptive client [Center for Substance Abuse Treatment (2005)]
who adversely influenced the overall group dynamic in session 1 of Group 1 in

FIG. 1. Illustration of client flow under rolling admissions. Each group contains different sets of
clients (represented by letters). Bold letters represent new members entering each group.
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FIG. 2. Attendance by clients A–Q for sessions 1–36 in one rolling therapy group in the BRIGHT
study. Study modules are separated by dashed vertical lines.

such a way that clients B through E would bring that negativity with them to ses-
sion 2, thus affecting client F’s group experience.

Figure 2 illustrates the actual client attendance patterns for 17 clients who par-
ticipated in one of the four rolling cognitive behavioral therapy (CBT) groups
in the BRIGHT study. This group included 36 sessions. Each client (labeled A
through Q) was expected to complete 16 sessions, with 4 sessions coming from
each of four modules (or session themes)—Thoughts, Activities, People, or Sub-
stance Abuse—as noted at the top of Figure 2. Modules were offered on a rotating
basis, and clients were allowed to enter the group at the start of a new module (e.g.,
at session 5, 9, 13, 17, 21, 25, or 33). This illustrates the flexibility of treatment
delivery afforded by rolling groups in BRIGHT—for example, a client only needed
to wait for a new module, rather than an entirely new but closed 16-session group,
to start CBT.

Thus, not only are client outcomes correlated within therapy sessions, but they
are also correlated across therapy sessions within each therapy group. This is in
contrast to the analytically much simpler scenario of “closed” enrollment groups,
in which the same set of clients is expected to attend the same set of sessions with
no change in membership, such that the correlation in the outcomes for clients in
the same closed group could be modeled using a hierarchical model with random
terms for each closed therapy group.
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1.3. Previous approaches to modeling data from rolling therapy groups. De-
spite the ubiquity of groups with rolling admissions in practice [Kadden et al.
(2001); Kadden and Litt (2004); Monti et al. (2002); Rohsenow et al. (2001, 2004);
Davis et al. (2005); Granholm et al. (2005); Center for Substance Abuse Treatment
(2005)], very little attention has been devoted to developing appropriate statistical
methods for such data. In a review article, the possibility was discussed of using
standard hierarchical models that used group as the clustering variable (e.g., Fig-
ure 1), but was dismissed because it ignores the complex attendance pattern within
the group [Morgan-Lopez and Fals-Stewart (2006)]. Another possibility discussed
therein was to break up the group into subgroups in some fashion and use a mul-
tiple membership model, but the independence assumption typically invoked for
such models was criticized. Perhaps even more frequently, the approach taken in
therapy group studies—with rolling or closed groups—is to ignore the group struc-
ture altogether [Lee and Thompson (2005); Roberts and Roberts (2005); Bauer,
Sterba and Hallfors (2008)].

To date, the only analytic method specifically developed and applied to data col-
lected from clients as they attend rolling group sessions did not explicitly model
the correlation among outcomes from clients within a group [Morgan-Lopez and
Fals-Stewart (2007)]. Rather, the authors of that study fit models assuming no cor-
relation but adjusted the standard errors to account for possible correlation among
clients who attended the same group (not session) using a robust standard error
(sandwich) estimator [Liang and Zeger (1986)]. The authors also addressed the
potential problem of nonignorable missing data [e.g., Little (1995)] from clients
who chose not to attend all sessions by using a pattern mixture model, where pat-
terns depended on latent classes related to number of sessions attended and client
characteristics. Morgan-Lopez and Fals-Stewart (2008) found that modeling dif-
ferent missing data (attendance) patterns helped with variance estimation, in that
nominal Type 1 error rates were preserved.

However, there are some important limitations to this approach. First, even when
nonignorably missing data are a major problem, modeling missing data patterns
does not account for the correlation structure depicted in Figures 1 and 2, leading
to concerns that even pattern-mixture modeling without accounting for the intra-
or inter-session correlation of client outcomes could lead to underestimated vari-
ances. Second, using the sandwich estimator is only appropriate in studies with
large numbers of rolling groups. The sandwich estimator will only provide a con-
sistent estimate of standard errors of parameter estimates, as the number of therapy
groups grows arbitrarily large, and it can be biased when the number of groups
is small [Liang and Zeger (1986); Bell and McCaffrey (2002)]. The number of
rolling groups is small (as few as 1–4) in many rolling group studies [Kadden et al.
(2001); Kadden and Litt (2004); Rohsenow et al. (2001, 2004)]; in the motivating
BRIGHT study, there were just four rolling groups. Third, the sandwich estimator
only adjusts the standard errors; it does not model the clustering of client out-
comes both within and across sessions and does not provide information about the
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sources of variance. Finally, even in studies with large numbers of rolling groups,
relying on the sandwich estimator to adjust for correlation at the group level would
be inefficient relative to model-based approaches to directly model the correlation
structure attributable to session attendance [Firth (1992)].

1.4. Conditionally autoregressive priors. Given these limitations, we present
a novel application of conditionally autoregressive (CAR) priors [Besag, York and
Mollié (1991)] for modeling session-level random effects to capture the interrelat-
edness of client outcomes. CAR priors offer promise for adeptly modeling corre-
lations at the session level that are induced by session attendance patterns. Though
a quick glance at Figures 1–2 might suggest that a potentially simpler time se-
ries approach might be appropriate, the CAR prior can accommodate alternative
scenarios that frequently occur in practice, such as sessions offered at unequally
spaced points in time, multiple independent sets of therapy group sessions or “is-
lands” [Hodges, Carlin and Fan (2003)], and flexible definitions of closeness of
sessions that cover a broad range of complex scenarios, such as accounting for
number of clients shared by sessions or variable lengths of time between sessions.

In this paper we describe the motivating BRIGHT study (Section 2) and present
a hierarchical Bayesian CAR model for the BRIGHT data (Section 3). In Sec-
tion 4 we examine the relative performance of the Bayesian CAR approach versus
competing approaches for accounting for the interdependence of client outcomes.
We compare these approaches using BRIGHT data to examine whether depressive
symptoms decrease during the course of group therapy in Section 5. We conclude
by discussing the implications of our method for therapy group data analysis in
Section 6.

2. Motivating study: Building Recovery by Improving Goals, Habits and
Thoughts (BRIGHT). The BRIGHT study addressed the question of whether
group cognitive behavioral therapy (CBT) improves depressive symptoms when
delivered by substance abuse treatment counselors. The goal of the group CBT
offered in BRIGHT was to help persons with depressive symptoms manage their
depression and feel better. The study occurred at four treatment sites that are part
of the Behavioral Health System (BHS) of Los Angeles County, California. BHS is
a nonprofit treatment provider and is among the largest publicly funded programs
in Los Angeles County.

BHS clients were screened for study eligibility using a two-stage process.
First, BHS staff screened clients using the Patient Health Questionnaire [PHQ-9;
Kroenke and Spitzer (2002)] 14 days after entering residential treatment. The
PHQ-9 is a nine-item self-report measure that assesses the nine depression symp-
toms from the DSM-IV depression criteria. If clients received a PHQ-9 score in-
dicating mild-to-severe depressive symptoms (i.e., PHQ-9 ≥ 5), they were asked
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whether they were interested in being contacted to learn more about the study.
A second screening was then conducted to verify that clients had persistent depres-
sive symptoms and thus were eligible for the study by examining whether a second
depressive symptom score, the Beck Depression Inventory-II [BDI-II; Beck, Steer
and Brown (1996)], indicated mild-to-severe depressive symptoms (BDI-II > 17).
In addition, clients with bipolar disorder, schizophrenia, or cognitive impairment
were ineligible for the study, but clients taking psychotropic medications for other
reasons were eligible so long as they had depressive symptoms as indicated by the
two-stage screening procedure. Participants were enrolled in the study 3–4 weeks
after admission to residential AOD treatment. Seventy-six percent of those enter-
ing residential AOD treatment were screened by BHS for depression and 25% of
those clients were eligible for the study based on the second screening. For this
study, we examined data collected from clients assigned to the group CBT inter-
vention (n = 140) and analyzed changes in depressive symptoms during the course
of group CBT for the 132 clients who attended at least one group CBT session.

The BRIGHT group therapy consisted of 16 sessions of group CBT offered
over an eight-week period that were organized into four modules of four sessions
each. Each module focused on the relationship between depression and a particu-
lar aspect of a person’s life: Thoughts, Activities, People, and Substance Use. Re-
search suggests that each module is independently efficacious [Zeiss, Lewinsohn
and Munoz (1979)] and does not depend on the material presented in the previous
module, thus making the rolling admissions policy reasonable. The four modules
over 16 sessions were offered on a rotating basis, as shown for one rolling group
in Figure 2. The CBT group had a rolling admissions policy, as client composition
of the group was allowed to change every two weeks. Specifically, clients were
able to initiate treatment at the first session of any module, which is graphically
depicted for one rolling CBT group in BRIGHT in Figure 2. In session one of each
module the cognitive–behavioral treatment model was described and information
about depression and its symptoms were provided to the clients.

In all, 245 group CBT sessions were offered to clients from all four treatment
sites. This included 14 offerings of the 16-session sequence (224 sessions), 20 ad-
ditional sessions from the “Thoughts” and “Activities” modules to increase expo-
sure to group CBT for those who joined the rolling group late for three particu-
lar 16-week sequences, and one additional session that followed a long holiday
weekend to make up for poor attendance at the regularly scheduled session. These
245 sessions were divided into four CBT therapy groups having distinct clients;
the number of sessions for each of these four groups was 36, 40, 40, and 129.

The number of sessions attended per client skewed toward more versus fewer
sessions (Figure 3). Seventy-three percent of clients attended at least half of the
sessions (eight sessions), and 45% attended 13 or more sessions. Sixty-three per-
cent of clients attended at least one session per module.
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FIG. 3. Distribution of the number of sessions attended per client.

3. Hierarchical Bayesian modeling of correlated therapy group session ef-
fects. The goal of analyzing the client-level PHQ data collected from clients dur-
ing the course of group CBT is to estimate client-level change over time. The core
analytic model for this is a growth curve model [or longitudinal growth model
(LGM) of Laird and Ware (1982)], where there are i = 1, . . . , n clients in the
study, s = 1, . . . , S therapy group sessions offered over the course of the study,
and tis is the time that has passed since client i entered the therapy group when
attending session s. Note the difference between s and t : s indexes all S sessions
offered to all clients, while t ranges from 0 to the maximum length of time between
treatment entry and completion at the client level; in BRIGHT, t ranges from 0 to
8 weeks since entry into group. The repeatedly measured PHQ-9 score for client i

at session s after attending the group for time tis is denoted by yis , and is modeled
as

yis = β0 + β1tis +
K∑

k=1

βk+1Xik + b0i + b1i tis + γs + εis,(3.1)

where baseline covariates, X1, . . . ,XK , have coefficients β2 through βK+1; β0
is the fixed intercept term; β1 the mean (fixed effect) rate of change in y for
all clients; the random effects growth parameters for client i have distributions
b0i ∼ N(0, σ 2

0 ) and b1i ∼ N(0, σ 2
1 ); εis is the observation error with distribution

N(0, σ 2
ε ); and the session-specific random effects, γs , are included in the model

to capture session-specific variation in client outcomes. The session-level random
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effects, γs , are modeled using a convolution prior [Besag, York and Mollié (1991)]:

γs = us + νs,(3.2)

modeling the random effect of session s as having both structured and unstructured
components to accommodate not only structured, systematic correlation among
sessions that is expected given overlap client attendance patterns (us), but also
allows for independent, idiosyncratic session effects (νs), allowing for greater
session-level variance than only a structured component would offer. Thus, session
s’s (s = 1, . . . , S) effect is the sum of unstructured effects that are independently
distributed:

νs ∼ N(0, σ 2
ν ),(3.3)

plus an effect that reflects correlation structure among sessions, us ’s, for which a
CAR prior is assumed:

u ∝ δ−(S−G)/2 exp
{

1

2δ
u′Bu

}
, u = (u1, . . . , uS)′,(3.4)

where B is a known S-by-S matrix such that B−1
sj = −wsj and B−1

ss = ∑
j wsj =

ws+, wsj is the sj th element of a symmetric weight matrix W that reflects the
closeness between two sessions and has diagonal elements wss = 0 by definition,
and G is the number of rolling therapy groups (or islands), where therapy groups
are composed of multiple, independent sets of sessions such that clients attend-
ing sessions in one therapy group do not attend sessions of another group. Equa-
tion (3.4) implies a flat prior on each therapy group’s intercept, or fixed effect.
To identify the therapy group fixed effects and the session random effects, a sum-
to-zero constraint on each rolling therapy group’s u′s could be imposed. Since it
is neither of interest nor necessary to identify the therapy group fixed effects for
modeling the correlation of session effects, group fixed effects are omitted from
the model and are instead implicitly included in u for model estimation, which is
similar to how Reich, Hodges and Zadnik (2006) treated “island” fixed effects in
their application of CAR modeling to disease mapping. These fixed effects could
be obtained by post-processing Markov Chain Monte Carlo (MCMC) output when
simulating conditional posterior distributions of model parameters. One difference
is that to model the intercept, β0, the u′s are centered about their average across
the G therapy groups. Assuming covariates Xk (k = 1, . . . ,K) are each centered
about their means, this parameterization implies that β0 in this paper can be in-
terpreted the average outcome at time 0 for clients attending the average therapy
group session, which avoids estimating a trajectory (i.e., β0 and β1) that is specific
to a particular rolling group.

The mean of the distribution of the individual structured session-level effect, us ,
is a weighted average of the structured session-level effects of its neighbors:

us |u−s ∼ N

(∑
j �=s wsjuj

ws+
,

δ

ws+

)
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[Best, Richardson and Thomson (2005)]. With this in mind, we define two types
of session closeness measures that are of particular interest for rolling groups and
guide the weight matrix specification:

• Closeness Type 1: sessions that are offered consecutively in time and in the same
rolling group are neighbors: wsj = 1 if |s − j | = 1 (where j ≥ 0) and sessions s

and j are in the same rolling group; wsj = 0 otherwise.
• Closeness Type 2: wsj reflects the proportion of clients in sessions s and j that

are common to both sessions.

Prior distributions are assumed for model parameters as follows: β0 ∝ 1; β1 ∼
N(0, σ 2

β1
); β2:k+1 ∼ N(0, σ 2

β I); σ−2
ε ∼ Gamma(ψy0,ψy1); σ−2

0 ∼ Gamma(ψ00,

ψ01); σ−2
1 ∼ Gamma(ψ10,ψ11); σ−2

ν ∼ Gamma(ψν0,ψν1); and δ−1 ∼
Gamma(d0, d1), where E(a) = a1/a2 for a Gamma(a1, a2) specification.

4. Comparison of alternative modeling approaches: Simulation study. We
conducted a Monte Carlo simulation study to compare performance of alterna-
tive methods versus the hierarchical Bayesian CAR approach for modeling rolling
group data. We first outline our approach to generating the simulated data in Sec-
tion 4.1, which is followed by a description in Section 4.2 of the analysis models
fit to the simulated data in order to conduct the model comparisons of interest, with
results summarized in Section 4.3.

4.1. Simulated data generation. We used the BRIGHT study data to construct
simulated data sets with 245 sessions attended by 132 clients, each of whom at-
tended up to 16 sessions, resulting in a total of 1473 observations. All data were
simulated to include session-level random effects so that the performance of ana-
lytic models could be compared under the presence of correlation among outcomes
among those attending common sessions in the rolling group. Data were also sim-
ulated when assuming the absence versus presence of missing data patterns to
explore the performance of competing models given the presence or absence of
missing data patterns.

The first set of data-generating models is given by

yis = β0 + β1tis + b0i + b1i tis + γs + εis,(4.1)

with the γs ’s simulated as multivariate normally distributed with mean vector 0
and covariance matrix G, where the correlation structure of sessions is specified
to be autoregressive with correlation ρ between adjacent sessions and the diago-
nals of G equal to 1. We vary the degree of autocorrelation among session-specific
random effects, γs , to reflect session-level autocorrelations of ρ = 0.00,0.25, and
0.50; these values were selected so the average correlation among clusters approx-
imated the range of intra-class correlations (ICCs) reported for outcomes among
clients who share sessions in closed admission group therapy studies [e.g., Roberts
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and Roberts (2005); Anderson and Rees (2007)], since data on correlation among
outcomes for rolling groups are unavailable. The simulation model parameters for
the fixed effect intercept and slope terms, β0 and β1, were set at 15 and −0.5, re-
spectively. Other simulation parameters were set so that (b0i , b1i) ∼ N(0,0.25I);
εis ∼ N(0,1); and γs ∼ N(0,1).

The second set of data-generating models is a pattern-mixture model (PMM)
with two known missing data patterns to reflect whether each client received at
least 8 sessions (n = 96;73%), which was regarded by BRIGHT study team mem-
bers to be the minimum adequate number of completed sessions and, thus, the
research team wanted to explore this distinction. The data-generating PMM also
included correlated session random effects, γs :

yis = β∗
0 + β∗

1 tis + I{Ri=1}{
0 + 
1tis} + b01 + b1i tis + γs + εis,
(4.2)

f (Ri |πi) = π
Ri

i (1 − πi)
1−Ri .

As before, (b0i , b1i ) are the random growth parameters for client i, tis is the time
of observation of yis, and εis is the observation-level error term. Ri is an indica-
tor variable of the missing data pattern for client i; β∗

0 and β∗
1 represent the fixed

intercept and slope terms common for all clients, and 
0 and 
1 the deviation
from them, respectively, for clients in missing data pattern R = 1, so that the mar-
ginal fixed intercept and slope equal β0 = β∗

0 + π
0 and β1 = β∗
1 + π
1. For the

simulation study, (
0,
1, π) are set to equal (41.67,−1.83,0.273).
Prior distributions for most model parameters follow that described in Section 3.

Other priors are 
0 ∼ N(0,10), 
1 ∼ N(0,10), and ψy0 = ψy1 = ψ00 = ψ11 =
ψ10 = ψ11 = 1, and we modeled the prior probability of the missing data pattern,
π , using a Beta(1,1) prior. Since CAR model results can be sensitive to hyperpa-
rameter choices for δ, we ran the simulation study under two different hyperpa-
rameter choices for both the prior on δ and for the precision of the unstructured
session effects, νs :

ψν0 = ψν1 = 0.10, d0 = 0.10, d1 = 0.2,(4.3)

ψν0 = ψν1 = 1, d0 = 0.5, d1 = 0.0005.(4.4)

Under choice (4.3), the unstructured and structured variances are expected to have
equal prior weight, since δ/σ 2

ν should be close to the average value of the sum
of the weights for each session, which is two for this simulation study [Mollié
(1996)]. Choice (4.3) reflects a more informative yet sufficiently vague prior that
could lead to better mixing of the Markov Chain Monte Carlo (MCMC) sampler
[e.g., Reich, Hodges and Zadnik (2006)]. Choice (4.4) reflects independent speci-
fication of the priors on the unstructured and structured components of the session-
level effects; hyperparameter values for ψν0 and ψν1 were selected as they would
have been for a standard HLM analysis and values for d0 and d1 were used by
Kelsall and Wakefield (1999) to place more prior mass near zero than choice (4.3),
which can be helpful in situations with very little structure.
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4.2. Analysis models fit to simulated data. The analysis models we examined
for the simulation study are as follows:

1. LGM, which is equation (4.1) but with γs ’s set equal to zero. This model re-
flects a widespread practice where no attempt is made to account for correlation
among clients attending common sessions [Lee and Thompson (2005); Roberts
and Roberts (2005)]. Client-level random effects, b0i and b1i , are assumed to
be independent across clients.

2. HLM, which is depicted by equation (4.1) but with γs ’s independent and iden-
tically distributed. This reflects an approach that could easily be implemented
in most standard statistical software packages but has been criticized for its
independence assumption [Morgan-Lopez and Fals-Stewart (2006)].

3. CAR, which is depicted by equation (4.1) but with γs in equations (3.2)–(3.4),
with the weights reflecting Closeness Type 1. Specifically, this specifies an au-
tocorrelation, ρ, between session effects for those sessions that are adjacent
in time and belong to the same group, with ρ captured in the matrix, B, in
equation (3.4).

4. PMM, which is equation (4.2) but with γs’s set equal to zero. This model speaks
to previous literature emphasizing the importance of modeling missing data
classes for analyses of client data collected during the course of group therapy
under rolling admissions [Morgan-Lopez and Fals-Stewart (2007); Morgan-
Lopez and Fals-Stewart (2008)].

5. CAR+PMM, which is equation (4.2) combined with equations (3.2)–(3.4) to
model γs , with the weights reflecting Closeness Type 1. This approach will
allow us to directly compare the PMM to a model with missing data patterns
but that also allows for correlated session-level random effects to understand
the relative effect of the missing data patterns on estimation.

Each analysis model was fit to data generated under every scenario, regardless of
whether or not the generation and analysis models were congruent, which allowed
for studying the robustness of models to misspecification. Conditional posterior
distributions were simulated using MCMC as implemented in WinBUGS 1.4.3
[Lunn et al. (2000)]. We compared analysis models based on how well the true
values of β0 and β1 were recovered. The standard deviations of these parameters
under the analysis models were also compared [SD(β0) and SD(β1)], along with
posterior mean deviance (Dbar) statistics to reflect goodness of fit. Since we are
interested in how well y can be modeled given the missing data pattern (for PMM
and CAR+PMM), Dbar is presented for the growth submodel of equation (4.2).
Though the Deviance Information Criterion (DIC) would reflect both model fit
and complexity, there is ambiguity on how to interpret DIC in mixture models,
including the concern that DIC is sensitive to choice of model parameterization
[Spiegelhalter et al. (2002)]; thus, we do not present it here. MCMC convergence
was monitored by examining Gelman–Rubin statistics for two Markov chains hav-
ing different starting values [Gelman and Rubin (1992)].
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4.3. Simulation study results. Results are shown in Table 1 for hyperparame-
ter choice (4.3), with hyperparameter choice (4.4) omitted because the comparative
results were identical. The analysis model that is expected to have the best perfor-
mance given its consistency with the data-generating process is denoted by “best
model” for each of the six data-generating scenarios (a)–(f) presented in Table 1.

When CAR should be the best model (Table 1a–c), the posterior means of β0
and β1 are very similar to their true values. Posterior standard deviations (SDs)
of β0 were smallest for LGM and PMM, with the true CAR model and the
CAR+PMM models having the largest standard deviations for β0, demonstrat-
ing the tendency of models that ignore the correlation among outcomes due to
session attendance to underestimate the true variability in the parameter estimates.
The posterior SDs of β1 were essentially equal for LGM and HLM across all three
scenarios, with the SD of β1 under CAR being only about 2–3% larger. However,
the SDs of β1 under PMM and CAR+PMM were 16–18% larger than that under
the true CAR model, indicating greater noise in the variance of the slope given the
erroneous pattern-mixture model assumptions.

The two analysis models that omitted session random effects, LGM and PMM,
had identical performance, being tied for having the highest posterior mean de-
viance (Dbar) statistics for each scenario, thus indicating relatively worse model
fit than models with session random effects. The CAR+PMM and CAR Dbar val-
ues were identical. The differences among CAR, CAR+PMM, and HLM were
within Monte Carlo error, indicating relatively comparable performance. Despite
the aforementioned limitations of DIC for this model comparison given two of the
models use mixture modeling, we compared results based on using Dbar versus
DIC to assess whether there was any change in results when factoring in model
complexity. Dbar and standard DIC values (not shown) almost always had consis-
tent patterns across models, so the results based on comparing Dbar across models
hold when factoring in model complexity along with model fit. The only excep-
tion was the comparison of HLM and CAR in Table 1c, for which DICs could be
unambiguously compared, given neither model is a mixture model. In this case,
CAR’s Dbar value was 10 units greater than that for HLM, yet DICs for both
models were equal (DIC = 4533) given the lower effective number of parameters
in the CAR model, thus showing the CAR model’s increased efficiency in terms of
number of effective parameters when there are larger correlations among session
effects (ρ = 0.50). The key message of Table 1a–c is that accounting for correla-
tion of clients at the session level using random effects modeling offered a clear
improvement over ignoring the session-level clustering for the LGM and PMM
models, with the differences most pronounced when comparing posterior SDs of
model parameters and model fit (i.e., better posterior mean deviance).

Table 1d–f shows the results when there are two missing data patterns present
in the simulated data, along with session random effects. The model expected to
perform best, CAR+PMM, clearly did so in terms of yielding the correct pos-
terior mean values of β0 and β1 and having the lowest Dbar. As expected, the
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TABLE 1
Posterior means and standard deviations (SDs) of β0 (true value = 15) and β1 (true value = −0.5),

along with posterior mean deviance (Dbar) for five analysis models and six data-generating
scenarios. Simulation study results averaged over 100 simulated data sets. Monte Carlo standard

error (mcse) reported for each estimate in parentheses

Analysis mean(β0) SD(β0) mean(β1) SD(β1) Dbar
model (mcse) (mcse) (mcse) (mcse) (mcse)

(a) Best model: CAR (ρ = 0.00)
LGM 15.00 (0.01) 0.0828 (0.0003) −0.498 (0.005) 0.0518 (0.0003) 5205 (9)
HLM 14.99 (0.01) 0.1026 (0.0003) −0.495 (0.005) 0.0519 (0.0003) 4169 (7)
CAR 14.98 (0.01) 0.1131 (0.0003) −0.492 (0.005) 0.0531 (0.0003) 4177 (7)
PMM 15.00 (0.01) 0.0910 (0.0003) −0.496 (0.007) 0.0627 (0.0003) 5205 (9)
CAR+PMM 14.98 (0.01) 0.1125 (0.0003) −0.495 (0.006) 0.0614 (0.0003) 4177 (7)

(b) Best model: CAR (ρ = 0.25)
LGM 15.01 (0.01) 0.0863 (0.0005) −0.508 (0.006) 0.0522 (0.0003) 5126 (9)
HLM 15.01 (0.01) 0.1017 (0.0003) −0.509 (0.005) 0.0523 (0.0003) 4162 (7)
CAR 15.00 (0.01) 0.1125 (0.0004) −0.505 (0.005) 0.0537 (0.0003) 4171 (7)
PMM 15.01 (0.01) 0.0940 (0.0005) −0.501 (0.007) 0.0627 (0.0003) 5126 (9)
CAR+PMM 15.00 (0.01) 0.1118 (0.0003) −0.508 (0.006) 0.0620 (0.0003) 4170 (7)

(c) Best model: CAR (ρ = 0.50)
LGM 15.00 (0.02) 0.0928 (0.0007) −0.494 (0.005) 0.0516 (0.0003) 5021 (9)
HLM 15.01 (0.01) 0.1011 (0.0004) −0.495 (0.005) 0.0515 (0.0003) 4169 (6)
CAR 15.01 (0.01) 0.1132 (0.0004) −0.494 (0.005) 0.0534 (0.0003) 4179 (6)
PMM 15.01 (0.02) 0.0999 (0.0006) −0.489 (0.006) 0.0617 (0.0003) 5020 (9)
CAR+PMM 15.02 (0.01) 0.1114 (0.0004) −0.496 (0.005) 0.0615 (0.0003) 4178 (6)

(d) Best model: CAR+PMM (ρ = 0.00)
LGM 14.82 (0.01) 1.378 (0.0009) −0.208 (0.006) 0.0687 (0.0005) 5236 (10)
HLM 14.87 (0.01) 1.382 (0.0007) −0.244 (0.005) 0.0730 (0.0005) 4201 (7)
CAR 14.59 (0.01) 1.387 (0.0008) −0.268 (0.006) 0.0797 (0.0005) 4211 (7)
PMM 15.11 (0.01) 1.412 (0.0009) −0.488 (0.006) 0.0931 (0.0006) 5197 (10)
CAR+PMM 15.09 (0.01) 1.405 (0.0007) −0.494 (0.006) 0.0917 (0.0005) 4178 (7)

(e) Best model: CAR+PMM (ρ = 0.25)
LGM 14.78 (0.01) 1.379 (0.0010) −0.209 (0.006) 0.0701 (0.0006) 5146 (9)
HLM 14.83 (0.01) 1.381 (0.0009) −0.240 (0.006) 0.0734 (0.0005) 4196 (8)
CAR 14.55 (0.01) 1.390 (0.0009) −0.273 (0.007) 0.0827 (0.0006) 4205 (7)
PMM 15.06 (0.01) 1.411 (0.0010) −0.484 (0.007) 0.0933 (0.0006) 5116 (9)
CAR+PMM 15.05 (0.01) 1.404 (0.0008) −0.492 (0.007) 0.0921 (0.0006) 4173 (7)

(f) Best model: CAR+PMM (ρ = 0.50)
LGM 14.84 (0.02) 1.383 (0.0011) −0.226 (0.006) 0.0715 (0.0005) 5054 (9)
HLM 14.87 (0.02) 1.384 (0.0009) −0.251 (0.005) 0.0741 (0.0005) 4204 (6)
CAR 14.63 (0.02) 1.397 (0.0010) −0.307 (0.006) 0.0876 (0.0005) 4211 (6)
PMM 15.11 (0.02) 1.413 (0.0011) −0.499 (0.007) 0.0939 (0.0006) 5031 (9)
CAR+PMM 15.09 (0.02) 1.406 (0.0007) −0.507 (0.006) 0.0932 (0.0005) 4174 (6)
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non-PMM-based models (LGM, HLM, and CAR) yield biased coefficients, with
the posterior mean of β0 underestimated by about 0.2 units, while underestima-
tion of β1 was about 50% smaller in magnitude than the true value of −0.5. PMM
and CAR+PMM were comparable in terms of estimating the posterior means and
SDs of β0 and β1. The SDs of β0 and β1 under the non-PMM models were un-
derestimated relative to the true CAR+PMM model. However, it is important to
note that the much smaller Dbar value for CAR+PMM versus PMM indicates the
CAR+PMM model overall better captures aspects of the data that are not captured
by β0 and β1, such as session-level variation. Along these lines, there is a clear
bias–variance trade-off for HLM and CAR versus PMM: HLM and CAR models
have better model fit according to Dbar due to better capturing session-to-session
variation, despite yielding biased posterior mean estimates of β0 and β1.

To conclude, this simulation study demonstrates the importance of accounting
for session-level variation in rolling groups to improve model fit. These results
show that the decisions of whether to model session effects or missing data patterns
can be made separately, and that these analytic strategies could both be crucial in
rolling group therapy data analyses. We examine the implications of these results
for our motivating study in the next section.

5. Analysis of depressive symptom scores from the BRIGHT study.

5.1. Data and methods. Our analysis of the BRIGHT data focused on assess-
ing whether depressive symptoms decreased during the course of group therapy.
We focused on an analysis of change in PHQ-9 depressive symptom scores for
the 132 clients assigned to the group CBT condition who attended at least one
session of group CBT from whom data on depressive symptoms were repeatedly
collected during their tenure in the CBT group. PHQ-9 scores can be used to de-
scribe the patient’s symptoms in one of five interpretive categories: none (0–4),
mild (5–9), moderate (10–14), moderately severe (15–19), and severe (20–27). In
order to minimize reporting burden on the client, the PHQ-9 was completed at
every other session starting with the first session of each module as well as the last
scheduled session for each client. Data on demographic characteristics, depressive
symptoms, AOD use, and related measures were collected from all study partici-
pants at a baseline interview conducted within four weeks of treatment entry.

We assessed whether depressive symptoms decreased over time by examin-
ing the marginal posterior distribution of the time (weeks) coefficient β1. PHQ-
9 depressive symptoms scores were modeled while controlling for pre-treatment
client characteristics that we thought might vary among clients at treatment entry
and might be related to initial depressive symptoms: demographic characteristics
(age; gender; and race/ethnicity categorized as White/Caucasian, African Ameri-
can, Hispanic, and other), physical and mental health status using the Short Form-
12 version 2 [SF-12v2; Ware et al. (2002)], alcohol and drug severity using the
Addiction Severity Index evaluation indices [Alterman et al. (2001)], and client’s
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self-reported desire to quit score and abstinence goal using the Thought about
Abstinence scale [Hall, Havassy and Wasserman (1990)]. We considered adding
treatment site to the model but did not do so since outcomes did not significantly
vary by site.

The following models were fit to these data:

• CAR [equations (3.1)–(3.4)].
• HLM [equation (3.1) assuming independent and identically distributed (i.i.d.)

session random effects: γs ∼ N(0, σ 2
γ )].

• LGM [equation (3.1) but with γs’s fixed to equal zero].
• PMM [equation (4.2) but with γs ’s fixed to equal zero], and with two missing

data patterns defined by having attended fewer than eight sessions (shorter-stay
clients) versus at least eight sessions (longer-stay clients); since the BRIGHT
developers believed this was the minimum adequate number of sessions, we
chose the patterns to explore this distinction.

• CAR+PMM [equation (4.2) with γs modeled as equations (3.2)–(3.4)].
• HLM+PMM is examined as well [equation (4.2) with i.i.d. session random ef-

fects assumed: γs ∼ N(0, σ 2
γ )], given HLM’s equivalent performance to CAR

in Table 1a–c.

The following values were assumed for hyperparameters: σ 2
β1

∼ Gamma(1,1),

ψy0 = ψy1 = 1, ψ00 = ψ01 = 1, ψ10 = ψ11 = 1, π ∼ Beta(1,1), 
0 ∼ Gamma(1,

0.1), and 
1 ∼ Gamma(1,0.5). We examined two sets of hyperparameter choices
for the structured and unstructured variances [equations (4.3)–(4.4)].

CAR models were fit using weights for Session Closeness Types 1 and 2, as
defined in Section 3. The adequacy of the linear growth assumption was confirmed
by verifying that adding polynomial terms for time into the model did not improve
model fit.

In addition to concerns about potential nonignorable nonresponse due to early
client departure from group CBT that are modeled with the PMM, there was a
second type of missing data due to the fact that PHQ-9 scores were recorded at
every other session. These intermittently missing-by-design PHQ-9 scores were
imputed as missing at random (MAR) under the model described above using
data augmentation to simulate the posterior predictive distributions of the miss-
ing PHQ-9 scores [Schafer (1995)]. The MAR assumption is reasonable for this
type of missingness, since it is due to the study design decision to minimize the
burden of repeatedly measuring depressive symptoms on AOD treatment clients
as opposed to the missingness being driven by choices made by study participants
that would have resulted in missing data [Graham, Hofer and MacKinnon (1996)].

Given that clients were only able to enroll in the group at the first session of each
module, we checked the sensitivity of our results to this by repeating the analyses
just described but instead placing a CAR prior on module-level random effects and
omitting session-level random effects.
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FIG. 4. 95% HPD interval for marginal slope parameter, along with posterior mean deviance and
analysis model description. Models sorted from lowest posterior mean deviance (indicating better
model fit) to highest (indicating worse fit). “Closeness” indicates closeness type for CAR priors and
whether “session” or “module” indicates the clustering unit.

5.2. Results. For each analysis model, Figure 4 displays its 95% highest pos-
terior density (HPD) interval for the marginal slope parameter, β1, with results
sorted by the posterior mean deviance (Dbar), with the lowest values (indicating
best model fit) at the top of the figure. For each analysis model that accounts for
the correlation of PHQ-9 scores among clients attending the same therapy group,
it is noted on Figure 4 whether such correlation was modeled by assuming ran-
dom effects for either sessions or modules. For models employing CAR priors,
the closeness type used to define session (or module) distance is also noted on
Figure 4, with “adjacent” referring to Closeness Type 1 and “client overlap” to
Closeness Type 2.

Regardless of analysis model, depressive symptoms as measured by PHQ-9 de-
creased over time as clients participated in group CBT, as indicated by the 95%
HPD intervals for the slope, β1, falling entirely below zero. The posterior mean
slopes displayed as dots in Figure 4 indicate the average decrease in PHQ scores
per week. For example, for the “CAR, Closeness Type 1” model that includes ran-
dom session effects, the posterior mean decrease in PHQ scores was −0.92 points
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per week; over the course of an expected eight-week participation in group, PHQ
scores would be expected to decrease by 7.4 points, which could decrease depres-
sive symptoms by at least one PHQ-9 depressive symptom severity level category
(see Section 2 for PHQ-9 category interpretation). These results were robust to the
choice of hyperparameter values examined, so results under just one hyperpara-
meter specification are reported.

Goodness of fit as measured by the posterior mean deviance (Dbar) varied
across the models (Figure 4). The LGM and PMM had relatively large posterior
mean deviances, indicating inferior performance to all other models considered
that explicitly modeled the correlation structure among outcomes. The HLM mod-
els had worse fits than their respective CAR models; for example, Dbar for HLM
with random session effects was 3861, versus Dbar = 3846 and 3854 for the two
CAR models with session effects. Models with session-level versus module-level
random effects had better goodness of fit, with the minimum difference in Dbar
between any two otherwise similar models being 13 points. For the CAR models,
Closeness Type 1 (“adjacent”) resulted in better model fit than Closeness Type 2
(“client overlap”), with the difference more pronounced for models with session
random effects (change in Dbar of 8 points) than module random effects (change
in Dbar of a negligible 2 points). Thus, for these data, the temporal order of ses-
sion better characterized the interrelatedness of client outcomes than the measure
of client overlap in session attendance.

CAR+PMM and HLM+PMM resulted in models with posterior mean de-
viances that were up to 5 points lower than that of the corresponding CAR or
HLM models, respectively; however, this discrepancy shrinks to 2–3 points when
focusing on the better-fitting (i.e., lower posterior mean deviance) models with
session rather than module random effects. The contrast of these models to the
relatively poor goodness of fit of PMM only (Dbar = 3882) emphasizes how crit-
ical it is to model correlation in client outcomes at the session level regardless of
whether one chooses to model missing data patterns. All PMM models resulted in
much wider HPD intervals than the analogous non-PMM model; for example, the
95% HPD interval of the “CAR+PMM, adjacent sessions” was 60% wider than
that under “CAR, adjacent sessions.” These results demonstrate the dilemma of
the PMM for this data set: Allowing parameters to differ by missing data pattern
can remove bias if the patterns differ, but it can add considerable variance because
of the small number of time points to estimate the slope for the short-stay group.
In the BRIGHT example the lack of improvement in fit suggests the non-PMM
CAR model with more precise slope estimates is preferable for our main goal of
examining whether PHQ-9 scores decrease over time.

Despite our preference for the simpler CAR model for modeling the marginal
change in PHQ-9 over time, examining PHQ-9 trajectories for shorter- versus
longer-stay clients may be of interest for some research goals [Morgan-Lopez and
Fals-Stewart (2008)]. The posterior mean trajectory of PHQ-9 scores for 27% of
clients who completed fewer than half of the sixteen planned sessions under the
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best-fitting CAR+PMM model had intercept of 17.75 and slope −1.62, while the
trajectory for the longer-stay clients had intercept 14.74 and slope −0.86. The
difference in the intercepts was 3.0 points [95% posterior probability interval:
(1.27,4.77)] and for the slope −0.76 [95% interval: (−1.44,−0.06)]. Shorter-
stay clients entered the group with more severe depressive symptoms on average
but also made more rapid improvements during their stay. However, the projected
PHQ-9 score after 4 weeks (i.e., after 8 consecutive sessions) for both shorter-
and longer-stay clients was 11.3 points, suggesting the more severely depressed
shorter-stay clients caught up to the less severely depressed longer-stay clients
after 4 weeks. Greater rates of improvement among clients obtaining relatively
fewer therapy sessions might suggest that clients stay in treatment until they reach
a “good enough” level of improvement [Baldwin et al. (2009)], with the shorter-
stay group achieving greater reductions in depressive symptoms but then leaving
treatment early after achieving some symptom reduction.

The posterior summaries of the total session-level effects (Figure 5) highlight
the distinct characterizations of the interrelatedness of session random effects un-
der CAR+PMM with Closeness Type 1 [CAR+PMM(1); top row], CAR+PMM

FIG. 5. Posterior means and 95% HPD intervals for total session-level effect for the four distinct
rolling therapy groups under models CAR+PMM assuming Closeness Type 1 (top row), CAR+PMM
assuming Closeness Type 2 (middle row), and HLM+PMM (bottom row).
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with Closeness Type 2 [CAR+PMM(2); middle row], and HLM+PMM (bottom
row) for each of the four distinct rolling groups. The CAR+PMM(1) model results,
for which session closeness was assumed to be of Type 1, show more variation in
client outcomes associated with the session-level random effects than when client
overlap itself defines the closeness of sessions [CAR+PMM(2)]. Since client over-
lap largely occurred in temporally adjacent sessions in this study, CAR+PMM(1)
is a more succinct way of summarizing client overlap than CAR+PMM(2) in this
particular analysis.

6. Discussion. We have presented a novel application of conditional autore-
gressive modeling to address an important gap in the literature on the analysis of
data from rolling therapy groups. Our modeling framework also more broadly ad-
dresses the infrequent use of appropriate statistical methods for data from therapy
group studies, which even occurs for analytically more straightforward closed ad-
missions groups [e.g., Lee and Thompson (2005); Roberts and Roberts (2005);
Bauer, Sterba and Hallfors (2008)]. Our approach avoids the limitations of previ-
ously proposed strategies by directly modeling the interrelatedness among client
outcomes attributable to session attendance rather than correcting for correlation
at the therapy group level. This makes our method applicable to the vast majority
of rolling group studies by not imposing an unrealistic restriction that the number
of rolling groups required for analysis must be large. CAR modeling also provides
a better understanding of the group dynamic and its effect on client outcomes,
as depicted by Figure 5 that shows the pattern of session-level effects and their
changes over time. Our modeling approach is aligned with theoretical ideas about
how group therapy works by estimating a session-level “invisible” random com-
ponent that can only be inferred from client interactions [Ettin (2002)].

The CAR model assumed for session-level correlations is sufficiently flexible
to cover a range of possibilities encountered in practice, such as choosing appro-
priate session closeness definitions that are most appropriate for a given therapy
group. For example, the consecutive session closeness measure (Closeness Type 1)
would be appropriate for modeling correlations between sessions when clients are
expected to attend consecutive sessions. However, the client overlap (Closeness
Type 2) measure might be more appealing when expected or actual client atten-
dance is irregular. For situations in which clients attend multiple therapy groups
that focus on different issues—for example, one group for depression and another
for AOD use—the CAR-based framework could be readily extended to model the
closeness between sessions not just within but also across therapy groups. Mul-
tivariate extensions of the CAR prior could be applied to data on multivariate or
two-part outcomes, which are common in AOD treatment research [Olsen and
Schafer (2001); Liu, Ma and Johnson (2008)].

The CAR-based framework could be extended in other ways that are relevant
for the application. For example, we illustrated how pattern-mixture modeling
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could be combined with our core Bayesian hierarchical model using CAR pri-
ors to accommodate concerns about nonignorably missing data due to early client
departure from treatment that are widespread in AOD treatment studies such as
BRIGHT. However, unlike Morgan-Lopez and Fals-Stewart (2008), our simula-
tion study shows that it is not sufficient to only include missing data patterns into
longitudinal models of rolling therapy group data: One must also directly model
the correlation structure of client outcomes induced by the rolling admissions poli-
cies to fully capture the interrelatedness of client participation in rolling therapy
groups and make most efficient use of the data. Finally, we are currently develop-
ing extensions of this methodology to accommodate modeling of post-treatment
outcomes in order to fully understand the longer-term benefit of a rolling therapy
group versus an alternative treatment.
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