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REMEMBERING LEO BREIMAN1

BY ADELE CUTLER

Utah State University

Leo Breiman was a highly creative, influential researcher with a down-
to-earth personal style and an insistence on working on important real world
problems and producing useful solutions. This paper is a short review of
Breiman’s extensive contributions to the field of applied statistics.

1. Introduction. How many theoretical probabilists walk away from a
tenured faculty position at a top university and set out to make their living as
consultants? How many applied consultants get hired into senior faculty positions
in first-rate research universities? How many professors with a fine reputation in
their field, establish an equally fine reputation in a different field, after retirement?
Leo Breiman did all of these things and more. He was an inspiring speaker and
a convincing writer, doing both with seemingly boundless enthusiasm, in an un-
pretentious, forthright manner that he called his “casual, homespun way.” He was
intelligent and thought deeply about research. But there are a number of bright,
talented statisticians. What made Breiman different? For one thing, he was willing
to take risks. By and large, statisticians are not great risk-takers. We tend not to
stray too far from what we know, tend not to tackle problems for which we have no
tools, tend to adopt or adapt existing ideas instead of coming up with completely
new ones. Linked to this willingness to take risks was Breiman’s unusual creativity.
It was not a wild, off-the-wall creativity—it was grounded in a sound knowledge
of theoretical principles and directed by an intuition gained by working intensively
with data, along with a generous dose of common sense. Breiman was driven by
challenging and important real-data problems that people cared about. He didn’t
spend time publishing things just because he could, filling the gaps just because
they were there. Lastly, he was tenacious. He would not give up on a problem until
he, or someone else, got to the bottom of what was going on.

Some of Breiman’s ideas have advanced the field in and of themselves (e.g.,
bagging, random forests) while others have contributed more indirectly (e.g.,
Breiman’s nonnegative garrote [Breiman (1995a)] inspired the lasso [Tibshirani
(1996)]). Although his joint work tree-based methods [Breiman et al. (1984)] was
arguably his most important contribution to science, he viewed random forests as
the culmination of his work. I consider myself privileged to have been able to work
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with Leo Breiman for almost 20 years, as his student, collaborator and friend, and
I’m honored to have been asked to write this review of his contributions to applied
statistics. I have divided the paper into roughly chronological sections, but these
have considerable overlap and are intended to be organizational rather than defini-
tive. I kept biographical details to a minimum; those interested in a biography are
referred to Olshen (2001). I do not feel qualified to discuss Breiman’s work on the
1991 Census adjustment [Breiman (1994)] and have omitted a few other isolated
pieces of work such as Breiman, Tsur and Zemel (1993); Breiman, Meisel and
Purcell (1977); Breiman (1999b); Breiman and Cutler (1993).

2. Early work. Breiman was born in New York City in 1928 and educated
in California, receiving his Ph.D. in mathematics from UC Berkeley in 1954. He
earned tenure as a probabilist in the UCLA Mathematics Department but soon af-
ter, he “got tired of doing theory and wanted something that would be more excit-
ing” (personal communication) so he resigned. At this time, Breiman was already
interested in classification, co-authoring a paper on the convergence properties of
a “Learning Algorithm” [Breiman and Wurtele (1964)]. Curiously, the paper had
only two references, one of which was to some early work by Seymour Papert, who
was later to become one of the pioneers of artificial intelligence and co-author of
an influential (and controversial) book on perceptrons [Minsky and Papert (1969)].

After resigning, the first thing Breiman did was to write his probability book
[Breiman (1968)] and then, with no formal statistical training, he proceeded to
spend the next 13 years as a consultant. As well as some work in transportation, he
worked for William Meisel’s division of Technology Services Corporation, doing
environmental studies and unclassified defense work. It’s difficult to imagine mak-
ing such a transition today, but one can speculate that it was in part, because he
did not have a background in applied statistics that Breiman was so successful at
consulting. Certainly the prediction problems on which he worked, some of which
are mentioned in Breiman (1984) and Section 3 of Breiman (2001c), would have
been a challenge for the tools and computers of the time. In Breiman (2001c), he
acknowledges Meisel for helping him “make the transition from probability theory
to algorithms.”

3. Classification and regression trees. One of the early problems Breiman
worked on as a consultant was to classify ship types from the peaks of radar pro-
files. The observations had different numbers of peaks and the number of peaks and
their locations depended on the angle the ship made with the radar. After “a lot of
head-scratching and a lot of time just thinking” the idea of a classification tree
came to him “out of the blue.” After this, Meisel’s research team began using trees
regularly. Charles Stone was brought on board, became interested in trees, and
worked with Breiman to improve accuracy. In the early to mid-1970s, Breiman
and Stone came up with the breakthrough idea of using cross validation to prune
large trees.
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It’s difficult to obtain published work from Breiman’s consulting years, but by
1976, Breiman and Meisel published an early version of regression trees [Breiman
and Meisel (1976)] which broke down the data space into regions and fitted a linear
regression in each region. Regions were split using a randomly oriented plane and
an F-ratio was used to determine if the split had significantly reduced the residual
sum of squares; if not, another random split was tried. In retrospect, the idea of
using randomly chosen splits seems a good 20 years ahead of its time. The state-
ment “many typical data analytic problems are characterized by their high dimen-
sionality. . . and the lack of any a priori identification of a natural and appropriate
family of regression functions” [Breiman and Meisel (1976)] was a clear indicator
of Breiman’s future research directions.

In 1976, Breiman met Jerome Friedman, a high-energy particle physicist, and
soon Friedman was also working as a consultant for TSI. Both Friedman and Stone
had connections to Richard Olshen, and the four started to collaborate. Apparently,
they decided to publish their research as a book because they believed the work was
unlikely to be published in the standard statistical journals.

In 1980, Stone and Breiman joined the UC Berkeley Statistics Department, and
the group experimented with different splitting criteria, refined the cross-validation
approach, and came up with the idea of surrogate splits. Several things set this work
apart from other early work on trees. First, they did painstaking experiments. As
they report in Breiman and Friedman (1988), “In the course of the research that led
to CART, almost two years were spent experimenting with different stopping rules.
Each stopping rule was tested on hundreds of simulated data sets with different
structures.” Second, they kept applications in the foreground of their work, due in
part to Breiman’s years as a consultant. Third, they had what Breiman referred to as
“some beautiful and complex theory.” The book, priced low to make it accessible,
was published in 1984 [Breiman et al. (1984)].

4. ACE and additive models. I once heard Charles Stone express regret that
the CART group had not written a follow up book of “things we tried that didn’t
work.” I expect such a book could have prevented a number of researchers from
reinventing the wheel, but few would want to read such a book, much less write it.
In fact, after completing Breiman et al. (1984), Breiman admitted to being “com-
pletely fed up with thinking about trees.” Breiman and Friedman continued to talk,
because both were interested in high-dimensional data analysis, and soon they
came up with the Alternating Conditional Expectations (ACE) algorithm [Breiman
and Friedman (1985)]. For predictor variables X1, . . . ,Xp and response Y , ACE
defines φ�

1, . . . , φ
�
p and θ� to minimize

E

[
θ(Y ) −

p∑
j=1

φj (Xj )

]2
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under the constraint Var(θ) = 1. Estimates φ�
1, . . . , φ

�
p and θ� were obtained using

an iterative optimization procedure involving (nonlinear) smoothing to estimate
each of the transformations while holding the others fixed. This was an application
of the Gauss–Seidel algorithm of numerical linear algebra. A simpler version, tak-
ing θ as the identity, is the familiar “backfitting” algorithm [Hastie and Tibshirani
(1986), Buja, Hastie and Tibshirani (1989)].

ACE was the first in a series of papers Breiman wrote on smoothing and ad-
ditive models. Breiman and Peters (1992) compared four scatterplot smoothers
using an extensive simulation. Building on the spline models used in Breiman and
Peters (1992), Breiman’s � method [Breiman (1991)], with the colorful acronym
“PIMPLE,” fit additive models of products of (univariate) cubic splines. Hinging
hyperplanes [Breiman (1993b)] fit an additive function of hyperplanes, continu-
ously joined along a line called a “hinge.” According to Breiman (1993a), while
ACE provided the “first available method for fitting additive models to data,” it had
some difficulties. For small sample sizes, the results were “noisy and erratic.” The
nonlinearity of the smoother combined with the iterative algorithm led to results
that were “difficult to analyze and sometimes mildly unstable.” So Breiman went
back to the drawing board, adapting a spline-based method using stepwise dele-
tion of knots [Smith (1982)], resulting in Breiman (1993a). This paper contains
early thoughts on using cross-validation to measure instability: “If transformations
change drastically when one or a few cases are removed, then they do not reflect an
overall pattern in the data.” These early ideas of instability ultimately led to some
of Breiman’s most influential work.

5. Multivariate techniques. While all Breiman’s work was multivariate,
some was more clearly affiliated with traditional multivariate techniques. In 1984,
Breiman and Ihaka released a technical report [Breiman and Ihaka (1984)] describ-
ing a nonlinear, smoothing-based version of discriminant analysis. The work was
never published but it motivated the work on “Flexible Discriminant Analysis” by
Hastie, Tibshirani and Buja (1994).

In his consulting days, one of the problems Breiman studied was next-day ozone
prediction. One of his ideas was to represent each day as a mixture of “extreme” or
“archetypal” days. For example, an archetypal sunny day would be as sunny as pos-
sible, an archetypal rainy day would have as much rain as possible, an archetypal
foggy day would have fog for as long as possible, and so on. Most days would
not be archetypal—they would fall in between the archetypes, resembling each
to a greater or lesser extent. For data {xi, i = 1, . . . ,N}, the problem was to find
archetypal points {zk, k = 1, . . . ,K} to minimize

∑
i

∥∥∥∥xi − ∑
k

αikzk

∥∥∥∥
2

subject to the constraints αik ≥ 0,
∑

k αik = 1, while also constraining the zk’s to
fall on or inside the convex hull of the data. The problem can be solved using an
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alternating least squares algorithm [Cutler and Breiman (1994)]. Archetypes have
been used as an alternative to cluster analysis or principal components in numerous
disciplines.

The final method in this section is a paper on multivariate regression, whim-
sically called “curds and whey” [Breiman and Friedman (1997)]. To predict cor-
related responses, Breiman and Friedman considered predicting each response by
a linear combination of the ordinary least squares (OLS) predictors rather than
the OLS predictors themselves. The method worked by transforming into canon-
ical coordinates, shrinking, then transforming back. Cross-validation was used to
choose the amount of shrinkage.

6. Subset selection in linear regression. Breiman had a longstanding interest
in submodel selection in linear regression, revealing itself in Breiman and Meisel
(1976), which used an early version of a regression tree to estimate the “intrinsic
variability” of the data, with the goal of effectively ranking the predictive capabil-
ities of subsets of independent variables. Breiman and Freedman (1983) looked at
determining the optimal number of regressors to minimize mean squared predic-
tion error. Again, using prediction error as the gold standard, Breiman (1992) and
Breiman and Spector (1992) contained careful and thorough simulation studies for
the X-fixed and X-random situations.

As Efron (2001) mentioned, Leo’s “openness to new ideas whatever their
source” was an attractive feature of his work. One example of this openness was
that in the early 1990s, Leo got interested in neural nets and started participating
in the Neural Information Processing Systems (NIPS) conference and workshops.
Neural nets were not really a new idea, but they were enjoying new popularity
among computer scientists, physicists and engineers, who in Leo’s view were
turning out “thousands of interesting research papers related to applications and
methodology” [Breiman (2001c)]. To this active community, Leo brought his con-
siderable statistical background, experience with trees and subset selection, and
perspective from years of dealing with real data and thinking about how to do it
better. This led to Leo’s most productive years, in part facilitated by his retire-
ment from the UC Berkeley Statistics Department in early 1993, about which he
said, “So far retirement has meant that I’ve got more time to spend on research”
(personal communication).

The first work to appear from this period, stacking [Breiman (1996a)], was
stimulated by Wolpert (1992) and first appeared as a technical report in 1992.
In Breiman (1996a), he said, “In past statistical work, all the focus has been on
selecting the “best” single model from a class of models. We may need to shift
our thinking to the possibility of forming combinations of models.” In the case of
stacking, this was a linear combination of predictors. Each predictor was based
on what Wolpert called the “level 1 data” [Wolpert (1992)]. Breiman (1996a)
considered a family of models indexed by k = 1, . . . ,K . For example, k might
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be the number of variables in a subset selection method or k might index a col-
lection of shrinkage parameters {λk, k = 1, . . . ,K} for ridge regression. For data
{x1n, . . . , xpn, yn, n = 1, . . . ,N}, each of the K predictors were fit to the data with
observation n omitted (leave-one-out cross validation) to give k predictions of yn,
namely zkn, k = 1, . . . ,K , which were the “level 1 data.” The “stacked” predictor
was

∑
k αkzkn where αk ≥ 0, k = 1, . . . ,K , were chosen to minimize

∑
n

(
yn − ∑

k

αkzkn

)2

.

Breiman considered stacked subsets and stacked ridge regressions and concluded
that both were better than the existing method (choosing a single model by cross-
validation). However, stacking improved subsets more than it improved ridge,
which Breiman suggested was due to the greater instability of subset selection.

Building on stacking [Breiman (1996a)] and using some of his experiences from
Breiman (1992) and Breiman and Spector (1992), Breiman introduced the nonneg-
ative garrote [Breiman (1995a)]. For data as before and original OLS coefficients
{β̂k}, the nonnegative garrote chose {ck} to minimize

∑
n

(
yn − ∑

k

ckβ̂kxkn

)2

subject to the constraints ck ≥ 0 and
∑

k ck ≤ s. This was a much simpler idea than
stacking because it did not use Wolpert’s “level 1 data” [Wolpert (1992)] and k

ranged over the predictor variables instead of denoting the size of a subset or the
value of a shrinkage parameter. Breiman found [Breiman (1995a)] that the garrote
had consistently lower prediction error than subset selection, and sometimes better
than ridge regression. Breiman’s ideas about instability, first mentioned in Breiman
(1993a), led him to characterize of ridge regression as stable, subset selection un-
stable, and the garrote intermediate. Breiman remarked that “the more unstable a
procedure is, the more difficult it is to accurately estimate PE (prediction error)”
and speculated about finding a “numerical measure of stability.” Bühlmann and
Yu (2006) showed some interesting results for the garrote in a boosting context.
However, the largest impact of the garrote was that it inspired the lasso [Tibshirani
(1996)], which is currently the method of choice, in part because of garrote’s de-
pendence on {β̂k}.

Breiman’s notions of stability were further explored in Breiman (1996b). He
compared ridge regression, subset selection and two versions of garrote and stated,
“Unstable procedures can be stabilized by perturbing the data, getting a new pre-
dictor sequence. . . and then averaging over many such predictor sequences.” The
types of perturbation he considerd are leave-one-out cross-validation, leave-ten-
out cross-validation and adding random noise to the response variable. He stated
[Breiman (1996b)] “we do not know yet what the best stabilization method is.”
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7. Bagging. Breiman released an early version of Breiman (1996b) in June
1994, but by September of the same year he released yet another technical report
in which he had already resolved some of the questions raised in Breiman (1996b).
He called the report “Bagging Predictors” and it was to be published as Breiman
(1996c). The name comes from “bootstrap aggregating” because in bagging, the
data were perturbed by taking bootstrap samples and the resulting predictors were
averaged (aggregated) to give the “bagged estimate.” The classification version ag-
gregates by voting the predictors. In November 1994, Breiman presented bagging
as part of a Tutorial at the NIPS conference, where it was immediately embraced
by the neural net community. According to Google Scholar, citations of Breiman
(1996c) already exceed 6300, slightly higher than Efron’s 1979 bootstrap paper
[Efron (1979)]. The simplicity and elegance of bagging made it appealing in a
community where new ideas tended to be technically complex.

In bagging, each predictor was fit to a bootstrap sample, so roughly 37% of
the observations were not included in the fit (“out-of-bag”). In an unpublished
technical report Breiman (1997b) described how to use these for estimating node
probabilities and generalization error.

Although bagging trees improved the accuracy of trees, Breiman liked the sim-
ple, understandable structure of individual trees and was not ready to give up on
them. Noting that trees have “the disadvantage that the splits get noisier as you
go down” (personal communication), he worked with Nong Shang [Shang and
Breiman (1996)] to try to improve the stability of trees by estimating the joint
density of the data and basing the splits on this density estimate instead of di-
rectly on the data. One of the problems of this method was that density esti-
mates depended on numerous parameters and Breiman referred to it later [Breiman
(1998b)] as a “complex and unwieldy procedure.” Another attempt, described in
Breiman (1998b), was to generate new “pseudo-data” by randomly choosing an ex-
isting data point and moving its predictor variables a small step towards a second
randomly-chosen data point. The new predictor values, together with the response
for the original data point, gave the pseudo-data. The step size was chosen to be
uniform on the interval (0, d) where d was a parameter of the method. Although
the results appeared promising, the method did not give improvements on large
datasets and the paper was never published.

Breiman tried to improve upon bagging in a number of other ways. His “iter-
ated” or “adaptive” bagging [Breiman (2001b)] was designed to reduce the bias
of bagged regressions by successively altering the output values using the out-of-
bag data. Naturally, this biases the out-of-bag generalization error estimates, but
Breiman found that for the purpose of bias reduction it worked well [Breiman
(2001b)]. In a similar vein, Breiman (2000a) provided an alternative to bagging
by combining predictors fit to data for which only the output variables have been
perturbed. It’s not clear whether these ideas would have endured because Breiman
did not release code and they were discarded once he discovered random forests
[Breiman (2001a)].
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8. Boosting and arcing. While Breiman developed bagging, Freund and
Schapire worked on AdaBoost [Schapire (1990), Freund (1995), Freund and
Schapire (1996)]. Breiman referred to the AdaBoost algorithm as “the most accu-
rate general purpose classification algorithm available” [Breiman (2004b)]. Like
bagging, AdaBoost combined a sequence of predictors. Unlike bagging, each pre-
dictor was fit to a sample from the training data, with larger sampling weights
given to observations that had been misclassified by earlier predictors in the se-
quence. The predictions were combined using performance weights. In a personal
communication, Breiman wrote, “Some of my latest efforts are to understand Ad-
aboost better. Its really a strange algorithm with unexpected behavior. Its become
like searching for the Holy Grail!!” In his quest, Breiman produced a series of pa-
pers [Breiman (1997a, 1998a, 1998c, 1999a, 2000b, 2004b)]. He noted in Breiman
(1998a) that if AdaBoost “is run far past the point at which the training set error
is zero, it gives better performance than bagging on a number of real data sets.”
This was a great mystery and Breiman was determined to get to the bottom of
it. In Breiman (1998a), Breiman constructed a more general class of algorithms
“arcing,” of which AdaBoost, (“arc-fs”) was a special case. One contribution of
Breiman (1998a) was that Breiman removed the randomness of boosting by us-
ing a weighted version of the classifier instead of sampling weights. Focusing on
bias and variance, he concluded that “Arcing does better than bagging because it
does better at variance reduction” [Breiman (1998a)], but Schapire et al. (1998)
gave examples in which the main effect of AdaBoost was to reduce bias and pro-
posed their own reasons for why boosting worked so well. Breiman thought the
explanation was incomplete [Breiman (1999a)].

Breiman’s work on half and half bagging [Breiman (1998c)] was stimulated
by one of the referees of Breiman (1998a), who commented that the probability
weight at a given step was equally divided between the points misclassified, and
those correctly classified, at the previous step. In Breiman (1998c) Breiman di-
vided the data into two parts, one containing “easy” points, the other “hard” points,
based on previous classifiers in the sequence. He randomly sampled an equal num-
ber of cases from both groups and fitted a classification tree. For the first time, the
tree was grown deep (one example per terminal node), which he later carried over
to random forests [Breiman (2001a)].

In Breiman (1997a), he showed that AdaBoost is a “down-the-gradient” method
for minimizing an exponential function of the error. Independently, Hastie, Tibshi-
rani and Friedman (2000) presented “The Statistical View of Boosting.”

About his “Infinity Theory” paper [Breiman (2000b)], Breiman stated in August
2000: “I’ve been compulsively working on a theory paper about tree ensembles
which I got sick and tired of but knew that if I didn’t keep going. . . it would never
get finished.” The paper was released as a technical report, cited by Zhang (2004)
and Bühlmann and Yu (2003), among others. A later version was published as
Breiman (2004b) and in this paper Breiman showed that the population version of
AdaBoost was Bayes-consistent. In the meantime, several publications, including



REMEMBERING LEO BREIMAN 1629

Hastie, Tibshirani and Friedman (2000), suggested that AdaBoost could overfit in
the limit and Jiang (2004) showed that in the finite sample case, AdaBoost was
only Bayes-consistent if it was regularized.

9. Random forests. In the light of boosting, Breiman spent a lot of time try-
ing to improve individual trees [Shang and Breiman (1996), Breiman (1998b)] and
bagged trees [Breiman (2000a, 2001b)]. He also worked very hard to understand
what was going on with boosting [Breiman (1997a, 1998a, 1998c, 1999a, 2000b,
2004b)]. However, he never seriously produced a boosting algorithm for practical
use, and I believe the reason was that he wanted a method that could give mean-
ingful results for data analysis, not just prediction, and he didn’t think he could get
this by combining dependent predictors. The culmination of his work on bagging
and how to improve it, and his work trying to understand boosting, was a method
Breiman called “random forests” (RF) [Breiman (2001a)]. Random forests fit trees
to independent bootstrap samples from the data. The trees were grown large (for
classification) and at each node independently, m predictors were chosen out of the
p available, and the best possible split on these m predictors was used. As a default
for classification, Breiman settled on choosing m = √

p. In RF we see a synthesis
of the bagging ideas (bootstrapping), along with ideas that came from boosting
(growing large trees), and Breiman’s understanding of how to increase instability
(randomly choosing predictors at each node) to get more accurate aggregate pre-
dictions. Once he came up with RF, Breiman stopped working on new algorithms
and started work on how to get the most out of the RF results. He developed mea-
sures of variable importance and proximities between observations. Together, we
developed a program for visualizing and interpreting RF results (available from
http://www.math.usu.edu/~adele/forests/cc_graphics.htm). Chao Chen and Andy
Liaw worked with Breiman on ways to adjust RF for unbalanced classes [Chao,
Liaw and Breiman (2004)]. Vivian Ng worked with him on detecting interactions
[Ng and Breiman (2005)]. In his last technical report, Breiman showed consis-
tency for a simple version of RF [Breiman (2004a)]. But the work on RF did not
stop when Breiman died. Several extensions have been published; for example,
Diaz-Uriarte and Alvarez de Andres (2006) developed a variable selection proce-
dure, Meinshausen (2006) introduced quantile regression forests, and Hothorn et
al. (2006), Ishwaran et al. (2008) considered forests for survival analysis. Although
theory is still thin on the ground, Lin and Jeon (2006) showed that RF behaves like
a nearest neighbor classifier with an adaptive metric and Biau, Devroye and Lugosi
made some progress on consistency in a paper dedicated to Breiman’s memory
[Biau, Devroye and Lugosi (2008)]. Numerous applied articles have appeared and
even a number of YouTube videos. I believe Breiman would be truly delighted at
the popularity of the method.

10. Software. Leo developed his own code, invariably in fortran. I collab-
orated with him on the random forests fortran code and documentation http:

http://www.math.usu.edu/~adele/forests/cc_graphics.htm
http://www.math.usu.edu/~adele/forests/cc_home.htm
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//www.math.usu.edu/~adele/forests/cc_home.htm. Andy Liaw and Matt Wiener
developed an interface to R [Liaw and Wiener (2002)]. Although Leo supported the
R release and admired the free-software philosophy of R, he regarded R as a tool
for “Ph.D. statisticians” and he wanted his code to also be available with an easy
to use graphical user interface (GUI). GUI-driven software for classification and
regression trees and random forests is available from Salford Systems. Versions of
trees, random forests and archetypes are available in R (packages rpart, random-
Forests [Liaw and Wiener (2002)], and archetypes [Eugster and Leisch (2009)]).

11. Textbooks. In addition to his papers, Breiman wrote three textbooks
[Breiman (1968, 1969, 1973)], the first of which is in SIAM’s “Classics of Math-
ematics” series. Perhaps even more impressive is the fact that other scholars are
now writing texts that refer extensively to Breiman’s work, including trees, bag-
ging and random forests [see Berk (2008), Hastie, Tibshirani and Friedman (2009)
and Izenman (2008)].

12. Philosophy. Breiman passionately believed that statistics should be moti-
vated by problems in data analysis. Comments such as

If statistics is an applied field and not a minor branch of mathematics, then more than
99% of the published papers are useless exercises. [Breiman (1995b)]

show how deeply he believed that statistics needed a change of direction. When
he heard that Breiman (1998a) was to be published with discussion in The Annals
of Statistics, he commented that “it would sure liven things up. . . maybe get some
blood moving in the statistical main stream of asymptopia” (personal communica-
tion).

Although it is not widely cited, I believe Breiman’s “Two Cultures” paper
[Breiman (2001c)] is one of his most widely read, at least among statisticians.
The paper contained Breiman’s views about where the field was going and what
needed to be done. To conclude, he said:

The roots of statistics, as in science, lie in working with data and checking theory
against data. I hope in this century our field will return to its roots. There are signs
that this hope is not illusory. Over the last ten years, there has been a noticeable move
toward statistical work on real world problems and reaching out by statisticians toward
collaborative work with other disciplines. I believe this trend will continue and, in fact,
has to continue if we are to survive as an energetic and creative field. [Breiman (2001c)]
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