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SURVIVAL ENSEMBLES BY THE SUM OF PAIRWISE
DIFFERENCES WITH APPLICATION TO LUNG

CANCER MICROARRAY STUDIES

BY BRENT A. JOHNSON1 AND QI LONG

Emory University

Lung cancer is among the most common cancers in the United States,
in terms of incidence and mortality. In 2009, it is estimated that more than
150,000 deaths will result from lung cancer alone. Genetic information is
an extremely valuable data source in characterizing the personal nature of
cancer. Over the past several years, investigators have conducted numerous
association studies where intensive genetic data is collected on relatively few
patients compared to the numbers of gene predictors, with one scientific goal
being to identify genetic features associated with cancer recurrence or sur-
vival. In this note, we propose high-dimensional survival analysis through a
new application of boosting, a powerful tool in machine learning. Our ap-
proach is based on an accelerated lifetime model and minimizing the sum of
pairwise differences in residuals. We apply our method to a recent microar-
ray study of lung adenocarcinoma and find that our ensemble is composed of
19 genes, while a proportional hazards (PH) ensemble is composed of nine
genes, a proper subset of the 19-gene panel. In one of our simulation scenar-
ios, we demonstrate that PH boosting in a misspecified model tends to un-
derfit and ignore moderately-sized covariate effects, on average. Diagnostic
analyses suggest that the PH assumption is not satisfied in the microarray data
and may explain, in part, the discrepancy in the sets of active coefficients. Our
simulation studies and comparative data analyses demonstrate how statistical
learning by PH models alone is insufficient.

1. Introduction. In 2009, lung (and bronchus) cancer is projected to be the
third most incident cancer site (behind prostate and breast) in the United States.
The National Cancer Institute estimates that nearly 220,000 men and women will
be diagnosed with and nearly 160,000 men and women will die from lung and
bronchus cancer in 2009 (seer.cancer.gov). Large data sets containing clinical, mi-
croarray, miRNA, and other genomic data for virtually all types of cancer are
available online and one expects these data sets to multiply in the future. While
the demand from scientific investigators for systematic summary of large data sets
is high, there is a short supply of easy-to-use, out-of-the-box methods for survival
outcomes. The goal of this note is to propose a new statistical learner for survival

Received September 2009; revised September 2010.
1Supported in part by a grant from the National Institutes of Allergies and Infectious Diseases

(R03AI068484) and Emory’s Center for AIDS Research.
Key words and phrases. Accelerated failure time, boosting, lasso, proportional hazards regres-

sion, survival analysis.

1081

http://www.imstat.org/aoas/
http://dx.doi.org/10.1214/10-AOAS426
http://www.imstat.org
http://seer.cancer.gov


1082 B. A. JOHNSON AND Q. LONG

data by boosting a weighted concentration measure and applying the method to a
challenging scientific problem in lung cancer. The routines developed for this pa-
per complement the mboost package [Hothorn and Bühlmann (2007)] in R and
are freely available from the first author’s website.

Boosting is a ubiquitous concept in machine learning and popular among sta-
tisticians for model fitting, prediction, and variable selection. While early appli-
cations were driven by problems in classification and discrimination [Freund and
Schapire (1996, 1997); Breiman (1998)], it is now known that boosting applies
to a general class of function estimation problems by stage-wise descent of a
well-defined, convex loss function [cf. Friedman, Hastie and Tibshirani (2000);
Bühlmann and Hothorn (2007)]. In this paper we propose rank-based boosting
of survival data in a semi-parametric accelerated lifetime or failure time (AFT)
model [Cox and Oakes (1984); Kalbfleisch and Prentice (2002)]. In the linear
AFT model, the (natural) logarithm of the lifetime Ti is related to a d-vector of
predictors Xi = (Xi1, . . . ,Xid)T, that is,

logTi =
d∑

j=1

βjXij + εi (i = 1, . . . , n),(1.1)

(ε1, . . . , εn) are random errors from an unknown common distribution, and
β = (β1, . . . , βd)T is an unknown coefficient vector to be estimated. Without
loss of generality, we assume that the predictors have been standardized to
have mean zero and unit variance. The observed data are {(Ui,�i,Xi), i =
1, . . . , n}, where Ui = min(Ti,Ci), �i = I (Ti ≤ Ci), Ci is a random censor-
ing variable for the ith subject, and I (·) denotes the indicator function. Be-
cause the linear AFT model is based on the linear model, the coefficients and
their estimates have an interpretation familiar to a broad audience. Indeed,
Sir David Cox highlighted parameter interpretation when describing the ap-
peal of the AFT model compared to parameters in hazards regression models
[Reid (1994)]. Although boosting in the AFT model has already been described
by Hothorn et al. (2006) via inverse-probability weighting (IPW), the method
here is based on an entirely different principle and embodies different assump-
tions (see Section 2). In Section 6 we compare rank-based and IPW ensem-
bles to assess how technical assumptions affect performance in statistical learn-
ers.

Ridgeway (1999) first proposed the idea of boosting survival data through Cox’s
(1972) partial log-likelihood in a proportional hazards (PH) model (see Section 3).
In general, adopting the PH model and complementary partial likelihood analysis
is the conventional method in ordinary survival regression as well as their exten-
sions to model selection and statistical learning. However, the proportional hazards
assumption may be incorrect. When the PH assumption is incorrect but one pro-
ceeds with partial likelihood analysis, there can be serious side effects on classic
statistical inference, resulting in incorrect conclusions [Lin, Wei and Ying (1993)].
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Although the consequences of model misspecification on variable selection may
be subtle for any given data set, a violation of the PH model assumption would,
for example, obviate the oracle property [Fan and Li (2002); Johnson, Lin and
Zeng (2008)] for the relevant penalized partial likelihood estimators. One may
use standard tools to diagnose the PH assumption in survival data [cf. Schoenfeld
(1982); Lin, Wei and Ying (1993); Grambsch and Therneau (1994)] and if devia-
tions occur, then one can take corrective action through various relaxations of the
PH model. A second way to circumvent potential pitfalls in PH model misspecifi-
cation is to posit a different statistical model, such as the AFT model. In Section 6
we compare and contrast coefficient ensembles across competing survival models
using a variety of performance measures.

This paper was originally motivated by the authors’ collaborations with investi-
gators who collect and analyze high-dimensional microarray data. Recently, Mor-
ris et al. (2005) analyzed microarray data collected from two studies, one con-
ducted at Harvard University and another at the University of Michigan. Both
studies used Affymetrix oligonucleotide arrays but used different versions of
Affymetrix chips. Morris et al. pooled the data using a “partial probeset” method
to match chip types and then used the pooled data to identify genes associated
with mortality due to lung adenocarcinoma, a nonsmall cell form of lung cancer.
The goal of our analysis is to develop a mortality model of genetic factors for
lung adenocarcinoma. Morris et al. achieved this goal through one-gene-at-a-time
Cox PH models and then controlled for false discovery. In Section 4 we perform
simultaneous estimation and variable selection on the same microarray data via
boosting. We find that PH boosting leads to a nine-gene model and rank-based
boosting leads to a 19-gene model, with the former active set a proper subset of
the latter model. Boosting the same data using IPW methods leads one to conclude
that 94 genes are active, most of which do not appear in either of the other two
methods.

In addition to our substantive findings in the lung cancer data, we also make the
following two methodological contributions. In Section 5 we provide an analysis
of nursing home data where the sample size far exceeds the number of predic-
tors so we can apply standard PH model diagnostics. The diagnostic tool fails to
support the PH model assumption and variable selection using PH versus AFT
models leads to rather different sets of active covariates. Later in the same sec-
tion, we apply blackbox boosting using rank-based methods to breast cancer data
[Street, Mangasarian and Wolberg (1995)] and compare our results to IPW boost-
ing [Hothorn et al. (2006); Bühlmann and Hothorn (2007)]. This analysis exempli-
fies key differences between rank-based and IPW methods even when one adopts
the same AFT model. To the best of our knowledge, this is the first paper to exe-
cute nonlinear regression in the AFT model using the rank-based Gehan loss and
regression trees as base learners.
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2. Methods.

2.1. Boosting. For many applications, a common goal is to estimate the pop-
ulation minimizer,

f0(·) = argminE[ρ{U,�,f (X)}],(2.1)

where ρ is a convex loss function, differentiable with respect to f , and f is a
function to be estimated in the generalization of model (1.1), that is,

logTi = f (Xi ) + εi,(2.2)

and εi were described in Section 1. We assume that the observed data {(Ui,�i,

Xi), i = 1, . . . , n} are a random sample of observations from a common distribu-
tion function; hence, an ordinary strong law suggests the expectation on the right-
hand side of (2.1) is well approximated by a sample average. Then, the goal of
boosting is to minimize the empirical loss function, that is,

f̂ (·) = argmin
1

n

n∑
i=1

ρ{Ui,�i, f (Xi )}.(2.3)

As long as ρ(·) is convex, we note that the computational exercise in (2.3) is well
defined even when the population parameter f0(·) in (2.1) is awkward or difficult
to interpret.

With only minor notation changes, we briefly outline functional gradient de-
scent (FGD) as given in Friedman (2001) and Bühlmann and Hothorn (2007):

(S1) Initialize f̂ [0] ≡ 0.
(S2) Increment m by 1 and compute the negative gradient −(∂/∂f )ρ{U,�,

f (X)}. Define Zi as the evaluation of the negative gradient at f̂ [m−1](Xi ), that is,

Zi = − ∂

∂f
ρ{Ui,�i, f }

∣∣∣∣
f =f̂ [m−1](Xi )

for i = 1, . . . , n.
(S3) Fit the new pseudo data {(Zi,�i,Xi), i = 1, . . . , n} through a base proce-

dure to form the ensemble update, ĝ[m](·).
(S4) Define the ensemble iterate f̂ [m](·) = f̂ [m−1](·) + ν · ĝ[m](·), where ν is a

user-defined step-length factor less than or equal to 1 and strictly greater than 0.
(S5) Iterate from steps S2 to S4 for a user-defined number of iterations, that is,

“mstop.”

The final estimate f̂ is driven by the number of iterations mstop. Hence, mstop is
a parameter that requires tuning: fewer iterations lead to simple models but worse
prediction, while increasing mstop increases model complexity and eventual over-
fitting.
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2.2. The Gehan loss function. We motivate our loss function through coeffi-
cient estimation in the semi-parametric AFT model (1.1). In the case where d = 1,
Prentice (1978) proposed linear rank tests for the null hypothesis that the slope is
zero. Tsiatis (1990) inverted the linear rank tests to form a class of weighted lo-
grank estimating functions. For a particular choice of inefficient weight function,
the weighted logrank estimating function reduces to

n−2
n∑

i=1

n∑
j=1

�i(Xi − Xj )I {ei(β) ≤ ej (β)}.(2.4)

We note that (2.4) is the d-dimensional gradient of the following Gehan-type
(1965) loss function:

−n−2
n∑

i=1

n∑
j=1

�i{ei(β) − ej (β)}I {ei(β) ≤ ej (β)},(2.5)

where ei(β) = logUi −βTXi . If we relax the restriction that f (·) is a linear predic-
tor, expression (2.5) is still a proper convex loss function and reduces to Jaeckel’s
(1972) dispersion criterion in uncensored data. In the context of boosting, we de-
fine the Gehan loss as the following weighted sum of pairwise differences:

DG(f ) = −n−2
n∑

i=1

n∑
j=1

�i(ei − ej )I (ei ≤ ej )

(2.6)

= n−1
n∑

i=1

{
−n−1�i

n∑
j=1

(ei − ej )I (ei ≤ ej )

}
,

where ei = logUi − f (Xi ). We compute the negative gradient in step (S2) in
Section 2.1 as the following difference: −(∂/∂f )DG = −(�1 − �2)/n, where
�1 = �i

∑n
j=1 I (ei ≤ ej ) and �2 = ∑n

j=1 �jI (ei ≥ ej ). Now, we see that the
definition of ρ{Ui,�i, f (Xi )} from the prototypical boosting algorithm in Sec-
tion 2.1 is the expression in curly brackets on the right-hand side of (2.6).

2.3. Parameter tuning. We require a criterion whereby we can assess model
fit in terms of error and complexity. Because DG(f ) is a convex loss function,
we may use it to simply perform V -fold cross-validation (CV). Unless otherwise
specified, we adopt 5-fold CV to tune mstop for all data analyses and simulation
studies below.

As noted by an anonymous referee, boosting is known to be a slow learner and
hence slow in convergence [cf. Bühlmann and Yu (2003); Blanchard, Lugosi and
Vayatis (2004); Zhang and Yu (2005)]. This suggests that for a fixed step-length
factor ν in step (S4) of the boosting algorithm described in Section 2.1, conver-
gence occurs only after a large number of boosting iterations and will eventually
overfit if boosting iterates indefinitely. In practice, we found that convergence was
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more difficult for “small” data sets (i.e., larger number of iterations needed for
large n and small d) than for data sets with large numbers of predictors, although
this will be more closely related to the signal-to-noise ratio, in general. For fixed
step-length ν, our experience suggests that V -fold CV is quite reliable for pa-
rameter tuning. Where asymptotic analysis suggests allowing ν → 0, we adopt
Bühlmann’s recommendation of setting ν = 0.1. A simple sensitivity analysis re-
vealed that coefficient ensembles were rather insensitive to mild differences in
step-length.

3. Loglinear vis-a-vis hazards regression for lifetime data analysis. Rather
than assert model (1.1), a popular alternative for lifetime data is to model the haz-
ard function, λ(t,Xi) = limh↓0 pr(t ≤ Ti < t +h|Ti ≥ t,Xi). Cox’s (1972) propor-
tional hazards (PH) assumption asserts that

λ(t,Xi) = λ0(t) exp(β1Xi1 + · · · + βdXid),(3.1)

where λ0(t) is an arbitrary function of time. Because one models the hazard func-
tion in (3.1), the coefficients are interpreted on a log relative risk scale. Regardless
of coefficient interpretation, the maximum partial likelihood estimator minimizes
the following convex loss function:

−1

n

n∑
i=1

�i

[
XT

i β − log
{ ∑

j : Uj≥Ui

exp(XT
j β)

}]
,(3.2)

and coefficient ensembles are constructed accordingly. Note that when the errors in
(1.1) are normally distributed, the proportional hazards model in (3.1) is misspec-
ified. Similarly, it is easy to construct distributions where the PH model is correct
and the loglinear model in (1.1) is incorrect. Both models are correct only when
the distribution of the lifetime variable is an extreme value. Graphical displays and
formal hypothesis tests for the (in)validity of the PH model have been a research
topic for survival enthusiasts for more than four decades. The PH model can fail in
one of three ways [cf. Lin, Wei and Ying (1993)]: (a) the PH assumption, (b) the
functional form of predictors, and (c) the link function. Any violation can have
serious side effects on partial likelihood inference, including inefficient coefficient
estimates, hypothesis tests with the wrong size, and confidence intervals with the
wrong coverage [Lin, Wei and Ying (1993)]. In addition to numerous research pa-
pers on detecting deviations from the PH model, some text books are dedicated
to the topic [cf. Therneau and Grambsch (2000)] and routine tools are available
in standard software. In our analysis of the microarray data in Section 4, we use
a diagnostic tool developed by Grambsch and Therneau (1994) that investigates
whether the covariate effect is constant over time.
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4. Analysis of microarray data. As described in Section 1, the goal of our
microarray analysis is to summarize the association of p = 1036 gene expres-
sion levels with survival time. The combined data set from Harvard and Michigan
consists of microarray data for n = 200 patients with 46.5% observations uncen-
sored. We adopt boosting methods that assume linearity in the functional predictor
f (X) = ∑

j βjXj and, hence, coefficient estimates in the AFT model have the
interpretation of increase in average (logarithm) survival time for a standard devi-
ation (i.e., one unit) increase in gene Xj holding other factors fixed.

First, we use heuristic methods to investigate the tenability of the Cox PH
model assumption in the microarray data. All of our investigations are based on
the cox.zph function [Grambsch and Therneau (1994)] in R which tests the spe-
cific PH model assumption that the log relative hazard is constant over time. Un-
less otherwise stated, we report the cox.zph global p-value for the full model.
Similar to Morris et al., we begin by fitting Cox models one gene at a time. For
each model, we record the p-value for the score test as well as the p-value for
the diagnostic test; the results are displayed in Figure 1. The left panel in Figure 1
is a histogram of the p-values for all 1036 diagnostic tests. A total of 108 out of
1036 (10%) diagnostic tests rejected the null hypothesis at the nominal 0.05-level,
that is, about 5% more than we would expect by chance alone. If the PH model
assumption were true marginally for each gene in the microarray data, we would
expect the p-values in the left panel of Figure 1 to be approximately uniformly
distributed. The right panel of Figure 1 displays the p-values from the score test
by diagnostic p-values from Cox regression fits to the univariate models. We find
that 16 of 108 genes (15%) are declared to be significantly related to survival time
at the nominal 0.05-level, but for which the diagnostic test rejects the PH model
assumption of constant relative risk. Because the score test is not appropriate for
108 of the univariate models, it is unknown how many of the 16 genes are not sig-
nificant at the nominal level nor how many of the 92 genes which are not declared
significant by the score test are, in fact, marginally associated with survival time.

FIG. 1. Results from diagnostic analyses on the microarray data.
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Because of multiple testing, it is known that drawing conclusions from univari-
ate models is naive. We further investigated the tenability of the PH model assump-
tion in multiple regression models using p-values from both the global test as well
as individual composite hypothesis tests that the log relative hazard for a particular
gene is constant given other genes in the model. The p-value for the global test did
not drop below the nominal 0.05-level until more than 80 genes entered the model.
However, there was marginal evidence (p-value = 0.06) against the PH assump-
tion using results from the composite tests with only the top three genes. After one
fits 20 or more of the most significant genes into multiple regression Cox models,
there is always strong evidence (p-value < 0.05) that at least one gene does not
follow the PH model assumption given other significant genes in the model.

We then investigated the sensitivity of the global diagnostic test to the addition
of noise variables. Here, we took one of the 16 genes in Figure 1 that was associ-
ated with survival time but did not satisfy the PH model assumption in a univariate
regression fit; the first one in the data set was the 85th gene, so we chose that
one. We then fit a Cox PH model with the covariate vector corresponding to this
gene and an increasing number of noise vectors, that is, n-dimensional vectors of
standard normal random variables. The p-value for the global test was 0.03, 0.09,
and 0.16 with no, one, and two noise vector(s), respectively. The p-value for gene
85 from the Grambsch–Therneau composite score test tended to stay closer to the
nominal level, although not always less than 0.05. Hence, while our application
of the diagnostic tool is imperfect for high dimensional data analyses, there does
seem to be some evidence contrary to the PH model assumption in joint analyses of
the most significant genes identified through univariate regression fits. A prudent
approach is to consider both the Cox PH and AFT models and we now describe
results from those analyses.

In Table 1 we report the regression coefficients from the final model after 5-
fold CV for each of the PH and rank-based boostings. The third and fifth columns
present the ratio of a given coefficient over the largest coefficient in the active
set. We see that hazards regression selects a nine-gene panel, while boosting the
sum of pairwise differences selects a 19-gene panel, with the latter panel a proper
superset of the former panel. We see that the nine genes in the PH model are not
the strongest nine genes in the 19-gene panel. Indeed, the sixth most significant
gene in the PH model is the least significant among all 19 in the rank-based model.
Moreover, the relative proportions indicate that the panel composition is totally
different between the two methods.

We intended to display all three methods—PH, Gehan, and IPW—side-by-side
in Table 1, but the IPW active set included 94 genes and the table could not easily
fit on one page. In Table 2 we display the set differences among final models by
all three methods. IPW shares only three genes in common with the PH model and
five genes in common with the rank-based model. More than 95% of the genes in
the IPW model do not belong to either PH or rank-based models. Thus, for our
microarray data analysis, the method proposed by Hothorn et al. (2006) leads to



ENSEMBLES BY THE SUM OF PAIRWISE DIFFERENCES 1089

TABLE 1
Coefficients estimates for microarray data

Gene PH Rel. prop. Gehan Rel. prop.

Hs.34789 −0.216 100.0 0.166 100.0
Hs.146580 0.113 52.3 −0.031 18.7
Hs.119000 0.101 46.8 −0.079 47.6
Hs.406013 0.053 24.5 −0.022 13.3
Hs.407995 0.052 24.1 −0.098 59.0
Hs.75106 −0.041 19.0 0.007 4.2
Hs.174185 −0.025 11.6 0.035 21.1
Hs.2962 0.024 11.1 −0.057 34.3
Hs.2934 0.024 11.1 −0.107 64.5
Hs.28491 – 0 −0.039 23.5
Hs.82045 – 0 0.007 4.2
Hs.576 – 0 0.021 12.7
Hs.14231 – 0 0.070 42.2
Hs.57301 – 0 −0.038 22.9
Hs.13046 – 0 −0.023 13.9
Hs.36602 – 0 0.014 8.4
Hs.301132 – 0 0.058 34.9
Hs.180107 – 0 0.035 21.1
Hs.405945 – 0 −0.036 21.7

very different conclusions than the method proposed by Ridgeway (1999) and the
one proposed here.

5. Comparative data analyses in large samples. In this section we provide
two more real data examples where rank-based ensembles lead to different con-
clusions than PH or IPW ensembles. Unlike the microarray data set, the following
data sets have many more observations than predictors. A consequence of the large
sample size is that we may apply cox.zph directly to the entire data set, as seen
in the first comparative data analysis. In the second analysis, we demonstrate that

TABLE 2
Set differences (A–B) among PH, Gehan, and IPW methods

Set B

Set A Total PH Gehan IPW

PH 9 – 0 6
Gehan 19 10 – 14
IPW 94 91 89 –
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differences between rank-based and IPW ensembles transcend base learner and
affects the predictive scores significantly.

5.1. Analysis of nursing home data. From 1980–1982, the National Center for
Health Services Research conducted a study to determine the effect of financial in-
centives on variation of patient care in nursing homes. In particular, 18 out of 36
nursing homes from San Diego, California, received higher per diem payments for
accepting and admitting Medicaid patients and additional bonuses when the pa-
tient’s prognosis improved. The study collected data from an additional 18 control
nursing homes where no financial incentives were used. A complete description is
given in Morris, Norton and Zhou (1994). The total sample size from all 36 nursing
homes is n = 1601.

Our data set consists of seven main effects and six 2-way interactions. The main
effects are treatment (trt), age, sex, marital status, and three health status indica-
tors, ranging from the best health to the worst health. The 2-way interactions are
possible interactions among treatment, age, sex, and marital status. This data set
was previously analyzed by Fan and Li (2002) using the PH model. Using the
Grambsch and Therneau (1994) diagnostic test (cox.zph in R) for proportional
hazards suggests that the PH model is inadequate (global p-value = 0.003). This
does not prove the AFT model is correct but encourages us to look beyond the PH
model in performing variable selection.

Table 3 presents the results from our analysis of the nursing home data. We per-
formed boosting in the PH and AFT models even though our preliminary analysis
indicated the inadequacy the former model. Within the AFT model, we performed
coefficient ensembles using both the Gehan and IPW estimators and noted that the

TABLE 3
Boosted coefficients estimates from the nursing home data

Cox Gehan IPW

trt −0.018 0.060 0.309
age −0.086 0.152 0.109
sex 0.165 −0.283 −0.129
married 0.061 −0.066 –
h1 – – –
h2 0.098 −0.215 −0.160
h3 0.157 −0.291 −0.212
trt∗age 0.017 – –
trt∗sex −0.015 – –
trt∗married – −0.027 −0.124
age∗sex 0.068 −0.143 −0.112
age∗married 0.021 −0.005 −0.048
sex∗married – – –
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two models agree with the exception that IPW does not include the effect of mari-
tal status in the final model. A major difference between IPW and Gehan estimates
is the magnitude of the treatment effect: three times the effect of age by the former
method and less than half the age effect in the latter method. In comparing the
Cox and Gehan coefficient ensembles, we note that the inclusion and exclusion of
all seven main effects agree. However, the presence or absence of all three inter-
actions involving treatment is reversed in the final models. Both IPW and Gehan
estimates exclude treatment-by-age and treatment-by-sex interactions but include
the treatment-by-marital status interaction. The relative magnitude of all two-way
interactions is modest to moderate with the age-by-sex interaction being strongest.

5.2. Blackbox methods on the Wisconsin PBC data. Regression trees are the
most common base procedure in the machine learning community [Freund and
Schapire (1996, 1997); Bühlmann and Hothorn (2007)] and nonparametric proce-
dures are gaining popularity in applications with complex data. In this section we
compare rank-based boosting to existing procedures for survival outcomes using
the Wisconsin Prognostic Breast Cancer (WPBC) data set. The WPBC data set
was contributed by Street, Mangasarian and Wolberg (1995) for developing diag-
nostic models of breast cancer recurrence and is available from the UCI repository
for machine learning data bases. The survival outcome is time to breast cancer
recurrence and 30 predictors describe features of cell nuclei taken from a dig-
itized image of fine needle aspirate of breast mass. This data set was analyzed
previously by Bühlmann and Hothorn (2007) using inverse-probability weighting
(IPW) methods.

Using regression trees as base learners, we boosted the following loss func-
tions: IPW with L2 loss, IPW with L1 loss, and the sum of pairwise differences
of absolute residuals (Gehan) in (2.6). Because IPW boosting with L1 loss led
to problems in identifiability, only the results from L2 loss are presented below.
Figure 2 summarizes output from the data analyses. The left panel illustrates pa-
rameter tuning for boosting the Gehan loss with regression trees as base learners
and shows that the optimal mstop value was 197 iterations when ν = 0.1. The right
panel compares the optimal fitted values f̂ (Xi) from blackbox Gehan and IPW
methods using regression trees as base learners. The blue circles denote predicted
scores from uncensored observations, while the red crosses denote censored obser-
vations. We note considerable disagreement between the risk scores even though
the same data, same AFT model, and same boosting method are used in the sta-
tistical learner—the only difference is in the loss function. Pearson’s correlation
coefficient was only r = 0.45. A total of 66 (33%) scores had different signs de-
pending on the method; 52 (26%) scores had absolute difference greater than one
unit and ten (5%) scores were greater than two units apart. Of the ten observa-
tions whose risk scores were more than two units apart, nine observations were
censored. It is evident that boosting different loss functions, particularly ones that
embody different assumptions about the underlying data, can result in different
estimated parameters and with potentially different conclusions. We repeated the
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FIG. 2. Blackbox methods applied to the Wisconsin PBC data. Parameter tuning for Gehan loss
is displayed in the left panel, while predictive scores between Gehan and IPW losses are illustrated
in the right panel. Blue circles denote predicted scores from uncensored observations, while the red
crosses denote censored observations.

analysis using smoothing splines as base learners and found similar conclusions
to the ones reported in Figure 2; thus, the results from smoothing splines are not
shown.

6. Simulations.

6.1. Comparisons to partial likelihood. We performed numerous simulation
studies to compare coefficient ensembles obtained from boosting the partial likeli-
hood to ensembles obtained from boosting the Gehan loss function. We simulated
data according to the AFT model,

logT =
d∑

j=1

βjXj + ε,(6.1)

where d = 8, the coefficient vector β = (3,3/2,0,0,2,0,0,0) × κ , and the error
distribution was one of standard normal, extreme value (i.e., log Weibull with unit
shape), or a mixture distribution. The mixture distribution was standard normal
contaminated by a Student’s t on three degrees of freedom and contamination is
controlled by a Bernoulli indicator with success probability 0.2. The predictors
are distributed multivariate normal with mean zero and covariance cov(Xj ,Xk) =
(1/2)|j−k|. The constant κ controls the magnitude of the coefficient vector and
hence the signal-to-noise ratio; here, we considered κ equal to 1/4, 1/2, 3/4, and 1.
A total of 100 Monte Carlo data sets were computed for each sample size of n =
60, 80, and 100.

We evaluated estimators based on ubiquitous performance measures from the
variable selection literature: model error (ME), mean squared error (MSE), the
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average number of correct zeros (C), and the average number of incorrect zeros
(I). Regression coefficient estimates from boosting the partial likelihood are mul-
tiplied by minus one so that both estimators are estimating the true coefficient
vector β0 under extreme value error distributions. In the linear model, prediction
error is written as the sum of model error plus noise, where model error is de-
fined ME = (β̂ − β0)

TE(XXT)(β̂ − β0). Although this performance measure is
imperfect outside the linear model, it complements the other measures in a manner
familiar to many statisticians. The median ME (MME) is presented in Figure 3.
The MSE is defined as ME with the d-dimensional identity matrix replacing the
covariance matrix, E(XXT). The definition of correct and incorrect zero is straight-
forward; a larger number is better for the former measure, while a smaller number
is better in the latter.

We performed coefficient selection and estimation in a variety of simulation
scenarios with and without censoring, noting that censored data methods apply
to complete data as well. In Figure 3 we present the results for the uncensored
data case so that we might compare our results to a routine implementation of L2
boosting. So, the three curves in Figure 3 refer to L2 (L) boosting, rank-based
boosting (R), and boosting in the Cox (C) PH model.

Our simulation results indicate that as the magnitude of the true coefficient vec-
tor increases, the ME and MSE for L2 and rank-based boosting remain about the
same while that for the PH model increases dramatically. This result was true re-
gardless of the error distribution, even when the PH model assumptions were sat-
isfied. However, the gap in MSE between rank-based boosting and boosting the
Cox model decreases as the sample size n increases. Interestingly, boosting in the
Cox model has a tendency to favor sparse models when effect sizes are small and
identifies models of similar complexity when effects sizes are moderate to large.
Again, there was significant agreement in trends of model complexity across error
distributions. If one considers all four performance measures together, then rank-
based boosting is preferred. If one dismisses ME and MSE as unfair performance
measures across PH and AFT models, the model complexity via rank-based boost-
ing is less sensitive to the magnitude of the effect size. In the presence of many
small effects, the Cox model will identify a larger number of correct zeros but
simultaneously overlook a larger proportion of true effects.

Next, we simulate censored data and no longer consider L2 boosting. We again
simulate uncensored data according to the linear model in (6.1) with autoregressive
design and normal errors. True regression coefficients are generated in two clusters
according to the following rule:

• for h = 1, . . . ,4, set initial coefficients β4+k,h = β13+k,h = (h−k)2, for |k| < h,
• multiply initial coefficients by a constant to yield theoretical R2 = 3/4, where

theoretical R2 for random design is

R2 = βT
0E(XXT)β0

βT
0 E(XXT)β0 + σ 2

,
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FIG. 3. Simulation results in uncensored data. Coefficient ensembles displayed for the Cox (C) PH
model, rank-based (R) and L2 (L) boostings in a linear model (see text). Abscissa is expressed in κ

(“kappa”), a multiplicative constant on the coefficients in simulation studies, while ordinates refer
to median model error (mme), average number of correct (C) and incorrect (I) zeros, with the last
measure on a square-root scale.

with σ the standard deviation of εi . Under this simulation scenario, the signal
strength remains the same, while the proportion of active variables changes with
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FIG. 4. Simulation results from comparing Cox (C) PH ensembles to rank-based (R) ensembles
in uncensored data. Abscissa is labeled in terms of Models H1–H4, with an increasing number of
nonzero coefficients for fixed theoretical R2. Ordinates refer to mean squared error (mse), average
number of correct (C) and incorrect (I) zeros, and the false selection rate (fsr).

h = 1, . . . ,4. Censored random variables were uniformly distributed Un(0, τ ) to
yield about 25% censoring. As in our earlier Monte Carlo studies, we monitor the
mean-squared error (MSE), average number of correct (C) and incorrect (I) zeros.
We also monitor the average false selection rate (FSR), computed as the proportion
of unimportant variables relative to the cardinality of the active set. A summary
over 100 Monte Carlo data sets for each of Model H1–H4 is displayed in Figure 4.

As in our earlier simulations, estimating regression coefficients under an incor-
rect proportional hazards assumption can lead to substantial bias. Hence, the MSE
is much higher using Cox PH compared to rank-based estimation, but the bias
decreases as the proportion of active variables increases. Remarkably, ensembles
via Cox PH were mildly better than rank-based ensembles in identifying correct
zeros, but the better performance came at a price of incorrectly setting important
variables to zero. Hence, PH ensembles tend to select models that are too sparse
under a normal-theory linear model and many moderate effects are ignored com-
pletely.

6.2. Comparisons to inverse-probability weighting. We performed sepa-
rate simulation studies to compare rank-based boosting and inverse-probability
weighted (IPW) boosting [Hothorn et al. (2006)] in the AFT model. We simulated
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data according to a similar AFT model used in earlier simulation studies,

logT =
d∑

j=1

βjXj + σε,

where the distribution of ε follows one of standard normal, log Weibull with
unit shape, or Student’s t on three degrees of freedom. Two modeling differ-
ences are that we fixed the constant κ = 1 and, hence, the coefficient vector is
β = (3,3/2,0,0,2,0,0,0) and varied the signal-to-noise ratio by increasing the
scale parameter σ from one-half to two in increments of 0.5. We again used an
autoregressive design for the matrix of predictors. The performance measures are
identical to those discussed above.

The IPW boosting method by Hothorn et al. (2006) depends on correctly mod-
eling the (conditional) censoring mechanism. But the procedure implemented in
their mboost R package makes the strong assumption that censoring is indepen-
dent of failure times. Here, we simulate such data by generating uniform censoring
random variables, that is, C ∼ Un(0,5). Simulation results under the independent
censoring assumption are provided in Figure 5. A weaker assumption is to suppose
that censoring is conditionally independent of failure time given covariates and we
simulate such data through the model, C = βTX + Un(0,2). Figure 6 summarizes
simulation results under the latter modeling assumptions. We report results for a
sample of size n = 60 independent observations. In summary, the simulation sce-
narios are as follows:

• the error ε is distributed as one of standard normal, extreme value, or t3; censor-
ing is independent of failure time and C ∼ Un(0,5);

• the error ε is distributed as Student’s t on r degrees of freedom, r = 1,3,5,

10,15,20; censoring is conditionally independent of failure time given covari-
ates and is modeled C = βTX + Un(0,2).

When the stronger independent censoring assumptions are satisfied, Figure 5
suggests that IPW boosting is a better procedure than rank-based boosting when
the error distribution has light tails but not when the error distribution has heavy
tails. Of course, the IPW methodology is general and a more robust version of the
IPW may fix the deficiencies seen in the last column of the results in Figure 5
[Hothorn et al. (2006)]. However, Figure 6 suggests that excessive bias in IPW
coefficient ensembles is not easily remedied by merely swapping loss functions.
In Figure 6 we see that the ME and MSE plateau around 1.9, while the rank-
based Gehan procedure plateaus at a value less than one-half. Under the second
simulation scenario, our results suggest that IPW procedures produce estimates
with excessive bias and prefer models that are too simple. If a squared error loss
function is used to model lifetime data, the IPW estimates will be sensitive to
outlying lifetime values.
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FIG. 5. Simulation results from comparing inverse probability weighting (W) versus rank-based
(R) boosting via Gehan loss when model assumptions are satisfied for both procedures. Abscissa
label is “sigma,” the scale parameter on the errors in simulation studies; ordinate labels are median
model error (mme), average number of correct (C) and incorrect (I) zeros.

7. Remarks. High-dimensional survival analysis is an important application
of the boosting machinery. In addition to placing weak restrictions on the predic-
tive function f (·), boosting applies to any well-defined convex loss function. For
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FIG. 6. Simulation results from comparing inverse probability weighting (W) versus rank-based
(R) boosting via Gehan loss when IPW model assumptions are violated. Abscissa label is degrees of
freedom (df) of a Student’s t distribution from which the outcomes were generated; ordinate labels
are median model error (mme), mean squared error, average number of correct (C) and incorrect (I)
zeros.

survival outcomes, one’s first inclination may be to adopt Cox’s (1972) propor-
tional hazards (PH) model and estimate f (·) by minimizing the negative log partial
likelihood. It is known that the PH model assumptions can fail when n 	 p and the
problem persists for large-scale regression problems too. Diagnosing the veracity
of the PH model assumptions in high dimensions is an intriguing research problem
and beyond the scope of the current manuscript. When the proportional hazards as-
sumption is inadequate or false, the accelerated failure time (AFT) model may be a
reasonable alternative. In Section 6 we illustrated the effects on variable selection
when the PH model is misspecified but the AFT model is correctly specified. Head-
to-head comparisons of coefficient ensembles via hazards versus linear modeling
suggest that the former identifies a slightly higher proportion of correct zeros and
has a lower proportion of unimportant variables in final models even when the PH
model assumption is incorrect. At the same time, in addition to expected excessive
bias in misspecified models, we find that PH ensembles tend to select models that
are too sparse and, hence, ignore many moderate effects.



ENSEMBLES BY THE SUM OF PAIRWISE DIFFERENCES 1099

Hothorn et al. (2006) discussed boosting survival data in the semi-parametric
AFT model via inverse probability weighting (IPW). The coefficient ensembles by
Hothorn et al. (2006) are built on a theory of inverse probability weighting (IPW),
a powerful technique for general missing data problems [van der Laan and Robins
(2003); Tsiatis (2006)]. The idea is to model the censoring mechanism as a func-
tion of covariates and then weight the uncensored data by the reciprocal of the es-
timated “complete case” probability. If the censoring mechanism does not depend
on covariates, then the modeling is accomplished nonparametrically via Kaplan–
Meier estimation. In contrast, the ensemble methods proposed here are based on
minimizing rank-based dispersion criteria and do not require modeling the cen-
soring mechanism. Both IPW and rank-based ensemble methods minimize convex
loss functions and fit neatly into the boosting template; however, rank-based meth-
ods operate under less stringent conditions. Although second-stage modeling can
improve the simple inverse-weighting method proposed by Hothorn et al. (2006),
the secondary models would be difficult to verify and computational details left to
the user. Our simulation studies indicated that the boosting method by Hothorn et
al. (2006) is as good or better than rank-based boosting in special cases but not in
general.

In conclusion, our analyses and simulation studies indicate that each of PH,
rank-based, and IPW survival ensembles can exhibit the best and worst learning
behavior depending on the model, the data, and how one evaluates model perfor-
mance. We were surprised that boosting in Cox’s PH model performed as well as it
did even in a misspecified linear model with normal errors. But even in this simple
simulation scenario, we were able to replicate the types of difference betweeen PH
and rank-based ensembles and potential underfitting behavior similar to what we
saw in our microarray data set. We feel that rank-based survival ensembles have
merit and will provide scientists with a strong tool for investigating large data sets
in a wide variety of settings.
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