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BAYESIAN HIERARCHICAL MODELING FOR SIGNALING
PATHWAY INFERENCE FROM SINGLE CELL

INTERVENTIONAL DATA1

BY RUIYAN LUO AND HONGYU ZHAO

Yale University

Recent technological advances have made it possible to simultaneously
measure multiple protein activities at the single cell level. With such data
collected under different stimulatory or inhibitory conditions, it is possible to
infer the causal relationships among proteins from single cell interventional
data. In this article we propose a Bayesian hierarchical modeling framework
to infer the signaling pathway based on the posterior distributions of parame-
ters in the model. Under this framework, we consider network sparsity and
model the existence of an association between two proteins both at the overall
level across all experiments and at each individual experimental level. This
allows us to infer the pairs of proteins that are associated with each other and
their causal relationships. We also explicitly consider both intrinsic noise and
measurement error. Markov chain Monte Carlo is implemented for statisti-
cal inference. We demonstrate that this hierarchical modeling can effectively
pool information from different interventional experiments through simula-
tion studies and real data analysis.

1. Introduction. Cells respond to internal and external changes through sig-
naling networks. One major research area in biology is to identify signaling pro-
teins and understand how they coordinate to function properly. With recent tech-
nological advances in genomics and proteomics, researchers now can monitor and
quantify molecular activities at the genome level, making it possible to reconstruct
signaling pathways from these high-throughput data. Although efforts have been
made to use microarray gene expression data and sequence data to reveal signaling
pathways [e.g., Liu and Ringnér (2007)], these data are limited in two important
aspects. First, signaling pathways function at the protein level, so measured gene
expression levels from microarrays at most can provide a proxy to the protein ac-
tivity levels. Second, each cell may behave differently from other cells due to com-
plex interactions among many proteins, some substantially. Therefore, population
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level data collected by microarrays can mask individual cell differences, making it
difficult to infer underlying pathways. In contrast, single cell level protein activity
data offer much richer information for pathway inference.

Flow cytometry [Herzenberg et al. (2002); Perez and Nolan (2002)] is a power-
ful fluorescence-based technology that can make rapid, sensitive, and quantitative
measurements of multiple proteins for thousands of individual cells. It can measure
both a specific protein’s expression level and protein modification states such as
phosphorylation. Therefore, phospho-protein responses to environmental stimula-
tions can be monitored at the single cell level for thousands of cells very efficiently,
and this technology has been employed to infer signaling pathways through gath-
ering activity levels of multiple proteins under different stimulatory or inhibitory
conditions [Sachs et al. (2005)]. We focus on the analysis of single cell flow cy-
tometry data in this article.

Several methods have been applied for network inference based on genomics
data, including Bayesian Networks (BNs) [Pe’er et al. (2001); Pe’er (2005)],
Markov Networks (MNs, also called Markov random fields) [Wei and Li (2007,
2008)], and Dependency Networks (DNs) [Heckerman et al. (2000)]. Common to
all these methods, each protein (or gene) is represented by a node and a dependency
between two proteins is represented by an edge in the network. More formally, we
define a graph G = (V ,E) with its nodes V = {1, . . . ,P } and an edge set E. We
use Xi to refer to the value of the ith node, that is, the expression level of the ith
protein. The methods differ in how the edges are inferred from the observed data.
In BN, the network is a directed acyclic graph where the state of each node only de-
pends on its immediate ancestors. This structure imposes Markovian dependency
among all the nodes stating that each variable is conditionally independent of its
nondescendants given its parent variables. So the joint likelihood for all the nodes,
that is, proteins, can be factored into a product of conditional probabilities. BNs
pose significant computational challenges to learn the network structure because
the model space to be explored is super-exponential in the number of genes to
be studied. More recently, Ellis and Wong (2008) proposed a method to reduce
the bias in the fast mixing algorithm proposed by Friedman and Killer (2003)
to sample the BN structures from the posterior distribution. MNs are undirected
graphical models and are similar to BNs in representation of dependencies: each
random variable is conditionally independent of all other variables given its neigh-
bors. Gaussian Graphical Models (GGMs) [Lauritzen (1996); Schäfer and Strim-
mer (2005); Dobra et al. (2004)], a subclass of MNs, assume a multivariate normal
distribution as the joint distribution of random variables. The existence of an undi-
rected edge in a GGM is implied by the nonzero partial correlation coefficient
derived from the precision matrix. Some studies have found that BNs outperform
GGMs in inferring networks based on interventional data where the biological
system is perturbed through designed experiments, but GGMs may perform better
for observational data, for example, Werhli, Grzegorczyk and Husmeier (2006).
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DNs aim to reduce computational burden where a large number of genes are mod-
eled by building a collection of conditional distributions separately. DNs define the
conditional distributions {p(Xi |X−i )} separately for each Xi . When we focus on
sparse normal models, DNs define a set of P separate conditional linear regression
models in which Xi is regressed on a small selected subset of predictor variables,
which are determined separately.

Because a statistical association between two variables only implies associa-
tion not causation, standard DN and GGM approaches cannot be used to infer
causal networks, a goal in signaling pathway analysis. In this article we develop
a Bayesian hierarchical modeling approach based on DNs to address this limita-
tion. This is achieved through appropriate intervention experiments to dissect di-
rectional influences. To accommodate varying relationships among proteins under
different experimental conditions, we allow a different set of regression models for
each condition. At the same time, the hierarchical framework imposes similar func-
tional forms across conditions to borrow information from different experiments.
As for causal inference, the basic idea is that for any protein i, its regulators exert
similar effects if it is not intervened, and would have no effect when i is controlled.
In contrast to standard regression models where the predictors are assumed to be
error-free, our model allows measurement errors in predictor variables.

A large part of the difficulty in the standard BN computation is due to the re-
quirement that the network be acyclic. Our approach is not guaranteed to give
acyclic networks. However, in terms of sensitivity and specificity to detect true
edges, our method is competitive with the best methods that impose the acyclic
graph assumption. This is illustrated by our results in the example of Sachs et al.
(2005).

The paper is organized as follows. In Section 2 we describe two hierarchical
models (a general hierarchical model where no constraints are imposed and a re-
stricted hierarchical model where a symmetry constraint is imposed) and the meth-
ods for statistical inference of the network. For comparison, we also describe a
nonhierarchical model where all the experiments are pooled together for analysis.
Then we investigate the performance of these methods on simulated data in Sec-
tion 3. In Section 4 we apply these methods to data from a study of the signaling
networks of human primary naive CD4+ cells [Sachs et al. (2005)]. We finish the
paper with discussions in Section 5.

2. Methods. The primary goal of our statistical model is to infer causal influ-
ences among proteins from interventional data. In this section we describe three
models: a hierarchical model (HM), a restricted hierarchical model (RHM), and a
nonhierarchical model (NHM), that can be used to infer the relationships among
proteins. We also discuss statistical methods to infer causal networks in this sec-
tion.
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2.1. Hierarchical model (HM). First we discuss a Bayesian hierarchical
model to infer the relationships among proteins both at the overall level across
all experiments and under individual experimental conditions. Our model incorpo-
rates both measurement errors and the intrinsic noises due to the biological process
and unmodeled biological variations.

Let P denote the number of proteins, K denote the number of experimental
conditions, and Nk denote the number of samples (individual cells) under the kth
condition, k = 1,2, . . . ,K . We further let x̃ink denote the true activity level of
the ith protein in the nth cell under the kth experimental condition, and xink the
measured value of its activity, where xink = x̃ink + εM

ink, and the measurement error
εM

ink is a normal random variable with mean 0 and standard deviation σM , that
is, εM

ink ∼ N(0, (σM)2). Our model assumes that there exists a linear relationship
among the activity levels of proteins. That is, for each protein i = 1,2, . . . ,P and
for each condition k = 1,2, . . . ,K ,

x̃ink = α
(k)
i0 + ∑

j �=i

α
(k)
ij x̃jnk + εI

ink,(1)

where εI
ink is the intrinsic noise and has a normal distribution N(0, (σ I

i )2).2 We as-
sume that the error terms {εI

ink} are independent, and are independent of the mea-

surement errors {εM
ink}. In equation (1), α

(k)
ij = 0 if there is no linear relationship

between the activity levels of proteins i and j under the kth experimental condi-
tion. A nonzero value of α

(k)
ij implies the existence of a linear relationship (but not

necessarily a causal effect). To correctly infer the network among these proteins,
we need to first find, for each protein, the subset of proteins that are linearly asso-
ciated with its expression level, which is implied by the set of nonzero coefficients
in (1). The linear relationship among the true expression values x̃ink implies that
the observed values are also linearly related:

xink = α
(k)
i0 + ∑

j �=i

α
(k)
ij (xjnk − εM

jnk) + εI
ink + εM

ink

(2)
= α

(k)
i0 + ∑

j �=i

α
(k)
ij xjnk + εI

ink + εM
ink − ∑

j �=i

α
(k)
ij εM

jnk.

Comparing (1) and (2), we can see that correctly inferring the relationship in the
network depends on the correct inference of the set of nonzero coefficients in (2).

For each protein, we utilize indicator variables zij = 0/1 to denote the relation-
ship between proteins i and j such that zij = 1 if and only if the coefficient of the

2Here a constant variance (σ I
i )2 is assumed for the intrinsic noises of a particular protein. We

can relax this assumption and allow varying variances (σ I
ik)

2 for intrinsic noises under different
experimental conditions. This extended model and simulation results are described in Supplementary
Material S1 [Luo and Zhao (2010)].
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j th protein in the regression model for the ith protein is nonzero. The values of
zij may differ under different experimental conditions. For example, if protein j

regulates protein i, zij = 1 when i is not controlled and the association strength be-
tween the two proteins should be similar under such conditions. However, zij = 0
when i is controlled because the relation between Xi and Xj is destroyed. There-
fore, it is natural to use a hierarchical structure to formalize this thinking. We use
w

(k)
ij to denote the probability that zij = 1, that is, protein j is related to protein i

under the kth experimental condition. The prior we take for the regression coeffi-
cient α

(k)
ij is a mixture of two distributions. One is a point mass at zero, indicating

that the j th protein is not linearly related to the ith protein under the kth con-
dition. The other is a normal distribution for nonzero effects, with weight w

(k)
ij .

Specifically, the prior for the slope coefficient α
(k)
ij (j �= i) is

α
(k)
ij |w(k)

ij , αij , σ
α
ij ∼ (

1 − w
(k)
ij

)
δ0

(
α

(k)
ij

) + w
(k)
ij N

(
α

(k)
ij |αij , (σ

α
ij )

2)
,(3)

where δ0(·) indicates a point-mass at zero, and w
(k)
ij is the probability that α

(k)
ij �= 0.

When α
(k)
ij �= 0, the prior for α

(k)
ij is N(αij , (σ

α
ij )

2) with a common mean and a
common standard deviation across different experimental conditions. Under this
setup, information is shared for coefficients α

(k)
ij across different conditions. Simi-

larly, we borrow information for w
(k)
ij across different experimental conditions by

applying a beta distribution as a prior for w
(k)
ij with a common mean wij and a

common variance wij (1 − wij )/(vij + 1):

w
(k)
ij |wij , vij ∼ Beta

(
wijvij , (1 − wij )vij

)
.(4)

So w
(k)
ij measures the probability that there is an association between proteins i

and j under the kth experimental condition, and wij measures the overall-level
probability that the two proteins are associated.

To complete the model, we specify a beta distribution Beta(β1, β2) for wij ,
a normal distribution N(a(i), τ (i)) for αij and gamma distributions: G(γ1, γ2),
G(γ3, γ4) and G(γ5, γ6) for (σ I

i )−2, (σα
ij )

−2 and (σM)−2, as their respective prior
distributions. In the simulation studies, we take γi = βj = 1 for i = 1,2 and
j = 1,2, . . . ,6, a(i) = 0 and τ (i) = 1000 for i = 1, . . . ,P . In real data analysis,
we vary the hyperparameter values to study the sensitivity of the inference results
to these values. We note that the posterior distribution is proper since we take
proper priors for all the parameters.

One attractive feature of this model is that when w
(k)
ij is integrated out, the mar-

ginal distribution of α
(k)
ij is independent of vij :

α
(k)
ij |wij ,αij , σ

α
ij ∼ (1 − wij )δ0

(
α

(k)
ij

) + wij N
(
α

(k)
ij |αij , (σ

α
ij )

2)
.(5)



730 R. LUO AND H. ZHAO

Given α
(k)
ij and wij , when vij is specified, the posterior distribution of w

(k)
ij is

w
(k)
ij |wij , vij , α

(k)
ij ∼ Beta

(
wijvij + I

(
α

(k)
ij �= 0

)
, (1 − wij )vij + I

(
α

(k)
ij = 0

))
.(6)

Hence, we can first sample the posterior distributions of α
(k)
ij and wij , and then

sample w
(k)
ij according to equation (6).

Under this model, the inference of the causal network consists of two steps.
First, based on the posterior means ŵ(i,j) of the overall-level probability 0.5 ×
(wij +wji), we infer whether there is an association between proteins i and j with
a certain threshold u1. Second, for each pair of proteins (i, j) that are inferred to be
associated, we determine their regulatory direction based on the experiment-level
probabilities w

(k)
ij to infer the causal network. The underlying assumption of our

inference is that for a pair of proteins (i and j ) that has a regulatory relation, say, i

regulates j (i → j ), controlling (inhibiting or activating) over protein j affects the
activity of j but not i, resulting in much reduced or lack of association between
i and j ; controlling over protein i affects the activity of i and hence j , keeping
the association between them. The posterior distributions of w

(k)
ij given α

(k)
ij and

wij , with vij prespecified, is given in equation (6). To better reflect the changes of

w
(k)
ij for different k, we use vij ≡ 0.1 in our analysis, because larger values of vij

(e.g., 10) are not able to reveal the changes in w
(k)
ij , as the parameters in (6) are

dominated by vij when vij is large, and I (α
(k)
ij �= 0) plays a smaller role in (6).

To put this into more concrete terms, we consider wij = 0.9 as an example, which
gives a strong support for the association between proteins i and j . The difference
between the distributions Beta(0.9 × 10 + 1,0.1 × 10) and Beta(0.9 × 10,0.1 ×
10+1) when vij = 10 is much less than that between Beta(0.9×0.1+1,0.1×0.1)

and Beta(0.9 × 0.1,0.1 × 0.1 + 1) when vij = 0.1.

To determine the directions of edges, we calculate the posterior means ŵ
(k)
ij of

w
(k)
ij for all k and (i, j) pairs. For each pair (i, j), if all the values in a stream

(e.g., {ŵ(k)
j i }k) are small (less than a threshold u2 > 0, so the signal in this stream is

weak compared to noises), then we ignore this stream and infer the causal relations
only based on the other one ({ŵ(k)

ij }k). The inference is based on checking whether

ŵ
(k)
ij under specific conditions decreases greatly compared to the highest value. Let

Si,j = {k : k ∈ {i, j}} denote the set of conditions under which i or j is perturbed,
and |Si,j | be its cardinality. We propose the following four criteria to determine the
causal relationship between an associated protein pair (i, j ):

• Case 1: |Si,j | = 1, that is, i or j is only perturbed in one condition. With-
out loss of generality, we suppose that protein i is controlled under condi-

tion k′ (Si,j = {k′}). If maxk{ŵ(k)
ij } − ŵ

(k′)
ij > u3 for a threshold u3 > 0, then

from stream {ŵ(k)
ij }k we infer j → i. Otherwise, we infer i → j . Similarly, we
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make an inference from the stream {ŵ(k)
j i }k . If the directions inferred from both

streams are the same, say, i → j , we infer that direction as the direction of the
edge between i and j : i → j . If the directions from both streams are different,
we say that the direction of the edge is undetermined. Taking the conditions in
Table 1 for the network in Figure 1 as an example, pairs (1,2), (1,8), (2,6)

(3,4), (4,5), (6,8), (8,10), and (8,11) belong to Case 1.
• Case 2: |Si,j | > 1 and for all k ∈ Si,j , the same protein, say, i, is controlled. For

each stream, for example, {ŵ(k)
ij }k , if maxk{ŵ(k)

ij } − ŵ
(k′)
ij > u3 for all k′ ∈ Si,j ,

then we infer j → i; if maxk{ŵ(k)
ij } − ŵ

(k′)
ij ≤ u3 for all k′ ∈ Si,j , then we infer

i → j ; otherwise, we do not infer a direction from this stream. If both streams
lead to a directional inference and the directions are the same (Figure 4, top
panel), or if only one stream provides a directional inference, then we infer the
direction of the edge. Otherwise, the direction is undetermined. For the con-
ditions in Table 1, pairs (1,9), (3,9), (5,7) (6,7), (9,10), (9,11) belong to
Case 2.

• Case 3: |Si,j | > 1 and both proteins are controlled in the experiments. Let S
(i)
i,j

denote the set of conditions under which protein i is controlled, and S
(j)
i,j the set

of conditions under which protein j is controlled. For each stream, for example,
{ŵ(k)

ij }k , we calculate the differences of ŵ
(k)
ij when i or j is controlled: d

(k1k2)
ij =

ŵ
(k1)
ij − ŵ

(k2)
ij for each k1 ∈ S

(i)
i,j and k2 ∈ S

(j)
i,j . If d

(k1k2)
ij > u3 for all k1 ∈ S

(i)
i,j and

k2 ∈ S
(j)
i,j , we infer that i → j ; if d

(k1k2)
ij ≤ −u3 for all k1 ∈ S

(i)
i,j and k2 ∈ S

(j)
i,j ,

we infer that j → i; otherwise, the direction is undetermined from this stream.
If both streams lead to a directional inference and the directions are the same, or
if only one stream provides a directional inference, then we infer the direction of
the edge. Otherwise, the direction is undetermined. For the conditions in Table 1,
pairs (2,9), (4,9), (7,8) (8,9) belong to Case 3.

• Case 4: |Si,j | = 0, that is, no perturbation is conducted on either protein. In this
case, we cannot infer the causal relation.

The choices of the thresholds u1, u2, and u3 will be discussed in simulation
studies. Generally speaking, the two steps involved in causal network inference are
based on the posterior distributions of wij and w

(k)
ij . The overall-level probability

wij measures the strength of the linear relationship between two proteins across
all the conditions. Based on wij , we infer the set of proteins that are related from
which we determine an undirected graph. The changes in the experiment-level
probabilities w

(k)
ij offer insights on the directions of causal regulations.

2.2. Restricted hierarchical model (RHM). The wij and w
(k)
ij in (3), (4), and

(6) denote the probability that protein j is included in the linear model to predict
the activity level of protein i across all the experiments and under the kth spe-
cific condition, respectively. In this framework, we may impose the constraint that
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wji = wij and w
(k)
ji = w

(k)
ij for each k, that is, the existence of a linear relation-

ship between proteins i and j is independent of which variable is the predictor
and which is the response variable. We can infer the posterior distributions of wij

and w
(k)
ij under this constraint, and call this model a restricted hierarchical model

(RHM). Based on the posterior means of wij , we can infer whether proteins i and
j are associated with each other by setting up an appropriate threshold u′

1. For
each associated pair, we can infer the causal relationship according to the changes
in w

(k)
ij . The choice of the threshold will be illustrated in Section 3.1 and Sup-

plementary Material S3 [Luo and Zhao (2010)] details the criteria in determining
the causal relations for the associated pairs of proteins. Different from HM, we
must prespecify vij in RHM to sample from the posterior distributions of wij and

w
(k)
ij . We will show how different values of vij affect the network inference in the

following discussion.

2.3. Nonhierarchical model (NHM). To demonstrate the usefulness of the hi-
erarchical model approach, we also consider a nonhierarchical model (NHM) as
a reference model for comparisons. The NHM assumes a linear model among the
activity levels of proteins and incorporates both measurement errors and intrinsic
noises as in equation (2). The main difference is that this NHM assumes identical
regression coefficients across different experimental conditions:

xink = αi0 + ∑

j �=i

αij xjnk + εI
ink + εM

ink − ∑

j �=i

αij ε
M
jnk,(7)

where the intrinsic noise εI
ink follows the normal distribution N(0, (σ I

i )2), the mea-
surement error εM

ink follows the normal distribution N(0, (σM)2), and they are as-
sumed to be independent. As in HM, we also apply mixture distributions as priors
for the coefficients αij :

αij ∼ (1 − wij )δ0(αij ) + wij N(αij |a, τ 2).(8)

The posterior distributions of wij provide information about whether proteins i

and j are associated. However, it is impossible to make causal inference from this
model.

For all three models, we use MCMC methods to sample the posterior distribu-
tions. Supplementary Material S2 [Luo and Zhao (2010)] provides details of the
MCMC updates for HM. The MCMC updates for RHM and NHM are similar and
not shown in this paper.

3. Simulation study. We first apply our methods to simulated data to illus-
trate how to infer the causal network from the posterior distributions of the overall-
level probabilities wij and the experiment-level probabilities w

(k)
ij , for both HM

and RHM. We also study how the inference differs between these two methods
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FIG. 1. Pathway adapted from Sachs et al. (2005) by including three missed edges and correcting
one reversed edge. Nodes represent proteins, and directed edges represent signal transduction.

and for different choices of vij . We then study the performance of our methods on
simulated data with heavy tail distributed intrinsic noises.

We simulate data based on the network shown in Figure 1, which is adapted
from Sachs et al. (2005) by correcting one reversed edge and including three
missed edges. From Figure 1, we can derive the parent set for each node (protein).
For any protein i, we first generate the association strength αij from the uniform
distribution over the interval [0.5,2], and randomly assign the sign of αij . Given
the activities of its parents, we simulate the activity x̃i of protein i from the normal
distribution: x̃i ∼ N(αi0 + ∑

j αij x̃j , (σ
I
i )2), where the sum extends over all par-

ents of protein i. Thus, we get the empirical distribution of x̃i when protein i is not
intervened. Let xi denote the observed expression level of protein i, then xi is sim-
ulated from N(x̃i , (σ

M)2). We simulate the interventional data as follows. For an
intervention experiment, if the ith protein is inhibited, we sample x̃i from the left
tail of its empirical distribution obtained when protein i is not perturbed, beyond
the 5th percentile. If the ith node is stimulated, we sample x̃i from the right tail of
the empirical distribution, beyond the 95th percentile. We simulate a total of nine
stimulatory or inhibitory interventional conditions, as summarized in Table 1. Un-
der each perturbation condition, we simulate expression levels for each of the 11
proteins for 600 individual cells. We consider two cases: (1) constant intrinsic vari-
ances (σ I

i )2 ≡ 1 and (2) variable intrinsic variances with σ I
i = 0.1 × √

IG(2,1),
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TABLE 1
A summary of the nine experimental conditions for the data in Sachs et al. (2005)

Stimulus Effect

1 CD3, CD28 general perturbation
2 ICAM2 general perturbation

3 Akt-inhibitor Inhibits Akt
4 G0076 Inhibits Pkc
5 Psi Inhibits Pip2
6 U0126 Inhibits Mek
7 Ly Inhibits Akt

8 PMA Activates Pkc
9 β2cAMP Activates Pka

where IG(2,1) represents the inverse gamma distribution with mean 1 and vari-
ance ∞. Finally, we simulate data where the intrinsic noises are sampled from
a heavy tail distribution: t (1), which represent a central t distribution with one
degree of freedom.

3.1. Constant intrinsic variance: (σ I
i )2 ≡ 1.

3.1.1. Inference from HM. Based on the simulated data, we obtain samples for
both wij and wji from their posterior distributions under HM. To infer whether an
association exists between proteins i and j , we obtain the posterior means ŵ(i,j)

of the average of the probability that each is included in the regression model
of the other: (wij + wji)/2. Higher values of ŵ(i,j) imply stronger evidence of
association between the two proteins. Figure 2 shows the posterior means ŵ(i,j),
from one MCMC run, for each pair (i, j) (i < j ), in the ascending order of ŵ(i,j).
Large solid circles represent true associations, and small empty ones represent
false ones. We see that the true associations dominate the higher values of ŵ(i,j).

To infer the pair of proteins that are associated, we need to set a threshold u1
on the posterior means ŵ(i,j) so that those above the threshold are inferred to be
associated. The permutation study3 offers an over-liberal threshold (<0.1), based
on which we get over 40 associations with false positive rate ≥0.5. Noting the
jumps in the plot of ŵ(i,j), we propose to choose the threshold where a big jump
occurs. Setting the threshold u1 as any value between 0.2 and 0.4 and choosing
the pairs with ŵ(i,j) > u1, we get 22 associations with 2 false positives. When we
have multiple MCMC runs, which lead to multiple plots of ŵ(i,j), we can combine
the inferences from them. Figure S1 in the Supplementary Material [Luo and Zhao

3We permute the observations for each protein and then analyze the permuted data with HM. The
obtained posterior means ŵ(i,j) are less than 0.1 for all (i, j) pairs.
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FIG. 2. Posterior means ŵ(i,j) of (wij + wji)/2, sorted in increasing order, from one MCMC
run of the HM on the simulated data with constant intrinsic variances. Large solid and small empty
circles represent true and false associations, respectively.

(2010)] draws the plots of ŵ(i,j) from four additional MCMC runs. They show the
same features as seen in Figure 2 that true associations tend to have high ŵ(i,j)

values and jumps exist in these plots. These five MCMC runs lead to quite similar
results: from four of them we get 22 associations with 2 false positives, and from
a fifth run we get 21 associations with 2 false positives and 1 missing association,
when we choose u1 between 0.3 and 0.4. Let uf be the relative frequency that each
association is selected. When u1 ∈ (0.3,0.4) and uf ≥ 4/5, we get 22 associations
with 2 false positives (Figure 3).

For the pairs of proteins that are inferred to be associated, we then infer their
causal directions based on the criteria listed in Section 2.1. To better illustrate the
criteria, we give two examples in Figure 4. The top panel draws the boxplots of
the samples from the posterior distributions of w

(k)
57 and w

(k)
75 . Both show that the

experimental-level probabilities greatly decreased under conditions 3 and 7 where

protein 7 (Akt) is inhibited (here maxk{ŵ(k)
57 } − ŵ

(k′)
57 ≥ 0.8 and maxk{ŵ(k)

75 } −
ŵ

(k′)
75 = 0.9 for k′ = 3,7). So we infer the direction 5 → 7 (i.e., PIP3 → Akt).

The bottom panel tells a different story. The posterior means of w
(k)
76 when k = 3

or 7 are much smaller than others (maxk{ŵ(k)
76 }− ŵ

(k′)
76 = 0.9), indicating the causal

relation 6 → 7, but w
(k)
67 keeps the same level under all conditions (maxk{ŵ(k)

67 } −
ŵ

(k′)
67 = 0), indicating the causal relation 7 → 6. The contradictory results from

w
(k)
67 and w

(k)
76 lead to the failure in determining the causal relationship between

proteins 6 (Erk) and 7. Taking u2 = 0.1 and u3 ∈ (0.3,0.5), we infer a causal
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FIG. 3. Networks inferred by choosing associations with u1 ∈ (0.3,0.4), u2 = 0.1, u3 ∈ (0.3,0.5),
and uf ≥ 0.8 in five MCMC runs of the HM on the simulated data with constant σI

i . Solid arrowed
lines represent correctly inferred true edges, dashed thick lines with labels “u” represent edges
whose directions cannot be determined from the simulations, dashed arrowed thin lines with labels
“r” represent reversed edges, and dotted lines with labels “+” represent false positive edges.

network as shown in Figure 3, which contains 14 true directed edges, 5 edges
whose directions are undetermined, 1 reversed edge, and 2 false edges.

When we have multiple MCMC runs, we infer the causal relation of each edge
based on the majority vote of the directions inferred from each MCMC run. In fact,
these five runs lead to almost identical causal inference for the common associa-
tions [based on u1 ∈ (0.3,0.4)] when we take u2 = 0.1 and u3 ∈ (0.3,0.5). The
choices of u2 and u3 are affected by the value of v

(k)
ij . Choosing v

(k)
ij ≡ 0.1 ensures

that most ŵ
(k)
ij are either above 0.9 or below 0.1. The streams with ŵ

(k)
ij ≤ 0.1 for

all k contain too weak a signal to provide sufficient information for causal infer-
ence. So we take u2 = 0.1. The small value of v

(k)
ij also leads to a great difference

in ŵ
(k)
ij for different experiments when protein i or j is intervened. In this simula-

tion study, intervention of the child node for one edge leads to a decrease of at least
0.5 in ŵ

(k)
ij . Any value of u3 in (0.3, 0.5) leads to the same directional inference

for the inferred associations.
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FIG. 4. Boxplots of the samples from the posterior distributions of w
(k)
57 and w

(k)
75 (top panel), w

(k)
67

and w
(k)
76 (bottom panel) when vij ≡ 0.1 for all i and j . This is from one MCMC run of the HM on

the simulated data with constant σI
i .

3.1.2. Inference from RHM. RHM requires that wij = wji and w
(k)
ij = w

(k)
ji

for all i, j , and k. This restriction aims at avoiding the nonconsistent directional
inferences based on w

(k)
ji and w

(k)
ij separately as HM does. We plot the posterior

means ŵ(i,j) of wij in Figure 5 where we take vij = 0.1. Similar to Figures 2
and S1, true associations tend to have higher values of ŵ(ij). Setting u′

1 = 0.2, we
infer 22 associations with 2 false positives. Applying the criteria listed in Supple-
mentary Material S3 [Luo and Zhao (2010)], we infer the causal network as shown
in Figure 5. Compared to the network in Figure 3, RHM leads to a network with 16
true directed edges, 3 edges whose directions are undetermined, 1 reversed edge,
and 2 false edges when we take u′

1 = 0.2 and u3 ∈ (0.3,0.5). If we increase the
threshold u′

1 to a value where there is a big jump, for example, 0.3, we will miss 1
true directed edge.

When a bigger value vij = 10 is applied, the differences of the posterior means
ŵ(i,j) of wij become much smaller between the true and false associations (Fig-
ure S2 in the Supplementary Material [Luo and Zhao (2010)]). This together with
the fact that bigger values of vij lead to smaller changes in experimental level prob-
abilities results in our conclusion that a small vij is preferred for causal network
inference.

3.1.3. Inference from NHM. Ignoring the effect of perturbations on signal-
ing pathway, NHM assumes a common coefficient αij in the linear regression
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FIG. 5. Inference from RHM with vij = 0.1 on the simulated data with constant σI
i . Left: pos-

terior means ŵ(i,j) of wij , sorted in increasing order. Right: inferred networks with u′
1 = 0.2,

u3 ∈ (0.3,0.5). Solid arrowed lines represent correctly inferred true edges, dashed thick lines with
labels “u” represent edges whose directions cannot be determined from the simulations, dashed ar-
rowed thin lines with labels “r” represent reversed edges, and dotted lines with labels “+” represent
false positive edges.

models across all experimental conditions. From this model, we can only infer
whether there is an association between two proteins. Similar to the inferred pos-
terior means from HM, ŵ(i,j) from NHM also tend to take higher values for true
associations (Figure 6), but with two differences. First, the range of ŵ(i,j) from
NHM is smaller. In other words, compared to HM, NHM leads to smaller values
of the biggest ŵ(i,j), and larger values of the smallest ŵ(i,j). So the support for
true associations and the evidence against false associations are weaker. Second,
the dominance of high values of true associations is not as strong as that from
HM. More false associations take higher values of ŵ(i,j) than the hierarchical in-
ference. If we take 0.6 as a threshold, we infer 23 associations with 15 true and
8 false. Taking 0.45 as the threshold, we recover all the true associations, but 27
false ones are also inferred. More importantly, we cannot determine the directions
of associations from NHM because perturbation information is not utilized in this
model.

3.2. Variable intrinsic variances (σ I
i )2. We then consider the case where vari-

ances of intrinsic noises vary for different proteins. In this case, both HM and RHM
with vij = 0.1 clearly separate the true associations from the false ones in the plot
of the posterior means ŵ(i,j) (Figure 7). The causal networks inferred from both
models are the same, with 18 correctly inferred true edges, 1 reversed edge, and
1 edge whose direction is undetermined [u1 ∈ (0.2,0.7), u2 = 0.1, and u3 = 0.3].
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FIG. 6. Posterior means ŵ(i,j) of (wij + wji)/2, sorted in increasing order, from one MCMC run
of NHM. Small empty and large solid circles represent the false and true associations, respectively.

As in Section 3.1.2, RHM with a bigger value vij = 10 leads to association in-
ference with bigger false positive rate and smaller changes in experimental level
probabilities when a child node is perturbed (Figure S2 in the Supplementary Ma-
terial [Luo and Zhao (2010)]). NHM is not applied here and thereafter since it does
not provide causal relations.

3.3. Heavy tail distribution for intrinsic noise. Considering the possibility of
nonnormality for real biological processes, we simulate data where the expres-
sion levels of proteins have heavy tail distribution. This is realized by simulating
εI

ink ∼ t(1) for each protein i under each experimental condition k. We reuse the
parameter settings in Sections 3.1 and 3.2 so that the performance of our methods
on the normal and nonnormal cases can be easily compared. We summarize the
network inference results in Table 2. Due to the model misspecification when we
use HM to analyze these heavy tail distributed data, we infer networks with more
false positive and false negative edges. Therefore, our current model needs to be
extended to analyze heavy tail data.

4. Case study. The Mitogen-Activated Protein Kinase (MAPK) pathways
transduce a large variety of external signals, leading to a wide range of cellular
responses such as growth, differentiation, inflammation, and apoptosis. External
stimuli are sensed by cell surface markers, then travel through a cascade of pro-
tein modifications of signaling proteins, and eventually lead to changes in nuclear
transcription. Single cell interventional data of 11 well-studied proteins from the
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FIG. 7. Inference results for the simulated data with variable intrinsic variances. Upper panel:
posterior means ŵ(i,j) of wij , sorted in increasing order from HM (left) and RHM with vij = 0.1
(right). Lower panel: inferred networks from both models with u1 ∈ (0.2,0.7) and u3 = 0.3. Solid
arrowed lines represent correctly inferred true edges, dashed thick lines with labels “u” represent
edges whose directions cannot be determined from the simulations, and dashed arrowed thin lines
with labels “r” represent reversed edges.

MAPK pathways were originally generated by Sachs et al. (2005) using the in-
tracellular multicolor flow cytometry technique. This pathway was perturbed by 9
different stimuli, each targeting a different protein in the selected pathway (Fig-
ure 1 and Table 1). Sachs et al. (2005) applied Bayesian network analysis to infer
the causal protein-signaling network. Correcting the bias in the commonly used
algorithm proposed by Friedman and Killer (2003), Ellis and Wong (2008) reana-
lyzed this data set through sampling BN structures from the correct posterior dis-
tribution. Both studies used the discretized data where the protein expression levels
were grouped into three levels: “low,” “middle,” and “high.” The inhibited mole-
cules were set at “low” values, and activated molecules were set to level “high.”
We apply our method to this data and compare the results with those from Ellis
and Wong (2008).
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TABLE 2
Summary of pathway inference in simulation study

Data Methods True Undetermined Reversed Missing False Hamming
distance

Data-1 HM 14 5 1 0 2 8
RHM 16 3 0 1 2 6

Data-2 HM 18 1 1 0 0 2
RHM 18 1 1 0 0 2

Data-1t HM 9 4 1 6 4 15

Data-2t HM 14 1 0 5 6 12

All are based on u1 = 0.4 and u3 = 0.3. The hamming distance is the minimum number of simple
operations needed to go from the inferred graph to the true graph. Here simple operations include
adding or removing an edge, and adding, removing, or changing the direction of an edge. Data-1:
simulated data in Section 3.1 with constant intrinsic variances. Data-2: simulated data in Section 3.2
with varying intrinsic variances. Data-1t : simulated data with parameter settings in Data-1 and intrin-
sic noises sampled from t (1). Data-2t : simulated data with parameter settings in Data-2 and intrinsic
noises sampled from t (1).

We infer the networks using HM and RHM with vij = 0.1 and vij = 10. Each
analysis has five MCMC runs. Figure 8 shows the inferred posterior means ŵ(i,j)

in one MCMC run (more can be found in Supplementary Figures S4 ∼ S6 [Luo
and Zhao (2010)]), and the inferred networks from five MCMC runs, from each
method. We use the same symbols as in simulation studies to indicate true or false
inferences, where the “true” network is taken to be the network in Figure 3 of
Sachs et al. (2005), which is the current understanding of this pathway.

Compared to HM, RHMs lead to fewer true associations with high values of
ŵ(i,j) (vij = 10) or smaller gaps of ŵ(i,j) between most true and false associations
(vij = 0.1). Taking the threshold u1 = 0.2 and requiring uf ≥ 0.6 in five runs of
HM, we get 21 associations, with 5 missing edges and 6 false positives. Requiring
u′

1 = 0.11 and uf ≥ 0.6 in RHM with vij = 0.1, we get 19 associations, with 5
missing edges and 4 false ones. The threshold 0.11 exceeds the value (0.1) from
the permutation study by only a small amount, implying that RHM offers weaker
support to true associations than HM. Setting u′

1 = 0.994 and uf ≥ 0.6 in RHM
with vij = 10, we only get 14 associations, with 8 missing and 2 false associations.

From RHM, we can only correctly infer the directions of five or six edges.
The causal relations for most inferred associations can not be determined. But HM
leads to a better result: 9 true directed edges, 1 direction-undetermined, 4 reversed,
6 missed, and 4 false edges, under the thresholds u1 = 0.2, u2 = 0.1, u3 = 0.3, and
uf ≥ 0.8 (Figure 8 and Table 3). This inferred network is comparable with that
from Ellis and Wong (2008), which contains 9 true directed edges, 3 reversed,
8 missed, and 6 false edges. The Hamming distances of these two networks to
Figure 1 are 15 and 17, respectively. These results are summarized in Table 3.
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FIG. 8. Inference results for the real data. From top to bottom: HM, RHM with vij = 0.1, and
RHM with vij = 10. In networks, solid arrowed lines represent correctly inferred true edges, dashed
thick lines with labels “u” represent edges whose directions cannot be determined from the simula-
tions, dashed arrowed thin lines with labels “r” represent reversed edges, dotted arrowed thick lines
represent missing edges, and dotted thin lines with labels “+” represent false positive edges.
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TABLE 3
Summary of the inferred networks applying different methods to the real data

True Undetermined Reversed Missing False Hamming distance

HM 9 1 4 6 4 15
RHM vij = 0.1 6 8 1 5 4 18
RHM vij = 10 5 5 2 8 2 17
mHM 6 5 1 8 4 18
BN 9 0 3 8 6 17

Here mHM denotes the modified model described in Supplementary Material S1 [Luo and Zhao
(2010)] which models the varying variances of intrinsic noises.

In MCMC analysis, we take βi = γj = 1 for i = 1,2 and j = 1, . . . ,6. To check
the sensitivity of HM, we also consider other values: γi = 0.1 or 100, and βj = 0.1
or 0.0001. Taking βj = 0.1, we get a network (not shown) with 9 true directed
edges, 1 direction-undetermined, 4 reversed, 6 missed, and 6 false associations.
Other values of the hyperparameters result in 1∼3 fewer true associations, and at
least 3 fewer true directed edges. All these results are based on 5,500,000 iterations
of MCMC updates in each run, which take about 20 hours on a node with an
Intel(R) Xeon(R) 3 GHz CPU and a 16G memory.

5. Discussion. We have proposed hierarchical statistical methods to infer a
signaling pathway from single cell data collected from a set of perturbation exper-
iments. The advantage of this method is that it provides a more explicit framework
to relate the activity levels of different proteins. In our models, we assume that the
activity level of each protein is linearly associated with a small subset of other pro-
teins under each condition. Using a Bayesian hierarchical structure, we model the
existence of an association between two proteins both at the overall level and at the
experimental level. The overall-level probabilities measure the strength of associ-
ations between any two proteins across all experiments. The experimental-level
probabilities reflect the changes of associations between proteins under different
conditions. Our inferential procedure consists of two steps. First we infer the ex-
istence of an association between any pair of proteins based on the overall-level
probabilities. Then for those pairs of proteins inferred to be associated, we infer
the directions of the causal relations based on the changes in the experimental level
probabilities. The basic rationale in our causal inference is that for two associated
proteins, controlling over the target molecule destroys the association, while per-
turbing the regulatory molecule does not.

We consider hierarchical models with (RHM) and without (HM) the restric-
tion that wij = wji and w

(k)
ij = w

(k)
ji for each k. For RHM, we have to specify

the hyperparameter vij prior to MCMC analysis. We have considered the infer-
ence results when the value of vij is set at 0.1 and 10. Higher values of vij lead to



744 R. LUO AND H. ZHAO

higher ranges of the inferred overall-level and experimental-level probabilities, and
smaller changes in experimental-level probabilities. In HM, the experimental-level
probabilities can be integrated out, so the posterior inference of other parameters
is independent of vij . Hence, the choice of associations, which is based on the
overall-level probabilities, is independent of vij . We only need to specify vij in the
causal inference. To better reflect the changes of the experimental-level probabili-
ties, we suggest smaller values for vij , for example, vij = 0.1. Both HM and RHM
perform well in simulation studies.

We need to choose thresholds to infer the causal network: u1 for association
inference and u2 and u3 for causal directional inference. Noting the jumps in the
plots of ŵ(ij), we propose to choose the threshold u1 where there are great differ-
ences in sorted ŵ(ij). This is easily determined when variations in the data are well
captured by the proposed hierarchical models (e.g., Figures 2 and 7). If there are no
great differences in the sorted overall-level probabilities (e.g., Figure 8), one may
decide the number of edges to be included and then choose the top ones. Threshold
u2, which is taken as 0.1 in our study, can be chosen based on the experimental-
level probabilities of those unassociated pairs of proteins. Threshold u3 is closely
related to vij , which measures the variability in ŵ

(k)
ij in that a smaller vij leads to

greater variabilities in ŵ
(k)
ij between the experiments when the target protein is and

is not intervened. When vij = 0.1, a difference of 0.3 in ŵ
(k)
ij is enough to show

the effect of intervening the target protein.
Compared to the nonhierarchical model, hierarchical models have at least two

advantages. First, the hierarchical structure allows information borrowing across
different experiments while allowing for differences among experiments, leading
to a more clear-cut inference on whether two proteins are related. Second, this
modeling framework allows us to infer causal relationships between proteins from
the presence and absence of the association across different perturbation condi-
tions. Overall, our proposed hierarchical modeling provides a general framework
for inferring networks from high-throughout data.

There are several possible ways of extending this model. In Supplementary Ma-
terial S1 [Luo and Zhao (2010)] we modify HM by incorporating varying variances
of intrinsic noises under different experimental conditions. The modified model
does not outperform HM in our simulation study. It is interesting to investigate
when the varying variances of intrinsic noises are not ignorable and incorporating
them improves the network inference. We also find in our simulation study that
applying our methods to data where intrinsic noises are sampled from heavy tail
distributions results in power loss in pathway inference. Therefore, there is a need
to extend this hierarchical structure to model nonnormal data.

SUPPLEMENTARY MATERIAL

Additional descriptions and results of hierarchical models (DOI: 10.1214/10-
AOAS425SUPP; .pdf). Materials include description and simulation results of

http://dx.doi.org/10.1214/10-AOAS425SUPP
http://dx.doi.org/10.1214/10-AOAS425SUPP
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the hierarchical model (mHM) with varying variances of intrinsic noises (σ I
ik)

2,
MCMC algorithm for the hierarchical model (HM), direction inference for the re-
stricted hierarchical model (RHM), and additional figures of posterior inference
and networks.
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