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THE DUALITY DIAGRAM IN DATA ANALYSIS: EXAMPLES OF
MODERN APPLICATIONS

BY OMAR DE LA CRUZ1 AND SUSAN HOLMES2

Stanford University

Today’s data-heavy research environment requires the integration of dif-
ferent sources of information into structured data sets that can not be ana-
lyzed as simple matrices. We introduce an old technique, known in the Eu-
ropean data analyses circles as the Duality Diagram Approach, put to new
uses through the use of a variety of metrics and ways of combining differ-
ent diagrams together. This issue of the Annals of Applied Statistics contains
contemporary examples of how this approach provides solutions to hard prob-
lems in data integration. We present here the genesis of the technique and how
it can be seen as a precursor of the modern kernel based approaches.

1. Introduction. Multivariate statistical methods have been used for many
decades to deal with situations in which two or more variables are measured or
recorded for each unit.

A classical example of this situation is Guerry’s data set, in which several vari-
ables meant to capture “moral qualities” (e.g., literacy, crime rate, suicide rate)
were tabulated for each of the departments in which France was divided at the
time (1833). This data set suggests that one can be interested in how the variables
change as one moves around in France, or one can be interested in how the depart-
ments compare to each other based on the measured characteristics. It is of special
interest how these two approaches can be combined; this is considered in detail in
Dray and Jombart (2011).

Besides having a combination of two essentially multidimensional sources of
information, like geographic location plus recorded data, another layer of complex-
ity is added when one more variable like time is added, leading to what essentially
are two or more data cubes. A typical example of this is ecological data, where
species abundances are measured at different, specified locations, over the course
of time. The different approaches used in this setting are reviewed in Thioulouse
(2011), using the duality diagram setting as a unifying framework.

Such an approach is not limited to animal or plant species spread over a geo-
graphic area; the advent of metagenomics has made it possible to study the abun-
dances of bacterial species in locations like ocean or pond water, or even the human
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gut. In this case it becomes important to incorporate information not only about
location in space, but also in the phylogenetic landscape, by using established or
inferred phylogenetic trees for the bacterial species detected. This problem is ad-
dressed, using the duality diagram formalism, in Purdom (2011).

As an outgrowth of methods favored by French statisticians, Cailliez and Pages
(1976) proposed a unifying framework capable of including many methods rein-
vented and used by different groups in different countries as special cases. This
framework is based on the analysis of certain linear operators between inner-
product spaces which can be naturally associated to a data matrix, in the same way
Kernel matrices are used today in machine learning Schölkopf, Smola and Muller
(1998). This is explained in detail in works like Escoufier (2006) and Holmes
(2006). In this article we present some motivations behind the choices made for
this approach in the accompanying papers.

The notion of duality is everywhere in Mathematics, appearing under different
guises in the most diverse fields; and it is often remarkably useful. The idea of
duality was introduced in the analysis of multivariate data by the French school of
data analysts as a way to unify a suite of methods that turned out to be exactly or
almost exactly equivalent to methods known by a different name, and the duality-
diagram formalism provides a simple way to put all these methods in the same
context.

Since this approach is the basis of the special articles presented together here
[Dray and Jombart (2011), Purdom (2011), Thioulouse (2011)], this short intro-
duction aims to establish the basic facts and notation. The abstract approach in the
duality diagram setup is often intimidating and it possibly turns away some inter-
ested readers; we hope we can show here that these notions are actually natural,
and that the overhead due in understanding the notation pays off handsomely in
the breadth and complexity of applications.

2. The data matrix as an operator between inner-product spaces. Today
the distinction between the space of rows of the matrix as a sample from a popu-
lation and the space of columns as the fixed variables on which the observations
were measured has been softened and we often hear the term ‘transposable’ data.
The definitions presented here explain this row-column duality.

By dispensing of the traditional probabilistic sample-population interpretation,
European data analysts in the 1970s [Benzécri (1973), Cailliez and Pages (1976),
Gifi (1990)] can be seen in hindsight as precursors of the current Machine learning
schools. It is interesting to remember that all these schools had precursors who
spent time at the AT&T laboratories in New Jersey at a time when John Tukey was
active there.

Consider an n × p matrix X containing data for variables V1, . . . , Vp collected
from n individuals or units. This matrix defines an operator LX : Rp → R

n by
the rule v �→ Bv. What interpretation can we give to such a map? The vector v
can be considered to contain the coefficients for linearly combining the variables
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V1, . . . , Vp into a new, synthetic, variable. In that sense, it becomes apparent that
actually we should consider this a map from R

p∗, the dual space of R
p , into R

n.
The map LX provides a way to fill in the n values for the new synthetic variable
V = v1V1 + · · · + vpVp , which could have been defined even before collecting
the data. From now on we will abuse notation and identify the operator LX and
the matrix X (and will do the same with other similarly defined operators and
matrices). We have then the following portion of the diagram:

R
p∗ X

R
n.

2.1. Adjoint operators as a useful formalism. Recall that the adjoint of a lin-
ear transformation T : V1 → V2 between inner product spaces is defined as the
mapping T ∗ : V2 → V1 that satisfies

〈T u, z〉2 = 〈u,T ∗z〉1 ∀u ∈ V1,∀z ∈ V2

(for simplicity, we will only consider spaces with scalars in R in this article; this is
enough for most data analyses). This can be seen as just a clever way of extending
the notion of matrix transpose to a more general setting, but it is actually a power-
ful formalism, especially when dealing with multiple inner products on the same
spaces (notice that T ∗ depends not only on T but also on 〈·, ·〉1 and 〈·, ·〉2).

It is convenient sometimes to think of T ∗ as a map from V
∗
2 to V

∗
1; this matches

the corresponding situation when it is generalized to Banach spaces. In our setting
this distinction might be considered moot, since all spaces considered are natu-
rally isomorphic to their duals, but we will continue using the star notation; the
diagrams, and all the matrix operations obtained from them, work equally well if
the stars are dropped from the spaces. Then we have the following:

Since we are considering the standard inner products on R
p and R

n (and their
dual spaces), X∗ corresponds just to the transpose XT of X. Thus, X∗X = XT X,
XX∗ = XXT , these two symmetric matrices have the same eigenvalues (except
possibly for zeros to account for the difference between p and n), and the two sets
of eigenvectors can be used to form the singular value decomposition (SVD) of X
[Golub and Van (1996)].

2.2. The general duality diagram. Consider now the situation where the inner
products (i.e., the geometries) on R

p and R
n are not standard. That is, assume that
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there are symmetric, positive definite matrices Qp×p and Dn×n such that the inner
products

〈u,v〉Q := uT Qv ∀u,v ∈ R
p

and

〈w, z〉D := wT Dz ∀w, z ∈ R
n

somehow make more sense for a particular data analysis than the standard inner
products. A typical example is when D is a diagonal matrix of (positive) weights,
one for each individual, down-weighting individuals that are known to have been
measured with a larger error; another example is when Q is the diagonal matrix
containing the reciprocals of the sample variances for the columns of X, which cor-
responds to standardizing the variables (assuming they are already centered); a re-
lated example is when Q is the inverse of the sample variance–covariance matrix
obtained from X, in which case the new geometry corresponds to the Mahalanobis
distance. Often, we want to consider the case in which Q = LLT and we are in-
terested in a set {U1, . . . ,Up} of transformed variables obtained from {V1, . . . , Vp}
by multiplication by L, leading to a transformed data matrix Y = XL.

Different multivariate procedures can be obtained by appropriately choosing Q
and D; see Section 3 for some examples.

Instead of X and its adjoint, consider now the transformation XQ : Rp → R
n.

That is, a vector v of coefficients is first transformed into LT v, which is in the
scale of the transformed data matrix Y = XL, and then used to create a linear
combination of the variables U1, . . . ,Up . Then, for all u ∈ R

p , z ∈ R
n,

〈XQu, z〉D = (XQu)T Dz = uT QXT Dz = 〈u,XT Dz〉Q,

so (XQ)∗ = XT D. Then, (XQ)∗XQ = XT DXQ and XQ(XQ)∗ = XQXT D are
self-adjoint operators on (Rp, 〈·, ·〉Q) and (Rn, 〈·, ·〉D), respectively, but they are
not necessarily symmetric matrices. Nevertheless, they have real eigenvalues
(which match, except for zeros to account for the difference between p and n),
because they are similar to symmetric matrices by way of positive definite matri-
ces; for example,

Q1/2(XT DXQ)Q−1/2 = Q1/2XT DXQ1/2,

where Qa is obtained by replacing each eigenvalue λ of Q with λa .
The eigenvectors of XT DXQ and XQXT D are also real; however, they need

not be orthogonal. Nevertheless, the eigenvectors of XT DXQ can be taken to be
orthogonal with respect to 〈·, ·〉Q, and those of XQXT D to be orthogonal with
respect to 〈·, ·〉D. (This can be interpreted as leading to a generalized version of the
SVD.)
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In diagram form, we have the following:

This way, the triplet of matrices (X,Q,D) defines a multivariate data analysis
setup, in which the main strategy is the computation of the eigendecompositions
of the matrices XT DXQ and XQXT D. It is also customary to denote V = XT DX
and W = XQXT , so that the two operators of interest become VQ and WD.

The eigendecomposition can be computed for the smaller of the two matrices
(which is usually much smaller than the other), and, if needed, the eigenvectors
for the other one can be easily obtained: for example, if XT DXQv = λv, then
w := XQv satisfies

XQXT Dw = XQ
(
XT DXQv = XQ(λv)

) = λw.

Furthermore, orthogonality is also preserved among eigenvectors: if v1,v2 are Q-
orthogonal eigenvectors for XT DXQ, then

〈XQv1,XQv2〉D = vT
1 QXT DXQv2 = vT

1 Q(λv2) = λ〈v1,v2〉Q = 0.

Thus, whole eigendecompositions are easily transferred.

2.3. Connections with kernel methods. The operator XQXT D can be seen as
a precursor of the more general kernel matrices used in today’s kernel PCA type
methods [Schölkopf, Smola and Muller (1998)].

In the kernel approach to data analysis one assumes that the data is provided
as a n × n matrix K containing proximity scores for each pair of individuals;
these scores might have been computed from measured variables (as in the case
of the matrix XQXT D, the linear kernel; nonlinear functions of the variables of-
fer a great variety of other possibilities), or by directly comparing the individuals;
see Schölkopf, Tsuda and Vert (2004) for a review of the theory and examples of
applications in computational biology.

Kernel matrices are similarity matrices, that is, the proximity score for two in-
dividuals is high when they are similar and low (even negative) when they are
dissimilar. (Distance matrices, on the other hand, have higher values for dissimilar
pairs of individuals.) What is the meaning of K as an operator on R

n? A useful
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interpretation is to consider it as a smoothing operator acting on real-valued func-
tions f defined on the set of individuals: the value of Kf at the ith individual is
a weighted sum of all the values of f , with higher weights for those individuals
more similar to the ith; in other words, f is averaged locally (up to a multiplica-
tive constant). This offers one explanation of why the eigendecomposition of K is
useful, since repeated application of K to f ∈ R

n (which should produce a very
smooth function) converges toward an eigenvector of the leading eigenvalue, and
“very smooth” functions of the data points can be used as coordinates.

Purdom (2011) explores the similarities between the duality diagram and ker-
nel approaches in Appendix B, for the case of kernel Canonical Correspondence
Analysis.

3. Examples of well-known methods as particular cases of the diagram.
Here we briefly describe how some well-known multivariate methods can be ex-
pressed as particular cases of the duality diagram, by appropriately choosing Q
and D. We will assume that X is centered by columns (i.e., the mean has been
subtracted for each variable).

3.1. Principal components analysis (PCA). PCA seeks to find linear combi-
nations of the variables that explain most of the variability in the data; see Mardia,
Kent and Bibby (1979), for example, for more details.

Take Q = Ip , and D = 1
n

In. This corresponds to PCA in the original scales; it is
equivalent to a straightforward SVD on X (except for the factor 1/n).

If one standardizes the variables, as it is often appropriate to eliminate unit
scale effects, then Q is taken to be the diagonal matrix containing the reciprocals
of the sample variances of the columns of X (so L contains the reciprocals of
the standard deviations). While the ith eigenvector vi of the (D-weighted) sample
covariance matrix YT DY provides the loadings of the variables U1, . . . ,Up for
the ith principal component (so that the actual components have to be obtained by
pi = Yvi/

√
λi ), pi can be obtained directly as an eigenvector for XQXT D: indeed,

XQXT Dpi = XQXT DYvi/
√

λi = XLLT XT DYvi/
√

λi

= YYT DYvi/
√

λi = Yλivi/
√

λi = λipi .

Computing the principal components pi does not require the explicit decomposi-
tion of Q as LLT .

3.2. Correspondence analysis (CA). A total of m observations are classified
according to two categorical variables, one with n categories or levels, and the
other with p, producing a n × p matrix N of counts for each combination of lev-
els (a contingency table). One wants to study how the counts differ from the ex-
pected counts under the assumption of independence between the two variables. To
cast CA as a duality diagram, we first define the frequency matrix F = N/m and
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the marginal frequency vectors c = FT 1n×1 and r = F1p×1; then, the expected
counts (conditionally on the marginals) are given by nrcT . Using the matrices
Dr = diag(r) and Dc = diag(c), we can standardize F by

X := D−1
r (F − rcT )D−1

c = D−1
r FD−1

c − 1n×p.

The matrix X seems like a reasonable choice to study by eigendecomposition.
However, all rows and columns have been reduced to the same importance, while,
heuristically, categories with larger marginal counts should provide more accu-
rate information on the distribution of the other variable, and thus should be given
greater weight. This can be achieved by defining the triplet (X,Dc,Dr ). Notice
that actually X is centered by rows and by columns with respect to the inner prod-
ucts given by Dr and Dc. This approach matches the traditional definition of CA.
Purdom (2011) shows how the information about relationships between the rows
of the contingency table can be incorporated into the duality diagram in the special
case where there are binary trees that connects the rows of the abundance matrix.

3.3. Variance, inertia, co-inertia. The study of variability of one continuous
variable is done through the use of the variance; this notion is generalized in sev-
eral different directions to accommodate the complexities of dealing with multiple
tables, graphs, etc., through the concept of inertia. As in physics, we define inertia
as a weighted sum of squared distances of the weighted points. For each of the
diagrams studied above, the inertia designates the trace of the operator WD, and
we have Inertiatotal = tr(WD) = tr(V Q). As pointed out in Purdom (2011), in the
case of CA, the inertia is proportional to the χ2 statistic, whereas in ordinary PCA
it is just the total variance of all the variables. In discriminant analysis, the inertia
is decomposed into between-groups and within-group components; these are also
used in the BCA analysis [Thioulouse (2011), Dray and Jombart (2011)].

The weighted distances between columns have another interpretation in ecology
and Purdom (2011) shows how they can be associated to different measures of
diversity.

The decomposition of total inertia can be seen as a generalization to MANOVA
which is the special case of a variance decomposition. Purdom (2011) uses this
effectively to show how to decompose the total diversity across all locations into
the average diversity of individual locations and plus the average of pairwise dis-
similarities of locations.

Dray and Jombart (2011) use similar decompositions to show what part of the
inertia can be assigned to spatially local variation in their BCA approach to multi-
variate spatial data. They also show how the graphical relationships between rows
can be encoded in a special metric D built from the weighted connectivity matrix.
(In their paper, they call these weights W .)
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4. One more level of complexity: Comparing diagrams. Interesting results
can be obtained by combining two or more triplets. The usual assumption is that
two (or more) sets of variables are measured on the same set of n individuals;
thus, the matrix D is assumed to be common, but each set of variables has its own
version of Q, of the appropriate size.

For example, one of the triplets might contain data from variables measured on
each of the individuals, while the other might encode known relationships between
the individuals.

4.1. The RV coefficient. A key element in the comparison of the operators
arising from two duality diagrams is the RV coefficient. It can be considered as a
generalization of the squared correlation coefficient by using the Froebenius matrix
product.

Given two symmetric matrices A,B of the same size, we define COVV(A,B) =
tr(AB), and

RV(A,B) = tr(AB)√
tr(AA) tr(BB)

,

whenever A,B 
= 0. Many nice properties of these definitions arise from the fact
that tr(AB) defines an inner product on the vector space of symmetric matrices
of a given size. This can be adapted to the general setting of multiple duality dia-
grams: having D fixed, call S(D) the vector space of D-symmetric matrices, that
is, matrices satisfying DA = AT D (equivalently, A is self-adjoint with respect to
〈·, ·〉D). Then tr(AB) defines an inner product on S(D).

When comparing two duality diagrams (X1,Q1,D), (X2,Q2,D), then numbers
p1,p2 of variables might be different, yielding matrices V1Q1,V2Q2 of different
size; however, we will be comparing the matrices (operators) W1D and W2D,
which are of the same size and D-symmetric. We define the RV coefficient of the
two diagrams as RV(W1D,W2D).

Some immediate properties of the RV coefficient are as follows: its values are
always in [0,1]; it equals 1 only when W1 = αW2 
= 0, for some nonzero scalar α;
and it equals 0 only when XT

1 DX2 = 0 (provided Q1,Q2 are nonsingular). The
proofs are not too hard; more details can be found in Escoufier (2006).

The RV coefficient between diagrams (or triplets) can be used for justifying the
use of eigenvalues and eigenvectors in this setting. For example, performing PCA
based on (X,Q,D) and selecting the q top components is equivalent to finding
a matrix Zn×q such that the RV coefficient between (X,Q,D) and (Z, Iq,D) is
maximized.

4.1.1. PCA with respect to instrumental variables. When one data set Y has
the special status of a response that we would like to predict or explain from the
other data set X of explanatory variables, we can generalize ordinary regression to
a multivariate response through the same diagram framework. This is called PCA
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with respect to instrumental variables, abbreviated PCA-IV (also known as redun-
dancy analysis, RDA), first described by Rao (1964). In terms of the comparison
of duality diagrams and RV coefficients, this problem can be rephrased as that of
finding the metric M to associate to X so that (X,M,D) is as close as possible to
(Y,Q,D) in the RV sense. That is, we want to maximize RV (XMXT D,YQYT D).
We abbreviate the cross-products by writing

XT DX = Sxx, YT DY = Syy, XT DY = Sxy

and

R = S−1
xx SxyQSyxS−1

xx .

Then for any R

‖YQYT D − XMXT D‖2 = ‖YQYT D − XRXT D‖2 + ‖XRXT D − XMXT D‖2.

The first term on the right-hand side does not depend on M, and the second term
will be zero for the choice M = R.

If we add the extra constraint that we only allow ourselves a rank q approxi-
mation, with q < min{rank(X), rank(Y)}, the optimal choice of a positive definite
matrix M is to take M = RBBT R where the columns of B are the eigenvectors of
XT DXR with

B =
(

1√
λ1

β1, . . . ,
1√
λq

βq

)

such that

⎧⎨
⎩

XT DXRβk = λkβk,

βT
k Rβk = λk, k = 1, . . . , q,

λ1 > λ2 > · · · > λq.

The PCA with regards to instrumental variables of rank q is equivalent to the PCA
of rank q of the triple (X,R,D) where

R = S−1
xx SxyQSyxS−1

xx .

4.2. Comparing more than two diagrams. Consider k diagrams (X1,Q1,D),

. . . , (Xk,Qk,D). This could correspond, for example, to k different studies on the
same subjects, using different variables, or the same variables measured on the
same units at different points in time (time course study); a review of this problem
in the setting of community ecology is found in Thioulouse (2011). It is often
important to summarize the relationships between the diagrams in a compact and
intelligible way. The RV coefficients in fact allow us to consider this as performing
a PCA of the PCAs. We compute the multivariate correlation coefficients between
tables and use those as the matrix to be diagonalized, similarly to what happens in
ordinary PCA.
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The values of the pairwise computations of the COVV and RV coefficients are
arranged into k × k symmetric matrices C and R, respectively, and the eigende-
composition of these matrices can lead to useful low-dimensional representations,
just as in the case of PCA using the covariance or correlation matrices, respec-
tively. In this case, a 2- or 3-dimensional plot can be created in which each point
represents one of the studies (diagrams).

Furthermore, since C and R have nonnegative entries, the eigenvector u1 corre-
sponding to the largest eigenvalue can be taken to have only nonnegative entries,
adding up to 1. Then, defining W = ∑k

i=1 ui1Wi , the operator WD can be taken
as a compromise or summary of all the diagrams, and one can study how far, in
the RV sense, different studies are from the compromise.

These steps are part of the so-called STATIS procedure [Escoufier (1980)]. One
can think of these data sets as a data cube, with three indices; then a similar proce-
dure can be used to compare two or more such cubes.

5. Conclusions. The duality diagram is a useful formalism that allows one to
easily compare many classical multivariate methods, revealing what they have in
common and where they differ. But, furthermore, it has become a valuable tool
for dealing with two problems that have become very common: (1) combining
and amalgamating data which, although collected from different sources and using
different methods, shed light on different aspects of the same phenomenon; and
(2) taking advantage of complex, nontraditional data types, like tree and network
information. These two problems are closely related, as the data to be amalgamated
are often of complex type.

The overhead in effort to understand the abstract definitions in the duality dia-
gram approach to data analysis is amply offset by the clearer picture that is gained
and by the wealth of applications that become available. In this article we have tried
to reduce that overhead by laying out arguments that show that those definitions
are actually quite natural. The three articles [Dray and Jombart (2011), Thioulouse
(2011), Purdom (2011)] in this group are excellent examples of the power of this
approach, but are only a small sample from a large and growing body of work.

Recently, Shinkareva et al. (2008) have used the RV coefficient and STATIS
approaches to explore fMRI brain activation in conjunction with stimulations such
as images of tools.

A series of papers [Culhane et al. (2002), Culhane, Perrière and Higgins (2003),
Fagan, Culhane and Higgins (2007)] have applied BCA and Co-Inertia analyses
to the problem of integrating multiple sources of data from heterogeneous gene
expression and proteomic studies.

Baty et al. (2006) used the PCAIV method to identify special genes in microar-
ray data and Baty et al. (2008) used bootstrap and permutation type tests for eval-
uating the stability of the gene identifications produced.

Most of the methods presented in these papers have been coded into functions
for the statistical computation environment R [Ihaka and Gentleman (1996)], many
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available in the library ade4, for which exemplary presentations have been pub-
lished [see Chessel, Dufour and Thioulouse (2004), Dray, Dufour and Chessel
(2007), Dray and Dufour (2007)]. In the case of Thioulouse (2011), you can even
run in an interactive way through all the commands generating each and every plot
through the reproducible website at http://pbil.univ-lyon1.fr/SAOASOPET/.
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Sankhyā A 26 329–359. MR0184375

http://pbil.univ-lyon1.fr/SAOASOPET/
http://www.ams.org/mathscinet-getitem?mr=2330545
http://www.ams.org/mathscinet-getitem?mr=1076188
http://www.ams.org/mathscinet-getitem?mr=1417720
http://www.ams.org/mathscinet-getitem?mr=2459953
http://www.ams.org/mathscinet-getitem?mr=0560319
http://www.ams.org/mathscinet-getitem?mr=0184375


INTRODUCTION TO THE DUALITY DIAGRAM 2277

SCHÖLKOPF, B., SMOLA, A. and MULLER, K.-R. (1998). Nonlinear component analysis as a kernel
eigenvalue problem. Neural Comput. 10 1299–1319.

SCHÖLKOPF, B., TSUDA, K. and VERT, J.-P. (2004). Kernel Methods in Computational Biology.
MIT Press, Cambridge, MA.

SHINKAREVA, S., MASON, R., MALAVE, V., WANG, W., MITCHELL, T. and JUST, M. (2008). Us-
ing fMRI brain activation to identify cognitive states associated with perception of tools and
dwellings. PLoS One 3 e1394.

THIOULOUSE, J. (2011). Simultaneous analysis of a sequence of paired ecological tables: A com-
parison of several methods. Ann. Appl. Statist. 5 2300–2325.

DEPARTMENT OF STATISTICS

STANFORD UNIVERSITY

SEQUOIA HALL

STANFORD, CALIFORNIA 94305
USA
E-MAIL: odlc@stanford.edu

susan@stat.stanford.edu
URL: http://www-stat.stanford.edu/~susan/

mailto:odlc@stanford.edu
mailto:susan@stat.stanford.edu
http://www-stat.stanford.edu/~susan/

	Introduction
	The data matrix as an operator between inner-product spaces
	Adjoint operators as a useful formalism
	The general duality diagram
	Connections with kernel methods

	Examples of well-known methods as particular cases of the diagram
	Principal components analysis (PCA)
	Correspondence analysis (CA)
	Variance, inertia, co-inertia

	One more level of complexity: Comparing diagrams
	The RV coefficient
	PCA with respect to instrumental variables

	Comparing more than two diagrams

	Conclusions
	References
	Author's Addresses

