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AN ADAPTIVELY WEIGHTED STATISTIC FOR DETECTING
DIFFERENTIAL GENE EXPRESSION WHEN COMBINING

MULTIPLE TRANSCRIPTOMIC STUDIES

BY JIA LI AND GEORGE C. TSENG1

University of Pittsburgh

Global expression analyses using microarray technologies are becoming
more common in genomic research, therefore, new statistical challenges asso-
ciated with combining information from multiple studies must be addressed.
In this paper we will describe our proposal for an adaptively weighted (AW)
statistic to combine multiple genomic studies for detecting differentially ex-
pressed genes. We will also present our results from comparisons of our pro-
posed AW statistic to Fisher’s equally weighted (EW), Tippett’s minimum
p-value (minP) and Pearson’s (PR) statistics. Due to the absence of a uni-
formly powerful test, we used a simplified Gaussian scenario to compare
the four methods. Our AW statistic consistently produced the best or near-
best power for a range of alternative hypotheses. AW-obtained weights also
have the additional advantage of filtering discordant biomarkers and provid-
ing natural detected gene categories for further biological investigation. Here
we will demonstrate the superior performance of our proposed AW statistic
based on a mix of power analyses, simulations and applications using data
sets for multi-tissue energy metabolism mouse, multi-lab prostate cancer and
lung cancer.

1. Introduction. Integrating results from multiple biological studies is now
considered commonplace, with significance levels and effect sizes often used in
meta-analyses. Random effects models which models effect sizes are frequently
used to address variation in sampling schemes. Differences in data structures and
statistical hypotheses are common in multiple applications, making direct com-
binations of effect sizes difficult or impossible. It is more feasible to combine
the transformed probability integrals of test statistics (usually p-values), since the
procedure is only dependent on the significance values of individual tests instead
of on underlying data structures. Fisher’s (1932) well-known method of this type
involves the log-transformation of p-values to Chi-square scores and the equally-
weighted summation: V EW = −∑K

k=1 log(pk), where K studies are combined and
pk is the p-value of study k, 1 ≤ k ≤ K . Assuming independence among studies
and p-values calculated from correct null distributions in each study, 2V EW fol-
lows a Chi-square distribution with 2K degrees of freedom under the null hypoth-
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esis. Previously considered other transformations include inverse normal [Stouf-
fer et al. (1949)], logit [Lancaster (1961)] and inverse Chi-square transformation
with varying degrees of freedom [George (1977)], among many others. Although
Fisher’s method is not the most uniformly powerful, it does exhibit good power
for a wide range of conditions. It is also recognized for its asymptotically Bahadur
optimal (ABO) characteristic, with multiple studies having the same effect size for
alternative hypotheses [Littell and Folks (1971, 1973)]. Different weights or varia-
tions of Fisher’s statistic have also been considered. Good (1955) suggested using
unequal weights for individual studies in which weights are determined by deci-
sions made by subject experts. More recently, Olkin and Saner (2001) have pro-
posed a trimmed version of Fisher’s statistic to remove the potential effects of aber-
rant extremes. Another well-known method in the category of combining p-values
is Tippett’s (1931) minimum p-value statistic (minP): V minP = min1≤k≤K pk .
Wilkinson (1951) generalized Tippett’s procedure to a more robust r th smallest
p-value, in which V maxP = max1≤k≤K pk (maxP) is widely used. Note that minP
and maxP statistics align with Roy’s (1953) union–intersection test and Berger’s
(1982) intersection–union test, respectively. For comprehensive reviews and com-
parisons of various meta-analysis approaches, see Hedges and Olkin (1985) and
Cousins (2007).

Microarray supports the examination of the expression of thousands of genes
in parallel. As microarray experiments become more mature and common, it has
become increasingly important to integrate homogeneous experimental data sets
from multiple laboratories and experimental techniques. In contrast to traditional
epidemiological or evidence-based medical studies, the process of monitoring the
expression for thousands of genes simultaneously presents many challenges to in-
tegrative analysis. In the current biological literature, the term meta-analysis refers
to the widespread use of naive intersection/union operations or vote counting on
lists of differentially expressed genes obtained from individual studies using cer-
tain criteria—for instance, False Discovery Rate ≤ 0.05 [Borovecki et al. (2005);
Cardoso et al. (2007); Pirooznia, Nagarajan and Deng (2007); Segal et al. (2004),
among many others]. Intersections are too conservative and unions insufficiently
conservative, especially as the value of K increases.

More sophisticated meta-analysis methods can be divided into two traditions,
the first being the use of a summary statistic—that is, a combination of statis-
tics from individual studies for each gene being considered, adjusted for multi-
ple comparisons. In many situations, this type of method is an extension of tra-
ditional meta-analysis methods. For example, Rhodes et al. (2002), who were the
first to apply Fisher’s method to microarray data, later introduced a weighted av-
erage of test statistics from individual tests, with weights determined by study
sample sizes [Ghosh et al. (2003)]. Moreau et al. (2003) made use of Tippett’s
minimum p-value. A more robust statistic is Wilkinson’s r th smallest p-value,
in which maximum p-value can be applied to the meta-analysis of microarray
studies. Owen (2009) reintroduced Pearson’s (1934) method and applied it to the
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AGEMAP project. He defined a test statistic as the maximum of Fisher’s combina-
tion of left-sided and right-sided p-values. All of these methods combine statistical
significance. Note that when no gene effect exists, the p-value is uniformly distrib-
uted. Accordingly, combining the significance of independent tests is sometimes
called omnibus or nonparametric. When studies have similar design and measure
the outcomes in similar ways, combining effect sizes is usually preferred to com-
bining significance. Choi et al. (2003) used weighted estimate for individual genes
based on the random effects model (REM) under Gaussian assumptions, and dis-
cussed the details of a Bayesian formulation for the REM model. Hu, Greenwood
and Beyene (2005) developed a quality measure for each gene in individual stud-
ies, incorporating a quality index as a weight in the REM model. Hong et al. (2006)
proposed a robust rank-based approach for meta-analysis. Choi et al. (2007) intro-
duced a latent variable approach.

The second meta-analysis tradition is Bayesian—for example, Choi et al.’s
(2003) Bayesian version for REM, which models the effect sizes. Similar Bayesian
hierarchical models have been suggested by Tseng et al. (2001) and Conlon, Song
and Liu (2006) for incorporating different levels of replicates information in cDNA
microarray experiments. Conlon, Song and Liu (2007) refer to these models as
Bayesian probability integration (PI) models, and have introduced a Bayesian stan-
dardized expression integration (SEI) model. Instead of modeling study specific
means separately (PI model), SEI models them as samples from a normal distribu-
tion, thus producing overall mean and inter-study variation. Shen, Ghosh and Chin-
naiyan (2004) and Choi et al. (2007) used a Bayesian mixture model to rescale the
individual data set and then combined all data sets for an ordinary gene expression
analysis.

The structure for the rest of this paper is as follows: in Section 2 we describe
two complementary hypothesis settings for detecting study-invariant and study-
specific biomarkers: HSA and HSB . In Section 3 we present our proposal for an
adaptively weighted (AW) statistic for meta-analyses of genomic studies, including
detailed descriptions of the AW statistic algorithm and a permutation test for com-
bining multiple studies. In Section 4 we discuss a simulation test of our proposed
method, using data sets from studies of a multi-tissue energy metabolism mouse
model, prostate cancer and lung cancer; we then compare our results with those
produced by three other commonly used methods. In Section 5 we demonstrate
the admissibility and power of our proposed AW test under a Gaussian assump-
tion, and in Section 6 we summarize its statistical advantages and limitations.

2. Two major complementary hypothesis settings. To our knowledge, no
comprehensive evaluations for the above-described meta-analysis methods have
been performed, primarily due to a lack of rigorous formulation of statistical hy-
potheses. Here we will consider a meta-analysis of D1,D2, . . . ,DK gene expres-
sion profiles studies. xkgs is the gene expression intensity of gene g and sample s

in study k, with samples s = 1, . . . , nk belonging to a control group (e.g., normal
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samples) and s = nk +1, . . . , nk +mk belonging to the diseased group (e.g., cancer
samples). Normally a null hypothesis for each gene g is considered as

H0 : θg1 = · · · = θgK = 0,

where θgk represents the gene effect of gene g and study k. Building on Birn-
baum’s (1954) work, the complementary hypothesis settings (HSA and HSB ) are
dependent upon the nature of the experiment in which the gene effects (θgk) are
obtained:

HSA : {H0 versus HA : θgk �= 0,∀1 ≤ k ≤ K},
HSB : {H0 versus HB : at least one θgk �= 0,1 ≤ k ≤ K}.

It is possible to use different methods to explicitly or implicitly consider different
subsets or variations of the two alternative hypotheses:

HSA1 : {H0 versus HA1 : θg = θg1 = · · · = θgK �= 0},
HSA2 : {H0 versus HA2 : θg �= 0, θgk ∼ N(θg, τ

2)},

HSBh : {H0 versus HBh :
K∑

k=1

I (θgk �= 0) = h (1 ≤ h ≤ K)}

[I (·) is an indicator function that

equals 1 when statement true and 0 otherwise],

HSBh′ :

{
H0 versus HBh′ :

K∑
k=1

I (θgk �= 0) = h

and θgk = θg if θgk �= 0 (1 ≤ h ≤ K)

}
.

Without danger of confusion, here we will use HA notation to denote the pa-
rameter space of the corresponding alternative hypothesis. It is clearly seen that
HA ⊂ HB . However, they represent two families of complementary interpretations
in applications. Under HA, gene g is identified only when it is differentially ex-
pressed in all studies. Under HB , gene g is selected only if it is differentially ex-
pressed in one or more studies. Note that HA1 ⊂ HA, representing an equal fixed
effect model. HA2 represents a random effects model for a similar HA purpose,
while HA2 �⊆ HA in general. Note also that HB = ⋃

1≤h≤K HBh, HBh′ ⊂ HBh

(1 ≤ h ≤ K) and HBK ′ = HA1.
From a biological standpoint, experimental design and meta-analysis objectives

determine biomarker lists of interest. To illustrate this idea, we will use three sets
of microarray studies for meta-analyses. The first set consists of two mouse geno-
types, wild type (VLCAD +/+) and VLCAD deficient (VLCAD −/−), with four
mice in each genotype group (VLCAD is associated with a childhood metabolism



998 J. LI AND G. C. TSENG

disorder). Brown fat, liver and heart tissue samples were collected from each of
the eight individual mice and used for microarray experiments designed to study
global expression changes in the knock-out of VLCAD (Table 1, left). Given the
experimental design, a biomarker list of interest might consist of those genes that
are consistently expressed in all tissue samples from both wild type and VLCAD-
deficient mice. This type of tissue-invariant (or study-invariant) biomarker list can
be loosely defined as GA, with analysis based on the alternative hypothesis family
of HA. However, it is reasonable to assume that tissue-specific physiology trig-
gers tissue-dependent responses, with pools of differentially expressed genes being
confounded to the tissues in question. Such a hypothesis would focus on signature
genes that are differentially expressed in subsets of one or more tissues—an analy-
sis that corresponds to the HB alternative hypothesis family. Hereafter we will
use the term GB when addressing such tissue-specific or study-specific biomarker
lists. In the second study set, microarray comparisons of normal versus prostate tu-
mor tissues were performed by three different research teams: Dhanasekaran et al.
(2001), Luo et al. (2001) and Welsh et al. (2001) (Table 1). The GA study-invariant
biomarker list is clearly of greater biological interest in this situation, since many
of the GB study-specific biomarkers represent experimental and technical discrep-
ancies between studies, possibly due to sample population heterogeneity, gene
matching errors or differences in experimental protocols. Further investigation of
study-specific biomarkers may provide technical insights to experimental design
features without providing biological insights to the disease of interest. The third
set of microarray studies [Bhattacharjee et al. (2001); Beer et al. (2002); Garber et
al. (2001)] included analyses of lung cancer samples and a comparison of normal
versus adenocarcinoma samples. Table 1C shows the pair-wise integrative corre-
lation coefficients [Parmigiani et al. (2004)] in each of the three examples. A re-
view of past meta-analyses reveals that lung cancer studies generally have larger
samples, greater homogeneity and better data quality than prostate cancer studies,
especially in terms of biomarker detection and classification analysis.

Table 2 presents a list of commonly used meta-analysis methods for microarray
studies, their corresponding alternative hypotheses and targeted biomarkers. While
both Bayesian SEI and PI methods tend to detect GA-type biomarkers across stud-
ies, the Bayesian concept does not involve hypothesis testing. Note that different
approaches have distinctly different advantages and disadvantages in terms of pa-
rameter space subsets in alternative hypotheses, even though two methods may be
designed for the same hypothesis. For example, to detect GA genes, PI performs
better than SEI for genes that have a high mean effect in one study but low mean
effect in another. According to Laughin (2004), maxP is generally under-powered,
but performs well when all θgk values are nonzero and roughly the same. As we
will show in Section 5, EW, minP, PR and AW are all admissible for detecting
GB genes. For HBh, EW tends to be more powerful when h is large and closer to
K . Little and Folks proved that EW is asymptotically ABO when detecting GA-
type genes under under HBK ′ (i.e., HA1), even though the EW statistic is targeted
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TABLE 1
Three sets of microarray studies for meta-analyses. (BF—brown fat; Liv—liver; Ht—heart; WT—wild type (VLCAD +/+); VLCAD—VLCAD −/−;

N—normal; T—tumor; AC—adenocarcinomas)

(A) Mouse energy metabolism Prostate cancer studies Lung cancer studies

BF Liv Ht Dhan Luo Wels Bhat Beer Garb

WT 4 4 3 N 19 9 9 N 17 10 5
VLCAD 4 4 4 T 14 16 25 AC 134 86 39

(B)
HSA Of biological interest Of biological interest Of biological interest
HSB Of biological interest Of less biological interest Of less biological interest

but of more technical interest but of more technical interest

(C)
BF 1 0.06 0.04 Dhan 1 0.05 0.09 Bhat 1 0.33 0.22
Liv 0.06 1 0.03 Luo 0.05 1 0.09 Beer 0.33 1 0.15
Ht 0.04 0.03 1 Wels 0.09 0.09 1 Garb 0.22 0.15 1
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TABLE 2
Meta-analysis methods, corresponding hypothesis settings and targeted types of

biomarker list

Alternative Targeted
Methods Abbreviation hypothesis biomarker list

Fisher [equally weighted sum of EW HB GB

log(p-values)]
Tippett (minimum p-value) minP HB GB

Pearson (maximum of Fisher’s left- PR HB GB

sided and right-sided score)
Li and Tseng [adaptively weighted AW HB GB

sum of log(p-values)]

Wilkinson (maximum p-value) maxP HA GA

Choi (2003); Shen (2004); Choi (2007) REM HA2 GA

(random effects model)
Conlon (2006) (PI Bayesian approach) PI NA GA

Conlon (2007) (SEI Bayesian approach) SEI NA GA

toward general HB . In contrast, minP is more powerful in detecting genes under
HBh when h is small.

From this point forward, our focus will be on the HB alternative hypothesis. In
the following section we will describe our proposal for an adaptively weighted sta-
tistic (AW), and, in Section 5, we will demonstrate its robustness and near-optimal
power for alternative hypotheses at either extreme (i.e., when h is close to K or
close to 1 in HBh′ ). We will also give examples of situations in which AW out-
performs EW and minP in intermediate scenarios. AW is capable of distinguishing
GA and GB\GA genes in a manner that indicates in which study or studies indi-
vidual biomarkers are differentially expressed—information considered useful for
post-meta-analysis investigations.

3. Adaptively-weighted statistic. When integrating multiple genomic stud-
ies, expression of some important biomarkers may be altered in a study-specific
manner (consider HB ). To uncover altered gene expression patterns across studies,
we start with the following weighted statistic:

Ug(wg) = −
K∑

k=1

wgk log(pgk),(3.1)

where pgk is the p-value of gene g in study k, wk is the weight assigned to the
kth study and wg = (wg1, . . . ,wgK). Under the null hypothesis that θgk = 0 ∀k,
the p-value of the observed weighted statistic, pU(ug(wg)), can be obtained for
a given gene g and weight wg (see below for detailed permutation algorithm to
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calculate the p-value). The adaptively-weighted statistic is defined as the minimal
p-value among all possible weights:

V AW
g = min

wg∈W
pU(ug(wg)),(3.2)

where ug(w) is the observed statistic for Ug(w), and W is a prespecified search
space. Our choice of search space in this paper is W = {w | wi ∈ {0,1}}, which
results in an affordable computation of O(2K − 1) based on the norm of K ≤ 10
in a microarray meta-analysis.

The resulting weight reflects a natural biological interpretation of whether or
not a study contributes to the statistical significance of a gene. Note that the AW
statistic is inadequate for traditional meta-analysis in epidemiological or evidence-
based medicine research. The AW selection procedure will introduce selection bias
toward studies with concordant significant effects. However, integrative analy-
sis of genomic studies represents a different situation: usually the primary goal
is to screen and identify the most probable gene markers, given data meant to
facilitate future investigation. As we will show in Section 4, the weight vector,
w∗

g = arg minwg∈W pU(ug(wg)), actually serves as a convenient basis for gene cat-
egorization in follow-up biological interpretations and explorations.

Below we illustrate the detailed procedure for AW when applied to com-
bined genomic studies. If assuming pgk ∼ Unif[0,1] under the null hypothesis,
Ug(wg) ∼ Gamma(

∑K
k=1 wgk,1) and inference of the AW statistic can be per-

formed on this basis. Such a uniform p-value assumption is, however, usually not
true in real applications. Alternatively, a permutation test is performed below to
assess the statistical significance and the false discovery rate (FDR) is controlled
at 5%. For the applications in Section 4, the EW, minP, maxP and PR methods are
performed using a similar permutation test.

I. Study-wise p-value calculation before meta-analysis:
(1) Compute the penalized t-statistics, tgk , for gene g and study k [Efron et

al. (2001); Tusher, Tibshirani and Chu (2001)].
(2) Permute group labels in each study for B times, and similarly calculate

the permuted statistics, t
(b)
gk , where 1 ≤ g ≤ G,1 ≤ k ≤ K,1 ≤ b ≤ B .

(3) Estimate the p-value of tgk as pgk = (
∑B

b=1
∑G

g′=1 I (t
(b)
g′k ∈ R(tgk)))/(B ·

G), where R(tgk) is the rejection region given the threshold tgk . Similarly,

given t
(b)
gk , compute p

(b)
gk = (

∑B
b′=1

∑G
g′=1 I (t

(b′)
g′k ∈ R(t

(b)
gk )))/(B · G).

II. Calculate AW statistic:
(1) Given a weight wg = (wg1, . . . ,wgK), the weighted statistic is de-

fined as ug(wg) = −∑K
k=1 wgk log(pgk) for gene g. Define u

(b)
g (wg) =

−∑K
k=1 wgk log(p

(b)
gk ).

(2) Estimate the p-value of the observed ug(wg) as

pU(ug(wg)) =
∑B

b=1
∑G

g′=1 I {u(b)
g′ (wg) ≥ ug(wg)}

B · G .
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Similarly compute

pU

(
u(b)

g (wg)
) =

∑B
b′=1

∑G
g′=1 I {u(b′)

g′ (wg) ≥ u
(b)
g (wg)}

B · G .

(3) Based on II(1) and II(2), calculate the optimal weight as

w∗
g = arg min

wg∈W
pU(ug(wg))

and, similarly,

w(b)∗
g = arg min

wg∈W
pU

(
u(b)

g (wg)
)
.

Define the AW statistic Vg as the p-value of the adaptively weighted sta-

tistic: Vg = pU(ug(w
∗
g)). Similarly, V

(b)
g = pU(u

(b)
g (w

(b)∗
g )).

III. Assess p-values and q-values of the AW statistic—Vg :
(1) The p-value of Vg is calculated as

pV (Vg) =
∑B

b=1
∑G

g′=1 I {V (b)
g′ ≤ Vg}

B · G .

(2) Estimate π0, the proportion of null genes, as

π̂0 =
∑G

g=1 I {pV (Vg) ∈ A}
G · �(A)

[Storey (2002)]. Normally we choose A = [0.5,1] and �(A) = 0.5.
(3) Estimate the q-value for each gene as

q(Vg) = π̂0
∑B

b=1
∑G

g′=1 I {V (b)
g′ ≤ Vg}

B
∑G

g′=1 I {Vg′ ≤ Vg}
.

The detected gene list is GAW = {g :qV (Vg) ≤ 0.05}.
IV. Distinguish concordant and discordant genes (recommended): Split the de-

tected gene list GAW into concordant and discordant gene lists. By control-
ling the false discovery rate (FDR) at 5%, detected genes with concordant
regulation direction across contributing studies are denoted as GAW

concordant =
{g :q(Vg) ≤ 0.05 and |∑K

k=1 sgn(tgk) ·w∗
gk| =

∑K
k=1 w∗

gk}, where sgn(·) is the
sign function that takes value 1 when positive and −1 when negative. The
discordant gene list is GAW

discordant = GAW\GAW
concordant.

REMARKS.

1. For the application of EW and the minP, maxP and PR method, steps II(1)–
II(3) can be skipped. Alternatively, the test statistics are modified as Vg =
−∑K

k=1 log(pgk) for EW; Vg = min1≤k≤K pgk for minP; Vg = max1≤k≤K pgk

for maxP and Vg = max(−∑K
k=1 log(p̃gk),−∑K

k=1 log(1 − p̃gk)) for PR,
where p̃gk is the one-sided p-value for gene g in study k.



ADAPTIVELY WEIGHTED STATISTIC 1003

2. The I–III sequence provides an algorithm for a general framework. Both statis-
tics tgk and rejection region R(tgk) can be replaced, depending on the experi-
mental design and hypothesis. For example, the F -statistic can be used when
multiple groups of samples are available in each study under consideration.

3. When conducting comparisons of two groups and applying the moderated t-
statistic, genes detected under the general framework (the I–III sequence) may
contain discordant genes—for instance, a gene up-regulated in one study and
down-regulated in another; the addition of step IV provides further filtering. In
some applications, a researcher may want to scrutinize the discordant gene list
to verify whether the discordance reflects actual biological discrepancy across
studies (e.g., different tissues or patient populations) or artificial errors (e.g.,
mistakes in gene annotation). For EW and minP there is no direct criterion for a
clear split of concordant and discordant genes. After revisiting the PR method
for the AGEMAP project, Owen found that it is sensitive to consistent left-
or right-sided departures. The PR method is still easily dominated by one or
two exceptionally significant p-values, and does not identify which studies are
significant in distinguishing between concordant versus discordant patterns (see
first two examples in Table 6).

4. Several forms of penalized or moderated t-statistics have been proposed and
shown to outperform traditional t-statistics [Efron et al. (2001); Tusher, Tibshi-
rani and Chu (2001); Smyth (2004)]. For our algorithm we choose the penalized
t-statistics used in Efron et al. (2001) and Tusher, Tibshirani and Chu (2001).
The fudge parameter s0 is chosen to be the median variability estimator in the
genome.

4. Applications.

4.1. Simulation study. We conducted a simulation study for combining four
data sets to compare the performance among our proposed AW test, Fisher’s EW
test, Tippett’s minP method, Wilkinson’s maxP method and Pearson’s statistic
(PR). For each data set, we simulated five normal samples from a standard normal
distribution and five case samples from N(θ,1). A total of g1 genes (category I)
were differentially expressed across all four data sets; g2 = 400 − g1 genes were
differentially expressed in the fourth data set only (category II); and 1600 genes
were considered null. Genes are called significant by controlling FDR at 5% for
each method. Each simulation scenario was repeated 1000 times.

Summaries of the resulting FDR and average number of genes identified in each
category under three different scenarios appear in the following tables: 0 category I
and 400 category II genes in Table 4; 200 category I and 200 category II genes
in Table 5; 400 category I and 0 category II genes in Table 3. The results are
consistent with the power calculation discussed in Section 5.1. In Table 3, minP is
much more powerful than EW. When θ = 2, minP correctly detects an average of
41.6 genes and EW detects only 7.6 genes. AW detects 32.1 genes, considerably
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TABLE 3
Evaluation of AW, EW, minP, maxP and PR methods by simulations in the first scenario

(I. 0 common DE genes; II. 400 4th-data set-specific DE genes; Null. 1600 random noise
genes). Average number of genes detected in each category and the average FDR are

shown under different effect size θ

θ = 2.0 θ = 2.5

Methods I II Null FDR (s.e.) I II Null FDR (s.e.)

AW 0.0 32.1 1.9 4.8% (0.002) 0.0 137.1 7.5 4.9% (0.001)
EW 0.0 7.6 0.4 4.1% (0.003) 0.0 43.1 2.0 4.2% (0.002)
minP 0.0 41.6 2.4 5.0% (0.002) 0.0 163.0 8.7 4.9% (0.001)
maxP 0.0 0.2 0.1 25.5% (0.013) 0.0 0.2 0.1 25.5% (0.013)
PR 0.0 3.2 0.1 3.7% (0.004) 0.0 15.2 0.4 2.2% (0.002)

TABLE 4
Evaluation of AW, EW, minP, maxP and PR methods by simulations in the second scenario
(I. 200 common DE genes; II. 200 4th-data set-specific DE genes; Null. 1600 random noise
genes). Average number of genes detected in each category and the average FDR are shown

under different effect size θ

θ = 1.5 θ = 2.0

Methods I II Null FDR (s.e.) I II Null FDR (s.e.)

AW 169.1 24.3 10.1 4.9% (0.0005) 198.7 59.4 13.4 4.9% (0.0004)
EW 188.4 16.9 8.5 4.0% (0.0004) 199.8 35.4 9.5 3.9% (0.0004)
minP 25.4 6.9 1.9 5.0% (0.0016) 144.0 54.7 10.3 4.9% (0.0005)
maxP 168.3 3.7 8.4 4.6% (0.0005) 195.7 4.4 9.8 4.7% (0.0005)
PR 178.7 9.4 3.8 2.0% (0.0003) 199.3 21.3 4.3 1.9% (0.0003)

TABLE 5
Evaluation of AW, EW, minP, maxP and PR methods by simulations in the third scenario (I. 400

common DE genes; II. 0 4th-data set-specific DE genes; Null. 1600 random noise genes). Average
number of genes detected in each category and the average FDR are shown under different effect

size θ

θ = 1.5 θ = 2.0

Methods I II Null FDR (s.e.) I II Null FDR (s.e.)

AW 359.3 0.0 18.6 4.9% (0.0004) 398.5 0.0 20.4 4.8% (0.0004)
EW 386.8 0.0 15.9 4.0% (0.0003) 399.8 0.0 16.1 3.9% (0.0003)
minP 121.3 0.0 6.3 4.8% (0.0007) 329.5 0.0 16.8 4.8% (0.0004)
maxP 357.5 0.0 19.0 5.0% (0.0004) 394.9 0.0 21.3 5.1% (0.0004)
PR 373.9 0.0 7.5 2.0% (0.0002) 399.4 0.0 7.8 1.9% (0.0002)
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close to minP. Similarly, in Table 5, EW (386.8 genes are detected when θ = 1.5) is
more powerful than minP (121.3 genes detected) and AW (359.3 genes detected) is
close to EW in performance. Overall, AW performance was stable in these extreme
situations. We note most methods show FDR close to 5%, although maxP loses so
much power at scenario 1 that FDR is inflated and the PR method appears slightly
conservative.

4.2. Energy metabolism in mouse model. An energy metabolism disor-
der in children is associated with very longchain acyl-coenzyme A dehydro-
genase (VLCAD) deficiencies. In an ongoing unpublished project, two geno-
types of the mouse model—wild type (VLCAD +/+) and VLCAD-deficient
(VLCAD −/−)—were studied for three types of tissues (brown fat, liver and heart)
with 4 mice in each genotype group. Microarray experiments were applied sepa-
rately to study the expression changes across genotypes. In this study we tested
the hypotheses that tissue-specific physiology triggers tissue-dependent responses,
with precise pools of differentially expressed genes specific to the tissue in ques-
tion. The purpose of this hypothesis is to identify signature genes that are signifi-
cant for tissue subsets—an analysis that corresponds to HSB .

Due to the low power of maxP, the Figure 1 data are limited to AW, EW, minP
and PR methods. Note that EW, minP and AW are based on the summarization
of p-values across studies, and that the methods alone do not distinguish among
discordant genes with difference in expression across studies (e.g., up-regulated
in one study but down-regulated in another). The modified algorithm of AW for
filtering out discordant genes (Section 3, step IV) can be implemented in such
situations, since it discards all discordant genes among studies that contribute to
the adaptive weight. The modified AW algorithm is not applicable to EW, minP
and PR because those methods do not provide which studies should be considered
for concordance/discordance evaluations.

Overall, the general AW detects 203 genes [Figure 1(a)]; among these, 28 genes
were conflicting in terms of up- or down-regulations—for example, Figure 1(b)
shows the detection of 175 genes. Adaptive-weights serve as a natural grouping
process for identified genes: 55 genes with weights of (1,1,1) are differentially
expressed in all three tissue types [Figure 1(b)], and 27 with weights of (0,1,1)
were differentially expressed in liver and heart tissues, but not in brown fat. The
number of detected genes related to heart tissue [(1,1,1), (1,0,1), (0,1,1) and
(0,0,1) in Figure 1(b)] is much higher than that related to brown fat or liver tis-
sues, representing increase impact of VLCAD deletion in heart metabolism activi-
ties. According to the EW results shown in Figure 1(c), that method detected more
genes (329) than our proposed AW method. However, the identified gene list is dif-
ficult to interpret and investigate, even after reordering by hierarchical clustering.
In this application minP appears to be much less powerful.

To illustrate AW performance in terms of genes that consistently regulate in the
same direction across data sets, details for five genes are presented in Table 6. Four
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(0,0,1)
(0,1,0)

FIG. 1. Heatmaps of gene expressions for differentially expressed genes identified by different
methods in the mouse energy metabolism data sets.

of the five methods identified the five example genes as differentially expressed
(the exception was minP). The first two genes (1423407_a_at and 1418429_at)
clearly indicate discordant regulation with opposite moderated t-statistics between
brown fat and heart. Even though Pearson’s method (PR) was specifically de-
signed to detect concordant genes, it failed to achieve this goal in this particular
situation. In contrast, our proposed AW method uses a post-hoc approach (Sec-
tion 3, step IV) to filter out discordant genes. Such a post-hoc procedure is not
feasible for EW, minP or PR without indicating which studies are differentially
expressed. For example, in 1449015_at and 1416415_a_at, the AW method with



A
D

A
PT

IV
E

LY
W

E
IG

H
T

E
D

STA
T

IST
IC

1007

TABLE 6
Five genes from the mouse energy metabolism data. Moderated t-statistics and p-values for individual studies are listed. w∗ represents AW-obtained

weight. AW2 represents AW concordant method

Moderated t-statistic (p-value) Is it detected (q(V ) ≤ 5%)?

Gene Brown fat Liver Heart EW minP PR AW AW2 Concordant?

1423407_a_at 2.2 1.7 −3.7
(0.0027) (0.0027) (0.0014)

√ × √ √ × no
w∗ 1 1 1

1418429_at 3.6 1.1 −3.2
(0.0003) (0.067) (0.002)

√ × √ √ × no
w∗ 1 0 1

1449015_at 0.4 −3.3 −1.8
(0.46) (0.0009) (0.011)

√ × √ √ √
yes

w∗ 0 1 1

1416415_a_at −0.8 2.2 2.6
(0.15) (0.0026) (0.0023)

√ × √ √ √
yes

w∗ 0 1 1

1415727_at −1.5 −1.6 −3.5
(0.018) (0.014) (0.0008)

√ × √ √ √
yes

w∗ 1 1 1
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concordance filtering will still identify them as concordant DE genes, even though
regulation of the nonsignificant study (brown fat) contradicts the two significant
studies. The difference between AW and the natural tendency of biologists to pick
studies based on p-values obtained from individual analysis is illustrated by the
fifth gene, 1415727_at, which produces moderate signals for brown fat and liver
tissue and a very strong signal for heart tissue, to the degree that it can easily be
ignored for brown fat and liver following adjustment for multiple comparisons. It
is, in general, difficult to decide whether it is a (0,0,1)- or (1,1,1)-type of gene.
The fact that this gene is moderately significant in two studies and very significant
in a third study enabled AW to determine that combining results across all three
studies gives the best statistical significance and it should be a (1,1,1)-type of
gene.

4.3. Prostate cancer and lung cancer studies. We applied the AW, EW, minP
and PR methods to three sets of prostate cancer data and three sets of lung can-
cer data (Table 1). Some of the studies were performed by cDNA technology
[Dhanasekaran et al. (2001), Luo et al. (2001) and Garber et al. (2001)] while
others used Affymetrix oligo-based technology [Welsh et al. (2001), Bhattachar-
jee et al. (2001) and Beer et al. (2002)]. Data set probes were matched according
to their Entrez IDs; the intensities of multiple probes matching the same ID were
averaged. For the prostate cancer data set, comparisons were made between clini-
cally localized cancer and benign tissues. For the lung cancer data set we compared
tissues from adenocarcinoma patients with those from healthy donors.

The results shown in Figures 2 and 3 reflect characteristics that are similar to
those discussed in the above mouse example. With an exception, minP did not
perform as poorly as it did in Section 4.1. Compared to the other methods, our
proposed AW method identified much clearer patterns. Of the 722 genes in Figure
2(a), 618 genes show consistent regulation across studies [Figure 2(b)]. Approxi-
mately 14% of the identified genes were discordant across studies. Possible causes
of discordant genes may include mistaken gene annotations in old array platforms
[Dai et al. (2005)], differential probe efficiencies, heterogeneous sample popula-
tions across studies and nonspecific cross hybridizations. According to our find-
ings, only moderately concordant information existed across the three prostate can-
cer studies, probably because (a) their sample sizes were small, or (b) they entailed
in-house cDNA arrays or commercial products that were still in the early stages of
development. Of the 618 concordant AW-detected genes, 130 genes (21%) were
consistent (1,1,1)-type biomarkers and 205 genes (33.2%) were specific to one
study only: 55 (1,0,0)-type biomarkers, 70 of the (0,1,0) type, and 80 of the
(0,0,1) type. The EW, minP and PR methods all detected slightly greater num-
bers of biomarkers than the AW method (924, 745 and 882, resp.). However, in
each case the detected biomarkers were difficult to interpret and follow up, and all
three methods presented challenges in terms of guaranteeing the detection of con-
cordant genes only. In summary, our findings suggest that results from individual
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FIG. 2. Heatmaps of gene expression intensities for differentially expressed genes identified by
different methods in the prostate cancer data sets.
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FIG. 3. Heatmaps of gene expression intensities for differentially expressed genes identified by
different methods in the lung cancer data sets.

microarray studies require careful interpretation, and that integrative analyses are
appropriate as a validation tool.
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Similar patterns and results were obtained when the four methods were ap-
plied to lung cancer studies (Figure 3). The AW method detected 366 genes, with
349 confirmed as concordant (only 4.6% are discordant compared to 14.4% in
prostate cancer). Among the 349 concordant biomarkers, 99 were type (1,1,1)
(28.4% compared to 21% in prostate cancer) and 96 were single study specific
(27.5% compared to 33.2% in prostate cancer): 7 type (1,0,0), 51 type (0,1,0)
and 38 type (0,0,1). Overall, our lung cancer studies had more biomarkers that
were consistent in terms of concordant up-regulation and down-regulation pat-
terns, and fewer single study-specific biomarkers. These results match those from
previous reports showing better consistency among lung cancer studies compared
to prostate cancer studies, possibly due to larger sample sizes, better gene anno-
tations, more specific disease subtype comparisons and better array quality. For
example, Bhattacharjee and Beer used Affymetrix platforms, while Garber’s data
were generated from the lab of Pat Brown, the inventor of cDNA arrays.

5. Power and admissibility. In this section we drop the subscript g for genes
and assume independence among studies when comparing five test statistics (EW,
AW, minP, maxP and PR) for HB at the univariate level. The maxP statistic is
included for demonstration purposes although it is not targeted to HB . To date,
no best method for combining multiples studies has been identified, therefore,
choosing a combined statistic must reflect specific biological purposes. Birnbaum
(1954, 1955) established general conditions for evaluating combined methods, in-
cluding monotonicity and admissibility. To compare several combined test pro-
cedures, he considered a one-sample test of the mean of a Gaussian distribution
with known variance. We will use a similar two-sample test of the means of two
Gaussian distributions with known variance:

Zk = X2k − X1k

σk

√
1/nk1 + 1/nk2

, k = 1,2, . . . ,K,(5.1)

where X1k = (1/nk1) · ∑nk1
s=1 Xks , X2k = (1/nk2) · ∑nk1+nk2

s=nk1+1 Xks , Xks ∼ N(0, σ 2
k )

when 1 ≤ s ≤ nk1 and Xks ∼ N(θk, σ
2
k ) when nk1 + 1 ≤ s ≤ nk1 + nk2. We will

use the two-sided p-values Pk = Pr(|Z| ≥ |zk||θk = 0) for study k, where Z is
the standard normal distribution, to examine the acceptance regions of the various
combined test procedures. The simplified framework is the focus for the discussion
in the Appendix of admissibility and power comparisons of the five statistics. It is
shown there that AW, EW, PR and minP are all admissible, but maxP is not.

5.1. Power comparison of EW, AW, minP, maxP and PR under HBh′ . Denote
by �0 = {θ1 = · · · = θK = 0} and �A = {at least one θk �= 0} (i.e., HB ) the null
and alternative hypothesis. Letting βAW(θ;α) be the power of a test controlled at
level α for the OW statistic given θ ∈ �A, we have

βAW(θ;α) = Pr(V AW ≤ CAW
α |θ) = 1 −

∫

AW

K∏
k=1

p(Pk|θ) dP1 · · · dPK,(5.2)
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where CAW
α is the solution of v to the equation P(V AW ≤ v|�0) = α, 
AW =⋂2K−1

j=1 {p(u(wj )) > CAW
α } = ⋂2K−1

j=1 {U(wj ) < F−1
Gamma(

∑K
k=1 wjk,1)

(1−CAW
α )} and

F−1
Gamma(α,β) is the inverse CDF of a Gamma distribution with parameters α and

β , wj = (wj1, . . . ,wjK), wjk ∈ {0,1}, k = 1, . . . ,K , and enumeration index j

exhausts all different weight vector possibilities such that
∑K

k=1 wjk ≥ 1. If the null
hypothesis is true, it is generally accepted that the individual Pk value is uniformly
distributed on [0,1]. The density of the p-value under alternative law is expressed
as

p(P |θ) = p(x|θ)

p(x|0)

∣∣∣∣
x=g(P )

(0 ≤ P ≤ 1),(5.3)

where x = g(P ) indicates the solution of P = ∫ 1
x f (x|0) dx [Pearson (1938)].

Similarly, the power for EW and minP can be calculated by βEW(θ;α) =∫

EW

∏K
k=1 p(Pk|θ) dP1 · · · dPK , βminP(θ;α) = 1 − [∫ 1

CminP
α

p(P | θ) dP ]K and

βmaxP(θ;α) = [∫ CmaxP
α

α p(P | θ) dP ]K , where 
EW = {−∑K
k=1 logpk ≥ CEW

α },
CEW

α = F−1
Gamma(K,1)(1 − α), CminP

α = F−1
Beta(1,K)(α) = 1 − (1 − α)1/K , CmaxP

α =
α1/K .

In our simplified setting, the Z test in (3) is used for power calculations, hence,
the density of Pk is

p(Pk|θk) = 1

2
exp

{
ck

2
[2�−1(1 − Pk/2) − ck]

}
(5.4)

+ 1

2
exp

{
−ck

2
[2�−1(1 − Pk/2) + ck]

}
,

where ck = θk

σk

√
1/nk1+1/nk2

, k = 1, . . . ,K . We consider nk1 = nk2 = 5 and σk = 1

so that the effect size is represented by θk and power is evaluated with varying
effect sizes.

The graphs in Figure 4 reflect a situation in which K = 10 for simplified al-
ternative hypothesis HBh′ (1 ≤ h ≤ K). Studies with nonzero effect sizes share a
common effect size θ . Power curves under θ ∈ {1.2,1.4} and varying values of h

are displayed. Due to the difficulty of achieving an exact power calculation for
K = 10, we performed 10,000 simulations to generate power curves. EW and AW
are calculated for one-sided p-values for the purpose of comparability with PR,
maxP, minP. In application, it is unlikely that the signs of effect will be known,
therefore, two-sided p-values for maxP, minP, EW and AW are preferred. As ex-
pected, the figure shows that minP is more powerful than EW when h is small, and
EW is more powerful than minP when h is large. On the other hand, AW performs
stably and comparably to the best method in situations involving the two extremes.
The performance of maxP further confirms Loughin’s conclusion that it has very
low power unless h = K .
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FIG. 4. Power analysis of EW, AW, minP, PR and maxP under HBh′ , 1 ≤ h ≤ K . We compare power
curves of the five methods combining K = 10 studies. X axis represents h, the number of studies that
have nonzero effects.

6. Discussion. In this paper we described our proposal for an adaptively
weighted (AW) statistic for combining multiple studies, and reported our findings
after applying it to two sets of combined microarray studies. Acknowledging that
meta-analysis methods depend heavily on the biological question being investi-
gated, we formulated two statistical hypothesis settings (HSA and HSB ) to identify
differentially expressed genes considered significant in either partial or full data
sets. Classical EW, minP and our proposed AW methods were used to analyze
HSA.

According to our findings, AW, EW and minP are all admissible in simplified
scenarios. In terms of power analysis, EW was more powerful when all data sets
were significant, while minP was more powerful when only one or a small number
of data sets were significant. As a compromise between EW and minP, the AW
method performed close to the best method in either extreme alternative hypothesis
setting (Figure 5). Simulation results also confirmed this robust property of AW
(Tables 3–5). In applications, AW had the additional advantage of categorizing
differentially expressed genes by their adaptive weights, thus providing a practical
basis for further biological exploration. In addition to not detecting discordantly
regulated genes, the modified algorithm in Section 3, step IV, was appealing for
the specific biological purpose of identifying all nondiscordant genes.

In this project we restricted the binary 0,1 adaptive weight search space for pur-
poses of computational convenience and biological interpretability. For example,
in Figure 1(b) the AW data support an immediate categorization of detected bio-
markers, as well as information on similar/dissimilar differential gene expression
between tissue pairs. As shown for the EW data in Figure 1(c), Fisher’s method
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FIG. 5. Acceptance regions of EW, AW, minP, PR and maxP statistic for combining p-values from
two independent studies when testing means of Gaussian distributions with known variances.

generated a large number of nontraceable biomarkers that were difficult to work
with in terms of follow-up analyses. Theoretically, it is possible to extend the 0,1
space to a nonrestricted real number (i.e., positive weights that add up to 1). How-
ever, such results generate biomarker lists similar to those generated by the EW
method [Figure 1(c)]. In other words, using nonbinary weights may be slightly
superior statistically, but not biologically.

There are three limitations in addition to possible future extensions for future
research. First, we assumed that all studies contain an identical matched gene list
with no missing values. In actual practice, separate studies to be combined usu-
ally come from different microarray platforms. Requiring an identical matched
gene list and no missing values will exclude many important genes that appear
in certain studies but not in others, thus requiring an extension that allows for
missing values. Second, we focused on two-group comparison in this paper, and
made a modification in order to limit detection to genes with concordant expres-
sion changes. To compare more than two groups, the F -statistic and its variations
can be applied; resulting p-values from F tests can be combined similarly as de-
scribed for the algorithm in Section 3. However, small p-values across studies do
not guarantee concordant expression patterns. To address this problem, we have
developed a multi-class correlation approach [Lu, Li and Tseng (2010)]. Third,
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our proposed method focuses on HSB rather than HSA, which is not the case with
many biological applications. Finally, the AW statistic can be extended from bio-
marker detection to gene set enrichment analyses. Note that post-meta-analysis
enriched pathways (gene sets) are thought to be more supportive of biological in-
terpretations.

While we only considered combining multiple microarray studies in this pa-
per, the methods we described can easily be extended to combinations of multiple
genomic, epigenomic and/or proteomic studies—for instance, data sets from SNP
arrays, genome arrays, methylation arrays, proteomic experiments and ChIP-on-
chip experiments. Additional extensions and/or alternative models are required to
accommodate biological knowledge and to address specific questions of interest.

APPENDIX: ADMISSIBILITY

A test is considered admissible if it cannot be uniformly improved by any other
test. No single test has been accepted as the most powerful, even in the simpli-
fied scenarios. Birnbaum expressed a necessary and sufficient condition (known as
Theorem 5.1) for any test to be admissible under this situation.

THEOREM 1 [Birnbaum (1954, 1955)]. Under HB and the test statistic is in
the exponential family [e.g., equation (5.1)], the necessary and sufficient condition
for a combined test procedure to be admissible is that the corresponding accep-
tance region is convex.

Since the acceptance regions of EW and minP have been identified as convex,
both methods are admissible; maxP is not. When proving that the PR method is
admissible, Owen (2009) clarified Birnbaum’s (1954) misinterpretation of the PR
method. The acceptance regions of EW, minP, maxP, AW and PR on the plane of
a pair of Z statistics at level 0.05 are shown in Figure 5. When illustrating the
rejection regions of several common combined tests (including EW and minP),
Birnbaum showed a preference because it appeared to be “fairly sensitive in all
directions.” From Figure 5, it is clear that the PR method prefers effects that show
common directions in two studies, since the rejection regions in the first and third
quadrants are less stringent than the second and fourth quadrants. Note that AW ac-
tually shares positive aspects of both EW and minP methods: generally more sensi-
tive than minP when parameters from both studies depart from 0 and more sensitive
than EW when only one of the parameters departs from 0, and more sensitive than
the minP method when parameters from both studies depart from 0. According to
the following corollary, AW is admissible because the intersection of convex sets
is convex, therefore, its acceptance region is convex.

COROLLARY 1. The acceptance region of AW is convex and, thus, AW is ad-
missible under HB and assumption (5.1).
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PROOF. Denote by pk = 2(1 −�(|zk|)) the two-sided p-value, where �(t) =∫ t
−∞ φ(t) dt , φ(t) is the density of the standard normal distribution. First we

prove that f (zk) = − log(pk) = − log(1 − �(|zk|)) + C is convex. f ′′(z) =
φ(|z|)

[1−�(|z|)]2 {φ(|z|) − |z|[1 − �(|z|)]} when z �= 0. It is well known that the el-

ementary upper bound for 1 − �(x) is φ(x)/x, for x > 0. Thus, f ′′(z) > 0
when z �= 0. Since f (z) is continuous at z = 0, f (z) is convex in z. Hence,
f (z1, z2, . . . , zn) = −∑n

k=1 log(pk) for any n ≥ 1 is convex, because the sum
of convex functions is convex. For the AW statistic, the acceptance region is
{z1, z2, . . . , zK : min1≤k≤K p(u(w)) > c}, where p(u(w)) is the right-sided p-
value of U(w):{

z1, z2, . . . , zK : min
0≤k≤K

p(u(w)) > c
}

= ⋂
Ik∈{0,1},1≤k≤K

{
z1, z2, . . . , zK : p

(
−

K∑
k=1

log[pIk

k ]
)

> c

}

= ⋂
Ik∈{0,1},1≤k≤K

{
z1, z2, . . . , zK :−

K∑
k=1

log[pIk

k ] < γj

}
,

j = 1,2, . . . ,2K − 1,

γj is F−1
Gamma(

∑K
k=1 Ik,1)

(1 − c). Thus, the acceptance region of AW is convex since

the intersection of convex sets is also convex. �

Acknowledgments. The authors would like to thank Gerard Vockley for pro-
viding the mouse metabolism data set and reviewers for insightful comments.

REFERENCES

BEER, D. G., KARDIA, S. L., HUANG, C. C., GIORDANO, T. J., LEVIN, A. M., MISEK, D.
E., LIN, L., CHEN, G., GHARIB, T. G., THOMAS, D. G., LIZYNESS, M. L., KUICK, R.,
HAYASAKA, S., TAYLOR, J. M. G., IANNETTONI, M. D., ORRINGER, M. B. and HANASH, S.
(2002). Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nature
Med. 8 816–824.

BERGER, R. L. (1982). Multiparameter hypothesis testing and acceptance sampling. Technometrics
24 295–300. MR0687187

BHATTACHARJEE, A., RICHARDS, W. G., STAUNTON, J., LI, C., MONTI, S., VASA, P.,
LADD, C., BEHESHTI, J., BUENO, R., GILLETTE, M., LODA, M., WEBER, G., MARK, E.
J., LANDER, E. S., WONG, W., JOHNSON, B. E., GOLUB, T. R., SUGARBAKER, D. J. and
MEYERSON, M. (2001). Classification of human lung carcinomas by mrna expression profiling
reveals distinct adenocarcinoma subclasses. Proc. Natl. Acad. Sci. USA 98 13790–13795.

BIRNBAUM, A. (1954). Combining independent tests of significance. J. Amer. Statist. Assoc. 49
559–574. MR0065101

http://www.ams.org/mathscinet-getitem?mr=0687187
http://www.ams.org/mathscinet-getitem?mr=0065101


ADAPTIVELY WEIGHTED STATISTIC 1017

BIRNBAUM, A. (1955). Characterizations of complete classes of tests of some multiparametric hy-
potheses, with applications to likelihood ratio tests. Ann. Math. Statist. 26 21–36. MR0067438

BOROVECKI, F., LOVRECIC, L., ZHOU, J., JEONG, H., THEN, F., ROSAS, H. D., HERSCH, S. M.,
HOGARTH, P., BOUZOU, B., JENSEN, R. V. and KRAINC D. (2005). Genome-wide expression
profiling of human blood reveals biomarkers for Huntington’s disease. Proc. Natl. Acad. Sci. USA
102 11023–11028.

CARDOSO, J., BOER, J. H., MORREAU, H. and FODDE, R. (2007). Expression and genomic pro-
filing of colorectal cancer. Biochim. Biophys. Acta Rev. Cancer 1775 103–137.

CHOI, H., SHEN, R., CHINNAIYAN, A. M. and GHOSH, D. (2007). A latent variable approach for
meta-analysis of gene expression data from multiple microarray experiments. BMC Bioinformat-
ics 8 364–383.

CHOI, J. K., YU, U., KIM, S. and YOO, O. J. (2003). Combining multiple microarray studies and
modeling interstudy variation. Bioinformatics 19 84–90.

CONLON, E. M., SONG, J. J. and LIU, A. (2007). Bayesian meta-analysis models for microarray
data: A comparative study. BMC Bioinformatics 8 80–100.

CONLON, E. M., SONG, J. J. and LIU, J. S. (2006). Bayesian models for pooling microarray studies
with multiple sources of replications. BMC Bioinformatics 7 247–250.

COUSINS, R. D. (2007). Annotated bibliography of some papers on combining significances or p-
values. Available at arXiv:0705.2209v1.

DAI, M., WANG, P., BOYD, A. D., KOSTOV, G., ATHEY, B., JONES, E. G., BUNNEY, W. E.,
MYERS, R. M., SPEED, T. P., AKIL, H., WATSON, S. J. and MENG, F. (2005). Evolving
gene/transcript definitions significantly alter the interpretation of genechip data. Nucleic Acids
Res. 33 e175. doi: 10.1093/nar/gni179.

DHANASEKARAN, S. M., BARRETTE, T. R., GHOSH, D., SHAH, R., VARAMBALLY, S., KU-
RACHI, K., PIENTA, K. J., RUBIN, M. A. and CHINNAIYAN, A. M. (2001). Delineation of
prognostic biomarkers in prostate cancer. Nature 412 822–826.

EFRON, B., TIBSHIRANI, J. D., STOREY, R. and TUSHER, V. (2001). Empirical Bayes analysis of
a microarray experiment. J. Amer. Statist. Assoc. 96 1151–1160. MR1946571

FISHER, R. A. (1932). Statistical Methods for Research Workers, 4 ed. Oliver and Boyd, Edinburgh.
GARBER, M. E., TROYANSKAYA, O. G., SCHLUENS, K., PETERSEN, S., THAESLER, Z.,

PACYNA-GENGELBACH, M., VAN DE RIJN, M., ROSEN, G. D., PEROU, C. M., WHYTE, R. I.,
ALTMAN, R. B., BROWN, P. O., BOTSTEIN, D. and PETERSEN, I. (2001). Diversity of gene
expression in adenocarcinoma of the lung. Proc. Natl. Acad. Sci. USA 98 13784–13789.

GEORGE, E. O. (1977). Combining independent one-sided and two-sided statistical tests—some
theory and applications. Ph.D. thesis, Univ. Rocheser. MR2627130

GHOSH, D., BARRETTE, T. R., RHODES, D. and CHINNAIYAN, A. M. (2003). Statistical issues
and methods for meta-analysis of microarray data: A case study in prostate cancer. Functional
and Integrative Genomic 3 180–188.

GOOD, I. J. (1955). On the weighted combination of significance tests. J. Roy. Statist. Soc. Ser. B 17
264–265. MR0076252

HEDGES, L. V. and OLKIN, I. (1985). Statistical Methods for Meta-Analysis. Academic Press, New
York. MR0798597

HONG, F., BREITLING, R., MCENTEE, C. W., WITTNER, B. S., NEMHAUSER, J. L. and
CHORY, J. (2006). Rankprod: A bioconductor package for detecting differentially expressed
genes in meta-analysis. Bioinformatics 22 2825–2827.

HU, P., GREENWOOD, C. M. T. and BEYENE, J. (2005). Integrative analysis of multiple gene
expression profiles with quality-adjusted effect size models. BMC Bioinformatics 6 128–138.

LANCASTER, H. (1961). The combination of probabilities: An application of orthonormal functions.
Austr. J. Statist. 3 20–33. MR0130742

http://www.ams.org/mathscinet-getitem?mr=0067438
http://arxiv.org/abs/0705.2209v1
http://dx.doi.org/10.1093/nar/gni179
http://www.ams.org/mathscinet-getitem?mr=1946571
http://www.ams.org/mathscinet-getitem?mr=2627130
http://www.ams.org/mathscinet-getitem?mr=0076252
http://www.ams.org/mathscinet-getitem?mr=0798597
http://www.ams.org/mathscinet-getitem?mr=0130742


1018 J. LI AND G. C. TSENG

LITTELL, R. C. and FOLKS, J. L. (1971). Asymptotic optimality of Fisher’s method of combining
independent tests. J. Amer. Statist. Assoc. 66 802–806. MR0312634

LITTELL, R. C. and FOLKS, J. L. (1973). Asymptotic optimality of Fisher’s method of combining
independent tests, ii. J. Amer. Statist. Assoc. 68 193–194. MR0375577

LOUGHIN, T. M. (2004). A systematic comparison of methods for combining p-values from inde-
pendent tests. Comput. Statist. Data Anal. 47 467–485. MR2086483

LU, S., LI, J., SONG, C., SHEN, K. and TSENG, G. C. (2010). Biomarker detection in the integra-
tion of multiple multi-class genomic studies. Bioinformatics 26 333–340.

LUO, J., DUGGAN, D. J., CHEN, Y., SAUVAGEOT, J., EWING, C. M., BITTNER, M. L., TRENT, J.
M. and ISAACS, W. B. (2001). Human prostate cancer and benign prostatic hyperplasia: Molec-
ular dissection by gene expression profiling. Cancer Res. 61 4683–4688.

MOREAU, Y., AERTS, S., DE MOOR, B., DE STROOPER, B. and DABROWSKI, M. (2003). Com-
parison and meta-analysis of microarray data: From the bench to the computer desk. Trends
Genet. 19 570–577.

OLKIN, I. and SANER, H. (2001). Approximations for trimmed Fisher procedures in research syn-
thesis. Statist. Methods Med. Res. 10 267–276.

OWEN, A. B. (2009). Karl Pearson’s meta-analysis revisited. Ann. Statist. 37 3867–3892.
MR2572446

PARMIGIANI, G., GARRETT-MAYER, E. S., ANBAZHAGAN, R. and GABRIELSON, E. (2004).
A cross-study comparison of gene expression studies for the molecular classificaiton of lung
cancer. Clin. Cancer Res. 10 2922–2927.

PEARSON, E. S. (1938). The probability integral transformation for testing goodness of fit and com-
bining independent tests of significance. Biometrika 30 134–148.

PEARSON, K. (1934). On a new method of determining ’goodness of fit.’ Biometrika 26 425–442.

PIROOZNIA, M., NAGARAJAN, V. and DENG, Y. (2007). Gene venn—a web application for com-
paring gene lists using venn diagram. Binformation 1 420–422.

RHODES, D., BARRETTE, T. R., RUBIN, M. A., GHOSH, D. and CHINNAIYAN, A. M. (2002).
Meta-analysis of microarrays: Interstudy validation of gene expression profiles reveals pathway
dysregulation in prostate cancer. Cancer Res. 62 4427–4433.

ROY, S. N. (1953). On a heuristic method of test construction and its use in multivariate analysis.
Ann. Math. Statist. 24 220–238. MR0057519

SEGAL, E., FRIEDMAN, N., KOLLER, D. and REGEV, A. (2004). A module map showing condi-
tional activity of expression modules in cancer. Nature Genet. 3 1090–1098.

SHEN, R., GHOSH, D. and CHINNAIYAN, A. M. (2004). Prognostic meta-signature of breast cancer
developed by two-stage mixture modeling of microarray data. BMC Genomics 5 94–109.

SMYTH, G. K. (2004). Linear models and empirical Bayes methods for assessing differential ex-
pression in microarray experiments. Statist. Appl. Genet. Mol. Biol. 3 Article 3. MR2101454

STOREY, J. D. (2002). A direct approach to false discovery rates. J. R. Stat. Soc. Ser. B 64 479–495.

STOUFFER, S., SUCHMAN, E., DEVINNERY, L., STAR, S. and WILLIAMS, J. (1949). The Ameri-
can Soldier, Vol. I: Adjustement during Army Life. Princeton Univ. Press, Princeton, NJ.

TIPPETT, L. H. C. (1931). The Methods in Statistics, 1st ed. Williams and Norgate, London.

TSENG, G. C., OH, M. K., ROHLIN, L., LIAO, J. C. and WONG, W. H. (2001). Issues in cdna
microarray analysis: Quality filtering, channel normalization, models of variations and assessment
of gene effects. Nucleic Acids Res. 29 2549–2557.

TUSHER, V. G., TIBSHIRANI, R. and CHU, G. (2001). Significance analysis of microarrays applied
to the ionizing radiation response. Proc. Natl. Acad. Sci. USA 98 5116–5121.

http://www.ams.org/mathscinet-getitem?mr=0312634
http://www.ams.org/mathscinet-getitem?mr=0375577
http://www.ams.org/mathscinet-getitem?mr=2086483
http://www.ams.org/mathscinet-getitem?mr=2572446
http://www.ams.org/mathscinet-getitem?mr=0057519
http://www.ams.org/mathscinet-getitem?mr=2101454


ADAPTIVELY WEIGHTED STATISTIC 1019

WELSH, J. B., SAPINOSO, L. M., SU, A. I., KERN, S. G., WANG-RODRIGUEZ, J., MOSKALUK,
C. A., FRIERSON, H. F. and HAMPTON JR., G. M. (2001). Analysis of gene expression identi-
fies candidate markers and pharmacological targets in prostate cancer. Cancer Res. 61 5974–5978.

WILKINSON, B. (1951). A statistical consideration in psychological research. Psychol. Bull. 48 156–
157.

DEPARTMENT OF BIOSTATISTICS

UNIVERSITY OF PITTSBURGH

PITTSBURGH, PENSYLVANIA

USA
E-MAIL: jli3@hfhs.org

ctseng@pitt.edu

mailto:jli3@hfhs.org
mailto:ctseng@pitt.edu

	Introduction
	Two major complementary hypothesis settings
	Adaptively-weighted statistic
	Applications
	Simulation study
	Energy metabolism in mouse model
	Prostate cancer and lung cancer studies

	Power and admissibility
	Power comparison of EW, AW, minP, maxP and PR under HBh'

	Discussion
	Appendix: Admissibility
	Acknowledgments
	References
	Author's Addresses

