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Longitudinal studies of a binary outcome are common in the health, so-
cial, and behavioral sciences. In general, a feature of random effects logistic
regression models for longitudinal binary data is that the marginal functional
form, when integrated over the distribution of the random effects, is no longer
of logistic form. Recently, Wang and Louis [Biometrika 90 (2003) 765–775]
proposed a random intercept model in the clustered binary data setting where
the marginal model has a logistic form. An acknowledged limitation of their
model is that it allows only a single random effect that varies from cluster
to cluster. In this paper we propose a modification of their model to han-
dle longitudinal data, allowing separate, but correlated, random intercepts at
each measurement occasion. The proposed model allows for a flexible cor-
relation structure among the random intercepts, where the correlations can
be interpreted in terms of Kendall’s τ . For example, the marginal correlations
among the repeated binary outcomes can decline with increasing time separa-
tion, while the model retains the property of having matching conditional and
marginal logit link functions. Finally, the proposed method is used to analyze
data from a longitudinal study designed to monitor cardiac abnormalities in
children born to HIV-infected women.

1. Introduction. Longitudinal studies of a binary outcome are common in the
health, social, and behavioral sciences. For example, in the Pediatric Pulmonary
and Cardiac Complications (P2C2) of Vertically Transmitted HIV Infection Study
[Lipshultz et al. (1998)], a longitudinal study designed to monitor heart disease
and the progression of cardiac abnormalities in children born to HIV-infected
women, a key outcome was the binary variable “pumping ability of the heart”
(normal/abnormal). Previous results [Lipshultz et al. (1998, 2000, 2002)] from the
P2C2 study have shown that sub-clinical cardiac abnormalities develop early in
children born to HIV-infected women, and that they are frequent, persistent, and
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TABLE 1
Data from P2C2 longitudinal study for 10 randomly selected children

Heart pumping ability at agea:
Mom Gest. Birth

Case HIVb smokedc age (weeks) weightd Birth 1 2 3 4 5 6

1 1 0 41 0 0 0 0 0 0 0 –
2 1 1 34 0 1 – 0 0 1 – –
3 0 1 40 0 1 0 0 – – – –
4 1 0 40 0 0 – 0 0 0 1 –
5 0 1 39 0 – 1 0 – – – –
6 0 1 35 0 1 – – – – – –
7 0 0 36 0 – 0 0 – – – –
7 1 0 33 1 – 1 1 1 – – –
8 0 0 36 1 0 0 – – – – –
9 0 0 41 1 – – – – 0 – –

10 0 1 34 1 – 0 0 – 0 1 0

Note: – = missing.
a1 = abnormal, 0 = normal.
b1 = HIV positive, 0 = not HIV positive.
c1 = mother smoked during pregnancy, 0 mother did not smoke.
d1 = low birth-weight for age, 0 = normal birth-weight.

often progressive. In the P2C2 study a birth cohort of 401 infants born to women
infected with HIV-1 were followed over time for up to six years. Of these 401 in-
fants, 74 (18.8%) were HIV positive, and 319 (81.2%) were HIV negative. It is of
interest to model the effect of HIV status of the child on the marginal probability
of abnormal pumping ability of the heart over time. Additional covariates include
mother’s smoking status during pregnancy, gestational age and birth-weight stan-
dardized for age (1 = abnormal, 0 = normal). Table 1 shows data from 10 of the
401 subjects on file.

We consider likelihood-based estimation of the logistic regression model for the
marginal probabilities of the repeated binary responses. This, of course, requires a
fully parametric likelihood approach based on the joint multinomial distribution of
the repeated binary outcomes from each subject. In practice, full likelihood-based
methods for fitting of marginal models for discrete longitudinal data have proven
to be very challenging for the following reasons: (i) it can be conceptually diffi-
cult to model higher-order associations in a flexible and interpretable manner that
is consistent with the model for the marginal expectations [e.g., Bahadur (1961)],
(ii) given a marginal model for the vector of repeated outcomes, the multinomial
probabilities cannot, in general, be expressed in closed-form as a function of the
model parameters, and (iii) the number of multinomial probabilities grows expo-
nentially with the number of repeated measures.
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Although various likelihood approaches have been proposed, for example, mod-
els based on two- and higher-order correlations [Bahadur (1961); Zhao and Pren-
tice (1990)] and models based on two- and higher-order odds ratios [McCullagh
and Nelder (1989); Lipsitz, Laird and Harrington (1991); Molenberghs and Lesaf-
fre (1994)], none of these likelihood-based models have proven to be of real practi-
cal use unless the number of repeated measures is relatively small (say, less than 5).
As the number of repeated measures increases, the number of parameters that need
to be specified and estimated proliferates rapidly for any of these joint distribu-
tions, and a solution to the likelihood equations quickly becomes intractable.

Other full likelihood approaches have been formulated as generalized linear
mixed models (GLMM). For example, Heagerty (1999) and Heagerty and Zeger
(2000) have developed a likelihood-based approach that combines the versatility
of GLMMs for modeling the within-subject association with a marginal logistic re-
gression model for the marginal probability of response. They refer to their general
class of models as marginalized random effects models. Recall that in the standard
GLMM for binary outcomes, the marginal probabilities, obtained by integrating
over the random effects, in general, no longer follow a generalized linear model,
due to the nonlinearity of the link function typically adopted in regression models
for discrete responses. In contrast, the marginalized random effects model can be
specifically formulated such that the marginal probabilities follow a logistic regres-
sion model. Unlike the standard generalized linear mixed model, the marginalized
random effects models of Heagerty (1999) has no closed form expression for the
conditional probability of response (conditional on the random effects). When the
main interest is in the marginal model parameters, the latter feature has no impact
on the interpretability of the model; however, it can be a drawback when trying to
implement an algorithm to obtain the maximum likelihood (ML) estimates using
commonly available software, for example, PROC NLMIXED in SAS (V9.2).

In this paper the goal of our approach is to develop a generalized linear mixed
model which has a straightforward interpretation of the effect of the covariates,
both conditionally and marginally. For a generalized linear mixed model, condi-
tional on the random effects, the regression parameters have a simple interpre-
tation, such as differences in means (linear regression), log-odds ratios (logistic
regression), or log rate ratios (Poisson regression). Often, though, one is also inter-
ested in the effects of the covariates on the population-averaged or marginal mean,
obtained by integrating the conditional mean over the distribution of the random
effects. However, there is typically no closed form expression for the marginal
mean as a function of the covariates. As such, there is no simple expression for the
marginal model. For example, for a binary outcome, we would want to formulate
a table of the odds ratios for a one unit increase in each covariate, given the other
covariate values. The typical generalized linear mixed (logistic regression) model
with normal random effects does not provide a simple expression for the marginal
odds ratios.
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As an alternative to the marginalized random effects models of Heagerty (1999),
but restricted to the setting of clustered binary data, Wang and Louis (2003) pro-
posed a random intercept generalized linear mixed model in which both the condi-
tional model (conditional on the random effect) and the marginal model (integrated
over the distribution of the random intercept) follow a logistic regression model,
with model parameters proportional to each other. The random intercept in the
model of Wang and Louis (2003) follows a “bridge” distribution. The results of
Wang and Louis (2003) hold for a model with only a single random intercept for
all responses within a cluster. The restriction to models with only a random inter-
cept is somewhat unappealing for longitudinal studies, as the degree of association
among a pair of repeated measures from two different time points typically de-
pends on their time separation. To take the declining correlation into account, one
could extend the model to have a random intercept plus a random slope with time,
where the random intercept and slope follow a bridge distribution. Unfortunately,
a linear combination of random variables from the bridge distribution no longer
follows a bridge distribution, so that the desired property that the marginal model
is of logistic form no longer holds.

In this paper we propose a modification of the bridge random intercept model
to handle longitudinal data. In particular, we propose separate, but correlated, ran-
dom intercepts at each occasion. A multivariate density using a copula model for
the random intercepts from different time points assures that the marginal density
of each random effect follows a bridge distribution. The proposed model allows
for a flexible marginal correlation among the repeated binary outcomes, including
a declining association with increasing time separation while retaining the prop-
erty that the marginal probabilities follow a logistic regression model. Further, the
within-subject association has an appealing interpretation in terms of Kendall’s τ

between pairs of random intercepts as well as Kendall’s τ between any pair of re-
peated responses. The proposed model can also be thought of as a modification of
the correlated random normal intercepts generalized linear mixed model for lon-
gitudinal binary proposed by Albert et al. (2002); however, the marginal model
of Albert et al. (2002) is not logistic. The proposed model is more analogous to
probit-normal marginal models for longitudinal binary data [Caffo, An and Rohde
(2007); Caffo and Griswold (2006)].

Except for the linear mixed model, there is typically no closed form expres-
sion for the marginal likelihood (integrated over all possible values of the ran-
dom effects) for any generalized linear mixed model. Thus, numerical integration
techniques must be used to approximate the likelihood, including the likelihood
based on our proposed approach here. These numerical integration techniques in-
clude Laplace approximations, and Gauss-Hermite quadrature, and Monte Carlo
integration algorithms. Poor numerical approximations to the likelihood will lead
to biased estimates for the fixed effects and variance components. Pinheiro and
Bates (1995) showed that their Monte Carlo importance sampling algorithm had
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good properties, and it has been implemented in standard generalized linear mixed
models software, including PROC NLMIXED in SAS or the NLME function in R.

The method-of-moments based generalized estimating equations (GEE) is an
alternative approach that can be used to estimate the marginal regression parame-
ters. Often, however, both the subject-specific conditional (on the random effects)
and the marginal regression parameters are of interest; with GEE, only the lat-
ter are estimated. In addition, because GEE techniques [Liang and Zeger (1986);
Fitzmaurice, Laird and Rotnitzky (1993); Diggle et al. (2002)] for estimation of
marginal regression parameters are not likelihood based, these methods cannot be
used for prediction of the joint probability of the responses over time. For making
inferences about the regression parameters, likelihood ratio tests are not available
for hypotheses testing, and likelihood based model diagnostics cannot be used with
the GEE approach. Although beyond the scope of this paper, with missing data, a
full likelihood method typically gives less bias than GEE methods; the latter re-
quire the restrictive assumption that outcomes are missing completely at random.
Lee and Nelder (2004) document the drawbacks of GEE methods even in cases
when the main interest lies only in the marginal regression parameters.

2. Random effects model with a bridge random effects distribution. Al-
though longitudinal data are clustered, there is in addition an implicit ordering of
the repeated measures on each subject. For ease of presentation, we assume that n

independent subjects are observed at a common set of t = 1, . . . ,m times. Note,
the model and associated methodology can be used when the observation times
t1 < · · · < tmi

are unequally spaced, and when the grid of observation times as
well as number of observations mi vary from subject to subject. The outcome at
time t is binary, that is, we let Yit = 1 if subject i has response 1 (say, success)
at time t , and Yit = 0 otherwise. Each individual has a J × 1 covariate vector
xit , measured at time t, which includes both time-stationary and time-varying
covariates. Our approach can be used with time-varying covariates, but it is as-
sumed that the covariates are nonrandom; in particular, all time-varying covariates
are assumed to be external covariates in the sense described by Kalbfleisch and
Prentice (1980). Random time-varying covariates can potentially lead to bias for
any GLMM as described by Fitzmaurice (1995). We are primarily interested in
making inference about the marginal distribution of Yit , which is Bernoulli with
probability pit = pit (β) = E(Yit |xit ,β) = pr(Yit = 1|xit , β) indexed by unknown
parameter vector β.

Wang and Louis (2003) proposed the following random intercept logistic re-
gression model for the conditional subject-specific probability

pit = pit (bi) = pr(Yit = 1|bi, xit ,β) = exp(bi + φ−1x′
itβ)

1 + exp(bi + φ−1x′
itβ)

,(1)

where, given the subject-specific random effect bi , the Yit ’s from the same subject
are assumed independent Bernoulli random variables, that is, Yit |bi ∼ Bern(pit ).
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When bi follows a “bridge” distribution,

fb(bi |φ) = 1

2π

sin(φπ)

cosh(φbi) + cos(φπ)
(−∞ < bi < ∞),(2)

indexed by unknown parameter φ (0 < φ < 1), the marginal probability of success
[Wang and Louis (2003)] equals

pr[Yit = 1|xit , β] = Eb[pit (bi)] = exp[x′
itβ]

1 + exp[x′
itβ] ,(3)

where Eb denotes the expectation evaluated with respect to the density of the
bi. Thus, the marginal probabilities follow a logistic regression model similar to
the conditional model given in (1), except with parameter β instead of parame-
ter φ−1β . The bridge random variable in (2) has mean 0 and φ is the rescaling
parameter. In particular,

Var(bi) = π2

3

(
1

φ2 − 1
)

so that the larger the value of φ, the smaller the variance. The bridge distribution is
symmetric about 0 and has heavier tails than the Gaussian distribution but lighter
tails than the Logistic distribution. It can also be shown to be a scale mixture of
Gaussian random variables. The rescaling parameter φ ∈ (0,1) can be interpreted
as the attenuation parameter that controls attenuation of the marginal regression
effect due to integration of the random effects [Neuhaus, Kalbfleisch and Hauck
(1991)]. For a random effects logistic model, the only disadvantage to the choice
of the bridge over the normal density for the random effects is that the bridge is not
the default for any packaged computer programs. The bridge density has a closed
form that is easily programmed, although it still requires numerical integration to
obtain the MLE. Thus, the computation necessary to obtain the MLE is on a par
with other random effects distributions (e.g., the normal), but the interpretability of
the marginal model parameters makes the bridge distribution an attractive choice.
For a more in-depth description of properties of the bridge distribution, see Wang
and Louis (2003, 2004).

Here, we propose a model with distinct, but correlated, random bridge intercepts
at each time point, that is, bi in (1) is replaced by a separate random intercept at
time t, say, bit , where each bit follows a bridge distribution and the bit ’s from
the same subject have a flexible association structure. Specifically, we now let
bi = (bi1, . . . , bim) denote the vector of random intercepts at the m time points for
subject i. Given the vector of random effects bi , the Yit ’s for subject i are assumed
to be independent Bernoulli random variables, that is, Yit |bi ∼ Bern(pit ), where

pit = exp(bit + φ−1x′
itβ)

1 + exp(bit + φ−1x′
itβ)

,(4)
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and the (m × 1)-dimensional bi has a multivariate density such that the marginal
density of each bit is a bridge distribution as in (2). For simplicity, we assume the
parameter φ of the bridge distribution is the same for all times. Since bit has a
bridge distribution, the marginal success probability will be of the logistic form
in (3). For the purpose of building a flexible association among bi , as well as as-
suring the desired marginal density of each bit , we use a Gaussian copula [Nelsen
(1999)] for bi . Mathematically, a copula is a simple way of formulating an m-
dimensional multivariate distribution, and is specified as a function of the mar-
ginal CDF’s. If F1(w1),F2(w2), . . . ,Fm(wm) are the cumulative distribution func-
tions of the random variables W1,W2, . . . ,Wm, respectively, then there exists a
function C such that the joint CDF is F(w1, . . . ,wm) = C(F1(w1), . . . ,Fm(wm)),

with one-dimensional marginal distributions given by F1(w1), . . . ,Fm(wm). The
concept and application of copulas are illustrated in Nelsen (1999) and Joe
(1997).

To formulate the Gaussian copula for bi , we form a m × 1 vector, Zi =
[Zi1, . . . ,Zim]′, which is multivariate normal with mean vector 0 and covariance
matrix �, where the diagonal elements of � equal 1 so that � is also the corre-
lation matrix. Note, for identifiability, we restrict Var(Zit ) to equal 1; if Var(Zit )

is left as a parameter to estimate, then Var(bit ) would be a function of both φ and
Var(Zit ), but only one of the two would be estimable. We let ρist = Corr(Zis,Zit )

denote the correlation between Zis and Zit ; various choices for the structures of
ρist are discussed below. Using the probability integral transform [Hoel, Port and
Stone (1971)], bit = F−1

b (�(Zit )) has CDF Fb(bit ), where � is the CDF of a
standard normal density,

F−1
b (u) = 1

φ
log

[
sin(φπu)

sin{φπ(1 − u)}
]

is the inverse cumulative distribution function of bit for 0 < uit < 1, and

Fb(bit ) = 1 − 1

πφ

[
π

2
− arctan

{
exp(φbit ) + cos(φπ)

sin(φπ)

}]
(5)

denotes the cumulative distribution function of the bridge distribution. Thus, bit =
F−1

b (�(Zit )) has the marginal bridge distribution of interest, and the bit ’s within
a subject are correlated due to the correlation among the Zit ’s.

To fully specify the distribution of Zi = [Zi1, . . . ,Zim]′, we must specify the
correlation matrix �. A popular longitudinal correlation structure is the autore-
gressive(1) AR(1) structure,

ρist = Corr(Zis,Zit ) = ρ|t−s|,(6)

where −1 < ρ < 1. In principle, any suitable longitudinal correlation structure
for the Zit ’s could be assumed, such as Toeplitz, ante-dependence, or anisotropic
exponential. Alternatively, as discussed by Hougaard (2000), Kendall’s τ is often
recommended as a measure of association between a pair of continuous random
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variables since it is invariant to monotone transformations of the random variables.
For a pair of normal random variables, Hougaard (2000) shows that Kendall’s τ

equals

τist = 2 arcsin(ρist )

π
,(7)

where arcsin(·) is the inverse sin function and −1 ≤ τist ≤ 1. Because the bridge
random variables bis and bit are monotone transformations of Zis and Zit , and
Kendall’s τ is invariant to monotone transformations, then (7) is also Kendall’s τ

between the bridge random variables bis and bit . This is important because (7) is
easy to calculate and it shows that the copula model can capture the full range of
possible association between bis and bit . One possibility we suggest is specifying
the association model in terms of τist , such as AR(1),

τist = τ |t−s|,(8)

and then transforming back to ρist = sin(πτist /2) to get the multivariate normal
correlation matrix �. The relationship between the Kendall’s τ for bis and bit and
the Kendall’s τ for Yis and Yit can only be computed numerically.

To explore the extent of the associations that the bridge random effects can in-
duce, we considered a plot of the relationship between Kendall’s τ for (bis, bit )

and Kendall’s τ for (Yis, Yit ), calculated via Monte Carlo simulation (see Fig-
ure 1). For this illustration, we considered two time points with bridge model

pr(Yit = 1|bi, xit ,β) = exp[bi + (3 − 2t)φ−1]
1 + exp[bi + (3 − 2t)φ−1]

for t = 1,2, and let φ = 0.1,0.3,0.5,0.7,0.9. From Figure 1 we see that the curves
follow closely along the 45 degree line, meaning that Kendall’s τ for (bis, bit ) is a

FIG. 1. Plot of Kendall’s τ for (Yis , Yit ) (denoted τY ) versus Kendall’s τ for (bis , bit ) (denoted
τB ).
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close approximation to Kendall’s τ for (Yis, Yit ). Further, in terms of Kendall’s τ ,
the range of association is −1 to 1, and there are no constraints on the association.
We have found that this is not true for the usual correlation coefficient, that is,
Corr(bis, bit ) can be much different than Corr(Yis, Yit ).

Here, we briefly discuss identifiability issues, which are similar to identifiability
issues for a linear mixed model. With both φ and ρist in the model, identifiability
issues can arise, depending on the number of pairs of time points, and the model
for the association over time. When there are only m = 2 times, the model is not
identified if both ρist and φ are left unspecified, that is, with only two times points,
the association between bis and bit is completely determined by either the variance
of the random effects (a function of φ,) or the correlation between random effects
(a function of ρist ), but not both. As is the case for a linear mixed model, for three
or more repeated measures, the identifiability of the model will depend on the
specified correlation structure. For example, for three time points, there are three
pairs of times, so that we could have φ in the model, as well as a model for ρist that
has two parameters. The above identifiability issues do not arise when one models
ρist and/or φ as a function of cluster-level (time-stationary) covariates, although
identifiability issues could arise, as in any regression model, if one models ρist

and/or φ as a function of too many cluster-level covariates.
The maximum likelihood estimates for the marginal likelihood, integrated over

the random effects, say,

L(β,φ,ρ) =
n∏

i=1

∫
bi

[
m∏

t=1

p
yit

it (1 − pit )
(1−yit )

]
f (bi |φ,ρ)dbi

can be obtained using a simulation maximization method such as the Monte Carlo
importance sampling algorithm described by Pinheiro and Bates (1995), and im-
plemented in PROC NLMIXED in SAS (V9.2) or the NLME function in R; the
estimated covariance matrix is obtained using the Pinheiro and Bates (1995) nu-
merical approximation to the inverse of the negative second derivative (informa-
tion) matrix. A SAS macro for fitting the model is available upon request from the
first author. If there are missing outcome data that are missing at random [Rubin
(1976); Laird (1988)], each individual contributes mi ≤ m conditionally indepen-
dent (given the random effects) Bernoulli random variables with success proba-
bilities given by (4) to the overall likelihood, and the marginal likelihood is again
formed by integrating over the random effects. Appealing to large sample theory
for generalized linear mixed models [Fahrmeir and Tutz (2001)], if the likelihood
is correctly specified, the maximum likelihood estimates are consistent, asymptot-
ically normal, and the large sample variance of the maximum likelihood estimates
can be consistently estimated by the inverse of the negative second derivative (in-
formation) matrix.

In order for the Monte Carlo importance sampling algorithm of Pinheiro and
Bates (1995) to provide a computationally stable and efficient way of approxi-
mating the marginal likelihood, one must carefully choose the importance sam-
pling distribution from which to sample. We have found that the Pinheiro and
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Bates (1995) suggestion of a multivariate normal approximation for [∏m
t=1 p

yit

it (1−
pit )

(1−yit )]f (bi |φ,ρ) produces stable results. Further, once the likelihood is ap-
proximated, we suggest using the Newton–Raphson algorithm to obtain the max-
imum likelihood estimate, which requires good starting values for the parameter
estimates. We have found that using the ordinary logistic regression estimates of
β as the starting values leads to computational stability. In the present study (dis-
cussed in the next section), with seven time points, the algorithm is stable and
converged quite fast (within 2 minutes). In general, an increase in the dimension
of the integration has both positive and negative trade-offs. First, with an increase
in the number of time points (or dimension of the integration), there is more in-
formation from which to estimate the association parameters φ and τ (or ρ), so
that the chances of a flat or multimodal likelihood is far less than it might be with
fewer time points. However, with an increase in the dimension of the random ef-
fects, the computation required to maximize the likelihood increases. Similar to the
approach recommended by Albert et al. (2002), we suggest performing at most 50
iterations of the Newton–Raphson algorithm, with 50 Monte Carlo samples drawn
for iterations 1–19, 100 Monte Carlo samples drawn for iterations 20–39, and 1000
iterations for iterations 40–50.

3. Example: Longitudinal study of cardiac function in children born to
women infected with HIV-1. In this section we illustrate the application of the
proposed methodology to the analysis of the data from children born to women
infected with HIV-1 described in the Introduction. In the P2C2 study, a birth cohort
of 401 infants born to women infected with HIV-1 were to have cardiovascular
function measured approximately every year from birth to age 6, giving up to 7
measurements on each child. Of these 401 infants, 74 (18.8%) were HIV positive,
and 319 (81.2%) were HIV negative. The main scientific interest is in determining
if HIV-1 infected children are more likely to have abnormal “pumping ability of
the heart” at time t (1 = yes, 0 = no). The main covariate of interest is the effect of
HIV infection in the child; other covariates that could be potential confounders are
mother’s smoking status during pregnancy (1 = yes, 0 = no), gestational age (in
weeks) and birth-weight standardized for age (1 = abnormal, 0 = normal). A child
of a mother who smokes is expected to have worse heart function. Children with
younger gestational age and lower birth-weight (standardized for gestational age)
may also be at risk for cardiac problems.

Thus, to examine the effect of HIV infection in the infants, we considered the
following marginal logistic regression model,

log
[

pit

1 − pit

]
= bit + β0 + β1t + β2 HIVi +β12t ∗ HIVi

(9)
+ β3 smokei +β4 agei +β5 wti

for t = 0,1, . . . ,6, where HIVi equals 1 if the ith child is born with HIV-1 and
equals 0 if otherwise; smokei equals 1 if the mother smoked during pregnancy,
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and 0 otherwise; agei is the gestational age (in weeks); and wti equals 1 if the
child’s birth-weight for gestational age was abnormal, and 0 otherwise.

Here, we compare our proposed estimation technique with four alternative ap-
proaches:

(1) the bridge random effects model of Wang and Louis (2003) with a single
bridge random effect;

(2) Heagerty’s (1999) marginalized random effects model with a linear term
for time in the random effects variance, as implemented using the R-macro:

http://faculty.washington.edu/heagerty/Software/LDA/;

(3) the maximum likelihood estimates assuming a parametric Bahadur repre-
sentation of the multinomial distribution [Bahadur (1961)] with an AR(1) correla-
tion structure between Yis and Yit , that is,

Corr(Yis, Yit ) = 	|t−s|;(10)

(4) generalized estimating equations (GEE) with an AR(1) correlation struc-
ture for Corr(Yis, Yit ). For the proposed approach, we use two association models
for the bridge random intercepts, one is AR(1) on the Corr(bis, bit ), and the other
is AR(1) on the Kendall’s τ between bis and bit . All approaches assume the same
marginal model, but different association structures. With the exception of the ran-
dom effects model with a single bridge random effect, the association between
pairs of outcomes decreases as the time separation increases.

Because the Bahadur representation is used, we briefly describe it here. In the
Bahadur distribution, the marginal model is pit in (3). Next, we define the stan-
dardized variable Sit to be

Sit = Yit − pit

{pit (1 − pit )}1/2 .

The pairwise correlation between Yis and Yit is 	st = E(SisSit ), and the
M th-order correlation between the first M responses is defined as 	12...M =
E(Si1Si2 · · ·SiM). The M th-order correlation between any M of the m re-
peated binary responses is defined similarly. Then the Bahadur representation of
the 2m − 1 multinomial probabilities corresponding to the joint distribution of
(Yi1, Yi2, . . . , Yim) is

pr{(Yi1 = y1), (Yi2 = y2), . . . , (Yim = ym)|Xi,β,	}

=
{

m∏
t=1

p
yit

it (1 − pit )
1−yit

}
(11)

×
{

1 + ∑
st

	st sissit + ∑
stu

	stusissit siu + · · · + 	1...msi1 · · · sim
}
.

http://faculty.washington.edu/heagerty/Software/LDA/
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In obtaining the MLE from the Bahadur representation, we assumed all fifth and
higher correlations are 0 (	stuvw = · · · = 	1...m = 0); we assumed all fourth-order
correlations are the same, regardless of the sets of times (	stuv = 	s′t ′u′v′ for all
stuv �= s′t ′u′v′); and we assumed all third-order correlations are the same, regard-
less of the sets of times (	stu = 	s′t ′u′ for all stu �= s′t ′u′.) The model for the
pairwise correlations 	st is AR(1) as in (10).

The importance sampling algorithm of Pinheiro and Bates (1995) was used
to calculate the MLE for the bridge random effects model, with the same start-
ing seed and the same number of Monte Carlo draws (400) for each model. Per-
forming a sensitivity analysis, we found very little difference in the estimates and
standard errors with 100, 200, 300, or 400 Monte Carlo draws. To obtain the esti-
mates, we wrote a SAS macro using PROC NLMIXED; the macro can be obtained
from the first author. For the model with a single bridge random effect, the SAS
macro takes approximately 30 seconds to calculate the estimates on a Dual Core,
2.7 GHz, 4 GB Ram computer; for either the AR(1) model on the correlation or
Kendall’s τ , the SAS macro takes approximately 2 minutes to calculate the esti-
mates.

Table 2 gives the estimates of β obtained using the different approaches. We see
that the results are generally similar. Although well within sampling random error,
if one chooses a 0.05 level of significance as a cutoff, the parameter of greatest
scientific interest, the interaction between Time and HIV status, is significant using
Heagerty’s approach as well as our proposed approach with an AR(1) model for ρ

or Kendall’s τ , but not using the single bridge random intercept model, GEE, or the
Bahadur representation. With a significant interaction, the odds ratio for children
with HIV versus those without HIV increases over time. For example, using results
from the bridge model with AR(1)-τ , children with HIV have exp(β̂2 + β̂12t) =
exp(−0.076 + 0.323t) times the odds of having an abnormal pumping ability than
children without HIV at time t. Thus, at 6 years of age, children with HIV have
approximately 6 times the odds (or e−0.076+0.323×6 = 6.4) of having an abnormal
pumping ability.

For the main parameter of interest, it appears from Table 2 that Heagerty’s ap-
proach yields a discernibly smaller standard error estimate for the interaction term;
however, we caution that this result cannot be expected in general. Overall, there
is no clear pattern for the magnitudes of standard errors from one approach versus
another. The AR(1) associations from the bridge random effects models can be
interpreted as follows. Random intercepts that are 1 year apart have a correlation
estimated to be 0.84 and Kendall’s τ estimated to be 0.75; both estimates indicate
a high correlation among the repeated binary responses. To compare the fit of the
bridge models, one can examine the Akaike information criterion (AIC) for the
models, where smaller AIC is defined as better. The AIC for the AR(1) model
based on ρ is 5522.6 and for the model based on τ is 5520.6. The AIC for the
Bridge model of Wang and Louis (2003) is 5534.2. This suggests that the AR(1)

model based on τ provides a slightly better fit than the AR(1) model based on ρ;
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TABLE 2
Comparison of parameter estimates under alternative models for the within-subject association

Effect Model Estimate SE Z-statistic p-value

Intercept Bridge 1.827 1.459 1.25 0.211
AR(1)-corr 1.374 1.590 0.86 0.388
AR(1)-τ 1.389 1.514 0.92 0.359
Heagerty 2.073 1.407 1.47 0.141
Bahadur 1.763 1.352 1.30 0.193
GEE 1.959 1.506 1.30 0.193

Time Bridge −0.641 0.080 −8.02 <0.001
AR(1)-corr −0.812 0.102 −7.98 <0.001
AR(1)-τ −0.815 0.094 −8.67 <0.001
Heagerty −0.612 0.063 −9.64 <0.001
Bahadur −0.637 0.088 −7.28 <0.001
GEE −0.642 0.098 −6.57 <0.001

HIV Bridge −0.075 0.266 −0.28 0.777
AR(1)-corr −0.082 0.264 −0.31 0.756
AR(1)-τ −0.076 0.259 −0.29 0.769
Heagerty −0.038 0.249 −0.15 0.879
Bahadur −0.037 0.269 −0.14 0.891
GEE −0.073 0.264 −0.28 0.782

TIME × HIV Bridge 0.234 0.135 1.73 0.084
AR(1)-corr 0.336 0.170 1.97 0.049
AR(1)-τ 0.323 0.160 2.02 0.044
Heagerty 0.226 0.101 2.23 0.025
Bahadur 0.213 0.140 1.53 0.128
GEE 0.251 0.156 1.61 0.108

MOM SMOKE Bridge −0.182 0.176 −1.03 0.303
AR(1)-corr −0.170 0.185 −0.92 0.359
AR(1)-τ −0.179 0.177 −1.01 0.314
Heagerty −0.197 0.187 −1.05 0.292
Bahadur −0.206 0.172 −1.20 0.231
GEE −0.200 0.173 −1.15 0.248

GEST AGE Bridge −0.045 0.037 −1.22 0.225
AR(1)-corr −0.038 0.040 −0.93 0.352
AR(1)-τ −0.037 0.038 −0.95 0.341
Heagerty −0.052 0.036 −1.45 0.149
Bahadur −0.043 0.034 −1.26 0.207
GEE −0.048 0.038 −1.26 0.207

Low birth Wt Bridge 0.086 0.190 0.45 0.652
AR(1)-corr 0.122 0.198 0.62 0.536
AR(1)-τ 0.136 0.191 0.71 0.477
Heagerty 0.078 0.191 0.41 0.683
Bahadur 0.096 0.173 0.55 0.581
GEE 0.083 0.193 0.43 0.667
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TABLE 2
(Continued)

Parameter Model Estimate 95% confidence interval

φ Bridge 0.847 [0.788, 0.906]
AR(1)-corr 0.686 [0.556, 0.815]
AR(1)-τ 0.731 [0.634, 0.827]

ρ AR(1)-corr 0.841 [0.725, 0.957]
τ AR(1)-τ 0.749 [0.651, 0.847]

	 Bahadur AR(1) 0.206 [0.107, 0.304]

both provide better fits than the bridge random effects model with a single random
effect. For all practical purposes, the fits of the two models are almost indistin-
guishable. Thus, either model is appropriate for these data and the choice between
them can be made in terms of ease of interpretation of the AR(1) association pa-
rameter.

4. Simulation study. We conducted a simulation study to explore the finite
sample properties of the proposed bridge generalized linear mixed models. Specif-
ically, we compared the ML estimator for the bridge random effects model, the
ML estimator assuming a Bahadur distribution, and a GEE estimator of β . To en-
sure feasibility of the simulation study, we restricted the number of occasions to
m = 3 and considered a simple two-group (50 : 50 mixture) study design configu-
ration (e.g., active treatment versus placebo), with 50 subjects in each group. We
simulated from two “true” models: (1) a generalized linear mixed model with a
bridge distribution, and (2) the Bahadur representation.

Let xi = 0,1 indicate group membership, and Yit again denote the binary out-
come at time t, t = 1,2,3. When simulating from the bridge or Bahadur models,
we let the true marginal logistic model be

logit(pr[Yit = 1|xit ]) = β0 + βxxi + βτ t,

with β0 = −1.0, βτ = −0.5, and βx = 1.0. For the bridge random effects model,
we specified an AR(1) model for the correlation structure for the Zit ’s in (6), that
is,

ρist = Corr(Zis,Zit ) = ρ|t−s|

for three possible true values of ρ = 0.1,0.3,0.6, and we also let Var(Zis) = 1.
For the Bahadur representation given in (11), we specified an AR(1) model for the
correlation structure for the Yit ’s,

	ist = Corr(Yis, Yit ) = 	|t−s|
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for three possible true values of 	 = 0.1,0.25,0.4; we set 	123 = 0. The con-
straints for the Bahadur representation did not allow 	 > 0.4. For each simulation
configuration, 1000 simulation replications were performed. Our simulations were
performed using PROC NLMIXED in SAS, with 200 Monte Carlo draws.

For each simulation replication we estimated the β’s by fitting the bridge ran-
dom effects model with an AR(1) structure on the underlying Zis’s, a Bahadur
model with an AR(1) structure on the Yis’s, and GEE with an AR(1) structure on
the Yis’s. Note that the GEE will be asymptotically unbiased when data are sim-
ulated from either a bridge random effects model or a Bahadur distribution. The
MLE from the bridge random effects model will be asymptotically unbiased when
data are simulated from a bridge random effects model, but could be biased when
data are simulated from the Bahadur. Similarly, the MLE when assuming a Ba-
hadur distribution will be asymptotically unbiased when data are simulated from
the Bahadur representation, but could be biased when data are simulated from a
bridge random effects model. The purpose of the simulation was to explore the ro-
bustness of the MLE from the bridge random effects model under mis-specification
of the likelihood. We explored the properties of the three estimators with respect
to bias, mean square error (MSE), and coverage probability.

The results of the simulations reported in Table 3 indicate that all of the methods
are approximately unbiased and have correct coverage probabilities, even when
the likelihood is misspecified. In general, the MLE from the correctly specified
likelihood tends to have the smallest MSE, although the ratio of MSE’s for pairs
of approaches is at least 90% for most configurations. For example, the largest
difference in ratios of MSE’s when simulating from the bridge random effects
model is for ρ = 0.6 and βx = 1; in this case, the ratio of the bridge MSE to the
Bahadur MSE is 90.4%, which suggests the Bahadur MLE is 90% efficient in this
case.

The results of this simulation study suggest that the MLE from the bridge ran-
dom effects model is approximately unbiased, and has correct coverage probabil-
ities, even when the likelihood is misspecified. We caution, however, that when
there are missing data and a misspecified likelihood, the MLE from the bridge ran-
dom effects model (and the GEE estimator and MLE from the Bahadur model)
could yield biased estimates.

5. Discussion. In this paper we have proposed a correlated random intercepts
model for longitudinal binary data that leads to a marginal logistic regression
model. Although the main focus of this paper is on a marginal logistic model for
the probability of response at each time point, the model also has the appealing
property that the probability of response at each time point, conditional on the ran-
dom effect, is also of logistic form. Specifically, the logistic regression parameters
for the marginal and conditional models are proportional to each other, with the
proportionality factor determined by an “attenuation parameter.” Thus, the pro-
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TABLE 3
Results of simulation study. The true marginal logistic model has parameters (βτ ,βx) = (−0.5,1.0)

True
distribution APPROACH βτ = −0.5 βx = 1.0 βτ = −0.5 βx = 1.0 βτ = −0.5 βx = 1.0

Bridge ρ = 0.10 ρ = 0.30 ρ = 0.60
Simulation Bridge ML −0.505 1.001 −0.509 1.009 −0.507 1.012
average Bahadur ML −0.508 1.019 −0.502 1.016 −0.514 1.020

GEE −0.517 1.024 −0.509 1.033 −0.506 1.001

Simulation Bridge ML 0.0291 0.0790 0.0297 0.0771 0.0282 0.0829
MSE Bahadur ML 0.0296 0.0793 0.0301 0.0782 0.0294 0.0917

GEE 0.0299 0.0823 0.0305 0.0842 0.0284 0.0851
Coverage Bridge ML 94.0 95.5 95.1 94.9 93.2 94.7
probabilitya Bahadur ML 94.8 95.1 93.9 96.0 95.7 93.8

GEE 94.3 93.6 93.9 95.1 94.6 95.1
Bahadur 	 = 0.10 	 = 0.30 	 = 0.60

Simulation Bridge ML −0.510 1.027 −0.508 1.001 −0.518 0.966
average Bahadur ML −0.509 0.997 −0.514 1.031 −0.507 1.021

GEE −0.513 1.024 −0.506 1.015 −0.505 1.025

Simulation Bridge ML 0.0299 0.0867 0.0278 0.1053 0.0241 0.1115
MSE Bahadur ML 0.0290 0.0809 0.0265 0.1036 0.0233 0.1113

GEE 0.0288 0.0888 0.0272 0.1057 0.0256 0.1366

Coverage Bridge ML 93.4 95.2 93.0 94.7 93.2 94.7
probabilitya Bahadur ML 94.4 95.7 95.2 95.1 92.8 94.8

GEE 95.5 95.4 95.9 95.0 93.8 93.6

aCoverage probability for a 95% confidence interval.
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posed approach can also be used if there is interest in the conditional model. As
discussed in the Introduction, a variety of generalized linear mixed models have
previously been proposed that yield logistic marginal models; however, none of
them have the property that both the marginal and conditional models are of lo-
gistic form. We note that the proposed approach can be generalized to other link
functions with an appropriate bridge distribution, such as the complimentary log–
log link for longitudinal binary data with a positive stable random effect. Fur-
thermore, the proposed model can easily be fit using existing software, for exam-
ple, PROC NLMIXED in SAS. For example, using the Gaussian copula, we can
express the marginal likelihood L(β,φ,ρ) in terms of standard nonlinear mixed-
effects models with random effects bit . Then the model can be fit using SAS PROC
NLMIXED, the R function NLME, or any nonlinear mixed-effects software pro-
gram that is flexible enough to allow transformations of the normal random ef-
fects.

Finally, the proposed method can be extended in a number of ways. First, con-
sider a joint longitudinal model for a binary and continuous outcome measured
over time. For a joint analysis of both outcomes, the longitudinal binary data can
be modeled as in Section 3 and the continuous outcome can be modeled using
a standard linear mixed effects model. Correlation between the longitudinal bi-
nary and continuous outcomes can be induced by specifying correlations between
the random effects in the linear mixed effects model for the continuous outcomes
and the bridge random effects in the model for the longitudinal binary outcomes.
The second potential extension applies to the problem of “informative” dropout,
with the probability of dropout related to possibly unobserved outcomes. One ap-
proach for handling informative dropout is to model the (continuous) dropout time
process with a parametric frailty model [Hougaard (2000)], in which the frailty is
correlated with the bridge random effects in the model for the longitudinal binary
outcomes.
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