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In this study we illustrate a statistical approach to questioned document
examination. Specifically, we consider the construction of three classifiers
that predict the writer of a sample document based on categorical data. To
evaluate these classifiers, we use a data set with a large number of writers
and a small number of writing samples per writer. Since the resulting clas-
sifiers were found to have near perfect accuracy using leave-one-out cross-
validation, we propose a novel Bayesian-based cross-validation method for
evaluating the classifiers.

1. Introduction. A common goal of forensic handwriting examination is the
determination, by a forensic document examiner, of which individual is the actual
writer of a given document. Recently, there has been a growing interest in the
development of forensic handwriting biometric systems that can assist with this
determination process. Forensic handwriting biometric systems tend to focus on
two main tasks. The first task, known as writer verification, is the determination
of whether or not two documents were written by a single writer. The second task,
commonly referred to as handwriting biometric identification, is the selection from
a set of known writers of a short list of potential writers for a given document.
(Another example of a biometric identification problem in forensics is searching
fingerprint databases to find a match for a latent fingerprint.)

In this paper we focus on closed-set biometric identification, which assumes
that the writer of a document of unknown writership is one of W known writ-
ers with handwriting styles that have been modeled by the biometric system. It
is important to note that the fundamental forensic writer identification problem,
which is to verify that a document of questioned writership came from a “suspect”
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to the exclusion of all other possible writers, is not addressed in this paper. The
“exclusion of all other possible writers” requires an assumption that the suspect
writer has a unique handwriting profile and, further, that the handwriting quan-
tification contains enough information to uniquely associate the writing sample of
unknown writership with the suspect’s writing profile. These issues are addressed
in handwriting individuality studies. [See Srihari et al. (2002) and related discus-
sion papers in the Journal of Forensic Sciences.] Ongoing research by Saunders et
al. (2008) explores some of the issues associated with studying handwriting indi-
viduality using computational biometric systems.

At a basic level, closed-set biometric identification is similar to a traditional
multi-group statistical discriminate analysis problem. In this paper, we implement
three different discriminant functions (or classification procedures) for categorical
data resulting from the quantification of a handwritten document. We determine
the accuracy of these three classification procedures with respect to a database of
100 writers provided by the FBI. Each of the three classification procedures is
shown to identify with close to 100% accuracy the writer of a short handwritten
note.

The quantification technology used in this study is a derivative of the handwrit-
ing biometric identification system developed and implemented by the Gannon
Technologies Group and the George Mason University Document Forensics Lab-
oratory. Components of the system are described as needed. For a document of
unknown writership, the system returns a short list of potential writers from a set
of known writers. This functionality is the common goal of most forensic bio-
metric systems [Dessimoz and Champod (2008)]. A forensic document examiner
can pursue a final determination of whether someone on the short list is the actual
writer of the document of unknown writership. Throughout this paper we restrict
the short list to contain one potential writer.

In Section 2 we provide a brief overview of statistical methods for handwriting
identification. In Section 3 we describe the nature of the categorical data that arises
from the processing of a handwriting sample. In Section 4 we describe three pro-
posed classifiers and their construction. In Section 5 we summarize a traditional
leave-one-out cross-validation (LOOCV) used to evaluate the classifiers on their
ability to correctly predict writership of an unknown document. All three classi-
fiers have near perfect classification rates using a LOOCV scheme. In Section 6
we implement a LOOCV with a predictive distribution to generate new pseudo-
random writing samples based on the left-out document for which writership is
to be predicted. The pseudo-simulation allows us to compare our classifiers and
estimate the accuracy of the classifiers as a function of the size of the document
of unknown writership. In Section 7 we summarize our results from the two cross-
validation studies and discuss ongoing and future research.

2. Review of handwriting identification. As illustrated by the case of the
Howland Will in 1868, the statistical interpretation of handwriting evidence has
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a long history in the American legal system. [See Meier and Zabell (1980) for
an overview.] However, Dessimoz and Champod (2008) report that handwriting
analysis as practiced by forensic experts is considered to be subjective, opening
the field to criticism. They state that the study of computationally-based methods
“is important both to provide tools to assist the evaluation of forensic evidence
but also to bring investigative possibilities based on handwriting” [Dessimoz and
Champod (2008)]. The recent National Research Council report on the needs of
the forensic sciences has pointed out that computer-based studies of handwriting
“suggest that there may be a scientific basis for handwriting comparison, at least
in the absence of intentional obfuscation or forgery” [National Research Council
Committee on Identifying the Needs of the Forensic Sciences Community (2009)].

The discussion of forensic handwriting identification, including computa-
tionally-based methods, has been vigorous. The paper of Srihari et al. (2002) and
related discussion papers give the interested reader insight into this discussion.
Of the problems in computationally-based handwriting analysis, closed-set iden-
tification procedures have been the most commonly studied. Bensefia, Paquet and
Heutte (2005) and Bulacu (2007) both provide comprehensive up-to-date literature
reviews on this research area.

According to Bensefia, Paquet and Heutte (2005), handwriting identification is
usually approached from the paradigm of statistical pattern recognition or discrim-
inant analysis. The most common approach to writer identification is the building
of a nearest-neighbor classifier based on an appropriate metric for the features con-
sidered. [See, for example, Srihari et al. (2002), Bulacu and Schomaker (2005),
Bulacu and Schomaker (2006), Schomaker, Franke and Bulacu (2007) and Said,
Baker and Tan (1998).] Using a nearest-neighbor classifier, a document of un-
known writership is classified as having been written by the writer with the most
similar writing sample in the database.

When studying larger data sets of writers, computational restrictions may re-
quire application of two different classifiers together. This approach involves build-
ing a fast, but not necessarily accurate, identification procedure to generate a
smaller subset of possible writers for a document of unknown writership and then
applying a more computationally-intense method with a higher accuracy to reduce
the subset to a single writer (or short list). For example, Srihari et al. (2002) use
two nearest-neighbor classifiers, each corresponding to a different quantification
procedure, applied to the same documents. Their method uses the first quantifica-
tion to pick the 100 most similar writers in a database of 975 writers and then uses
the second quantification to select the best writer from the 100.

Zhu, Tan and Wang (2000) use weighted Euclidean distance classifiers applied
to bitmaps of character images for writer identification. Said, Baker and Tan (1998)
use a k-nearest-neighbor classifier and compare it to a weighted Euclidean distance
classifier; the weighted Euclidean distance classifier out-performed the k-nearest-
neighbor classifier.
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Bensefia, Paquet and Heutte (2005) and Bulacu and Schomaker (2005) seg-
ment writing samples into graphemes. Then they apply clustering algorithms to the
graphemes to define either a feature space or the bins of a probability distribution.
When a new document is investigated, each grapheme is associated with an identi-
fied cluster. This reduces the new document to a frequency distribution describing
the number of times that clusters are observed in the new document. Bensefia,
Paquet and Heutte (2005) use an information retrieval framework to measure the
proximity of a test document to those in the training set by computing the normal-
ized inner product of the feature vectors. Bulacu and Schomaker (2005) calculate
the chi-squared distance between the probability distributions of a test document
and each training document.

In a recent paper Bulacu and Schomaker (2006) fuse the grapheme-based fea-
tures with textural features, of which the directions of contours and run-lengths of
white pixels form probability distributions for use in calculating chi-squared dis-
tances. While the grapheme-based features perform better than the textural features
alone, fusing distances measured across different features yields the best results.

Bensefia, Paquet and Heutte (2005) provide a summary of the performance of
the various identification methods applied to different databases of handwriting
samples. The Schomaker and Bulacu (2004) method out-performs the other meth-
ods; the correct writer of an unknown document out of 150 possible writers is
returned, on a short list of one, 95% of the time. This method has been improved
upon in the more recent research by Bulacu and Schomaker (2007a, 2007b) and
applied to much larger data sets than the initial 150 writer study.

3. Quantification, samples and processing.

3.1. Isomorphic graph types and isocodes. The recent research of Gantz,
Miller and Walch (2005) reports that representing each character as a “graphical
isomorphism” provides significant potential to identify the writer of an unknown
document. The graphs are mathematical objects consisting of edges (links) and
vertices (nodes).

The first step in the quantification of handwritten text is to convert paper docu-
ments into electronic images. Once images are captured electronically, individual
characters are segmented either through manual markup or automated letter recog-
nition. (Throughout this paper, letter refers to the type of character and character
to an individual instantiation of a letter. For example, “moon” is a word made up
of three letters and four characters.) A segmented character is then converted to
a one pixel wide skeleton. Each skeleton is then represented by a planar graph
schematic, and every schematic is identified as belonging to a unique isomorphic
class of graphs. We refer to the isomorphic class as the isocode. (See Figure 1.)
Any two isomorphic graphs can be smoothly transformed into one another. A par-
ticular graph, appropriately flexed and shaped, can fit many different letters of the
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FIG. 1. Several isocodes used to represent the lowercase “l.” Comments on figure: number 1 occurs
because the writer did not make a loop with white space. Number 2 is the copybook form for a
lowercase “L.” Number 3 occurs because the writer filled in the loop enough at the bottom for the
skeletonizer to create a line segment at the bottom of the loop and the writer had pen drag to leave a
“hair” near the top of the loop. Number 4 occurs for the same reason as 3 but without the hair at the
top. Number 5 occurs because of pen skip which breaks the loop on the right side. The skeleton can
be “unwound” into the H shape. Number 6 occurs because the pen drag to the dot on the I leaves a
hair on the loop.

alphabet. Figure 2 illustrates how a single isomorphic graph can represent multiple
letters by appropriate transformation.

Recognition of a character as a particular letter and identification of its graph as
a particular isocode create an instance of a letter/isocode pair. Each document can
be represented as a matrix of counts of the number of times each isocode is used to
represent each letter (Figure 3). The quantity of writings available from the writer
will determine the number of occurrences of any letter/isocode pair.

The primary writer identification system described in Gantz, Miller and Walch
(2005) uses an extensive set of measurements dependent on the isomorphism se-
lected; however, these measurements are not used in this paper. They also report
that, when the writing samples from writers are sufficiently rich, the patterns of
letter/isocode associations alone can be a powerful identifier of writership. In our
paper it is shown that the frequencies of letter/isocode pairs provide a straightfor-
ward summary of the data which captures sufficient information about an individ-
ual writer to allow for accurate handwriting identification. Once the letter/isocode
pairing is done, this information can be used to identify the most likely writer of a
document (of unknown writership) from a pool of known writers.
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FIG. 2. Isomorphic graph class examples.

3.2. Handwriting samples. The FBI conducted a project whereby writing
samples were collected from volunteers at the FBI, training classes and various
forensic conferences over a two-year period. Handwriting samples were collected
from about 500 different writers. Each writer was asked to provide 10 samples
(5 in print and 5 in cursive) of a modified “London Letter” paragraph. (See Fig-
ures 4 and 5.)

The modified “London Letter” paragraph used in this study includes 14 in-
stances of numbers, 42 of uppercase letters and 477 of lowercase letters for a total
of 533 characters. (Punctuation and special characters are ignored.) The break-
down of the frequencies of each letter/number in the modified “London Letter”
paragraph is given in Table 1. Note that the modified “London Letter” is a gener-
alization of the standard London Letter used in collecting writing exemplars from
suspect writers.

FIG. 3. Quantification example.
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Our London business is good, but Vienna and Berlin are quiet. Mr. D. Lloyd has gone to
Switzerland and I hope for good news. He will be there for a week at 1496 Zermott St.
and then goes to Turin and Rome and will join Col. Parry and arrive at Athens, Greece,
Nov. 27th or Dec. 2nd. Letters there should be addressed 3580 King James Blvd. We
expect Charles E. Fuller Tuesday. Dr. L. McQuaid and Robert Unger, Esq., left on the
“Y.X. Express” tonight. My daughter chastised me because I didn’t choose a reception
hall within walking distance from the church. I quelled my daughter’s concerns and
explained to her that it was just a five minute cab ride & it would only cost $6.84 for
this zone.

FIG. 4. The modified “London Letter.”

3.3. Processing of the FBI samples. The segmentation of each paragraph into
characters was performed manually by the Gannon Technologies Group, as was
the association of a letter with each character. Because the text of the paragraph is
known, the association of letters to characters should be 100% accurate. Since
some writers misspelled words and some individuals committed errors in seg-
mentation, the association of letters to characters was not 100% accurate. A post-
analysis of the association indicated that the error rate in character association is
less than 1%.

Not all of the collected samples were processed and available for use in this
study. As a part of another study that analyzed micro features, the cursive writing

FIG. 5. A handwriting sample.



388 C. P. SAUNDERS ET AL.

TABLE 1
Frequency of occurrence of letters/numbers in the modified “London Letter”

Letter Frequency Letter Frequency

A 1 a 35
B 2 b 7
C 2 c 15
D 3 d 31
E 3 e 65
F 1 f 6
G 1 g 10
H 1 h 23
I 3 i 28
J 1 j 2
K 1 k 2
L 4 l 22
M 3 m 7
N 1 n 37
O 1 o 35
P 1 p 5
Q 1 q 3
R 2 r 34
S 2 s 29
T 2 t 40
U 1 u 17
V 1 v 4
W 1 w 9
X 1 x 3
Y 1 y 6
Z 1 z 2
1 1 2 2
3 1 4 2
5 1 6 2
7 1 8 2
9 1 0 1

samples from the first 100 writers were divided into two separate data sets. One of
these sets (hereafter referred to as the “FBI 100” data set), consisting of the first
three cursive paragraphs for these 100 writers, was available for use in this study,
resulting in a total of 293 documents. The missing paragraphs are due to some
writers’ failure to submit all five of the requested cursive paragraphs.

Not all characters from each writing sample were available for use in this study.
There are three reasons for this: (a) some writers did not submit complete para-
graphs; (b) issues involving missing data in the micro feature data (not used in
this study) caused some characters to be omitted from the data presented to us;
and (c) the usage of the first three paragraphs in the micro feature based study
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TABLE 2
Number of characters available in each paragraph. ID refers to writer identifier. “A,” “B,” “C”

refer to the three paragraphs

ID A B C ID A B C ID A B C

1 104 125 124 34 171 153 170 67 144 122 139
2 156 117 150 35 185 156 68 140 142 130
3 195 212 209 36 292 315 256 69 41 37 30
4 211 264 237 37 152 131 70 23 16 16
5 163 154 150 38 201 191 208 71 103 146 123
6 122 130 39 206 204 205 72 114 117 117
7 135 138 40 268 259 261 73 98 111 128
8 162 174 166 41 144 156 162 74 113 91 128
9 149 143 195 42 286 229 247 75 160 143 148

10 71 85 79 43 191 191 180 76 131 126 141
11 154 160 171 44 146 152 132 77 149 138 131
12 199 224 217 45 275 269 275 78 98 96 84
13 169 169 170 46 126 117 94 79 204 231 204
14 206 192 230 47 236 184 240 80 108 124 125
15 157 143 139 48 179 165 184 81 61 51 53
16 84 49 86 102 97 82 115 93 102
17 193 187 213 50 231 215 214 83 105 129 131
18 178 153 51 197 238 195 84 182 181 171
19 260 249 251 52 173 166 184 85 57 65 77
20 250 191 260 53 257 267 261 86 149 139 125
21 208 231 242 54 65 84 96 87 87 105 104
22 228 186 181 55 147 165 139 88 147 159 160
23 154 176 168 56 223 211 186 89 172 166 165
24 186 184 179 57 163 167 151 90 213 191 208
25 163 170 190 58 203 229 218 91 170 173 206
26 242 216 185 59 116 137 130 92 178 159 152
27 182 210 187 60 122 99 109 93 187 206 174
28 101 111 98 61 116 106 100 94 109 99 120
29 191 198 200 62 112 133 116 95 76 50 49
30 211 222 212 63 95 86 96 96 148 153 158
31 167 149 176 64 124 123 143 97 102 89 112
32 191 208 193 65 185 200 171 98 149 144 155
33 57 55 66 66 172 181 170 99 150 149 151

100 152 170 177

required the deletion of some infrequently occurring letter/isocode pairs. The re-
sulting reduced number of characters per document ranged from a minimum of 16
to a maximum of 315, with the median number of characters per document being
160. Table 2 summarizes the number of characters per document. This study used
all 68 isocodes in the available data.
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4. Classifiers. To facilitate this discussion, denote the number of times
the mth isocode is used to write the lth letter in the j th document written by
the ith writer as nijml , where i = 1,2, . . . ,W ; j = 1,2, . . . , Ji ; m = 1,2, . . . ,M ;
and l = 1,2, . . . ,L.

Let nij l = (nijml)M×1 denote the vector of counts corresponding to the lth letter
in the j th document written by the ith writer. The table of letter/isocode frequen-
cies for the j th document written by the ith writer is denoted as Dij = [nij l]M×L.
Let C ∈ N

M×L
0 be a matrix of nonnegative integers and let cl = (cml)M×1 ∈ N

M
0 be

the vector corresponding to the lth column. We denote the probability of observing
the matrix of counts, C, in a document written by the ith writer as P(C|w = i),
where w is used to denote writer. In general, a “·” in place of a subscript denotes
the summation over the dotted subscript; for example, nij ·l = ∑M

m=1 nijml .
For a given document of unknown writership, say, the vth document from the

uth unknown writer, denote the corresponding counts of isocodes used to write
each letter in the document as Duv = [nuvl]M×L where nuvl = (nuvml)M×1 is the
vector of counts of isocodes used to write the lth letter.

Let piml denote the probability of observing the mth isocode given the ith writer
is writing the lth letter. We assume that nij l , i = 1,2, . . . ,W , j = 1,2, . . . , Ji ,
and l = 1,2, . . . ,L, are independent multinomial random vectors with parameter
vectors pil = (piml)M×1, pi·l = ∑M

m=1 piml = 1. Then, under an independence as-
sumption between letters, we have that the probability of observing a matrix of
counts, C, written by the ith known writer is

P(C|w = i) =
L∏

l=1

P(cl|w = i, letter = l)

(4.1)

=
L∏

l=1

P(cl|pil),

where P(cl|pil) is a multinomial probability mass function with a parameter vec-
tor pil and the number of trials equal to c·l .

We attempt to minimize the dependence of the classifiers on the underlying con-
text in the database documents by basing the classifiers on the conditional distribu-
tions of isocodes given letters and assuming independence between the letters. By
minimizing the contextual dependence of the classifiers, we anticipate an increase
in the accuracy of our classifiers when applied to documents of unknown writ-
ership with radically different context (when compared to the modified “London
Letter”).

4.1. Plug-In Naive Bayes Classifier. Given an estimate of pil , say, p̂il , we
use the plug-in principle to estimate P(cl |pil) with P(cl |p̂il) yielding the Plug-
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In Naive Bayes Classifier:

r(Duv, P̂) =
{

arg max
i∈{1,2,...,W }

L∏
l=1

P(nuvl|p̂il)

}
,(4.2)

where P̂ = {p̂il : i = 1,2, . . . ,W ; l = 1,2, . . . ,L}. As suggested in McLachlan
(2004), we use a smoothed estimator of pil ,

p̂iml = ni·ml + M−1

ni··l + 1
(4.3)

for i = 1,2, . . . ,W ;m = 1,2, . . . ,M; and l = 1,2, . . . ,L. This estimate corre-
sponds to the expectation of the posterior distribution in the Dirichlet-Multinomial
Bayesian model, where the Dirichlet prior has M shape parameters all equal
to M−1.

The classification procedure is as follows:

1. For each known writer in the database:
(a) Estimate the conditional probability distribution of isocodes using (4.3).
(b) Use these conditional probability distributions to estimate the likelihood, as

in (4.1), that an unknown document was written by a given known writer.
2. “Identify” the unknown document as being written by the known writer with

the highest likelihood, as per (4.2).

Note that for a given writer in the database of writers, the Plug-In Naive Bayes
Classifier combines the individual documents associated with the writer into one
large writing sample.

This classifier is similar to the Naive Bayes Classifiers used in authorship at-
tribution by Airoldi et al. (2006) and Clement and Sharp (2003). In Airoldi et al.
(2006), the classifier is employed as a preliminary approach to a fully Bayesian
classification model. Clement and Sharp (2003) employ a classifier similar to our
Naive Bayes Classifier to study the potential accuracy of different types of features
in authorship attribution. In authorship attribution applications, classes of words
play a synonymous role to that of letters in our work. The “word within class”
plays a role similar to that played by isocodes. Airoldi et al. (2006) noted that
their Naive Bayes Rule tends to possess extreme values of the posterior log-odds
of group membership. In the LOOCV performed in Section 5, a similar behavior
of the Plug-In Naive Bayes Classifier for writer identification is observed.

4.2. Chi-Squared Distance Classifier. In the handwriting biometric literature,
a chi-squared style distance metric for measuring the difference between two vec-
tors of probabilities has proven effective for nearest-neighbor style classifiers.
Bulacu (2007) compared Hamming, Euclid, Minkowski order 3, Bhattacharya and
chi-squared distance measure-based classifiers. The chi-squared distance measure
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was found to outperform the other distance measures. The nature of the handwrit-
ing data studied in Bulacu (2007) is based on data-suggested categories that are
determined by first clustering bitmaps of either characters or parts of characters
called graphemes. A grapheme-based feature is classified into one of k clusters,
thus reducing an entire document into a single vector of cluster proportions. Bu-
lacu then uses a nearest-neighbor classifier to predict the writer of a document of
unknown writership. By working with just proportions and not the counts, this type
of classification scheme effectively ignores the context and size of the document,
which limits the accuracy of the classifier when applied to small documents. The
Bulacu classifiers have been studied extensively and have been demonstrated to be
very effective in a broad range of applications where the size of the documents is
relatively large.

Based on Bulacu’s research, we developed a version of the chi-squared statistic
that is applicable under the assumptions mentioned in the introduction to this sec-
tion. The basic approach is to apply a chi-squared statistic to the vector of counts
by letter and then combine the chi-squared statistics across letters by taking ad-
vantage of the independence assumption. However, before we can combine the
chi-squared statistics across letters, we will need to have a weighting scheme that
takes into account the relative information we have on each letter. A natural way
of doing this is to use the Pearson’s chi-squared test statistic.

To construct a score measuring the similarity between two documents (i.e.,
a similarity score), for each letter we calculate Pearson’s chi-squared statistic be-
tween the two vectors of isocode counts. This results in a degrees of freedom and
chi-squared statistic for each letter used in both handwritten documents. The de-
grees of freedom and the chi-squared statistics are summed across letters. As a
heuristic, the sum of chi-squared statistics is evaluated as a realization of a chi-
squared random variable with degrees of freedom equal to the sum of degrees
of freedom from the individual test statistics. If the distributions are different,
the resulting chi-squared statistic will tend to be larger than when the distribu-
tions are the same. The similarity score is the corresponding “p-value” to the om-
nibus chi-squared statistic and degrees of freedom. This is repeated for each known
writer and the unknown document is associated with the writer that has the largest
p-value.

The classification procedure is as follows:

1. For each of the sample documents of known writership in the database:
(a) Conditional on each letter, calculate Pearson’s chi-squared statistic on a

two-way table of counts with two rows. The two rows represent two doc-
uments: the sample document in the database and the unknown document.
The columns represent the various isocodes used to write a given letter.

(b) Sum these chi-squared statistics across all letters. Additionally, because the
documents may use different numbers of isocodes to represent different let-
ters, sum the degrees of freedom associated with the different chi-squared
statistics.
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(c) Using a chi-square distribution approximation with the summed degrees
of freedom, calculate an approximate p-value associated with the summed
statistic.

2. “Identify” the unknown document as being written by the known writer with
the largest p-value.

The Chi-Squared Distance Classifier is appropriate for nearest-neighbor type
applications where it may not be reasonable to combine documents within a writer
into a pooled writing sample. Pearson’s chi-squared statistics are commonly used
in author attribution to measure the discrepancy between the two sets of frequen-
cies of textual measurements associated with two documents. The common ap-
proach is to exclude a text as having been written by a specific author on the basis
of an appropriate goodness-of-fit test statistic. [For an example of this approach
using Pearson’s chi-squared statistic, see Morton (1965).] However, chi-squared
type statistics have also been used as classifiers for author attribution studies. This
approach is to identify a text with an unknown author as having been written by
the author of the text with the smallest chi-squared statistic. [See Grieve (2007) for
an example.]

4.3. Kullback–Leibler (KL) Distance Classifier. The final classifier is based
on a symmetric version of the KL distance [Devroye, Györfi and Lugosi (1996)].
The KL distance is a natural measure of the association between two discrete dis-
tributions defined on the same sample space. For two vectors of probabilities, q1

and q2 ∈ R
M , define the symmetric KL-distance as

KL(q1,q2) = 2−1
M∑

m=1

[
q2mln

q2m

q1m

+ q1mln
q1m

q2m

]
.

The classification procedure is as follows:

1. For the j th document from the ith writer in the database:
(a) Estimate the conditional probability distribution of the isocodes for the lth

letter using p̂j
il = (p̂

j
iml)M×1, l = 1,2, . . . ,L, where p̂

j
iml is defined analo-

gously to (4.3).
(b) For each letter l, calculate the KL distance comparing the conditional dis-

tribution for sample document j from the ith writer to the conditional dis-
tribution for the uth unknown document: p̂ul = (p̂uml)M×1, l = 1,2, . . . ,L,
where p̂uml is defined analogously to (4.3).

(c) Sum the distances across letters:

�(u, i, j) =
L∑

l=1

KL(p̂j
il, p̂ul).
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2. “Identify” the unknown document as being written by the ith known writer
if �(u, i, j) is the smallest value among {�(u, i, j), i = 1,2, . . . ,W, j =
1,2, . . . , Ji}.

As with the Chi-Squared Distance Classifier, the Kullback–Leibler Distance Clas-
sifier is particularly appropriate for nearest-neighbor type applications where it
may not be reasonable to combine documents within a writer into a pooled writing
sample.

5. Leave-one-out cross-validation. To evaluate these classifiers, a LOOCV
scheme is implemented. For the Plug-In Naive Bayes Classifier, each document in
the database is “left-out” and the classifier r(·, P̂) is constructed with the remain-
ing documents. The left-out document is then treated as a document of unknown
writership and the writership is predicted as r(Duv, P̂). The single document from
writer 16 was not used in cross-validation. However, writer 16 was still a potential
candidate writer for other test documents. The accuracy of the classifier is esti-
mated by the number of times it correctly identifies the writership of the left-out
document. The Plug-In Naive Bayes Classifier correctly identifies all documents.

A similar scheme is used to evaluate the Chi-Squared and Kullback–Leibler
Distance Classifiers. Each document in the data set is “left-out” and treated as a
document of unknown writership. Both of these classifiers incorrectly classified
the same single document, which corresponds to estimated accuracy of 99.66%.

6. Simulation. Based on the results of the LOOCV, our three classifiers are
effectively equal with close to 100% accuracy when applied to the full modified
“London Letter.” To distinguish between the accuracy of the three classifiers, we
can stress the algorithms by giving them less information. One of the properties
that we would like our classifiers to possess is high accuracy for unknown docu-
ments of relatively small size.

The natural way of exploring this would be to draw a subsample from the set of
observed characters in a given left-out writing sample. However, due to the small
size of some of the processed writing samples, the possible document sizes that
a subsampling approach could explore would be limited. Additionally, a subsam-
pling approach would give us approximately the same proportion of letters in the
documents in the database and in the left-out document. It has been noted that hav-
ing the same context in both the unknown document and the database documents
affects the accuracy of the classifiers [Bulacu and Schomaker (2007b)].

In the authorship attribution study of Peng and Hengartner (2002), a modified
LOOCV approach was proposed and implemented to estimate the accuracy of their
classifiers. This approach entails leaving out an entire body of work from a single
author and then classifying each of the blocks of text within that body of work. We
will implement a similar approach to stress the ability of our classifiers to correctly
assign writership of a given writing sample. Due to the small writing sample size
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of some of the handwritten documents, we are unable to look at individual blocks
of writing. In place of looking at the individual blocks of writing, a parametric
approach is used to simulate a random document from the left-out document to be
classified.

To generate a random document, predictive distributions are constructed.
A Poisson distribution is used to determine the overall frequency of occurrence
of each letter observed in the left-out document. A multinomial distribution is
used to determine the isocode to be associated with an occurrence of a letter. All
three of the classifiers rely, in part, on an underlying assumption that for each ob-
served letter, the letter-dependent conditional distribution of isocodes is multino-
mial. A vector of proportions is estimated from the left-out modified “London Let-
ter” analogous to (4.3). Then, for each letter (say, the lth) observed in the left-out
document, xl isocodes are sampled from the lth letter’s predictive distribution. We
do not generate characters in the random document for letters that are unobserved
in the left-out document.

For the simulations presented in this paper, the means of the Poisson random
variables are μ = 1,1.5 and 2. For each left-out document, three random docu-
ments are generated at each mean value for a total of nine random documents.
For a single random document, the mean value of the Poisson random variables
is held constant across all observed letters in the left-out document. The random
generation of the number of times we observe a given letter effectively generates a
document with radically different content than that of the original modified “Lon-
don Letter.” It should be noted that the nature of the random document generation
is forcing the isocode counts across letters to be independent, which is one of the
assumptions made in the construction of the classifiers in Section 4.

Once a random document has been generated, a classifier predicts its writership
based on the other documents not used to generate it. To summarize the results,
a simple linear logistic regression is used to predict the accuracy as a function of
document size. The results are summarized in Table 3 and Figure 6.

Table 3 and Figure 6 suggest that the Plug-In Naive Bayes Classifier has
the highest accuracy of the three classifiers. The Plug-In Naive Bayes Classifier
achieves a 95% accuracy rate for random documents of around 30 characters com-
pared with 70 characters for the Kullback–Leibler Distance Classifier (see Fig-
ure 6). The performance of the Chi-Squared Distance Classifier seems to suffer
when applied to small documents.

The Dirichlet-Multinomial model has the effect of smoothing the likelihood as-
sociated with each document. In the Kullback–Leibler Distance Classifier, only
a single document provides new information to update the Dirichlet priors. This
results in the Kullback–Leibler Distance Classifier having the highest degree of
smoothing [see (4.3) and Section 4.3]. Due to pooling of the documents in the
construction of the Plug-In Naive Bayes Classifier, the effect of the Dirichlet pri-
ors is washed out by the larger effective sample size. The Chi-Squared Distance
Classifier has no smoothing.
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TABLE 3
Summary of classifier accuracy. The first column, titled number of characters, refers to the range in
the number of characters in the pseudo-documents. The number of pseudo-documents column refers
to the number of pseudo-documents of the size stated in the number of characters column. The last
three columns refer to the proportion of pseudo-documents that are correctly identified by the given

classifier: ‘CS’ for the Chi-Squared Distance Classifier, ‘KL’ for the Kullback–Leibler Distance
Classifier, and ‘NB’ for Plug-In Naive Bayes Classifier

Number of
characters

Number of
pseudo-documents

Accuracy

CS KL NB

(0, 20] 638 0.263 0.150 0.840
(20, 30] 829 0.328 0.217 0.917
(30, 40] 637 0.369 0.389 0.980
(40, 50] 347 0.441 0.637 0.983
(50, 83] 177 0.542 0.819 1.000

FIG. 6. The estimated accuracy of the classifiers as a function of the number of characters in a
document of unknown writership.

7. Conclusions and future research. The proposed categorical classifiers
have been demonstrated to have near perfect accuracy, in terms of LOOCV er-
ror, when applied to the “FBI 100” data set. The random document simulations
suggest that the Plug-In Naive Bayes Classifier is the most efficient of the three
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handwriting classifiers. It has a high identification accuracy rate for documents of
approximately 30 characters in size. The simulations further suggest that the un-
known document need not have the same text as used for enrolling a writer into
the database of writing samples for the classifiers to have a high accuracy rate.

The accuracy of our classifiers applied to our current data set matches or exceeds
the accuracy rates of currently published handwriting identification procedures, as
summarized by Bensefia, Paquet and Heutte (2005). The highest level of accuracy
of other researchers’ classifiers requires larger document sizes than the Plug-In
Naive Bayes Classifier. However, to compare the accuracy of our three classifiers
with those proposed by other researchers, all methods would need to be evaluated
on a common data set of documents.

A related problem to the writer identification problem addressed in this paper
concerns two competing hypotheses: “the suspect wrote the questioned document”
versus “the suspect did not write the questioned document.” In this application, the
evidence for deciding between the two hypotheses is composed of both the hand-
writing samples collected from the suspect (i.e., London Letters) and the document
of unknown writership. The classical approach of summarizing the value of the ev-
idence is to use a Bayesian likelihood ratio (also known as a Bayes factor). [See the
first three Chapters of Aitken and Stoney (1991) for a review.] If it is reasonable to
assume that the distribution of isocodes is independent across letters, then (4.1) is
an approximation for the numerator of the Bayes factor (under the quantification
approach described in Section 3).

Alternatively, Meuwly (2006) provides a strategy to estimate the likelihood ratio
from an arbitrary biometric verification procedure. Meuwly’s approach is based on
replacing the evidence (in the current application, the writing exemplars collected
from the suspect and questioned document) with a score measuring the difference
(or similarity) between the suspect’s exemplars and the questioned document. The
distribution of the score is then estimated under the two competing hypotheses
using appropriate databases of writing samples. Both the Kullback–Leibler (KL)
and the Chi-Squared Distance Classifiers, proposed in Section 4, satisfy the neces-
sary conditions of a biometric verification procedure. The problem in handwriting
is the difficulty in creating a database of writing samples from the suspect that is
large enough to be able to accurately estimate the likelihood of the observed score.
We are currently exploring the potential of applying resampling and subsampling
approaches to a set of modified “London Letters” collected from the suspect to
generate a pseudo-database of writing samples. [See Saunders et al. (2009).]
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