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During primary HIV infection, the kinetics of plasma virus concentra-
tions and CD4+ cell counts is very complex. Parametric and nonparamet-
ric models have been suggested for fitting repeated measurements of these
markers. Alternatively, mechanistic approaches based on ordinary differen-
tial equations have also been proposed. These latter models are constructed
according to biological knowledge and take into account the complex non-
linear interactions between viruses and cells. However, estimating the para-
meters of these models is difficult. A main difficulty in the context of pri-
mary HIV infection is that the date of infection is generally unknown. For
some patients, the date of last negative HIV test is available in addition to
the date of first positive HIV test (seroconverters). In this paper we propose a
likelihood-based method for estimating the parameters of dynamical models
using a population approach and taking into account the uncertainty of the
infection date. We applied this method to a sample of 761 HIV-infected pa-
tients from the Concerted Action on SeroConversion to AIDS and Death in
Europe (CASCADE).

1. Introduction. Primary Human Immunodeficiency Virus (HIV) infection is
a crucial period during HIV infection history where there is a viral burst due to the
spread of the virus through target cells, mainly CD4+ T lymphocytes (CD4). The
dynamics of markers at that time is believed to partly determine the evolution of
the infection in the future [Mellors et al. (1995)]. For instance, the peak of viral
load has been shown to be predictive of the viral setpoint, that is, the plasma HIV
RNA level at which patients often stay for several years [Lindback et al. (2000)]
unless they are treated. This viral setpoint is associated with clinical progression
[Mellors et al. (1995)].

Parametric and nonparametric descriptive models have been suggested for fit-
ting repeated measurements of CD4 and HIV RNA (or viral load) [Dubin et al.
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(1994); Desquilbet et al. (2004); Pantazis et al. (2005); Hecht et al. (2006); Geskus
et al. (2007)]. A mechanistic approach based on ordinary differential equations
(ODE) has also been suggested [Phillips (1996); De Boer and Perelson (1998)].
These mathematical models present several advantages. First, they are based on bi-
ological knowledge. Therefore, the parameters may have direct biological meaning
and the relationship between markers is modeled through biological mechanisms
rather than parametric correlation structures. Second, this type of dynamical model
is able to capture complex interaction between markers. For instance, these models
can predict the decrease of viral load following the peak as a consequence of the
limitation of target cells. The first models used in this context gave important in-
sights on the dynamics of the infection and how to control it [Nowak et al. (1997b);
Little et al. (1999)]. Numerous attempts to improve models have been published
[De Boer and Perelson (1998); Wick (1999); Stafford et al. (2000)]. Most often,
the parameters of these models are not estimated and values which appear “reason-
able” are chosen [Phillips (1996)]. Indeed, estimating the parameters in such mod-
els is difficult. To improve identifiability, random effects models (or population
approach) can be used. However, the combination of nonlinear ODE systems and
random effects leads to difficult numerical problems [Putter et al. (2002); Filter,
Xia and Gray (2005); Huang, Liu and Wu (2006); Samson, Lavielle and Mentré
(2006); Guedj, Thiébaut and Commenges (2007a); Cao, Fussmann and Ramsay
(2008)]: for maximizing the likelihood we need to compute multiple integrals with
a dimension equal to the number of random effects included in the model and to
solve numerically the ODE system; all steps ask for intensive computations.

The dynamics of the biomarkers during primary HIV infection is quite complex.
In the few studies where ODE models have been used in the context of primary
infection, the parameters were estimated from the viral load data only [Kaufmann
et al. (1998); Little et al. (1999); Stafford et al. (2000); Lindback et al. (2000);
Ciupe et al. (2006); Ribeiro et al. (2010)] or the individual fit of the CD4 counts
data was very bad [Murray et al. (1998)]. Moreover, these works did not use ran-
dom effects models.

In the primary HIV infection context, the system is in a “trivial” equilibrium
state without virus and it is disrupted by the introduction of a small quantity of
viruses (the “infection event”). The date of infection must thus be known (in con-
trast to studies of the response to a treatment initiation far from the infection) if
we want to compute the trajectories of markers. However, this date is most often
unknown. Generally, the only available information is the date of the last seroneg-
ative test and first seropositive test or first detectable HIV RNA load. In some co-
hort studies (such as the Multicenter AIDS Cohort study [Munoz et al. (1992)]) the
last seronegative date is prospectively identified during follow-up. In most cases,
patients are seropositive at entry into the cohort and the last seronegative date
is retrospectively recorded. Usually, the date of seroconversion is imputed at the
midpoint between last negative and first positive HIV serology test [Fidler et al.
(2007)]. Several methods have been suggested for estimating this date according
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to the marker values [Berman (1990); DeGruttola, Lange and Dafni (1991); Dubin
et al. (1994); Geskus (2000)]. Geskus et al. (2007) performed a conditional mean
imputation to estimate the date of infection that was used as the baseline for linear
mixed models.

In the present paper we propose a method for estimating the parameters of dy-
namic models using a population approach taking into account the uncertainty of
the infection date. We estimate the parameters of a dynamical model using HIV
RNA and CD4 count data in a large collaboration including cohorts of patients with
a documented date of negative and positive HIV serologies (HIV seroconverters).

There are several direct applications of such an approach. First, we can esti-
mate fundamental parameters such as virion clearance, the infected cell death rate
[Perelson et al. (1997)], virus infectivity [Wilson et al. (2007)] which determines
the rate at which T-cells are infected for given virus concentration, or the basic
reproduction number R0 [Anderson and May (1991)] which is defined as the av-
erage number of secondary infections that would be caused by the introduction of
a single infected cell into an entirely susceptible population of cells; this number
reflects the ability of the infection to spread and to persist in the organism. Sec-
ond, the huge variability in the peak level of HIV RNA and of the viral setpoint in
the population [Kaufmann et al. (1998); Little et al. (1999)] can be explained by
the variability of parameters that carry a direct biological interpretation (cell death
rates, virus infectivity, virus production, . . .). Third, the effect of patient charac-
teristics or interventions could be assessed through their biological mechanism.
For instance, one could look at the effect of an antiretroviral regimen combining
reverse transcriptase inhibitors (blocking the infection of new cells) and protease
inhibitors (generating a higher proportion of noninfectious virion) [Wu and Ding
(1999)] for defining the optimal time of treatment initiation for each patient. It
would also be interesting to look at the effect of the transmission of mutated viruses
[Fidler et al. (2006)] or host genetics characteristics [Fellay et al. (2007)] on the
early dynamics. Furthermore, the probability distribution of the date of infection
could be useful at the population level for defining the incidence of HIV infection
or the rate of disease progression and to estimate the induction time (delay between
the date of infection and AIDS stage).

The paper is organized as follows. In Section 2 we describe a method based on
likelihood maximization for the estimation of parameters of a general population
ODE model with an unknown origin of time. In Section 3 we describe two HIV
dynamics models and we present a simulation study. In Section 4 we show the
results for a sample of 761 HIV-infected patients from the Concerted Action on
SeroConversion to AIDS and Death in Europe (CASCADE). A conclusion is given
in Section 5.

2. Statistical model and inference. All the notation used in this section are
summarized in Table 4 at the end of the manuscript.
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2.1. General statistical model for systems and observations. First, we de-
scribe the model for a known date of infection. We consider a general ODE model
[two particular models are proposed in Section 3.1, equations (3.1) and (3.2)]; for
subject i with i = 1, . . . , n, we can write⎧⎨

⎩
dXi(t)

dt
= f (Xi(t), ξ i),

Xi(0) = h(ξ i),

where Xi(t) = (Xi
1(t), . . . ,X

i
K(t)) is the vector of the K components at time t and

ξ i is a vector of p individual natural (or biological) parameters which appear in the
ODE system. We assume that f and h are known functions and twice differentiable
with respect to ξ i .

Second, a model is introduced for the ξ i to allow inter-individual variability:⎧⎨
⎩ ξ̃l

i = �l(ξ
i
l ),

ξ̃l
i = φl + zi

lβl + bi, l ≤ p,

where �l is a known link function, φl is the intercept, and zi
l is the vector of

explanatory variables associated to the fixed effects of the lth biological parame-
ter. The βl’s are vectors of regression coefficients associated to the fixed effects.
We assume bi ∼ N (0,�), where bi is the individual vector of random effects
of dimension q . Let A = (al′′l′)l′≤l′′≤q , the lower triangular matrix with positive
diagonal elements such that AA′ = � (Cholesky decomposition). We can write
bi = Aui with ui ∼ N (0, Iq).

Third, we construct a model for the observations. Generally, we do not directly
observe all the components of Xi , but rather M ≤ K functions of Xi ; we call these
functions “observable components” [see Section 3.2, equations (3.3) and (3.4),
e.g.]. We observe Y i

jm, the j th measurement of the mth observable component for

subject i at date di
jm. If we know the date of infection τ i , we can compute the time

since infection t ijm = di
jm − τ i and we assume that

Y i
jm = gm(X(tijm, ξ̃ i)) + εi

jm, j = 1, . . . , ni
m, m = 1, . . . ,M,

where ξ̃
i = (ξ̃l

i
, l = 1, . . . , p) and the εi

jm are independent Gaussian measurement

errors with zero mean and variances σ 2
m. The gm(·),m = 1, . . . ,M , are twice dif-

ferentiable functions of R
K to R.

2.2. The issue of unknown date of infection. We assume that the date of infec-
tion τ i has a known density fτi with a support [τ i

inf, τ
i
sup]. We denote by di− (resp.

di+) the date of last seronegative test (resp. first seropositive test) for patient i. For
very long intervals it would be relevant to take the density proportional to HIV in-
cidence. Since we work with intervals of moderate length (3 years maximum), the
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incidence can be considered approximately constant. Therefore, we took uniform
densities between di− and τ i

sup = min(di+, di
11), where di

11 is the date of first HIV
RNA detectable measurement.

However, another problem is that patients may have been infected before the last
seronegative date. Fiebig et al. (2003) determined that the HIV serology becomes
positive on average 89 days (95% Confidence Interval = 47–130) after infection.
The window of possible infection is thus [τ i

inf, τ
i
sup], where τ i

inf = (di− − 130).

However, it is less likely that a patient has been infected 130 days before di− than 5
days before di−, for instance. Therefore, we assumed linearly increasing densities
between τ i

inf and di− starting with fτi (τ i
inf) = 0. Thus, the density fτi is defined by

fτi (s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if s ≤ τ i
inf,

fτi (di−)(s − τ i
inf)

di− − τ i
inf

, if τ i
inf ≤ s ≤ di−,

fτi (di−), if s ≥ di−,

(2.1)

where fτi (di−) = 2/(2τ i
sup − di− − τ i

inf) to ensure the continuity of the density and∫
fτi (s) ds = 1.

2.3. Log-likelihood. The model is complicated by the detection limits ζ i
j of

assays leading to left-censored observations of HIV RNA for the j th measurement
for subject i. We define HIV RNA as the first observable compartment (m = 1)
and we observe Y i

j1 or {Y i
j1 < ζ i

j }. The left-censored observations are taken into
account as in Thiébaut et al. (2006) and Guedj, Thiébaut and Commenges (2007a).
Noting δij = 1{Y i

j1>ζ i
j }, the full likelihood given the random effects ui and the date

of infection τ i is given by

L Y i |ui,τ i =
ni

1∏
j=1

{
1

σ1
√

2π
exp

[
−1

2

(Y i
j1 − g1(X(tij1, ξ̃

i ))

σ1

)2]}δij

×
{



(ζ i
j − g1(X(tij1, ξ̃

i ))

σ1

)}1−δij

× ∏
m=2,M

j=1,ni
m

{
1

σm

√
2π

exp
[
−1

2

(Y i
jm − gm(X(tijm, ξ̃ i ))

σm

)2]}
,

where 
 is the cumulative distribution function of the standard univariate normal
distribution. The individual likelihood given the date of infection is

L Oi |τ i =
∫

Rq
L Y i |ui,τ i (u)φ(u)du,
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where φ is the multivariate normal density of N (0, Iq). To determine the observed
individual likelihood (L Oi ), we integrate L Oi |τ i on [τ i

inf; τ i
sup]:

L Oi =
∫ τ i

sup

τ i
inf

L Oi |τ i (s)fτ i (s) ds =
∫ τ i

sup

τ i
inf

∫
Rq

L Y i |ui,τ i (u, s)φ(u)fτ i (s) duds.

We note LY i |ui,τ i = log L Y i |ui,τ i and LOi = log L Oi . The global observed log-
likelihood is LO = ∑

i≤n LOi . The integral on time is calculated by recursive adap-
tive Gauss-Legendre quadrature [Berlizov and Zhmudsky (1999)].

2.4. Likelihood maximization. A Newton-like method was used for maximiz-
ing the likelihood. This method uses the first derivatives of the log-likelihood (the
scores) [Commenges et al. (2006)]. The observed scores can be obtained by apply-
ing twice Louis’ formula [Louis (1982)]:

UOi = ∂LOi

∂θ
= (L Oi )

−1
∫ τ i

sup

τ i
inf

L Oi |τ i (s)UOi |τ i (s)fτ i (s) ds,

where:

UOi |τ i (·) = (L Oi |τ i (·))−1
∫

Rq
L Y i |ui,τ i (u, ·)UY i |ui,τ i (u)φ(u)du.

The scores UY i |ui,τ i are determined by differentiating LY i |ui,τ i by θ , where θ =
((φl)l=1,p, (βl)l=1,p,A = (all′)l′≤l≤q, σ = (σl)l≤M).

2.5. A posteriori estimations and distribution of the date of infection. Indi-

vidual parameters ξ̃ i were estimated by the empirical Bayes estimators ˆ̃
ξ i , where

ˆ̃
ξ

i

l = φ̂l + zi
l β̂l + Âûi and ûi is the posterior mode of the density of ui given the

data. Then, individual trajectories were predicted by computing X̂i = X(t,
ˆ̃
ξ i).

An estimator of the a posteriori distribution of the date of infection, fτi |Y i , can

then be computed at the estimated individual parameters ˆ̃
ξ i . We denote by Y i the

vector of measurements for subject i and by fY i |τ i the probability density function
of Y i given the date of infection. Applying Bayes’ formula, we have

fτi |Y i (·|Y i) = fY i |τ i (Y i |·)fτ i (·)∫ τ i
sup

τ i
inf

fY i |τ i (Y i |s)fτ i (s) ds

.

3. Models for primary HIV infection.

3.1. Models for the biological system. We considered two ODE models for
HIV infection: the “basic model” and the “productive cells model.” The “basic
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FIG. 1. Graphical representation of “the basic model” (a) and “the productive cells model” (b).

model” has three compartments: T (noninfected CD4), T ∗ (productively infected
CD4) and V (free virion) [Nowak et al. (1997b); Stafford et al. (2000); Perelson
(2002)]. This model can be written as⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dT

dt
= λ − γV T − μT T ,

dT ∗

dt
= γV T − μT ∗T ∗,

dV

dt
= πT ∗ − μV V.

(3.1)

The uninfected CD4 cells enter the blood circulation at rate λ, and die at the
rate μT . They can be infected by the virus at the rate γV . The infected CD4 die
at the rate μT ∗ and produce virions at the rate π . Virions die at the rate μV and
can also infect other CD4 cells [Figure 1 (a)]. Model parameters are summarized
in Table 1.

We assume that the model is at equilibrium before infection, so at t = 0−, we
have ⎧⎪⎪⎨

⎪⎪⎩
T0− = λ

μT

,

T ∗
0− = 0,

V0− = 0.
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TABLE 1
Parameters of the dynamic models

Parameter Meaning (per day) Value

λ Rate of T cell production per μL estimated
μT ∗ Death rate of T ∗ cells estimated
π Number of virions per T ∗ cells estimated
μT Death rate of T cells estimated
γ Infection rate of T cells per virion per μL 0.00027 [Davenport et al. (2006);

Wilson et al. (2007)]
μV Clearance of free virions 20.0 [Ramratnam et al. (1999)]
α Rate to become productive cells 1.0 [Kiernan et al. (1990);

Barbosa et al. (1994)]

The initial inoculum of virions is fixed at 10−6 virions/mm3 [Ciupe et al. (2006)
Stafford et al. (2000)], which is equivalent to 5 virions for 5 liters of blood. The
introduction of virions in the system at t = 0 disrupts the initial stability and the
system stabilizes to a new equilibrium if the basic reproduction number R0 (R0 =

λγπ
μT μT ∗μV

) is higher than 1:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

T̄ = μT ∗μV

γπ
,

T̄ ∗ = λγπ − μT μT ∗μV

γπμT ∗
,

V̄ = λγπ − μT μT ∗μV

γμT ∗μV

.

The second model (the “productive cells model”) distinguishes nonproductive
infected cells (T ∗) and productive infected cells (P ) [Figure 1(b)] as previously
suggested in Nowak et al. (1997a). This second model includes one more para-
meter α (the rate to become productive infected cells). The model can be written
as ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dT

dt
= λ − γV T − μT T ,

dT ∗

dt
= γV T − μT ∗T ∗ − αT ∗,

dP

dt
= αT ∗ − μT ∗P,

dV

dt
= πP − μV V.

(3.2)
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The equilibrium before infection is⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

T0− = λ

μT

,

T ∗
0− = 0,

P0− = 0,

V0− = 0.

After the introduction of virions, the system stabilizes to a new equilibrium if R0

(R0 = λγπα
μT μT ∗μV (μT ∗+α)

) is higher than 1:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T̄ = μT ∗μV (μT ∗ + α)

γπα
,

T̄ ∗ = λ

μT ∗ + α
− μT μV μT ∗

γπα
,

P̄ = α

μT ∗

(
λ

μT ∗ + α
− μT μV μT ∗

γπα

)
,

V̄ = πα

μV μT ∗

(
λ

μT ∗ + α
− μT μV μT ∗

γπα

)
.

3.2. Statistical models. We can construct statistical models as in Section 2.1.
We took �l(·) = log(·) for all l to ensure positivity of parameters. The indi-

vidual parameters are ξ̃
i = (λ̃i, μ̃i

T ∗, π̃ i, μ̃i
T ) with λ̃i = logλi , μ̃i

T ∗ = logμi
T ∗ ,

π̃ i = logπi and μ̃i
T = logμi

T . Because of identifiability issues [Wu et al. (2008)],
the values of the other parameters were taken according to the literature: μV =
20.0 day−1 [Ramratnam et al. (1999)] and γ = 0.00027 virions−1 day−1 μL−1

[Davenport et al. (2006); Wilson et al. (2007)]. The parameter α is fixed at 1
day−1 because the time lag between virus entry and virus production is about 1 day
[Kiernan et al. (1990); Barbosa et al. (1994)].

The observed components were the base-10 logarithm of HIV RNA load (num-
ber of virions per μL) and the fourth root of total CD4 count (number of cells
per μL). For the “basic model,” g1(X) = log10(V ) and g2(X) = (T + T ∗)0.25

where X = (T , T ∗,V ). For the “productive cells model,” g1(X) = log10(V ) and
g2(X) = (T + T ∗ + P)0.25 where X = (T , T ∗,P ,V ). These transformations are
commonly used for achieving normality and homoscedasticity of measurement er-
ror distributions [Thiébaut et al. (2003)]. We have

Y i
j1 = g1(X(tij1, ξ̃

i)) + εi
j1, j = 1, . . . , ni

1,(3.3)

Y i
j2 = g2(X(tij2, ξ̃

i)) + εi
j2, j = 1, . . . , ni

2,(3.4)

where εi
j1 and εi

j2 are independent Gaussian with zero mean and variances σ 2
VL

and σ 2
CD4 respectively.
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3.3. Simulation study. We simulated samples of 100 subjects during primary
HIV infection using the “basic model” for simplicity. The parameter values were
defined according to the estimates of our application (see Tables 1 and 3). For each
subject, we simulated the dates of HIV tests and the date of infection. Dates for
the HIV serology tests (negative and positive, respectively) were simulated accord-
ing to the prior distribution defined in Section 2.1 [equation (2.1)]. The subjects
had a probability of 0.10 to have a short window of infection (90 days) with re-
peated measurements around the time of viral peak and a probability of 0.90 to
have a window of infection of 200 days with repeated measurements after 150
days post-infection. The times of measurements t ijm were as follows: days 1, 10,
15, 30, 50 and 100 for the short windows and days 150, 200, 240, 280, 300 and
350 for the others. We included independent random effects for the first two pa-
rameters (λ and μT ∗). Therefore, the vector of parameters to be estimated was
(λ̃i, μ̃i

T ∗, π̃ i, μ̃i
T , σλ̃, σμ̃T ∗ , σVL, σCD4).

We performed a simulation study to compare the estimates according to three
methods: (i) when the date of infection is fixed as the real date (RD) or (ii) when
it is imputed at the midpoint of the interval defined the last negative and the first
positive HIV test (DI) and (iii) when the uncertainty of the date of infection was
taken into account with our proposed method (DUK). We simulated 50 data sets
of 100 subjects with the design described above. For each data set, we estimated
parameters with the three methods and we compared them by computing the mean
square errors and the coverage rates (Table 2). The method using the real date of
infection was used as a reference.

TABLE 2
Mean Square Errors (MSE) and coverage rates of the estimation method in the situations where the

date of infection is known (RD), the date of infection is imputed at the midpoint (DI) and the
uncertainty of the date of infection is taken into account (DUK)

MSE Coverage rate (%)

Parameter RD DI DUK RD DI DUK

λ̃ 0.0030 0.0498 0.0033 100 80 100
μ̃T ∗ 0.0098 0.1880 0.0086 100 90 100
π̃ 0.0021 0.0426 0.0115 100 90 98
μ̃T 0.0065 4.0268 0.0023 100 60 100
σ
λ̃

0.0014 0.0079 0.0022 100 75 100
σμ̃T ∗ 0.0051 0.0143 0.0071 100 90 98
σVL 0.0011 0.0075 0.0007 100 100 100
σCD4 0.0001 0.0688 0.0001 100 100 100

σ
λ̃

and σμ̃T ∗ are the standard deviations of random effect for λ̃ and μ̃T ∗ .

σVL and σCD4 are the standard deviations of the observation error of log10(V ) and (T + T ∗)0.25.
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The DUK estimators had a much smaller MSE than the DI estimators and close
to the MSE of the RD estimators. It is not feasible with such computationally
demanding programs to make a large simulation. Fifty replications are not enough
to precisely estimate coverage rates but are enough to show the superiority of our
approach over the approach based on imputing the date of infection at midpoint.
The empirical coverage rates were slightly too high for RD and DUK probably due
to overestimation of the variance of the parameters.

4. Application to the CASCADE data set.

4.1. The study sample. The study sample came from the Concerted Action
on SeroConversion to AIDS and Death in Europe (CASCADE) study; it includes
seroconverters from Europe, Canada and Australia. The CASCADE study has been
described in detail elsewhere [CASCADE (2003)]. Data were pooled in the 2006
update from 20 participating cohorts. We selected HIV seroconverters if their HIV
interval test (delay between the date of last seronegative test and the date of first
seropositive test) was less than 3 years, if they did not receive any antiretroviral
treatment during the first year following the date of seropositive test and if they had
more than 3 measurements of CD4 or viral load during this first year of follow-up
with the first detectable viral load measurement during the first three months after
the date of seropositive test. A total of 761 patients met these criteria.

4.2. Models used. We used the two models defined in Section 3.1. The vector
of natural parameters to be estimated for subject i was ξ i = (λi,μi

T ∗, πi,μi
T ) for

the two models. The other parameters were assumed to be known as described in
Section 3.2. The windows for possible dates of infection were fixed as defined in
Section 2.2.

Random effects were selected according to a forward selection procedure. Start-
ing with a model without random effect, we introduced random effects succes-
sively on each parameter and selected the one leading to the best likelihood im-
provement. Then, we added a new random effect and continued until the new
model was not rejected by a likelihood ratio test.

4.3. Results. Selected patients had a median of four measurements for CD4
and for HIV RNA (InterQuartile Range [IQR] = [3; 5]). Most of the patients were
infected by sex between men (71%). Follow-up was censored after 1 year beyond
seropositive HIV test, resulting in a median follow-up after the first seropositive
test of 195 days (IQR = [119; 260]). The median of the delay between the dates of
last seronegative and first seropositive test was 170 days (IQR = [91; 273]).

The final models included independent random effects for the first two parame-
ters. Therefore, the estimated vector of parameters was (λ̃, ˜μT ∗, π̃ , μ̃T , σλ̃, σμ̃T ∗ ,
σVL, σCD4) for the two models. Usually, random effects are assumed to be in-
dependent in ODE models [Putter et al. (2002); Samson, Lavielle and Mentré
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TABLE 3
Estimated parameters and standard-errors (SE) on logarithmic scale for the

“basic” and the “productive cells” models; for meaning of parameters see Table 1

Basic model Productive cells model

Parameter Estimate SE Estimate SE

λ̃ 3.49 0.032 3.33 0.034
˜μT ∗ 0.62 0.046 0.54 0.045

π̃ 5.27 0.041 6.06 0.036
μ̃T −3.26 0.019 −3.40 0.034
σ
λ̃

0.16 0.008 0.41 0.057
σμ̃T ∗ 0.42 0.043 0.37 0.052
σVL 0.82 0.017 0.75 0.017
σCD4 0.29 0.012 0.27 0.013

AIC 15,010 14,300

σ
λ̃

and σμ̃T ∗ are the standard deviations of random effect for λ̃ and μ̃T ∗ .
σVL and σCD4 are the standard deviations of the observation error of log10(V ) and
(T + T ∗)0.25 for the “basic model” and (T + T ∗ + P)0.25 for the “productive cells
model.”

(2006); Huang and Wu (2006); Guedj, Thiébaut and Commenges (2007a)]. To
test a possible correlation between the two random effects included in our models,
we developed a score test based on our previous work [Drylewicz, Commenges
and Thiébaut (2010)]. For both models, the test was not significant (p = 0.87 and
p = 0.92, respectively). The score test is presented in Appendix A.

The “productive cells model” fitted better than the “basic model” (AIC =
14,300 vs. 15,010). The improvement brought by this model can be considered as
large according to the criterion D which is the difference of AIC divided by the to-
tal number of observations: D = 15,010−14,300

6294 = 0.11 [Commenges et al. (2008)].
Estimates of the parameters of the two models are presented in Table 3.

For the “productive cells model,” on the natural scale, the mean half-life
[log(2)/Death rate] of infected and uninfected cells was 0.40 and 21 days,
respectively. At the time of the viral peak (median viral load of 5.68 log10
copies/mL, IQR = [5.44;5.96]), the estimated median number of infected cells
was 64 cells/μL (IQR = [40;113]). At the same time, the median number of
productive cells/μL was 24 (IQR = [14;46]) among 557 CD4 cells/μL (IQR =
[460;658]). The median of the estimated CD4 setpoints was 500 cells/μL (IQR =
[396;627]) which is close to the median of observed setpoints (based on at
least one measurement after 365 days available in 430 patients): 470 cells/μL
(IQR = [371;615]). At the same time, the median of the estimated number of in-
fected cells/μL was 8 (IQR = [6;12]) including a median of 3 productive cells/μL
(IQR = [2;5]). The median of viral setpoints was also close to that observed in 403
patients: 4.77 log10 copies/mL (IQR = [4.59;4.98]) vs. 4.59 (IQR = [4.04;5.00]).
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FIG. 2. A posteriori individual distributions of the date of infection for patients 6, 41, 55, 66, 132
and 652 from the “productive cells model,” where day 0 is the date of last negative HIV test.

We found very different a posteriori individual distributions of the date of in-
fection depending on the width of the window and the quantity of available infor-
mation for each patient. Figure 2 shows the a posteriori distributions displayed on
the window of infection (see Section 2.2), where 0 represents the last seronegative
date for six patients chosen for exhibiting different shapes of the a posteriori dis-
tribution. For patients with data clearly before the setpoint, the model was able to
restrict the possible dates of infection. For instance, patient 132 had an interval of
possible dates of infection of 273 days and our estimation restricted this interval
to 90 days. However, for other patients and especially for some patients with a
wide interval between last negative and first positive HIV serology test, the a pos-
teriori distribution had local maxima. Analysis of marker dynamics according to
the local maxima suggested quite different possibilities according to the available
information (Figure 3).

For each patient, we took the date with the highest probability and plotted pre-
dicted individual trajectories for each marker from this date. The fits of the model
were satisfactory. The estimated trajectories are in agreement with those reported
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FIG. 3. Predicted fits from the two most probable dates of infection [(a) the global maximum and
(b) the local maximum] and observed values of HIV RNA level and total CD4 count for patient 6
from the “productive cells model.”

in the literature [Little et al. (1999); Lindback et al. (2000); Stafford et al. (2000)].
Individual predicted fits and observed values are shown in Figure 4 for six patients.
We studied the distribution of residuals and the agreement between predictions and
observations for plasma HIV RNA and CD4 count in Appendix B.

5. Discussion. In this paper we present a method for estimating parameters of
random effects models based on differential equations when the origin of time is
unknown, taking also into account unbalanced data and left-censored observations.
This method was applied to a cohort of HIV patients during primary infection
using repeated measurements of two markers: plasma HIV RNA and CD4+ T
cell counts. The model gave reasonable fits although the kinetics of the markers
was very complex due to nonlinear interaction between the virus and the target
cells. Thanks to the population approach, we were able to describe the dynamics
of markers during primary infection using data from several hundred patients.

Predictions were obviously driven by the structure of the ODE system that is
based on biological knowledge. Compared to a descriptive model, this mechanistic
approach brings additional information. Typically, solutions of ODE systems led to
oscillatory trajectories [Volterra (1926)]: these oscillations are dampened as time
passes so that the trajectory gets closer to the steady state value. Observations are
partly consistent with the oscillating behavior. The peak of viral load, the reality of
which is generally admitted, is nothing but the first oscillation. It can be noted that
the oscillations are generally more dampened for more complex systems [Burg
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FIG. 4. Individual predicted fits from the most probable date of infection and observed values of
HIV RNA level and total CD4 count for patients 6, 41, 55, 66, 132 and 652 from the “productive cells
model,” where day 0 is the date of last negative HIV test.
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et al. (2009)]. In conclusion, the oscillatory trajectories produced by our model are
for a part the expression of a real phenomenon.

Predicted viral and CD4 setpoints (defined as markers values at equilibrium)
were quite similar to those that could be observed. Interestingly, the estimated
value of infected cells (that are not observed) was in agreement with previous stud-
ies reporting a low concentration of productive infected cells [Chun et al. (1997)].

Because the approach was based on a mechanistic model, the parameters have
biological meanings. For instance, the mean half-life of infected cells was esti-
mated at 0.40 day. Previous estimations of this parameter were mainly performed
in patients treated by antiretroviral therapy. These estimations varied from 0.7 day
to 1.8 day according to the type of treatment and the type of model used [Perelson
et al. (1996); Faulkner et al. (2003); Huang and Wu (2006); Huang (2007)]. Sim-
ilarly, it is interesting to note that our estimate of virus production (428 viri-
ons/cell/day) is of the same order as what has been reported [Dimitrov et al. (1993);
Levy et al. (1996); Haase (1999)]. However, the biological relevance of the present
model could still be questioned with regards to other processes that have been ig-
nored. For instance, the cytotoxic T-cell response plays a role in the control of the
infection and the decrease of the viral load by killing the infected cells [Stafford
et al. (2000)], although the efficiency of this immunological response is debated
[Asquith and McLean (2007)]. Moreover, our estimate of target CD4 cells half-life
is a mixture of the half-life of quiescent cells and that of activated cells [Mclean
and Michie (1995); Vrisekoop et al. (2008)].

The uncertainty on the date of infection was taken into account to improve the
accuracy of the estimates as compared to performing simple imputations. In ad-
dition, we were able to derive the individual posterior distribution of the date of
infection according to the model. When enough information is available the date
of infection can be estimated with good accuracy (Figure 2). The sensitivity of the
estimates to the assumptions about the priors [equation (2.1) in Section 2.2] was
roughly proportional to the amount of data available as illustrated by the poste-
rior infection time distribution of patient 41 compared to patient 66 (Figure 2). We
also performed a sensitivity analysis which demonstrated a certain robustness of
the method. The lower bound of the infection time distribution could be better de-
fined by using additional information such as antibody dynamics. Unfortunately,
this information was not available in the present data set.

The main limitation for the use of dynamical models is the parameter identifi-
ability that led us to fix the value of γ (infection rate) and μV (viral clearance).
The clearance was fixed to 20 day−1 according to recent studies with highly re-
peated measures of HIV RNA after initiation of antiretroviral treatment [Perelson
et al. (1997); Ramratnam et al. (1999)]. The chosen value of μV may influence
the estimation of other parameters such as π , as the viral setpoint is essentially de-
termined by the ratio π

μV
[Nowak et al. (1997a)]. Identifiability may be improved

by measuring more compartments such as infected cells or by increasing the num-
ber of repeated measurements [Guedj, Thiébaut and Commenges (2007b)]. This
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TABLE 4
Notation used in the manuscript

Notation Meaning

i (1, . . . , n) Subject
Xi(t) Vector of the K components of the model at time t

ξ i Vector of p individual natural parameters
ξ̃ i = �(ξi) Vector of p individual transformed parameters
φl Intercept of the lth parameter
zi
l Vectors of explanatory variables associated to the fixed effects of the lth

biological parameter
βi

l Vectors of regression coefficients associated to the fixed effects
bi = Aui Individual vector of random effects of dimension q

A = (al′′l′)l′≤l′′≤q Lower triangular matrix with positive diagonal elements AA′ = �

(Cholesky decomposition)
Y i
jm j th measurement of the mth compartment of subject i

di
jm Date of measurement of Y i

jm

τ i Date of infection of subject i

t ijm Time between τ i and di
jm

gm(·) (m = 1, . . . ,M) Nonlinear function for the mth observed compartment
εi
jm Gaussian measurement errors with zero mean and variances σ 2

m

di− Date of last negative HIV test of subject i

di+ Date of first positive HIV test of subject i

fτ i Density of infection date τ i

[τ i
inf, τ

i
sup] Support of the density fτ i

ζ i
j Detection limit of the j th measurement of subject i

is an important point to consider in future studies, as the issue of identifiability
precludes the comparison with more complex models.

Finally, this method can be applied in other areas where either the model is
simpler or the amount of measured information greater, so that identifiability is
less an issue.

APPENDIX A: SCORE TEST FOR COVARIANCE OF RANDOM EFFECTS

In Drylewicz, Commenges and Thiébaut (2010), we have developed score tests
for explanatory variables and variance of random effects in complex models. We
propose here to develop a test for the covariance parameter of random effects.
We assume that the date of infection is known and introduce notation for a con-
ventional nonlinear model. For subject i with i = 1, . . . , n, we consider a model
which specifies the distribution of the observed vector Yi = (Y i

j , j = 1, . . . , ni):

Y i
j = g(tij , ξ̃

i
) + εi

j , j = 1, . . . , ni,
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where Y i
j is the j th measurement for subject i at the time t ij , and the εi

j are indepen-

dent Gaussian measurement errors with zero mean and variances σ 2. The function
g(·) is a twice differentiable (generally nonlinear) function. The individual para-

meters ξ̃
i = (ξ̃l

i
, l = 1, . . . , p) are modeled as a linear form: ξ̃ i

l = φl + bi
l + zi

lβ l ,
where φl is the intercept, and zi

l is the vector of explanatory variables associated
to the fixed effects of the lth parameter. The β l’s are vectors of regression coef-
ficients. We assume bi ∼ N (0,�), where bi is the individual vector of random
effects of dimension q . Let A = (al′′l′)l′≤l′′≤q be the lower triangular matrix with
positive diagonal elements such that AA′ = � (Cholesky decomposition). We can
write bi = Aui with ui ∼ N (0, Iq). We denote by θ = (φl,A,βl, l = 1, . . . , p) the
set of parameters of the model and by Lθ

Y i |ui (Y
i |u) the likelihood of observations

for subject i given that the random effects ui take the value u. Given ui , the Y i
j are

independent, so Lθ
Y i |ui (Y

i |u) = ∏
j Lθ

Y i
j |ui (Y

i
j |u), where

Lθ

Y i
j |ui (Y

i
j |u) = 1√

2πσ
exp

{
−(Y i

j − g(t ij , ξ̃
i
))2

2σ 2

}
.

The observed log-likelihood for subject i is

Lθ
i = log

∫
Rq

Lθ
Y i |ui (Y

i |u)φ(u) du,

where φ is the multivariate normal density of N (0, Iq). We denote L = Lθ
1 +· · ·+

Lθ
n, the global log-likelihood.
For simplicity and for illustrating our specific case, we assume that only two

random effects are included in the model (ui
l and ui

l′). We want to test whether bi
l

and bi
l′ are independent. The null hypothesis H0 is “all′ = 0”. The scores Ui

ll′ (in-
dividual score for all′ ) are obtained integrating Ui

ll′|ui using Louis’ formula [Louis
(1982)]:

Ui
ll′ = (L Oi )

−1
∫

R2
Lθ

Y i |ui (u)Ui
ll′|ui (u)φ(u) du,

where

Ui
ll′|ui (u) = ∑

j=1,ni

1

σ 2

(
Y i

j − g(X(tij , ξ̃
i ))

)(
ui

l′all

∂g(X(tij , ξ̃
i ))

∂ξ i
l

)
.

Under the null hypothesis, we propose the following statistic:

S = U•
ll′|H0√

V̂arU•
ll′|H0

,
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FIG. 5. Residuals of fourth-root of CD4 count with respect to predictions (left) and observations
with respect to predictions (right).

where U•
ll′|H0

is the sum of individual scores Ui
ll′ calculated under H0 and

V̂arU•
ll′|H0

is a consistent estimator of VarU•
ll′|H0

. S has an asymptotic standard

normal distribution under H0. We take V̂arU•
ll′|H0

= ∑
i=1,n Ui2

ll′|H0
.

APPENDIX B: GOODNESS OF FIT

Figures 5 and 6 present the residuals with respect to the predictions and the ob-
servations with respect to the predictions for the fourth root of CD4 count and the
base 10-logarithm of HIV RNA load. The residuals are computed using empirical
bayes and predictions from the most probable date of infection for each patient. We
excluded left-censored HIV RNA measurements (72 among 3038 measurements).

The residuals are well distributed around 0 and there is a good agreement be-
tween predictions and observations for both HIV RNA and CD4 count. The four
outliers observed on the left of HIV RNA figures are due to patients having only
one detectable measurement of HIV RNA during their follow-up and the only de-
tectable value was low (<3 log10 copies/mL).

Acknowledgment. The authors would like to thank S. Walker for suggestions
and criticisms concerning the manuscript.

FIG. 6. Residuals of HIV RNA with respect to predictions (left) and observations with respect to
predictions (right), the left-censored measurements of HIV RNA have been excluded (72 among 3038
measurements).
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