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REVISITING GUERRY’S DATA: INTRODUCING SPATIAL
CONSTRAINTS IN MULTIVARIATE ANALYSIS

BY STÉPHANE DRAY AND THIBAUT JOMBART

Université Lyon 1 and Imperial College

Standard multivariate analysis methods aim to identify and summarize
the main structures in large data sets containing the description of a num-
ber of observations by several variables. In many cases, spatial information
is also available for each observation, so that a map can be associated to
the multivariate data set. Two main objectives are relevant in the analysis of
spatial multivariate data: summarizing covariation structures and identifying
spatial patterns. In practice, achieving both goals simultaneously is a statisti-
cal challenge, and a range of methods have been developed that offer trade-
offs between these two objectives. In an applied context, this methodological
question has been and remains a major issue in community ecology, where
species assemblages (i.e., covariation between species abundances) are often
driven by spatial processes (and thus exhibit spatial patterns).

In this paper we review a variety of methods developed in community
ecology to investigate multivariate spatial patterns. We present different ways
of incorporating spatial constraints in multivariate analysis and illustrate these
different approaches using the famous data set on moral statistics in France
published by André-Michel Guerry in 1833. We discuss and compare the
properties of these different approaches both from a practical and theoretical
viewpoint.

1. Introduction. A recent study [Friendly (2007)] revived André-Michel
Guerry’s (1833) Essai sur la Statistique Morale de la France. Guerry gathered
data on crimes, suicide, literacy and other “moral statistics” for various départe-
ments (i.e., counties) in France. He provided the first real social data analysis,
using graphics and maps to summarize this georeferenced multivariate data set.
The work of Friendly (2007) contained a historical part describing Guerry’s life
and work in detail. In a second part, Friendly reanalyzed Guerry’s data using a va-
riety of modern tools of multivariate and spatial analysis. He considered two main
approaches to analyzing a data set involving both multivariate and geographical as-
pects: data-centric (multivariate analysis) and map-centric (multivariate mapping)
displays. In the first approach, the multivariate structure is first summarized using
standard analysis methods [e.g., principal component analysis, Hotelling (1933)]
and visualization methods [e.g., biplot, Gabriel (1971)]. The geographic informa-
tion is only added a posteriori to the graphs, using colors or other visual attributes.
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This approach thus favors the display of multivariate structures over spatial pat-
terns. On the other hand, multivariate mapping (i.e., the representation of several
variables on a single map using multivariate graphs) emphasizes the geographical
context but fails to provide a relevant summary of the covariations between the
variables. Moreover, multivariate mapping raises several technical issues such as
the lack of readability of multivariate symbols (e.g., Chernoff faces), which can
only be used to represent a few variables and are sometimes difficult for non-
specialists to interpret. Friendly (2007) stated that Guerry’s questions, methods
and data still present challenges for multivariate and spatial visualization today.
While he acknowledged progress in both exploratory spatial data analysis and mul-
tivariate methods, he also suggested that the integration of these data-centric and
map-centric visualization and analysis is still incomplete. He concluded his paper
with a motivating question: Who will rise to Guerry’s challenge?.

This challenge has been one of the major methodological concerns in com-
munity ecology (and in other disciplines, e.g., public health) over the last few
decades. Community ecology is a subdiscipline of ecology that aims to under-
stand the organization and causes of species associations. As community data are
essentially multivariate (many species, many sites, many environmental factors
and complex spatio-temporal sampling designs), questions about the structure and
drivers of ecological communities have traditionally been addressed through multi-
variate analyses [Legendre and Legendre (1998)]. Hence, it has been and remains
a very fertile field for the development and the application of multivariate tech-
niques. One of the most active research goals in ecology today is to understand
the relative importance of processes that determine the spatial organization of bio-
diversity at multiple scales [Legendre (1993)]. As a consequence, the last decade
has seen efforts in the methodological domain to render the multivariate analysis
of community data more spatially explicit or, conversely, to generalize analyses
of spatial distributions to handle the covariation of many species. These methods
allow us to identify the main spatial patterns by considering simultaneously both
multivariate and geographical aspects of the data. They thus represent a first step
toward the integration of data-centric and map-centric visualizations into a single
method.

In this paper we take up Friendly’s challenge by demonstrating how several
spatially-explicit multivariate methods developed initially in the context of com-
munity ecology could also be of benefit to other fields. We present different ways
of incorporating the spatial information into multivariate analysis, using the dual-
ity diagram framework [Escoufier (1987)] to describe the mathematical properties
of these methods. We illustrate these different methodological alternatives by re-
analyzing Guerry’s data.

2. Standard approaches. We use the data set compiled by Michael Friendly
and available at http://www.math.yorku.ca/SCS/Gallery/guerry/. This data set has

http://www.math.yorku.ca/SCS/Gallery/guerry/
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TABLE 1
Variable names, labels and descriptions. Note that four variables have been

recorded in the form of “Population per...” so that low values correspond to high
rates, whereas high values correspond to low rates. Hence, for all of the variables,

more (larger numbers) is “morally” better

Label Description

Crime_pers Population per crime against persons
Crime_prop Population per crime against property
Literacy Percent of military conscripts who can read and write
Donations Donations to the poor
Infants Population per illegitimate birth
Suicides Population per suicide

been recently analyzed by Dykes and Brunsdon (2007) to illustrate a new inter-
active visualization tool and is now distributed in the form of an R package [see
Dray and Jombart (2010) for details]. We consider six key quantitative variables
(Table 1) for each of the 85 départements of France in 1830 (Corsica, an island and
often an outlier, was excluded). In this section we focus on classical approaches
that consider either the multivariate or the spatial aspect of the data. In the next
sections we will present methods that consider both aspects simultaneously.

2.1. Multivariate analysis. Multivariate analysis allows us to identify and
summarize the primary underlying structures in large data sets by removing any
redundancy in the data. It aims to construct a low-dimensional space (e.g., 2 or 3
dimensions) that retains most of the original variability of the data. The classi-
cal output consists of graphical summaries of observations and variables that are
interpreted for the first few dimensions.

2.1.1. The duality diagram theory. Multivariate data are usually recorded in
a matrix X with n rows (observations) and p columns (variables). The duality
diagram is a mathematical framework that defines a multivariate analysis setup
using a set of three matrices. We can consider the (possibly transformed) data ma-
trix X (n × p) as a part of a statistical triplet (X,Q,D), where Q (p × p) and D
(n × n) are usually symmetric positive definite matrices used as metrics [i.e., Q
provides a metric for the variables (columns of X) and D provides a metric for the
observations (rows of X)]. This unifying mathematical framework encompasses
very general properties, which will be described, to the analysis of a triplet. For
more details, the reader should consult Escoufier (1987), Holmes (2006) or Dray
and Dufour (2007). The mathematical properties of each particular method (corre-
sponding to a particular choice of matrices X,Q and D) can then be derived from
the general properties of the diagram. Note that the analysis of the duality diagram
associated to the triplet (X,Q,D) is equivalent to the generalized singular value
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decomposition [GSVD, e.g., Greenacre (1984), Appendix A] of X with the metrics
Q and D.

The analysis of the diagram consists of the eigen-decomposition of the operators
XQXTD or XTDXQ. These two eigen-decompositions are related to each other
(dual) and have the same eigenvalues. Thus, we have

XQXTDK = K�[r],
XTDXQA = A�[r].

r is called the rank of the diagram, and the nonzero eigenvalues λ1 > λ2 > · · · >
λr > 0 are stored in the diagonal matrix �[r].

K = [k1, . . . ,kr ] is a n × r matrix containing the r nonzero associated eigen-
vectors (in columns). These vectors are D-orthonormalized (i.e., KTDK = Ir ) and
are usually called the principal components.

A = [a1, . . . ,ar ] is a p × r matrix containing the r nonzero eigenvectors (in
columns). These vectors are Q-orthonormalized (i.e., ATQA = Ir ) and are usually
called the principal axes.

The row scores R = XQA are obtained by projection of the observations (rows
of X) onto the principal axes. The vectors a1,a2, . . . ,ar successively maximize,
under the Q-orthogonality constraint, the following quadratic form:

Q(a) = aTQTXTDXQa.(1)

If D defines a scalar product, then we have Q(a) = ‖XQa‖2
D.

The column scores C = XTDK are obtained by projection of the variables
(columns of X) onto the principal components. The vectors k1,k2, . . . ,kr suc-
cessively maximize, under the D-orthogonality constraint, the following quadratic
form:

S(k) = kTDTXQXTDk.(2)

If Q defines a scalar product, then we have S(k) = ‖XTDk‖2
Q. Usually, the outputs

(column and row scores) are only interpreted for the first few axes (dimensions).

2.1.2. Application to Guerry’s data. Here we consider p = 6 variables mea-
sured for n = 85 observations (départements of France). As only quantitative vari-
ables have been recorded, principal component analysis [PCA, Hotelling (1933)]
is well adapted. Applying PCA to the correlation matrix where Q = Ip , D = 1

n
In

and X contains z-scores, we obtain Q(a) = ‖XQa‖2
D = var(XQa) and S(k) =

‖XTDk‖2
Q = ∑p

j=1 cor2(k,xj ) from equations (1) and (2). Hence, this PCA sum-
marizes the data by maximizing simultaneously the variance of the projection of
the observations onto the principal axes and the sum of the squared correlations
between the principal component and the variables.

For didactic purposes, following Friendly (2007), we interpret two dimensions,
while the barplot of eigenvalues (Figure 1A) would rather suggest a 1-D or a 3-D
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FIG. 1. Principal component analysis of Guerry’s data. (A) Barplot of eigenvalues. (B) Correlation
between variables and principal components. (C) Projections of départements on principal axes. The
color of each square corresponds to a region of France.

solution. The first two PCA dimensions account for 35.7% and 20%, respectively,
of the total variance. The correlations between variables and principal components
are represented on the correlation circle in Figure 1B. As we have excluded Cor-
sica (an outlier) in the present paper, the results are slightly different from those
reported in Friendly (2007). The first axis is negatively correlated to literacy and
positively correlated to property crime, suicides and illegitimate births. The sec-
ond axis is aligned mainly with personal crime and donations to the poor. As we
are also interested in spatial patterns, we have added geographical information in
the form of color symbols on the factorial map of départements (Figure 1C). Each
color corresponds to one of five regions of France. The results are quite difficult
to interpret, but some general patterns can be reported. For the first axis, the North
and East are characterized by negative scores, corresponding to high levels of liter-
acy and high numbers of suicides, crimes against property and illegitimate births.
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The second axis mainly contrasts the West (high donations to the the poor and low
levels of crime against persons) to the South.

2.2. Spatial autocorrelation. Exploratory spatial data analysis (ESDA) is a
subset of exploratory data analysis [EDA, Tukey (1977)] that focuses on detecting
spatial patterns in data [Haining (1990)]. In this context, spatial autocorrelation
statistics, such as Moran (1948)’s Coefficient (MC) and the Geary (1954) Ratio,
aim to measure and analyze the degree of dependency among observations in a
geographical context [Cliff and Ord (1973)].

2.2.1. The spatial weighting matrix. The first step of spatial autocorrelation
analysis is to define a n × n spatial weighting matrix, usually denoted W. This
matrix is a mathematical representation of the geographical layout of the region
under study [Bivand (2008)]. The spatial weights reflect a priori the absence
(wij = 0), presence or intensity (wij > 0) of the spatial relationships between the
locations concerned. Spatial weighting matrices can be usefully represented as
graphs (neighborhood graphs), where nodes correspond to spatial units (départe-
ments) and edges to nonnull spatial weights.

The simplest neighborhood specification is a connectivity matrix C, in which
cij = 1 if spatial units i and j are neighbors and cij = 0 otherwise. More so-
phisticated definitions [Getis and Aldstadt (2004); Dray, Legendre and Peres-Neto
(2006)] are able to take into account the distances between the spatial units or the
length of the common boundary between the regions for areal data. In the case
of Guerry’s data, we simply defined a binary neighborhood where two départe-
ments i and j are considered as neighbors (cij = 1) if they share a common border
(Figure 2).

The connectivity matrix C is usually scaled to obtain a spatial weighting matrix
W, most often with zero diagonal. The row-sum standardization (elements sum to
1 in each row) is generally preferred; it is obtained by

wij = cij∑n
j=1 cij

.

Alternative standardizations are discussed in Tiefelsdorf, Griffith and Boots
(1999).

2.2.2. Moran’s coefficient. Once the spatial weights have been defined, the
spatial autocorrelation statistics can then be computed. Let us consider the n-by-1
vector x = [x1 · · ·xn]T containing measurements of a quantitative variable for n

spatial units. The usual formulation for Moran’s coefficient of spatial autocorrela-
tion [Cliff and Ord (1973); Moran (1948)] is

MC(x) = n
∑

(2) wij (xi − x̄)(xj − x̄)
∑

(2) wij

∑n
i=1 (xi − x̄)2 where

∑

(2)

=
n∑

i=1

n∑

j=1

with i �= j.(3)
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FIG. 2. Neighborhood relationships between départements of France.

MC can be rewritten using matrix notation:

MC(x) = n

1TW1
zTWz

zTz
,(4)

where z = (In − 1n1T
n/n)x is the vector of centered values (zi = xi − x̄) and 1n is

a vector of ones (of length n).
The numerator of MC corresponds to the covariation between contiguous ob-

servations. This covariation is standardized by the denominator, which measures
the variance among the observations. The significance of the observed value of
MC can be tested by a Monte Carlo procedure, in which locations are permuted to
obtain a distribution of MC under the null hypothesis of random distribution. An
observed value of MC that is greater than that expected at random indicates the
clustering of similar values across space (positive spatial autocorrelation), while a
significant negative value of MC indicates that neighboring values are more dis-
similar than expected by chance (negative spatial autocorrelation).

We computed MC for Guerry’s data set using the row-standardized definition of
the spatial weighting matrix associated with the neighborhood graph presented in
Figure 2. A positive and significant autocorrelation is identified for each of the six
variables (Table 2). Thus, the values of literacy are the most covariant in adjacent
departments, while illegitimate births (Infants) covary least.

2.2.3. Moran scatterplot. If the spatial weighting matrix is row-standardized,
we can define the lag vector z̃ = Wz (i.e., z̃i = ∑n

j=1 wijxj ) composed of the
weighted (by the spatial weighting matrix) averages of the neighboring values.
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TABLE 2
Values of Moran’s coefficient for the six variables.

P-values obtained by a randomization testing
procedure (999 permutations) are given in parentheses

MC

Crime_pers 0.411 (0.001)
Crime_prop 0.264 (0.001)
Literacy 0.718 (0.001)
Donations 0.353 (0.001)
Infants 0.229 (0.001)
Suicides 0.402 (0.001)

Equation (4) can then be rewritten as

MC(x) = zTz̃
zTz

,(5)

since in this case 1TW1 = n. Equation (5) shows clearly that MC measures the
autocorrelation by giving an indication of the intensity of the linear association
between the vector of observed values z and the vector of weighted averages of
neighboring values z̃. Anselin (1996) proposed to visualize MC in the form of a
bivariate scatterplot of z̃ against z. A linear regression can be added to this Moran
scatterplot, with slope equal to MC. The Moran scatterplot is a very nice graphical
tool to evaluate and represent the degree of spatial autocorrelation, the presence of
outliers or local pockets of nonstationarity [Anselin (1995)].

Considering the Literacy variable of Guerry’s data, the Moran scatterplot (Fig-
ure 3) clearly shows strong autocorrelation. It also shows that the Hautes-Alpes dé-
partement has a slightly outlying position characterized by a high value of Literacy
compared to its neighbors. This département can be considered as a leverage point
that drags down the assessment of the link between Literacy and spatial-lagged lit-
eracy (i.e., MC). This is confirmed by different diagnostic tools [DFFITS, Cook’s
D, e.g., Chatterjee and Hadi (1986)] adapted to the linear model.

2.3. Toward an integration of multivariate and geographical aspects. The in-
tegration of multivariate and spatial information has a long history in ecology.
The simplest approach considered a two-step procedure where the data are first
summarized with multivariate analysis such as PCA. In a second step, univariate
spatial statistics or mapping techniques are applied to PCA scores for each axis
separately. Goodall (1954) was the first to apply multivariate analysis in ecology,
and he integrated spatial information a posteriori by mapping PCA scores onto the
geographical space using contour lines. One can also test for the presence of spatial
autocorrelation for the first few scores of the analysis, with univariate autocorre-
lation statistics such as MC. For instance, we mapped scores of the départements
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FIG. 3. Moran scatterplot for Literacy. Dotted lines corresponds to means.

for the first two axes of the PCA of Guerry’s data (Figure 4). Even if PCA maxi-
mizes only the variance of these scores, there is also a clear spatial structure, as the
scores are highly autocorrelated. The map for the first axis corresponds closely to
the split between la France éclairée (North-East characterized by an higher level
of Literacy) and la France obscure.

FIG. 4. Principal component analysis of Guerry’s data. Map of départements’ scores for the first
(left) and second (right) PCA axes. Values of Moran’s coefficient and associated P-values obtained
by a randomization testing procedure (999 permutations) are given.
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It is very simple to carry out this two-step approach but it has the major disad-
vantage of being indirect, as it considers the spatial pattern only after summariz-
ing the main structures of the multivariate data set. Anselin, Syabri and Smirnov
(2002) proposed a more direct approach by extending the Moran scatterplot to the
bivariate case. If we consider two centered variables z1 and z2, the bivariate Moran
scatterplot represents z̃2 = Wz2 on the vertical axis and z1 on the horizontal axis.
In a case with more than two variables, one can produce bivariate Moran scatter-
plots for all combinations of pairs of variables. However, this approach becomes
difficult to use when the number of variables increases. In the next section we
present several approaches that go one step further by considering the identifica-
tion of spatial structures and the dimensionality reduction simultaneously.

3. Spatial multivariate analysis. Over the last two decades, several ap-
proaches have been developed to consider both geographical and multivariate in-
formation simultaneously. The multivariate aspect is usually treated by techniques
of dimensionality reduction similar to PCA. On the other hand, several alterna-
tives have been proposed to integrate the spatial information. We review various
alternatives in the following sections.

3.1. Spatial partition. One alternative is to consider a spatial partition of the
study area. In this case, the spatial information is coded as a categorical variable,
and each category corresponds to a region of the whole study area. This partition-
ing can be inherent to the data set (e.g., administrative units) or can be constructed
using geographic information systems [e.g., grids of varying cell size in Dray, Pet-
torelli and Chessel (2003)]. For instance, Guerry’s data contained a partition of
France into 5 regions (Figure 1).

In this context, searching for multivariate spatial structures would lead us to look
for a low-dimensional view that maximizes the difference between the regions. To
this end, Friendly (2007) used discriminant analysis, a widely-used method provid-
ing linear combinations of variables that maximize the separation between groups
as measured by an univariate F statistic. However, this method suffers from some
limitations: it requires the number of variables to be smaller than the number of
observations, and it is impaired by collinearity among variables. Here we used an
alternative and lesser known approach, the between-class analysis [BCA, Dolédec
and Chessel (1987)], to investigate differences between regions. Unlike discrimi-
nant analysis, BCA maximizes the variance between groups (without accounting
for the variance within groups) and is not subject to the restrictions applying to the
former method.

BCA associates a triplet (X,Q,D) to a n × g matrix Y of dummy variables in-
dicating group membership. Let A be the g × p matrix of group means for the p
variables and DY be the g × g diagonal matrix of group weights derived from the
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FIG. 5. Between-class analysis of Guerry’s data. (A) Barplot of eigenvalues. (B) Coefficients of
variables. (C) Projections of départements on the BCA axes. Map of départements scores for the first
(D) and second (E) axes. The different colors correspond to regions of France.

matrix D of observation weights. By definition, we have A = (YTDY)−1YTDX
and DY = (YTDY). BCA corresponds to the analysis of (A,Q,DY) and diagonal-
izes the between-groups covariance matrix ATDYAQ.

Here, 28.8% of the total variance (sum of eigenvalues of PCA) corresponds
to the between-regions variance (sum of the eigenvalues of BCA). The barplot of
eigenvalues indicates that two axes should be interpreted (Figure 5A). The first two
BCA dimensions account for 59% and 30.2%, respectively, of the between-regions
variance. The coefficients used to construct the linear combinations of variables
are represented on Figure 5B. The first axis opposed literacy to property crime,
suicides and illegitimate births. The second axis is mainly aligned with personal
crime and donations to the poor. The factorial map of départements (Figure 5C)
and the maps of the scores (Figure 5D, E) show the spatial aspects. The results are
very close to those obtained by PCA: the first axis contrasted the North and the
East (la France éclairée) to the other regions, while the South is separated from
the other regions by the second axis. The high variability of the region Center is
also noticeable. In contrast, the South is very homogeneous.
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3.2. Spatial explanatory variables. Principal component analysis with respect
to the instrumental variables [PCAIV, Rao (1964)], also known as redundancy
analysis [van den Wollenberg (1977)], is a direct extension of PCA and mul-
tiple regression adapted to the case of multivariate response data. The analy-
sis associates a n × q matrix Z of explanatory variables to the triplet (X,Q,D)

where the matrix X contains the response variables. The D-orthogonal projector
PZ = Z(ZTDZ)−1ZTD is first used in a multivariate regression step to compute
a matrix of predicted values X̂ = PZX. The second step of PCAIV consists of
the PCA of this matrix of predicted values and corresponds then to the analysis
of the triplet (X̂,Q,D). Whereas PCA maximizes the variance of the projection of
the observations onto the principal axes, PCAIV maximizes the variance explained
by Z.

PCAIV and related methods, such as canonical correspondence analysis [ter
Braak (1986)], have been often used in community ecology to identify spatial re-
lationships. The spatial information is introduced in the matrix Z under the form of
spatial predictors and the analysis maximized then the “spatial variance” (i.e., the
variance explained by spatial predictors). Note that BCA can also be considered as
a particular case of PCAIV, where the explanatory variables are dummy variables
indicating group membership.

3.2.1. Trend surface of geographic coordinates. From the EDA point of view,
the data exploration has been conceptualized by Tukey (1977) in the quasi-
mathematical form DATA = SMOOTH + ROUGH. Trend surface analysis is the
oldest procedure for separating large-scale structure (SMOOTH) from random
variation (ROUGH). Student (1914) proposed expressing observed values in time
series as a polynomial function of time, and mentioned that this could be done
for spatial data as well. Borcard, Legendre and Drapeau (1992) extended this ap-
proach to the spatial and multivariate case by introducing polynomial functions
of geographic coordinates as predictors in PCAIV. We call this approach PCAIV-
POLY in the rest of the paper. Usually, polynomials of degree 2 or 3 are used;
spurious correlations between these spatial predictors can be removed using an
orthogonalization procedure to obtain orthogonal polynomials.

The centroids of départements of France were used to construct a second-degree
orthogonal polynomial (Figure 6).

Here, 32.4% of the total variance (sum of eigenvalues of PCA) is explained by
the second-degree polynomial (sum of eigenvalues of PCAIV). The first two di-
mensions account for 51.4% and 35.2%, respectively, of the explained variance.
The outputs of PCAIV-POLY (coefficients of variables, maps of départements
scores, etc.) are not presented, as they are very similar to those obtained by BCA.

3.2.2. Moran’s eigenvector maps. An alternative way to build spatial predic-
tors is by the diagonalization of the spatial weighting matrix W. de Jong, Sprenger
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FIG. 6. Maps of the terms of a second-degree orthogonal polynomial. Centroids of départements
have been used as original coordinates to construct the polynomial.

and van Veen (1984) have shown that the upper and lower bounds of MC for a
given spatial weighting matrix W are equal to λmax(n/1TW1) and λmin(n/1TW1),
where λmax and λmin are the extreme eigenvalues of � = HWH where H =
(I − 11T/n) is a centering operator. If a nonsymmetric spatial weighting matrix
W∗ has been defined, the results can be generalized using W = (W∗ + W∗T)/2.

Moran’s eigenvector maps [MEM, Dray, Legendre and Peres-Neto (2006)] are
the n − 1 eigenvectors of �. They are orthogonal vectors with a unit norm max-
imizing MC [Griffith (1996)]. MEM associated with high positive (or negative)
eigenvalues have high positive (or negative) autocorrelation. MEM associated with
eigenvalues with small absolute values correspond to low spatial autocorrelation,
and are not suitable for defining spatial structures [Dray, Legendre and Peres-Neto
(2006)]. Unlike polynomial functions, MEM have the ability to capture various
spatial structures at multiple scales (coarse to fine scales). MEM have been used
for spatial filtering purposes [Griffith (2003); Getis and Griffith (2002)] and in-
troduced as spatial predictors in linear models [Griffith (1996, 2000)], generalized
linear models [Griffith (2002, 2004)] and multivariate analysis [Dray, Legendre
and Peres-Neto (2006); Jombart, Dray and Dufour (2009)].

We used the spatial weighting matrix associated to the neighborhood graph pre-
sented on Figure 2 to construct MEM. The first ten MEM, corresponding to the
highest levels of spatial autocorrelation, have been mapped in Figure 7 and intro-
duced as spatial explanatory variables in PCAIV. We call this approach PCAIV-
MEM in the rest of the paper. 44.1% of the total variance (sum of eigenvalues of
PCA) is explained by the first ten MEM (sum of eigenvalues of PCAIV). The first
two dimensions account for 54.9% and 26.3%, respectively, of the explained vari-
ance. The outputs of PCAIV-MEM (coefficients of variables, maps of département
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FIG. 7. Maps of the first ten MEM of the spatial weighting matrix associated to the neighborhood
graph presented on Figure 2. By definition, MEM are orthogonal vectors maximizing the values of
Moran’s coefficient.

scores, etc.) are not presented, as they are very similar to those obtained by the
previous analyses.

3.3. Spatial graph and weighting matrix. The MEM framework introduced
the spatial information into multivariate analysis through the eigen-decomposition
of the spatial weighting matrix. Usually, we consider only a part of the information
contained in this matrix because only a subset of MEM are used as regressors in
PCAIV. In this section we focus on multivariate methods that consider the spatial
weighting matrix under its original form.

Lebart (1969) was the first to introduce a neighborhood graph into a multivariate
analysis. Following this initial work, many methods have been mainly developed
by the French school of statisticians [Le Foll (1982); Benali and Escofier (1990);
Méot, Chessel and Sabatier (1993)]. These contributions were important from a
methodological point of view, but have been rarely used for applied problems.
Indeed, they have a major drawback in their objectives: they maximize the local
variance (i.e., the difference between neighbors), while users more often want to
minimize this quantity and maximize the spatial correlation (i.e., the SMOOTH).

Wartenberg (1985) was the first to develop a multivariate analysis based on MC.
His work considered only normed and centered variables (i.e., normed PCA) for
the multivariate part and a binary symmetric connectivity matrix for the spatial
aspect. Dray, Saïd and Débias (2008) generalized Wartenberg’s method by intro-
ducing a row-standardized spatial weighting matrix in the analysis of a statisti-
cal triplet (X,Q,D). Hence, this approach is very general and allows us to de-
fine spatially-constrained versions of various methods (corresponding to different
triplets) such as correspondence analysis or multiple correspondence analysis.

By extension of the lag vector, a lag matrix X̃ = WX can be defined. The two ta-
bles X̃ and X are fully matched, that is, they have the same columns (variables) and
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rows (observations). MULTISPATI (Multivariate spatial analysis based on Moran’s
index) aims to identify multivariate spatial structures by studying the link between
X̃ and X using the coinertia analysis [Dolédec and Chessel (1994); Dray, Ches-
sel and Thioulouse (2003a)] of a pair of fully matched tables [Torre and Chessel
(1995); Dray, Chessel and Thioulouse (2003b)]. It corresponds to the analysis of
the statistical triplet (X,Q, 1

2(WTD + DW)). The objective of the analysis is to
find a vector a (with ‖a‖2

Q) maximizing the quantity defined in equation (1):

Q(a) = aTQTXT 1
2(WTDT + DW)XQa

= 1
2(aTQTXTWTDTXQa + aTQTXTDWXQa)

(6)
= 1

2〈XQa,WXQa〉D + 〈WXQa,XQa〉D

= aTQTXTDWXQa = rTDWr = rTDr̃.

This analysis maximizes the scalar product between a linear combination of
original variables (r = XQa) and a linear combination of lagged variables (r̃ =
WXQa). Equation (6) can be rewritten as

Q(a) = aTQTXTDWXQa
aTQTXTDXQa

aTQTXTDXQa

(7)
= MCD(XQa) · ‖XQa‖2

D = MCD(r) · ‖r‖2
D.

MULTISPATI finds coefficients (a) to obtain a linear combination of variables
(r = XQa) that maximizes a compromise between the classical multivariate anal-
ysis (‖r‖2

D) and a generalized version of Moran’s coefficient [MCD(r)]. The only
difference between the classical Moran’s coefficient [equation (4)] and its general-
ized version MCD is that the second one used a general matrix of weights D, while
the first considers only the usual case of uniform weights (D = 1

n
In).

In practice, the maximum of equation (7) is obtained for a = a1, where a1 is the
first eigenvector of the Q-symmetric matrix 1

2XT(WTD + DW)Q. This maximal
value is equal to the associated eigenvalue λ1. Further eigenvectors maximize the
same quantity with the additional constraint of orthogonality.

MULTISPATI has been applied to Guerry’s data (Figure 8). The barplot of
eigenvalues (Figure 8A) suggests two main spatial structures. The coefficients
used to construct the linear combinations of variables are represented in Fig-
ure 8B. The first axis opposes literacy to property crime, suicides and illegitimate
births. The second axis is aligned mainly with personal crime and donations to the
poor. The maps of the scores (Figure 8C, E) show that the spatial structures are
very close to those identified by PCA. The similarity of results between PCA and
its spatially optimized version confirm that the main structures of Guerry’s data
are spatial.

MULTISPATI maximizes the product between the variance and the spatial au-
tocorrelation of the scores, while PCA (Figure 1) maximizes only the variance.
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FIG. 8. MULTISPATI of Guerry’s data. (A) Barplot of eigenvalues. (B) Coefficients of variables.
Mapping of scores of plots on the first (C) and second (E) axis and of lagged scores (averages of
neighbors weighted by the spatial connection matrix) for the first (D) and second (F) axis. Represen-
tation of scores and lagged scores (G) of plots (for each département, the arrow links the score to the
lagged score). Only the départements discussed in the text are indicated by their labels.

Hence, there is a loss of variance compared to PCA (2.14 versus 2.017 for axis 1;
1.201 versus 1.177 for axis 2) but a gain of spatial autocorrelation (0.551 versus
0.637 for axis 1; 0.561 versus 0.59 for axis 2).

Spatial autocorrelation can be seen as the link between one variable and the
lagged vector [equation (5)]. This interpretation is used to construct the Moran
scatterplot and can be extended to the multivariate case in MULTISPATI by analyz-
ing the link between scores (Figure 8C, E) and lagged scores (Figure 8D, F). Each
département can be represented on the factorial map by an arrow (the bottom cor-
responds to its score, the head corresponds to its lagged score, Figure 8G). A short
arrow reveals a local spatial similarity (between one plot and its neighbors), while
a long arrow reveals a spatial discrepancy. This viewpoint can be interpreted as a
multivariate extension of the local index of spatial association [Anselin (1995)].
For instance, Aude has a very small arrow, indicating that this département is very
similar to its neighbors. On the other hand, the arrow for Haute-Loire has a long
horizontal length which reflects its high values for the variables Infants (31017),
Suicides (163241) and Crime_prop (18043) compared to the average values over
its neighbors (27032.4, 60097.8 and 10540.8 for these three variables). Finistère
corresponds to an arrow with a long vertical length which is due to its high values
compared to its neighbors for Donations (23945 versus 12563) and Crime_pers
(29872 versus 25962).
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4. Conclusions. We have presented different ways of incorporating the spa-
tial information in multivariate analysis methods. While PCA is not constrained,
spatial information can be introduced as a partition (BCA), a polynomial of
geographic coordinates (PCAIV-POLY), a subset of Moran’s eigenvector maps
(PCAIV-MEM) or a spatial neighborhood graph (MULTISPATI). This variety of
constraints induces a diversity of criteria to be maximized by each method: vari-
ance (PCA), variance explained by a spatial partition (BCA) or by spatial predic-
tors (PCAIV-POLY, PCAIV-MEM), product of the variance by the spatial auto-
correlation (MULTISPATI). By presenting these methods in the duality diagram
framework, we have shown that these approaches are very general, and can be
applied to virtually any multivariate analysis.

These theoretical considerations have practical implications concerning the use
of these methods in applied studies. PCA is a very general method allowing one to
identify the main spatial and nonspatial structures. BCA maximally separates the
groups corresponding to a spatial partition. It is thus adapted when a study focuses
on spatial structures induced by a partitioning defined a priori (e.g., administrative
units, etc.). If such an a priori partitioning does not exist, one can easily define such
a partition albeit introducing some element of subjectivity in the consideration of
the spatial information. This problem is solved by PCAIV-POLY, which uses poly-
nomials to incorporate the spatial information. Polynomials are easily constructed,
but their use is only satisfactory when the sampling area is roughly homogeneous
and the sampling design is nearly regular [Norcliffe (1969)]. Other limitations to
their use have been reported in the literature such as the arbitrary choice of the de-
gree and their ability to account only for smooth broad-scale spatial patterns [Dray,
Legendre and Peres-Neto (2006)].

The use of graphs and spatial weighting matrices allows the construction of
more efficient and flexible representations of space. Binary spatial weighting ma-
trices can be constructed using distance criteria or tools derived from graph theory
[Jaromczyk and Toussaint (1992)]; they may also describe spatial discontinuities,
boundaries or physical barriers in the landscape. Spatial weights can be associated
to the binary links to represent the spatial heterogeneity of the landscape using
functions of geographic distances or least-cost links between sampling locations
[Fall et al. (2007)] or any other proxies/measures of the potential strength of con-
nection between the locations. MEM are obtained by the eigen-decomposition of
the spatial weighting matrix W. For a data set with n observations, this eigen-
decomposition produces n − 1 MEM. Hence, a subset of these spatial predictors
must be selected to avoid overfitting in the multivariate regression step of PCAIV.
Concerning Guerry’s data set, we choose the first ten MEM arbitrarily. Other ob-
jective selection procedures have been proposed in the literature. For instance,
the criteria can be based on the minimization of the autocorrelation in residuals
[Tiefelsdorf and Griffith (2007)] or on the maximization of the fit of the model
[Blanchet, Legendre and Borcard (2008)]. Hence, only a part of the spatial infor-
mation contained in W (corresponding to the subset of MEM retained by the se-
lection procedure) is considered in PCAIV. In MULTISPATI, the spatial weighting
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TABLE 3
Procrustes statistics measuring the concordance between the scores
of the départements on the first two axes of the different analyses.
A value of 1 indicates a perfect match between two configurations

of département scores. Randomization procedures with 999
permutations have been used to test the significance of the
concordance. All the statistics are significant (p = 0.001)

PCA BCA PCAIV-POLY PCAIV-MEM

BCA 0.979
PCAIV-POLY 0.979 0.990
PCAIV-MEM 0.989 0.994 0.995
MULTISPATI 0.987 0.995 0.995 0.999

matrix is used in its original form, so that the whole spatial information contained
in it is taken into account in the multivariate analysis.

Even if the methods presented are quite different in their theoretical and prac-
tical viewpoints, their applications to Guerry’s data set yield very similar results.
We provided a quantitative measure of this similarity by computing Procrustes
statistics [Peres-Neto and Jackson (2001); Dray, Chessel and Thioulouse (2003b)]
between the scores of the départements on the first two axes for the different anal-
yses (Table 3). All the values of the statistics are very high and significant; this
confirms the high concordance between the outputs of the different methods. This
similarity of results is due to the very clear structures of the data set and to the high
level of autocorrelation of these structures (Figure 4). In this example the main ad-
vantage of the spatially-constrained methods is in the choice of the number of
dimensions to interpret; while the barplot of eigenvalues of PCA can be difficult
to interpret (see above and Figure 1A), it is clear that two spatial dimensions must
be interpreted in BCA (Figure 5A) or MULTISPATI (Figure 8A).

In the case of Guerry’s data, the very simple and clear-cut structures seem to
be recovered by all the approaches presented here. In more complex data sets,
spatially constrained methods prove superior to standard approaches for detecting
spatial multivariate patterns. Dray, Saïd and Débias (2008) presented an example
where a standard multivariate method was unable to identify any structure and
is outperformed by MULTISPATI, which allows us to discover interesting spatial
patterns. In general, if the objective of a study is to detect spatial patterns, it would
be preferable to use a spatially-constrained method. PCA could also be useful, but
it is designed to identify the main structures that can or cannot be spatialized. On
the other hand, spatial multivariate methods are optimized to focus on the spa-
tial aspect and would generally produce clearer and smoother results. The outputs
and interpretation tools of these methods are also more adapted to visualizing and
quantifying the main multivariate spatial structures.
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From a methodological viewpoint, these approaches provide new ways of tak-
ing into account the complexity of sampling designs in the framework of mul-
tivariate methods. Following the famous paper of Legendre (1993), the analysis
of spatial structures has been a major issue in community ecology and originated
several methodological developments in the field of spatial multivariate analysis.
To date, the most integrated and flexible approaches have used a spatial weighting
matrix which can be seen as a general way to consider spatial proximities. Poten-
tial methodological perspectives are important, as these approaches could easily
be extended to any other sampling constraints that can be expressed in the form of
a matrix of similarities between the observations.
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an earlier version of the manuscript. We thank Susan Holmes for her invitation to
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SUPPLEMENTARY MATERIAL

Implementation in R (DOI: 10.1214/10-AOAS356SUPP; .zip). This website
hosts an R package (Guerry) containing the Guerry’s data set (maps and data).
The package contains also a tutorial (vignette) showing how to reproduce the anal-
yses and the graphics presented in this paper using mainly the package ade4 [Dray
and Dufour (2007)]. The package Guerry is also available on CRAN and can be
installed using the install.packages(“Guerry”) command in a R ses-
sion.
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