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SPARSE REGULATORY NETWORKS
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In many organisms the expression levels of each gene are controlled by
the activation levels of known “Transcription Factors” (TF). A problem of
considerable interest is that of estimating the “Transcription Regulation Net-
works” (TRN) relating the TFs and genes. While the expression levels of
genes can be observed, the activation levels of the corresponding TFs are usu-
ally unknown, greatly increasing the difficulty of the problem. Based on pre-
vious experimental work, it is often the case that partial information about the
TRN is available. For example, certain TFs may be known to regulate a given
gene or in other cases a connection may be predicted with a certain proba-
bility. In general, the biology of the problem indicates there will be very few
connections between TFs and genes. Several methods have been proposed for
estimating TRNs. However, they all suffer from problems such as unrealis-
tic assumptions about prior knowledge of the network structure or computa-
tional limitations. We propose a new approach that can directly utilize prior
information about the network structure in conjunction with observed gene
expression data to estimate the TRN. Our approach uses L1 penalties on the
network to ensure a sparse structure. This has the advantage of being com-
putationally efficient as well as making many fewer assumptions about the
network structure. We use our methodology to construct the TRN for E. coli
and show that the estimate is biologically sensible and compares favorably
with previous estimates.

1. Introduction. Recent progress in genomic technology allows scientists to
gather vast and detailed information on DNA sequences, their variability, the tim-
ing and modality of their translation into proteins, and their abundance and inter-
acting partners. The fields of system and computational biology have been rede-
fined by the scale and resolution of these data sets and the necessity to interpret
this data deluge. One theme that has clearly emerged is the importance of discov-
ering, modeling and exploiting interactions among different biological molecules.
In some cases, these interactions can be measured directly, in others they can be
inferred from data on the interacting partners. In this context, reconstructing net-
works, analyzing their behavior and modeling their characteristics have become
fundamental problems in computational biology.
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FIG. 1. A general network with L = 3 transcription factors and n = 7 genes.

Depending on the type of biological process considered, and the type of data
available, different network structures and graph properties are relevant. In this
work we focus on one type of bipartite network that has been used to model tran-
scription regulation, among other processes, and is illustrated in Figure 1. One
distinguishes input nodes (p1,p2,p3 in Figure 1) and output nodes (e1, . . . , e7 in
Figure 1); directed edges connect input nodes to one or more output nodes and
indicate control. Furthermore, we can associate a numerical value with each edge,
which indicates the nature and strength of the control.

Bipartite networks such as the one illustrated in Figure 1 have been successfully
used to describe and analyze transcription regulation [see, e.g., Liao et al. (2003)].
Transcription is the initial step of the process whereby the information stored in
genes is used by the cell to assemble proteins. To adapt to different cell functions
and different environmental conditions, only a small number of the genes in the
DNA are transcribed at any given time. Understanding this selective process is the
first step toward understanding how the information statically coded in DNA dy-
namically governs all the cell life. One critical role in the regulation of this process
is played by transcription factors. These molecules bind in the promoter region of
the genes, facilitating or making it impossible for the transcription machinery to
access the relevant portion of the DNA. To respond to different environments, tran-
scription factors have multiple chemical configurations, typically existing both in
“active” and “inactive” forms. Their binding affinity to the DNA regulatory regions
varies depending on the particular chemical configuration, allowing for a dynamic
regulation of transcription. Depending on the complexity of the organism at hand,
the total number of Transcription Factors (TF) varies, as well as the number of TF
participating in the regulation of each gene. In bipartite networks such as the one in
Figure 1, input nodes can be taken to represent the variable concentrations in active
form of transcription factors, and output nodes as the transcript amounts of differ-
ent genes. An edge connecting a TF to a gene indicates that the TF participates
in the control of the gene transcription. As usual, mathematical stylization only
captures a simplified version of reality. Bipartite graphs overlook some specific
mechanisms of transcription regulation, such as self-regulation of TF expression
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or feed-back loops connecting genes to transcription factors. Despite these limi-
tations, networks such as the one in Figure 1 provide a useful representation of a
substantial share of the biological process.

Researchers interested in reconstructing transcription regulation have at their
disposal a variety of measurement types, which in turn motivate diverse estima-
tion strategies. The data set that motivated the development of our methodology
consisted of measurements of gene transcription levels for E. coli, obtained from
a collection of 35 gene expression arrays. These experiments, relatively cheap and
fairly common, allow one to quantify transcription amounts for all the genes in the
E. coli genome, under diverse cell conditions. While our data consists of measure-
ments on the output nodes, that is, the gene expression levels, we also have access
to some information on the topology of the network: DNA sequence analysis or
ChIP–chip experiments can be used to evaluate the likelihood of each possible
edge. However, we have no direct measurements of the input nodes, that is, the
concentrations of active form of the TFs. While, in theory, it is possible to ob-
tain these measurements, they are extremely expensive and are typically unavail-
able. Changes in transcription of TF are measured with gene expression arrays, but
mRNA levels of transcription factors seldom correlate with changes in the concen-
tration of their active form. The latter, in fact, are most often driven by changes
in TF expression level only in response to the cell inner clock (i.e., in develop-
ment, or in different phases of the cell cycle). We are interested in studying the
cellular response to external stimuli and this is most frequently mediated by post-
translational modifications of the TF. For these reasons, we are going to consider
the concentrations of active forms of the TF as unobserved.

Our E. coli data consist of spotted array experiments with two dyes, which mea-
sure the changes in expression from a baseline level for the queried genes (taking
the logarithm of the ratio of intensities, typically reported as raw data). These per-
centage changes can be related linearly to variations in the concentrations of ac-
tive form of transcription factors, as documented in Liao et al. (2003). Coupling
this linearity assumption, with the bipartite network structure, we model the log-
transformed expressions of gene i in experiment t , eit , as

eit =
L∑

j=1

aijpjt + εit , i = 1, . . . , n, t = 1, . . . , T ,

where n, L and T respectively denote the number of genes, TFs and experiments,
aij represents the control strength of transcription factor j on gene i, pjt the con-
centration of the active form of transcription factor j in experiment t , and εit cap-
tures i.i.d. measurement errors and biological variability. A value of aij = 0 indi-
cates that there is no network connection or, equivalently, no relationship, between
gene i and TF j , while nonzero values imply that changes in the TF affect the
gene’s expression level. It is convenient to formulate the model in matrix notation,

E = AP + ε,(1)
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where E is an n × T matrix of eit ’s, A is an n × L matrix of aij ’s and P is an
L × T matrix of pjt ’s. A and P are both unknown quantities.

Model (1), derived from the bipartite regulatory network and linearity assump-
tion, is a very familiar one to statisticians and a number of its variants have been
applied to the study of gene expression and other data. The first attempts utilized
dimension reduction techniques such as principal component analysis (PCA) or
singular value decomposition [Alter, Brown and Botstein (2000)]. Using this ap-
proach, a unique solution to simultaneously estimate the pj ’s and the strength of
the network connections is obtained by assuming orthogonality of the pj ’s—an
assumption that does not have biological motivations. Some variants of PCA, that
aim to produce more interpretable results, have also been studied. For example,
Lee and Seung (1999, 2001) developed nonnegative matrix factorization (NNMF)
where the elements of A and P are all constrained to be positive. However, for
our data we would expect both positive and negative control strengths, so it does
not seem reasonable to enforce the elements of A to be positive. An interesting
development is the use of Independent Component Analysis [Lee and Batzoglou
(2003)], where the orthogonality assumption is substituted by stochastic indepen-
dence. These models can be quite effective in providing a dimensionality reduc-
tion, but the resulting p’s often lack interpretability.

West (2003) treats (1) as a factor model and uses a Bayesian approach to reduce
the dimension of expression data, paying particular attention to the development
of sparse models, in order to achieve a biologically realistic representation. When
the gene expression data refers to a series of experiments in a meaningful order
(temporal, by degree of exposure, etc.), model (1) can be considered as the emis-
sion component of a state space model, where hidden states can be meaningfully
connected to transcription factors [Beal et al. (2005), Li et al. (2006), Sanguinetti
et al. (2006)]. Depending on the amount of knowledge assumed on the A matrix,
state space models can deal with networks of different size and complexity.

Values of the factors, P , that are clearly interpretable as changes in concen-
tration of the active form of transcription factors together with the identifiability
of model (1) can be achieved by imposing restrictions on A that reflect available
knowledge on the topology of the network. Liao et al. (2003) assumes the en-
tire network structure known a priori and gives conditions for identifiability of A

and P based on the pattern of zeros in A, reflecting the natural sparsity of the sys-
tem. A simple iterative least squares procedure is proposed for estimation, and the
bootstrap used to asses variability. This approach has two substantial limitations.
First, it assumes that the entire network structure is known, while, in practice, it
is most common for only parts of the structure to have been thoroughly studied.
Second, not all known transcription networks satisfy the identifiability conditions.
A number of subsequent contributions have addressed some of these limitations.
Tran et al. (2005) introduces other, more general, identifiability conditions; Yu
and Li (2005) proposes an alternative estimation procedure for the factor model;
Brynildsen, Tran and Liao (2006) explores the effect of inaccurate specification of
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the network structure; Chang et al. (2008) proposes a faster algorithm. Pournara
and Wernisch (2007) provides an informed review of the use of factor models for
regulatory networks, surveying both different identifiability strategies and compu-
tational approaches.

Particularly relevant to the present paper is the work of Sabatti and James
(2006), which removes both limitations of the Liao et al. (2003) method by using a
Bayesian approach. The authors obtain a prior probability on the network structure
using sequence analysis, and then use a Gibbs sampler to produce posterior esti-
mates of the TRN. In theory, this approach can be applied to any network structure,
even when only part of the structure is known. However, a significant limitation
is that the computational effort required to implement the Gibbs sampler grows
exponentially with the number of potential connections between a particular gene
and the transcription factors. As a result, one is forced to choose a prior on the
network where the probability of most edges is set to zero, thereby fixing a priori
a large portion of the topology. While sparsity in the connections is biologically
reasonable, it would obviously be more desirable to allow the gene expression data
to directly identify the connections.

To overcome these limitations, in this paper we take a somewhat different ap-
proach that builds in the same advantages as the Bayesian method in terms of
utilizing partial network information and working for any structure. However, our
approach is more computationally efficient, which allows increased flexibility in
determining the final network topology. We treat the estimation of both the con-
nection strengths, A, and the transcription factors concentrations, P , as a vari-
able selection problem. In this context, our data has an extremely large number
of variables, that is, potential connections, but is sparse in terms of the number of
“true” variables, that is, connections that actually exist. There have recently been
important methodological innovations for this type of variable selection problem.
A number of these methods involve the use of an L1 penalty on the regression
coefficients which has the effect of performing automatic variable selection. A few
examples include the Lasso [Tibshirani (1996)], SCAD [Fan and Li (2001)], the
Elastic Net [Zou and Hastie (2005)], the adaptive Lasso [Zou (2006)], the Dantzig
selector [Candes and Tao (2007)], the Relaxed Lasso [Meinshausen (2007)], VISA
[Radchenko and James (2008)] and the Double Dantzig [James and Radchenko
(2009)]. The most well known of these approaches is the Lasso, which performs
variable selection by imposing an L1 penalty on the regression coefficients. In
analogy with the Lasso, our method also utilizes L1 penalties on the connection
strengths, A, as well as the transcription factor concentrations, P . This allows us
to automatically produce a sparse network structure, which incorporates the prior
information. We show that, given the same prior network, our approach produces
similar results to the Bayesian formulation, but is considerably more computation-
ally efficient. This in turn allows us to reconstruct regulatory networks using less
precise prior information.
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FIG. 2. Transcription network reconstruction integrating DNA sequence and gene expression in-
formation. Blue circles represent regulatory proteins and red squares genes. An arrow connecting a
circle to a square indicates that the transcription factor controls the expression of the gene. When dif-
ferent colors are used in depicting these arrows, they signify a different qualitative effect of the TF on
genes (repressor or enhancer). Finally, varying arrow thickness signifies different control strengths.

Figure 2 gives a schematic illustration of our approach. First, we identify a
group of transcription factors that are believed to regulate the gene expression
levels. Second, we compute an initial topology for the network using both docu-
mented experimental evidence, as well as an analysis of the DNA sequence up-
stream of a given gene. Finally, we use the initial topology, as well as the gene
expression levels from multiple experiments, as inputs to our L1 penalized regres-
sion approach to produce an updated final network topology, a quantification of
the connection strengths and an estimation of the transcription factor levels.

The paper is structured as follows. In Section 2 we provide a detailed descrip-
tion of the data that we are analyzing and the available prior information. Sec-
tion 3 develops the methodological approach we use to fit the transcription reg-
ulation network. Our analysis of the E. coli data is presented in Section 4. We
also include a comparison with the results using the Bayesian approach in Sabatti
and James (2006). A simulation study where we compare our approach with two
other possible methods is provided in Section 5, followed by a discussion in Sec-
tion 6.
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2. Data and prior information on network structure. The data set that mo-
tivated the development of our methodology included 35 microarray experiments
of Escherichia coli that were either publicly available or were carried out in the lab-
oratory of Professor James C. Liao at UCLA. The experiments consisted of Tryp-
tophan timecourse data (1–12) [Khodursky et al. (2000)], glucose acetate transition
data (13–19) [Oh and Liao (2000b), Oh, Rohlin and Liao (2002)], UV exposure
data (20–24) [Courcelle et al. (2001)] and a protein overexpression timecourse data
set (25–35) [Oh and Liao (2000a)]. In all cases, gene expression arrays allow us
to monitor the cellular response to external stimuli: as noted in the introduction,
this is mediated by changes in concentration of active forms of the transcription
factors. Current knowledge alerts us that the TrpR regulon should be activated in
the Tryptophan timecourse data, the LexA regulon should be activated in the UV
experiments, and the RpoH regulon in the protein overexpression data. To provide
the reader with a clearer picture of the underlying biology, we detail the case of
Tryptophan starvation and UV exposure. The Trp operon encodes enzymes neces-
sary for synthesis of the amino acid tryptophan; it is suppressed by TrpR, which
can bind to the DNA only in the presence of Tryptophan. When Tryptophan is de-
pleted, TrpR stops acting as a suppressor, and the Trp operon is transcribed. Treat-
ing Escherichia coli with radiation produces some damage, which, in turn, induces
a number of cellular responses, aiming at counteracting it. One well-known re-
sponse is called SOS and is controlled by the RecA and LexA proteins. Typically,
LexA represses SOS genes. When single-stranded DNA, produced as a result of
radiation damage, is present in the cell, it binds to the RecA protein, activating its
protease function; the activated RecA cuts the LexA protein, which can no longer
act as a repressor, and the SOS genes are induced. Note that both TrpR and LexA
auto-regulate, but post-translational modifications play a dominant role in chang-
ing their concentration of active form in response to external stimuli.

To reduce spurious effects due to the inhomogeneity of the data collection, we
standardized the values of each experiment, so that the mean across all genes in
each experiment was zero and the variance one. Merging these different data sets
resulted in expression measurements on 1433 genes across 35 experiments.

We also were able to identify partial information about the network structure
connecting the transcription factors and genes. We first identified a set of tran-
scription factors that previous literature suggested were important in this system:
this resulted in 37 transcription factors. Our bipartite network structure can be rep-
resented using the n × L matrix A of control strengths where n = 1433 is the
number of genes under consideration and L = 37 is the number of transcription
factors. Note that the fact that we consider more transcription factors (37) than
experiments (35) makes it impossible to analyze this network structure using the
NCA framework presented by Liao et al. (2003).

The element aij is nonzero if TF j regulates gene i, and zero otherwise. For
a number of well-studied TF, experimental data is available that clearly indi-
cates their binding in the upstream region of regulated genes (in other words,
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aij �= 0). However, for many of the elements of A, only partial information is
available. To summarize the prior evidence on the network structure, we introduce
πij = P(aij �= 0). If there is documented experimental evidence of a binding site
for transcription factor j in the promoter region of gene i, we set πij = 1. We as-
sign values to the remaining elements of π using an analysis of the DNA sequence
upstream of the studied genes. We use available information on the characteristics
of the DNA sequence motif recognized by the TF to inform the sequence analy-
sis, carried out with Vocabulon [Sabatti and Lange (2002)]. Vocabulon produces
an estimated probability that TF j controls gene i which we used as an initial
value for πij . This algorithm is particularly well suited for this genomewide inves-
tigation, but other methodologies could also be applied. We hence identify all the
putative binding sites for these transcription factors in the portion of the genome
sequence that is likely to have a regulatory function.

Two qualifications are in order. First, resorting to Vocabulon and sequence
analysis is only but one venue to gather knowledge on the network structure. In
particular, it is worth noting that results from ChIP–Chip experiments are an im-
portant source of information that could be used for this purpose (see Boulesteix
and Strimmer (2005) and Sun, Carroll and Zhao (2006) for a detailed study of
these data). Second, the degree of sparsity of the initial network can be substan-
tially varied, as documented in Section 4.3. Indeed, one can use different thresh-
olds to decide when a binding site is detected; moreover, putative sites may have
a varying degree of certainty that could be reflected in the choice of πij . How-
ever, we have found that the most important issue is assuring that π does not play
an excessive part in the fitting procedure so that the expression data can make a
significant contribution to the final estimated TRN. In Section 3.3 we discuss a
shrinkage approach that ensures the prior is not overly informative.

3. Methodology.

3.1. A preliminary approach. A natural way to extend the Lasso procedure to
fit our model (1) is to minimize, over A and P , the penalized squared loss function:

‖E − AP‖2
2 + λ1‖A‖1 + λ2‖P‖1,(2)

where λ1 and λ2 are two tuning parameters and ‖ · ‖1 is the sum of the absolute
values of the given matrix. Note that ‖ · ‖2

2 corresponds to the sum of squares of all
components of the corresponding matrix with any missing values ignored. While
this objective function appears to require the selection of two tuning parameters,
(2) can be reformulated as

‖E − A∗P ∗‖2
2 + λ1λ2‖A∗‖1 + ‖P ∗‖1,

where A∗ = A/λ2 and P ∗ = λ2P . Hence, it is clear that a single tuning parameter
suffices and A and P can be computed as the minimizers of

‖E − AP‖2
2 + λ‖A‖1 + ‖P‖1.(3)
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Optimizing (3) for different values of λ controls the level of sparsity of the esti-
mates for A and P .

A simple iterative algorithm can be used to solve (3), namely:

• Step 1: Choose initial values for A and P denoted by A(0) and P (0). Let k = 1.
• Step 2: Fix A = A(k−1), find the P = P (k) minimizing ‖E−A(k−1)P‖2

2 +‖P‖1.
• Step 3: Fix P = P (k), find the A = A(k) minimizing ‖E − AP (k)‖2

2 + λ‖A‖1.
• Step 4: If ‖P (k) −P (k−1)‖ or ‖A(k) −A(k−1)‖ are large, let k ← k+1 and return

to Step 2.

Steps 2 and 3 in this algorithm can be easily achieved using a standard application
of the LARS algorithm [Efron et al. (2004)] used for fitting the Lasso.

3.2. Incorporating the prior information. The fitting procedure outlined in the
previous section is simple to implement and often quite effective. It can be utilized
in situations where no prior information is available about the network structure
because minimizing (3) is, a priori, equally likely to cause any particular element
of A to be zero, or not to be zero.

However, in practice, for our data, we know that many elements of A must be
zero, that is, where πij = 0, and others cannot be zero, that is, where πij = 1. Of
the remaining elements, some are highly likely to be zero, while others are most
likely nonzero, depending on their πij . Hence, it is important that our fitting pro-
cedure directly takes the prior information into account. This limitation is removed
by minimizing (4),

‖E − AP‖2
2 − λ1

∑
ij

log(πij )|aij | + λ2‖A‖2
2 + ‖P‖1.(4)

The key changes between (3) and (4) are the addition of − log(πij ) and a square
of L2 norm penalty on A. The incorporation of the prior information has several
effects on the fit. First, aij is automatically set to zero if πij = 0. Second, aij cannot
be set to zero if πij = 1. Finally, aij ’s for which the corresponding πij is small are
likely to be set to zero, while those for which πij is large are unlikely to be set to
zero. Optimizing (4) is achieved using a similar iterative approach to that used for
(3):

• Step 1: Choose initial values for A and P denoted by A(0) and P (0). Let k = 1.
• Step 2: Fix A = A(k−1), find the P = P (k) minimizing ‖E−A(k−1)P‖2

2 +‖P‖1.
• Step 3: Fix P = P (k), find the A = A(k) minimizing ‖E − AP (k)‖2

2 −
λ1

∑
ij log(πij )|aij | + λ2‖A‖2.

• Step 4: If ‖P (k) −P (k−1)‖ or ‖A(k) −A(k−1)‖ are large, let k ← k+1 and return
to Step 2.

Step 2 can be again be implemented using the LARS algorithm. Step 3 utilizes the
shooting algorithm [Fu (1998), Friedman et al. (2007)].
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Equation (4) treats all elements of P equally. However, in practice, there is often
a grouping structure in the experiments or, correspondingly, the columns of P . For
example, in the E. coli data columns 1 through 12 of P correspond to the Trypto-
phan timecourse experiments, while columns 13 through 19 represent the glucose
acetate transition experiments. To examine any possible advantages from model-
ing these natural groupings, we implemented a second fitting procedure. Let Gk

be the index of the experiments in the kth group assuming all the experiments are
divided into K groups. Then our second approach involved minimizing,

‖E − AP‖2
2 − λ1

∑
ij

log(πij )|aij | + λ2‖A‖2
2 + ‖P‖2,(5)

where ‖P‖2 = ∑L
j=1

∑K
k=1

√∑
t∈Gk

p2
j t . Replacing ‖P‖1 with ‖P‖2 has the effect

of forcing the pjt ’s within the same group to either all be zero or all nonzero.
In other words, either all of the experiments or none of the experiments within
a group are selected. Minimizing (5) uses the same algorithm as for (4) except
that in Step 2 the shooting algorithm is used rather than LARS. We show results
from both methods. To differentiate between the two approaches, we call (4) the
“ungrouped” method and (5) the “grouped” approach.

Both equations (4) and (5) bare some resemblance to the penalized matrix de-
composition (PMD) approach [Witten, Tibshirani and Hastie (2009)]. PMD is a
general method for decomposing a matrix, E, into matrices, A and P . As with our
method, PMD imposes various penalties on the components of A and P to ensure
a sparse, and hence more interpretable, structure. However, the decomposition it
produces is more similar to standard PCA because it does not attempt to incorpo-
rate any prior information, instead imposing orthogonality constraints on A and P .

Our methodology does not make any explicit assumptions about the distribution
of the error terms, εit . However, it is worth noting that if we model the error terms
as i.i.d. Gaussian random variables, then, with the variance term fixed, the likeli-
hood function associated with this model is inversely proportional to ‖E − AP‖2

2.
Hence, equations (3), (4) and (5) can all be viewed as approaches to maximize the
penalized likelihood; the only difference between methods being in the form of the
penalty function.

3.3. Adjusting the prior. The grouped and ungrouped methods both assume a
known prior, πij . In reality, the prior must itself be estimated. In some situations
this can be done with a reasonable level of accuracy. However, in other instances
the estimated prior may suggest a much higher level of certainty than it is reason-
able to assume. For instance, sequence analysis algorithms, such as Vocabulon,
tend to produce many probability estimates that are very close to either 0 or 1. In
reality, a sequence analysis can usually only provide an indication as to whether a
connection exists between a particular TF and gene, so a probability closer to 0.5
may be more appropriate.
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To account for this potential bias in the prior estimates, we adjust the initial
prior using the following equation:

π̃ij =
⎧⎨
⎩

0, πij = 0,
(1 − α) × πij + α × 0.5, 0 < πij < 1,
1, πij = 1,

(6)

where π̃ij represents the adjusted prior. The shrinkage parameter, α, represents the
level of confidence in the initial prior. A value of α = 0 corresponds to a high level
of confidence in the estimated prior. In this situation no shrinkage is performed
and the prior is left unchanged. However, values of α close to 1 indicate much
lower confidence. Here the estimated probabilities that are strictly between 0 and
1 are shrunk toward 0.5, corresponding to an uninformative prior. As documented
in Section 4, we experimented with various different values for α.

3.4. Normalizing the estimators. The use of penalties on A and P will gener-
ally allow us to produce unique estimates for the parameters up to an indetermi-
nacy in the signs of A and P , that is, one can obtain identical results by flipping
the sign on the j th column of A and the j th row of P . There are a number of
potential approaches to deal with the sign. Sabatti and James (2006) defined two
new quantities that are independent from rescaling and changes of signs and have
interesting biological interpretations:

p̃j t =
∑

i aijpjt∑
i 1(aij �= 0)

and ãij =
∑

t aijpjt

T
.

p̃j t is the average effect of each transcription factor on the genes it regulates (regu-
lon expression), and ãij is the average control strength over all experiments. These
quantities are directly related to the expression values of genes in a regulon. We
have opted to use p̃j t and ãij to report our results. This also has the advantage of
allowing easy comparison with the analysis of Sabatti and James (2006).

Providing general conditions on the prior for identifiability is complex and be-
yond the scope of this paper. In general, the more zero, or close to zero, elements
there are in π , the more likely the model is to be identifiable. Alternatively, it is
easy to show that as minπij → 1 the model will become unidentifiable. The re-
sults in Liao et al. (2003) and Tran et al. (2005) can be used to provide sufficient
conditions for identifiability when the prior has enough elements close to zero.
These conditions, which we provide in the Appendix, are similar to those given in
Anderson (1984) for identifiability of factor models. The Appendix also contains
details of an empirical study we conducted using multiple randomized starting
points for our algorithm. The results suggested that there were no identifiability
problems for the E. coli data.
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4. Case study. In this section we give a detailed examination of the results
from applying the grouped and ungrouped methods to the E. coli data. Section 4.1
outlines the construction of our initial network structure, while Section 4.2 dis-
cusses our procedure for choosing the tuning parameters. The main results are
provided in Section 4.3. Finally, Section 4.4 gives the results from a sensitivity
analysis performed by adjusting the sparsity level on the initial network structure.
All the results reported in Section 4 represent the optimal fit, in terms of the final
objective values, based on ten randomized initial values of A and P .

4.1. The initial network structure. The first step in constructing the transcrip-
tion regulation network is to develop an initial guess for π , that is, the probability
distribution of the network structure. As discussed in Section 2, π was computed
using various sources. Where there was experimental evidence of a link between
transcription factor j and gene i we set πij = 1. For the remaining elements we
used the Vocabulon [Sabatti and Lange (2002)] algorithm to estimate πij . We then
adjusted the prior estimates using the shrinkage approach, Equation (6), which
required selecting a value for the shrinkage parameter, α. We experimented with
four different values for α; 0,0.3,0.65 and 1. In most instances it did not have a
significant effect on the final results, suggesting our method is robust to changes
in the nonzero values of the prior. For our final analysis we opted to use α = 1
because this produced the weakest prior which gave the gene expression data the
best opportunity to determine the final network structure. Note, our initial prior es-
timates contained a number of values corresponding to exactly 0 or 1, so even after
performing the shrinkage step our new prior still contained enough information to
ensure an identifiable solution. In addition, this approach produced similar priors
to those used in Sabatti and James (2006) which allowed us to directly compare
the two sets of results. With the Bayesian approach of Sabatti and James (2006),
this high level of sparsity in the network structure was necessary for computational
reasons. However, using our Lasso based methodology, this level of sparsity is not
required. Hence, in Section 4.4 we examine how our results change as we reduce
the level of sparsity in the initial structure.

By merging the potential binding sites with the known sites from the literature,
and with the expression data, we obtained a set of 1433 genes, potentially regulated
by at least one of 37 transcription factors and on which expression measurements
were available (missing values in the array data were allowed). Our estimate for π

suggested a great deal of sparsity with only 2073 nonzero entries, 291 of which
corresponded to πij = 1 and the remaining 1782 to πij = 0.5. In addition, 14 of
the transcription factors were expected to regulate 20 or fewer genes and 34 of the
37 TFs were expected to regulate at most 120 genes. The notable exception was
CRP, which potentially regulated over 500 genes. It is worth noting that without
adopting our penalized regression framework, we would not be able to study this
transcription network, simply because the number of experiments (35) is smaller
than the number of TF considered (37): the use of penalty terms regularizes the
problem.
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4.2. Selecting the tuning parameters. The first step in estimating A and P

requires the selection of the tuning parameters, λ1 and λ2. These could be cho-
sen subjectively but we experimented with several more objective automated ap-
proaches. We first attempted to select the tuning parameters corresponding to the
lowest values of BIC or AIC. However, BIC produced models that were biologi-
cally too sparse, that is, the number of zero entries in A was too large. It appears
that the log(n) factor used by BIC is too large if one uses the number of nonmiss-
ing values in the E matrix as “n” (n = 40,000) because they are not really inde-
pendent. Conversely, AIC resulted in networks being selected that had too many
connections.

Instead we opted to use a two stage approach. We first computed the “relaxed”
cross validated error over a grid of λ1’s and λ2’s and selected the tuning para-
meters corresponding to the minimum. It is well known that cross validation can
perform poorly on model selection problems involving L1 penalties [Meinshausen
and Buehlmann (2008)]. This is mainly a result of shrinkage in the coefficient esti-
mates. A common approach to reduce the shrinkage problem in the Lasso involves
replacing the nonzero coefficients with their corresponding least squares estimates.
Our relaxed cross validation approach works in a similar way. For each combina-
tion of λ1 and λ2, we first use equations (4) and (5) to identify initial estimates
for A and P . We then fix P and the zero elements of A and use “least squares” to
estimate the nonzero elements of A. The cross validated errors are then computed
based on these “un-shrunk” estimates for A. We have found that this approach al-
lows us to select sparser network structures than those from using standard cross
validation. Figure 3 shows the cross validated error rates for different values of λ2
with λ1 = 64. For the grouped method the minimum was achieved with λ1 = λ2 =
64, while the ungrouped minimum was achieved with λ1 = 64 and λ2 = 16.

Second, we used a parametric bootstrap analysis to determine whether there was
significant evidence that an element in A was nonzero. We ran our method on 100
bootstrap samples, each created by first computing the residuals ê = E − ÂP̂ , re-

FIG. 3. Cross validated error rates as a function of λ2 for the ungrouped and grouped methods.
The blue vertical lines indicate variability in the cross validated error.
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sampling ê, and then generating the bootstrap sample E(b) = ÂP̂ + ê(b). For each
element of A, we computed a corresponding p-value based on the 100 bootstrap
results, thus, we had approximately 2000 p-values. Since this constituted a signifi-
cant multiple testing problem, we used False Discovery Rate (FDR) methods to set
a cutoff such that the FDR was no more than 0.05. Elements in A with p-values
smaller than the cutoff were left as is while the remainder were set to zero. All the
results that follow are based on this bootstrap analysis.

4.3. Results. The results from our analysis of the 35 experiments suggested
that a significant portion of the potential binding sites should be discarded. Now
18 TFs were expected to regulate 20 or fewer genes and 26 of the 37 TFs were
expected to regulate at most 50 genes. Even CRP went from over 500 potential
binding sites in the prior to fewer than 500 in the posterior. The posterior estimate
for A contained 1766 nonzero entries, approximately a 15% reduction in the num-
ber of connections compared to our prior guess for the network. Figure 4 provides
graphical representations for the prior and posterior networks. Notice that in the
posterior estimate there are many fewer connections and, as a result, there are nu-
merous genes and one TF that are no longer connected to the rest of the network,
suggesting there is no evidence that these particular genes are regulated by any of
the 37 TFs we examined. The fact that one of the TFs is not connected to the net-
work is likely due to it not being activated in any of the experiments considered,
so that there is no detectable correlation in expression among the group of genes
that it regulates.

Sabatti and James (2006) discuss several possible reasons for the changes be-
tween the initial and final network structure. In brief, Vocabulon works entirely

FIG. 4. Prior network (left) and posterior estimate produced using the ungrouped method (right).
The large blue circles correspond to the 37 transcription factors while the yellow circles represent
the 1433 genes. The lines joining blue and yellow circles indicate network connections.
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using the sequence information. Hence, it is quite possible for a portion of the
E. coli genome sequence to look just like a binding site for a TF, resulting in a
high probability as estimated by Vocabulon, when in reality it is not used by the
protein in question. In addition, Vocabulon searches for binding sites in the regula-
tory region of each gene by inspecting 600 base pairs upstream of the start codon
which often causes Vocabulon to investigate the same region for multiple genes. If
a binding site is located in such a sequence portion, it will be recorded for all of
the genes whose “transcription region” covers it.

Figure 5 illustrates the estimated transcription factor activation levels using both
the ungrouped and grouped methods. We have several ways to validate these re-

(a)

FIG. 5. (a) Ungrouped and (b) grouped methods. Each plot corresponds to the experiments for
one transcription factor. Experiments are organized along the vertical axis, from bottom to top, with
dashed lines separating the experiment groups. Green dots indicate the estimates for p̃j t and the
horizontal bars provide bootstrap confidence intervals.
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(b)

FIG. 5. (Continued).

sults. First, we note that the estimated activation levels show very strong similari-
ties to the results of Sabatti and James (2006). Both their results and ours show the
following characteristics. First, there are a number of transcription factors that are
not activated in any of the experiments. Focusing on the regulons that are activated
in some of the experiments, we note that our method produces results that corre-
spond to the underlying biology. For example, the first 8 experiments [Khodursky
et al. (2000)]—represented in the lower portion of the displays from bottom up—
are two 4-point time courses of tryptophan starvation. The absence of tryptophan
induces the de-repression of the genes regulated by trpR. Correspondingly, our
results indicate a clear increase in expression for trpR. In arrays 9–12, the cells
were provided with extra tryptophan. Hence, for these experiments we would ex-
pect lowered expression. Our results show a negative effect, though the magnitude
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is small. Additionally, the argR and fliA regulons can be seen to move in the op-
posite direction to trpR, which corresponds to what has been documented in the
literature [Khodursky et al. (2000)].

Experiments 20–24, which correspond to the results between the second and
third horizontal dashed lines, are a comparison of wild type E. coli cells with cells
that were irradiated with ultraviolet light, which results in DNA damage. Notice
that lexA appears to be activated in these experiments, as one would predict since
many of the DNA damaged-genes are known to be regularly repressed by lexA
[Courcelle et al. (2001)]. Finally, ntrC, purR, rpoH2 and rpoH3 all show activa-
tions in the protein overexpression data, the final 11 experiments. In particular,
notice that rpoH2 and rpoH3 present the same profile across all experiments. This
provides further validation of our procedure since these two really represent the
same protein, and are listed separately because they correspond to two different
types of binding sites of the TF. Overall, these results conform to the known biol-
ogy, but also suggest some additional areas for exploration.

The main differences between our results and those of Sabatti and James (2006)
are that our penalties on P tend to generate more exact zero estimates than the
Bayesian approach, providing somewhat easier interpretation. The grouped and
ungrouped results are also similar, but the grouped method tends to produce
slightly more sparsity in P , for example, in metJ and rpoS18.

Next, we examine the estimates for A. Since a number of TF’s showed no acti-
vation in these experiments, we would not expect to be able to accurately estimate
their control strengths on the genes. Hence, we will concentrate our analysis here
on trpR because this was the most strongly activated TF. Figure 6 presents our
estimates of ã for seven genes associated with the trpR. Each boxplot illustrates
the 100 bootstrap estimates of ã for a particular gene. The first three boxplots cor-
respond to genes b1264, b1265, b1266. The b-numbers, that identify the genes,
roughly correspond to their genomic location, so it is clear that the genes are ad-
jacent to each other. Gene b1264 is known to be regulated by trpR, so it’s πij was

FIG. 6. Boxplots of the bootstrap estimates for ã for seven different genes.
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set to 1. The other two genes were chosen by Vocabulon as potential candidates
because the binding site for b1264 was also in the search regions for b1265 and
b1266, that is, these were cases of the overlapping regulatory regions described
previously. While Vocabulon was unable to determine whether a connection ex-
isted between b1265, b1266 and trpR, using our approach, we can see that, while ã

for b1264 is large, the estimates for b1265 and b1266 are essentially zero. These
results show that the expression levels of b1264 correlate well with those of the
other genes, but those for b1265 and b1266 do not. Thus, it is possible to use our
model to rule out the regulation of two genes by trpR that are within a reasonable
distance from a trpR real binding site. Among the remaining four genes, b1704,
b3161 and b4393 are all known to be regulated by trpR. Correspondingly, they all
have moderate to large estimated activation strengths. b4395 again has an over-
lapping regulatory region to b4393. The results suggest this is not regulated by
trpR.

4.4. Relaxing zero coefficients. The results from Section 4.3 use the same rel-
atively sparse initial network structure as that of Sabatti and James (2006). Recall
the structure we have assumed so far contained only three possible values for π ,
that is, πij = 0, πij = 0.5 or πij = 1. All connections with πij = 0 are forced to
remain at zero whatever the gene expression data may suggest. However, as dis-
cussed previously, our methodology is able to handle far less sparse structures.
Hence, we next investigated the sensitivity of our results to the initial structure
by randomly adjusting certain TF-gene connections. In particular, we randomly
selected 200 of the connections where πij = 0 and reset them to πij = 0.5. We
also reset all connections where πij = 1 to πij = 0.5 so that all connections were
treated equivalently. We then reran the ungrouped and grouped methods using the
new values for π .

Figure 7 provides plots of the resulting fractions of nonzero estimates for ãij ,
as a function of λ2 with λ1 set to 64. A clear pattern emerges with the fraction
of nonzeros where there was documented evidence very high (black solid line).
Somewhat lower is the fraction of nonzeros for the connections suggested by Vo-
cabulon (red dashed line). Finally, the lowest level of nonzeros is exhibited where
there was no significant evidence of a connection (blue dash–dot line). These re-
sults are comforting because they suggest that our methodology is able to differen-
tiate between the clear, possible and unlikely connections even when πij is equal
for all three groups. In addition, there appears to be evidence that the Vocabulon
algorithm is doing a good job of separating potential from unlikely connections.
Finally, these results illustrate that, unlike the Bayesian approach, it is quite com-
putationally feasible for our methodology to work on relatively dense initial net-
work structures.

5. Simulation study. After fitting the E. coli data we conducted a simulation
study to assess how well our methodology could be expected to reconstruct tran-
scription regulation networks with characteristics similar to those for our data set.
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FIG. 7. Fraction of nonzero ãij ’s as a function of λ2 for the ungrouped and grouped methods.
The black solid line corresponds to those connections where there was documented evidence of a
relationship, the red dashed line to where the Vocabulon algorithm suggested there was a relationship
and the blue dash–dot line to where there was no evidence of a relationship.

We compared our method with two other possible approaches: the penalized ma-
trix decomposition (PMD) method of Witten, Tibshirani and Hastie (2009) and the
Bayesian factor analysis model (BFM) of West (2003).

The estimated matrices, Â and P̂ , and the prior probability estimates, πij , from
Section 4 were used as the starting point for generating the gene expression levels.
In particular, we first let Ã = Â+εA, P̃ = P̂ +εP , where εAij

∼ sA ×N(0, σ 2(Â))

and εPij
∼ sP ×N(0, σ 2(P̂i)) are noise terms. Depending on the simulation run, sA

was set to either 0.2 or 0.4, while sP was set to either 0.1 or 0.3. Next, all elements
of Ã corresponding to πij = 0 were set to zero. In addition, among elements where
πij = 0.5, we randomly set ρ of the Ã’s to zero where ρ was set to either 60% or
80%. The expression levels were then generated using

E = ÃP̃ + sN × �̃,

where �̃ is a matrix of error terms with �̃ij ∼ N(0,1) and sN was set to either 0.2
or 0.4. We produced one simulation run for each combination of sA, sP , ρ, and sN ,
resulting in a total of 16 simulations.

For each simulation run we generated a new data set, implemented the grouped
and ungrouped methods, as well as the PMD method, using different possible tun-
ing parameters to estimate A and P , and computed the corresponding False Posi-
tive Rates (FPR) and the True Positive Rates (TPR). The FPR is defined as the frac-
tion of estimated nonzero coefficients, aij , among all elements of Ã where ãij = 0
and πij = 0.5. The TPR is defined as the fraction of estimated nonzero coefficients,
aij , among all elements of Ã where ãij �= 0 and πij = 0.5. The BFM approach
turned out to run extremely slowly, taking many hours for just a single tuning pa-
rameter. Hence, it was only feasible to implement this method for one set of tuning
parameters. For our method, since we have prior information, we can match the
columns of the estimated A with the true A in order to compute the sensitivity and
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FIG. 8. Simulation results. Solid lines correspond to the ungrouped approach, dashed lines to PMD
and triangles to BFM. Red: ρ = 0.6, sA = 0.2. Black: ρ = 0.8, sA = 0.2. Blue: ρ = 0.6, sA = 0.4.
Green: ρ = 0.8, sA = 0.4. Left plot: low noise scenario, sN = 0.2. Right plot: high noise scenario,
sN = 0.4.

specificity etc., but for both PMD and BFM, there is no automatic alignment. In or-
der to ensure a fair comparison, we used a sequential alignment approach to match
the columns of the estimated and true A. We first matched each column of the es-
timated A with each column of the true A and linked the pair that matched best.
Then we removed the pair and repeated the process until all columns were aligned.

Figure 8 provides a summary of the results from running the ungrouped, PMD
and BFM approaches on the eight simulations corresponding to sP = 0.1. The re-
sults from the grouped method and for sP = 0.3 were similar and hence are not
repeated here. Each curve corresponds to the FPR vs TPR for one simulation run
using different tuning parameters. The results suggest that our method achieves a
reasonable level of accuracy for this data. For example, with sN = 0.2 we produce
an 80% TPR at the expense of a 20% FPR. To lower the FPR to 10% decreases the
TPR to approximately 60%. Even with sN = 0.4, a relatively high noise level, we
can achieve a 60% TPR at the expense of a 20% FPR. The PMD method performs
relatively worse, for example, producing only a 60% TPR at the expense of a 20%
FPR with sN = 0.2. Assessing BFM is more difficult, given that we were only able
to observe its performance at a few points. It appears to outperform PMD and pro-
duce results close to our ungrouped method. However, BFM does not seem to be
practical on large data sets like our E. coli data given the time required to produce a
single fit, without even attempting to select tuning parameters. These results show
that indeed there is an advantage to including prior information when available.

6. Discussion. We have introduced a new methodology for estimating the pa-
rameters of model (1) associated with a bipartite network, as illustrated in Figure 1.
Our approach is based on introducing L1 penalties to the regression framework,
and using prior information about the network structure.

We have focused on the application of this model to reconstruction of the E. coli
transcription network, as this allows easy comparison with previously proposed
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models. Our approach has the advantage, over the work of Liao et al. (2003) and
Sabatti and James (2006), that it does not require assuming prior knowledge of a
large fraction of the network. When we utilize the same prior structure as used in
Sabatti and James (2006), we get similar, and biologically sensible, results. How-
ever, by relaxing the prior assumptions on the sparsity of the network structure, we
gain additional insights such as independent validation, both of the experimentally
derived network connections and also the connections suggested by the Vocabulon
algorithm.

While we tested our methodology on the E. coli data, our approach is potentially
applicable to many other organisms, allowing researchers to start to explore many
other transcription networks such as those of humans. In particular, there are many
organisms for which far less of the TRN structure is known a priori, making it
impossible to use the algorithms in Liao et al. (2003) and Sabatti and James (2006).
In these cases our L1-penalization approach could still be applied provided an
“adequate” prior could be generated. For example, in the case of human data, one
would probably rely on ChIP chip experiments to provide the back-bone prior
data on the possible location of binding sites. Finally, it is worth recalling that,
while we describe how to set the π values with specific reference to TRN, the
L1-penalized regression approach can be used to estimate parameters of bipartite
networks arising in other scientific contexts.

APPENDIX: IDENTIFIABILITY

Liao et al. (2003) provide the following sufficient conditions for identifiability
of the transcription regulation network model (1):

1. The connectivity matrix, A, must have full-column rank.
2. When a node in the regulatory layer is removed along with all of the output

nodes connected to it, the resulting network must be characterized by a con-
nectivity matrix that still has full-column rank. This condition implies that each
column of A must have at least L − 1 zeros.

3. P must have full row rank. In other words, each regulatory signal cannot be
expressed as a linear combination of the other regulatory signals.

In our case these conditions were not satisfied because L > T so P was not of
full rank. However, the prior was very sparse with many zero elements and rela-
tively few values close to one, so it seemed reasonable to assume that the model
was identifiable. To ensure this was correct, we ran our fitting procedure 200 times
on the E. coli data, using randomized starting values, and examined the resulting
estimates for P . Figure A.1 plots the best 20 (left) and worst 20 results (right), in
terms of the final objective values. There are some minor differences in the esti-
mates, but overall the results are encouragingly similar. This experiment provided
two useful pieces of information. First, it strongly suggested that, at least for our
prior, there were no identifiability problems. Second, it also implied that the fitting
algorithm was not getting stuck in any local minima’s and was reaching a global
optimum.
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