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DETECTION OF TREATMENT EFFECTS BY
COVARIATE-ADJUSTED EXPECTED SHORTFALL1
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Urbana-Champaign and Millennium Pharmaceuticals, Inc.

The statistical tests that are commonly used for detecting mean or median
treatment effects suffer from low power when the two distribution functions
differ only in the upper (or lower) tail, as in the assessment of the Total Sharp
Score (TSS) under different treatments for rheumatoid arthritis. In this article,
we propose a more powerful test that detects treatment effects through the
expected shortfalls. We show how the expected shortfall can be adjusted for
covariates, and demonstrate that the proposed test can achieve a substantial
sample size reduction over the conventional tests on the mean effects.

1. Introduction. We consider the problem of testing the hypothesis of no
treatment effect against a class of alternatives where the two outcome distribu-
tions differ only or mainly in the right tail. As demonstrated in some recent trials
of rheumatoid arthritis therapies in van der Heijde et al. (2006) and Kremer et
al. (2006), the changes in Total Sharp Scores, the primary measurements of the
treatment effects on prevention of structural damage, are nearly identical for most
therapies for nearly 75% of the patient population, but the difference lies in the
most challenging 25% of the patient population where a less effective treatment
loses its efficacy, resulting in a heavy right tail in its outcome distribution. The
two-sample t-test or its regression counterpart in covariate-adjusted linear mod-
els is commonly used for detecting the treatment effects, but due to skewness and
heavy-tails of the distributions, the test does not have satisfactory power. Nonpara-
metric tests on the median differences, for example, would fare even worse in such
cases, because the median differences are often negligible among those therapies.

A natural test in this type of applications is to focus on the average in one tail,
or the expected tail loss (aka expected shortfall). In finance, this is often referred
to as the conditional value at risk (CVaR), for measuring the risk of a portfolio.
In our context, a treatment is said to be more effective if it has a smaller expected
shortfall, where the expected shortfall is defined to be the conditional mean of the
outcome (e.g., change in Total Sharp Score) above the τ th quantile. In this paper,
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τ will be taken to be a user-specified value (e.g., 0.75), but a good choice of τ

clearly depends on the area of applications. In finance, the most relevant choices
of τ fall above 0.90.

A two-sample comparison of the expected shortfalls is not difficult, as it falls
into the well-known theory of the L-statistic. In fact, there are also a large num-
ber of other tests that one can use to compare tails of two outcome distributions,
but few have been developed to adjust for covariates. The purpose of this paper is
to develop a simple test for testing the hypothesis on the treatment effect adjust-
ing for certain covariates; the proposed test uses the COVariate-adjusted Expected
Shortfall (COVES).

Our work starts with a brief introduction to our motivating example on the TSS
for rheumatoid arthritis therapies in Section 2. In Section 3, we propose an appro-
priate treatment effect size of covariate-adjusted expected shortfall, followed by a
new test for detecting differences in the treatment effects. The large sample theory
for the proposed test is given here. In Section 4, we compare the proposed COVES
test with the t-test based on the least squares regression in empirical power. In par-
ticular, we show that when the outcome distributions resemble those of the TSS,
the COVES test has a clear advantage in reducing sample sizes in clinical trials.
The basic idea and methodology developed in this paper apply to other problems of
comparing two covariate-adjusted tails of outcome distributions. In Section 5, we
provide a diagnostic tool that can be used to gauge the need for the proposed test
and to guide the selection of τ . Section 6 concludes the paper with some additional
remarks about the COVES test.

2. A primer on total sharp scores. Rheumatoid arthritis (RA) is a chronic
disabling disease that causes destruction of joint cartilage and erosion of adjacent
bones. In RA clinical trials, TSS is used to measure the treatment effect of RA
drugs on prevention of structural damage to the joints. It consists of two compo-
nents, erosion score and score for joint space narrowing (JSN), which are obtained
through examination of hand and/or feet joints with radiographic methods. The
first description of TSS is given by Sharp et al. (1971), but TSS has been modified
in later studies. The example presented in this paper is based on van der Heijde’s
modification of TSS scoring system [van der Heijde (2000)], which is based on ex-
amination of 16 areas for erosions and 15 for joint space narrowing in each hand.
The erosion score per joint ranges from 0 to 5 with 0 representing a normal con-
dition and 5 the most severe disease, and thus the total erosion score ranges from
0 to 160 (16 areas by 2 hands by 5). The JSN score ranges from 0 to 4 per joint
with higher score representing more severe disease, which leads to a range of 0 to
120 (15 areas by 2 hands by 4) for the total JSN score. Therefore, the range of TSS
is 0 – 280. The primary interest is the change from baseline in TSS in one or two
years.

The change in TSS has a highly skewed distribution under any known treat-
ment. In the TEMPO trial [van der Heijde et al. (2006)] comparing Methotrex-
ate, Etanercept, and the combination therapy of Etanercept and Methotrexate, the
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FIG. 1. This figure, reproduced from van der Heijde et al. (2006), shows that the changes in TSS in
the TEMPO trials differ mostly in the upper tails.

three treatments are similarly effective for about 75% of the patients whose condi-
tions improved or showed no or little progression from the baseline; see Figure 1.
Medians for all three groups are around 0. Treatment differences come from the
25% of the patients with the most progressive diseases. In other words, the dif-
ferences in treatment effects are not attributed to a location-scale change in the
distributions. The distributions of clinical data from several other major RA trials
[Kremer et al. (2006); Keystone et al. (2004); Lipsky et al. (2000)] showed similar
characteristics.

It is clear that the distributions for the changes in TSS are far from normal, and
the t-test is expected to lose power due to skewness and heavier-tails that are ev-
ident in the data. Nonparametric tests on the median differences would fare even
worse, because the median differences of those treatments are essentially nonexis-
tent. Researchers in some trials have considered the chi-square tests on the propor-
tion of patients with little disease progression by dichotomizing TSS, but there has
been no agreeable cutoff point for dichotomization. In fact, the power of the chi-
square test depends rather critically on the cutoff point. In addition, it is difficult
to perform the chi-square test when a covariate needs to be adjusted for. A nat-
ural quantity for distinguishing treatment effects is the expected shortfall, which
averages the changes in TSS in the upper tail. We propose to use the regression
quantile approach of Koenker and Bassett (1978) to estimate the covariate-adjusted
expected shortfall.

Later in this paper, we use a recent observational study conducted at Brigham
and Women’s Hospital and sponsored by Millennium Pharmaceuticals Inc. and
Biogen Idec as a basis for assessing the performance of the proposed test. We
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take 150 subjects in the study, who are under active treatment, and simulate a
control group whose outcome distribution is chosen to mimic the treatment dif-
ference reported in other trials. For example, in the Adalimumab trial [Keystone
et al. (2004)], the variance of the treatment group (using the drug Adalimumab
20 mg/kg) is about half of that in the control group (using the drug Methotrexate)
with a mean difference of −1.9. In the Abatacept trial [Kremer et al. (2006)], the
variance in the Abatacept group is about one third of that in the control group. In
our simulation studies, we use the ratio of variances between 2:1 and 3:1 between
two treatment groups.

3. Proposed test: COVES. We use a dummy variable D as treatment indi-
cator, C as the covariate of interest, and Z as the outcome measure. For simplic-
ity of notation, we consider C ∈ R as a univariate covariate and D taking values
0 or 1, but the work generalizes readily for multivariate covariates and multiple
treatments. As appropriate with randomized trials, we assume that C and D are
independent. We model the τ th quantile of Z given (D,C) as

QZ(τ |D,C) = α(τ) + δ(τ )D + γ (τ)C,(1)

where the coefficients α, δ, and γ are τ -specific. In this paper, we use τ = 0.75 for
empirical studies, but refer to Section 5 for guidance on the selection of τ . We also
refer to Koenker (2005) for details on the linear regression quantile specification.

Given data (Zi,Di,Ci) with Di = 1 for i = 1, . . . ,m and Di = 0 for i =
m + 1, . . . ,m + n, we can use the quantreg package in R to obtain the re-
gression quantile coefficient α̂, δ̂, and γ̂ . Then, let êi = Zi − α̂ − δ̂Di − γ̂ Ci

as the residuals from the τ th regression quantile. By contrast, we also write
ei = Zi −α(τ)− δ(τ )Di − γ (τ)Ci , which has zero as the τ th conditional quantile
given (Di,Ci) due to (1).

Let Yi = Zi − γ̂ Ci be the covariate-adjusted outcome, and define the empirical
covariate-adjusted expected shortfall for the two groups as

COVESτ (d) = ∑
Di=d

wd,iYi, d = 0,1,

where wd,i = S−1
d I (êi > 0) and Sd = ∑

Di=d I (êi > 0). The quantity COVESτ (d)

is the average of the outcomes for group d that are above the τ th covariate-adjusted
quantile.

The proposed COVES test statistic for the hypothesis of no difference between
the two treatment groups is given as

Tτ (m,n) = COVESτ (1) − COVESτ (0).(2)

Let C̄τ (d) and ēτ (d) be the average of Ci and ei in group d that are above the
τ th regression quantile, that is,

C̄τ (d) = S−1
d

∑
Di=d

CiI (êi > 0),
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ēτ (d) = S−1
d

∑
Di=d

(
Zi − α(τ) − δ(τ )Di − γ (τ)Ci

)
I (êi > 0).

Then, the test statistic (2) can be written as

Tτ (m,n) = δ(τ ) − (
γ̂ − γ (τ)

)(
C̄τ (1) − C̄τ (0)

) + (
ēτ (1) − ēτ (0)

)
,(3)

which makes it relatively easy to establish the asymptotic normality of the test
statistic as m,n → ∞.

To estimate the variance of Tτ (m,n), let Nd = ∑
i I (Di = d), fi be the condi-

tional density function of ei given (Di,Ci) evaluated at 0, and

C∗
i = Ci − N−1

d

∑
i

CiI (Di = d),

as the orthogonal components C relative to the treatment groups. In more general
problems, we can obtain C∗ by the Gram–Schmidt orthogonalization of the design
matrix. Furthermore, let

Vd = ∑
Di=d

{ê2
i I (êi > 0)} − N−1

d

[ ∑
Di=d

{êiI (êi > 0)}
]2

,

Uf = ∑
i

(fiC
∗
i

2
),

and

s2
m,n = (1 − τ)−2(V1/m2 + V0/n2)

(4)

+ τ(1 − τ)
(
C̄τ (1) − C̄τ (0)

)2
U−2

f

(∑
i

C∗
i

2
)
.

THEOREM 3.1. Suppose that limm,n→∞(m + n)−1Uf exists, E|Ci |3 < ∞,
and fi are uniformly bounded away from 0 and infinity. Under the null hypothesis
that FZ|C,D=1 = FZ|C,D=0, we have

T COVES
τ (m,n)/sm,n → N(0,1) asm,n → ∞.

The proof of Theorem 3.1 is given in the Appendix, but to use the asymptotic
normality for testing the null hypothesis of no treatment effects, we need a con-
sistent estimate of Uf . If ei in each group (corresponding to Di = 0 or 1) follows
a common distribution, then a kernel density estimate can be used to estimate the
common density at 0 from êi in the dth group. If the conditional densities vary with
Ci , it is not possible to estimate each fi consistently, but Uf , a linear combination
of the fi ’s, can still be consistently estimated; see He, Fung and Zhu (2002) and
Koenker (2005) for more details. For the empirical investigations in this paper, the
proposed test is carried out using a kernel density estimate, density, in R on each
treatment group.
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4. Empirical investigations. In this section, we report some empirical power
studies of the proposed test based on Monte Carlo simulations. The first study is
constructed based on the data we obtained from a recent study on an undisclosed
therapy to treat RA at the Brigham and Women’s Hospital in Boston. The other
studies are constructed with other types of distributions in mind. Together, we find
that the proposed COVES test greatly outperforms the usual regression tests on the
mean differences when the group differences occur at one tail of the distributions.

4.1. Targeted study on TSS. We use the empirical distributions, F , of the TSS
changes of 150 patients in the Brigham and Women’s Hospital study as the under-
lying distribution for the group d = 1. We take the baseline TSS as the covariate
in the analysis, whose empirical distribution for the group d = 1 will be denoted
as G.

The data from the control group (with d = 0) will be simulated as

C = G−1(u), Z = F−1(u) + 8|u − 0.65|1/4I (u > 0.65),

where u is a uniform random number in (0, 1). Clearly, the control group has a
heavier right tail in its outcome, but the covariate C has the same distribution in
both groups. In this setting, the variance of the control group is about twice that
of the treatment group. Table 1 and Figure 2 summarize the differences of the two
groups.

The power functions for the COVES test with τ = 0.75 and the t-test from
linear regression are shown in Figure 3 with sample sizes up to m = n = 350. For
comparison, we also include in the figure the power curve for the test based on
expected shortfalls (ES) without adjusting for the baseline TSS. Table 2 provides
the sample sizes needed to reach a power of 0.90 in clinical trials with m = n as
well as m = 2n. It is common in clinical experiments to allocate twice as many
patients to the treatment group when the treatment is believed to be effective. In
this case, the baseline TSS does not play a significant role, so the statistical power
for detecting the treatment effect has no gain by adjusting the covariate in the
analysis. However, the results show that the COVES test is clearly outperforming
the t-test, and the latter would require a trial that is more than double in size.

TABLE 1
Differences in the τ th quantiles and in the mean, with the last column as the ratio of the variances

between the control group (d = 0) and the treatment group (d = 1)

τ 0.5 0.6 0.7 0.75 0.8 0.9 0.99 Mean Variance ratio

0 0 3.72 4.53 4.96 5.64 6.02 1.74 2.03
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FIG. 2. Quantile function of the TSS change shows that the groups differ mostly in the upper tails.

FIG. 3. Statistical powers of three tests in the targeted study on TSS as functions of sample size
m = n. The ES test ignores the covariate in the model.

TABLE 2
Sample sizes needed to reach power 0.9. The cases of

m = n and m = 2n are included

Sample size (m,n)

COVES test (τ = 0.75) (120, 120) or (172, 86)
t-test (306, 306) or (450, 225)
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TABLE 3
Difference of the two groups at η = 1.35, with the last column for the

ratio of error variances

τ 0.5 0.6 0.7 0.75 0.8 0.9 Mean Var ratio

0 0.34 0.70 0.91 1.13 1.72 0.54 2.97

4.2. More simulation studies. We consider data generated from

Zi = 5 + γCi + {1 + ηI (ei > 0)I (Di = 0)}ei,(5)

where ei ∼ N(0,1), and η is either 0 (under the null hypothesis) or 1.35 (under
the alternative hypothesis). The coefficient γ and the distribution for the covariate
Ci will be specified later. Clearly, the control group (d = 0) has a heavier right
tail. When η = 1.35, the error variance of the control group (d = 0) is about triple
that of the treatment group (d = 1) under this model. Table 3 summarizes the
differences of the two groups under the alternative hypothesis.

We will consider four scenarios for the effects of the covariate in the analysis:

• Scenario 1, no covariate effect: we take Ci from N(2.5,0.52), with γ = 0.
• Scenario 2, a common covariate effect: we take Ci from N(2.5,0.52), with

γ = 1.
• Scenario 3, a covariate distribution that varies with treatment groups: we take

Ci from N(2.5,0.52) for d = 0, but from N(3.0,0.52) for d = 1, with γ = 1.
• Scenario 4, a covariate distribution that has a scale change across treatment

groups: we take Ci from N(2.5,0.52) for d = 0, but from N(2.5,1.0) for d = 1,
with γ = 1.

Scenarios 3 and 4 are unlikely for randomized trials, but we include them in the
study to examine the robustness of the COVES test when the covariate distributions
vary to some extent with the treatment groups. The type I errors of the COVES
test and the t-test under these scenarios are controlled to stay close to the nominal
level of 0.05. The following table reports the type I errors at the sample size of
m = n = 50. It also reports the sample sizes needed to reach power of 0.90 in each
scenario under two design conditions: m = n and m = 2n, respectively.

The results clearly show the efficiency of the COVES test. In Scenarios 2–4,
the adjustment of the covariate is important, because the ES test considered in
Section 4.1 would not be valid, and thus it is not presented in this subsection.

5. A diagnostic tool for COVES. When preliminary or full data are available,
it is often helpful to have a simple diagnostic tool that points to a case in favor of the
COVES test. We suggest examining the quantile function plot, as used in Figure 1,
but applied to the covariate-adjusted outcomes defined in Section 3. When the
quantiles of covariate-adjusted outcomes from different treatment groups differ
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TABLE 4
Simulation comparisons for the COVES test versus t-test for linear models. The sample sizes under

two conditions m = n and m = 2n are given

COVES test t-test

Type I error Sample size (m,n) Type I error Sample size (m,n)

(m,n) = needed to reach (m,n) = needed to reach
Scenario (50, 50) power 0.9 (50, 50) power 0.9

1 0.046 (51, 51) or (92, 46) 0.050 (140, 140) or (202, 101)
2 0.051 (51, 51) or (92, 46) 0.049 (140, 140) or (202, 101)
3 0.048 (59, 59) or (100, 50) 0.050 (177, 177) or (240, 120)
4 0.053 (50, 50) or (92, 46) 0.052 (140, 140) or (200, 100)

mostly in one tail, we have a clear case in favor of the COVES test or a similar test
that focuses on the tail. In fact, the plot can also suggest an appropriate level of τ

to be used for COVES. To illustrate this point, we simulated one data set of size
m = n = 60 from Scenario 3 in Section 4.2 with η = 1.35 in model (5). Unsure
about a good choice of τ , we considered using the covariate-adjusted outcomes
from three quantile levels 0.5, 0.75, and 0.9, and examined the resulting quantile
plots in Figure 4. No matter which quantile level we started with, the quantile
plots of the covariate-adjusted outcomes look similar, and they all suggest that the
COVES test with τ around 0.75 would be a good choice. On the other hand, if the
quantile functions of different treatment groups show a vertical shift, we would
then favor the t-test to the COVES test.

6. Conclusions. The proposed COVES test aims to detect treatment effects
that are reflected mostly in the upper (or lower) tail of the outcome distributions.
The test is powered up by the use of the expected shortfall as a natural differentiat-
ing quantity in such applications. We find that the regression quantile methodology
is appropriate and convenient for computing the covariate-adjusted expected short-
fall in the test. Our study on the change of the Total Sharp Scores due to different
treatments on rheumatoid arthritis shows that a substantial sample size reduction
over the conventional t-test based on linear models can be achieved.

In this paper, we used τ = 0.75 in the proposed COVES test, because it serves
two purposes in the application. First, earlier studies have shown conventional
rheumatoid arthritis treatments are effective for nearly 75% of the patient pop-
ulation, so it is less meaningful to detect differences below the 75th percentile.
Second, a more effective treatment should work well for a substantial portion of
the patients, so if we set τ to be too high in the COVES test, a significant difference
in the upper tail might be difficult to detect statistically. Finally, we note that the
development of the COVES test in this paper was made in response to the random-
ized clinical studies on rheumatoid arthritis treatments, but the basic idea and the
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(a) (b)

(c)

FIG. 4. Quantile function plots of the covariate-adjusted outcomes; the adjustments are made
based on regression quantile at (a) τ = 0.5, (b) τ = 0.75, (c) τ = 0.9. The diagnostic plots are
insensitive to the initial choice of τ .

methodology clearly generalize to other problems (where tail differences of possi-
bly other τ values are) of interest. In general, we suggest using quantile function
plots on covariate-adjusted outcomes as a simple diagnostic tool for suggesting a
good choice of τ .

APPENDIX: SKETCH OF PROOF

The following lemma follows directly from the consistency and the Bahadur
representation of regression quantile estimators; see Koenker [(2005), Section 4.3]
and He and Shao (1996).
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LEMMA 1. If {(Zi,Di,Ci)} is a random sample satisfying (1), limm,n→∞(m+
n)−1Uf exists, E|Ci |3 < ∞, and fi are uniformly bounded away from 0 and in-
finity, then we have the Bahadur representation on γ̂

γ̂ − γ (τ) = −U−1
f

∑
i

C∗
i I (ei < 0) + op

(
(m + n)−1/2)

,

and the representation on ēτ (d)

ēτ (d) −
{ ∑

Di=d

I (ei > 0)

}−1 ∑
Di=d

eiI (ei > 0) = op

(
(m + n)−1/2)

,

where Uf = ∑
i (fiC

∗2
i ), fi is the conditional density function of ei given (Di,Ci)

evaluated at 0, and C∗
i = Ci − N−1

d

∑
i CiI (Di = d).

PROOF OF THEOREM 3.1. By replacing êi in Tτ (m,n) by ei and using the
results in Lemma 1, we approximate Tτ (m,n) by

T ∗
τ (m,n) = δ(τ ) +

[
{(1 − τ)m}−1

∑
Di=1

I (ei > 0)ei

− (
C̄τ (1) − C̄τ (0)

)
U−1

f

∑
Di=1

C∗
i I (ei ≥ 0)

]

−
[
{(1 − τ)n}−1

∑
Di=0

I (ei > 0)ei

+ (
C̄τ (1) − C̄τ (0)

)
U−1

f

∑
Di=0

C∗
i I (ei ≥ 0)

]
.

It is clear that E(T ∗
τ (m,n)) = δ(τ ) = 0 under H0, and T ∗

τ (m,n) is asymptotically
normal, with

var(T ∗
τ (m,n))

= {(1 − τ)m}−2
∑

Di=1

(
E{e2

i I (ei > 0)} − [E{eiI (ei > 0)}]2)

+ τ(1 − τ)
(
C̄τ (1) − C̄τ (0)

)2
U−2

f

∑
i

(C∗
i )2

+ {(1 − τ)n}−2
∑

Di=0

(
E{e2

i I (ei > 0)} − [E{eiI (ei > 0)}]2)
.

Again, by Lemma 1 and Tτ (m,n) − T ∗
τ (m,n) = op((m + n)−1/2), the asymptotic

normality of Theorem 3.1 follows. �
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