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IMPROVING PSF CALIBRATION IN CONFOCAL MICROSCOPIC
IMAGING—ESTIMATING AND EXPLOITING BILATERAL

SYMMETRY

BY NICOLAI BISSANTZ1, HAJO HOLZMANN2 AND MIROSŁAW PAWLAK

Bochum University, Marburg University and University of Manitoba

A method for estimating the axis of reflectional symmetry of an image
f (x, y) on the unit disc D = {(x, y) :x2 + y2 ≤ 1} is proposed, given that
noisy data of f (x, y) are observed on a discrete grid of edge width �. Our
estimation procedure is based on minimizing over β ∈ [0,π) the L2 distance
between empirical versions of f and τβf , the image of f after reflection at
the axis along (cosβ, sinβ). Here, f and τβf are estimated using truncated
radial series of the Zernike type. The inherent symmetry properties of the
Zernike functions result in a particularly simple estimation procedure for β.
It is shown that the estimate β̂ converges at the parametric rate �−1 for im-
ages f of bounded variation. Further, we establish asymptotic normality of β̂

if f is Lipschitz continuous. The method is applied to calibrating the point
spread function (PSF) for the deconvolution of images from confocal mi-
croscopy. For various reasons the PSF characterizing the problem may not be
rotationally invariant but rather only reflection symmetric with respect to two
orthogonal axes. For an image of a bead acquired by a confocal laser scanning
microscope (Leica TCS), these axes are estimated and corresponding confi-
dence intervals are constructed. They turn out to be close to the coordinate
axes of the imaging device. As cause for deviation from rotational invariance,
this indicates some slight misalignment of the optical system or anisotropy of
the immersion medium rather than some irregular shape of the bead. In an
extensive simulation study, we show that using a symmetrized version of the
observed PSF significantly improves the subsequent reconstruction process
of the target image.

1. Introduction. The fundamental concept of symmetry of physical and bi-
ological objects has been thoroughly studied for a long time; cf., e.g., Conway,
Burgiel and Goodman-Strauss (2008). In particular, symmetry plays an important
role in image analysis and understanding and finds direct applications in object
recognition, robotics, image animation and image compression; see Liu, Collins
and Tsin (2004) for an overview of the subject of symmetry and related issues.
The problem of detecting and measuring object symmetries has been tackled in
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the image processing and pattern analysis literature since the original works of
Atallah (1985) and Friedberg (1986). For a comprehensive review of the literature
see Liu, Collins and Tsin (2004) and Bissantz, Holzmann and Pawlak (2009). The
role of symmetry in statistical inference is discussed in Viana (2008).

In this paper we propose an estimation procedure for the angle β of the di-
rection (cosβ, sinβ) of the axis of reflectional symmetry of an image function f

from which discrete, noisy observations are available. The observations are taken
on a grid of edge width �, and the noise is modeled by stochastic errors. Existing
methods either do not allow any noise or treat the effect of noise only empirically
by simulations. Thus, to the best of our knowledge, our approach is the first which
treats reflection symmetry estimation from a statistical point of view as a semi-
parametric estimation problem. Specifically, we show that for image functions f

of bounded variation the estimate β̂ converges at a rate of �−1 and, further, for
Lipschitz continuous f we have asymptotic normality, which allows us to con-
struct asymptotic confidence intervals for β .

The estimation procedure is based on minimizing over β ∈ [0, π) the L2 dis-
tance between empirical versions of f and τβf , the image of f after reflection
at the axis along (cosβ, sinβ). Here, f and τβf are estimated using truncated
Zernike function expansions. The inherent symmetry properties of the Zernike
functions yield a particularly simple estimation procedure for β . In the recent re-
lated papers [cf. Kim and Kim (1999) and Revaud, Lavoue and Baskurt (2008)],
methods for estimating the rotation angle of an image invariant under a certain
rotation, which also make use of the Zernike moments, have been proposed. How-
ever, the authors do not study any convergence aspects of the algorithms and con-
fine their discussion to noise-free images.

Our methodology is applied to calibrating the point spread function (PSF) of a
microscope in confocal microscopy. The PSF describes the blurring effect of the
imaging process. Typical smoothing scales are of order ≈100 nm, which often is
of similar order as the size of relevant structures in the target object. Hence, an
exact knowledge of the PSF is essential to properly adjust (i.e., deconvolve) the
observed image to recover the image of the target object.

A theoretical PSF may be computed from the optical properties of the micro-
scope, it is rotationally invariant for a rotationally symmetric optical system. How-
ever, the true (empirical) PSF can deviate substantially from its theoretical shape,
and is no longer rotationally invariant. Therefore, the PSF is estimated from im-
ages of point-like objects with known form. Since this process involves rather dim
images, it is worthwhile to use additional information on the PSF to improve on
its reconstruction.

Often, the empirical PSF is still expected to be reflection symmetric with re-
spect to two (unknown) orthogonal axes, for example, if the detector plane is not
in perfect agreement with the focal plane of the microscope; cf. Lehr, Sibarita and
Chassery (1998) and Pankajakshan et al. (2008). Therefore, for an image of a bead
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acquired by a confocal laser scanning microscope (Leica TCS), in Bissantz, Holz-
mann and Pawlak (2009) we used hypotheses tests to assess rotational invariance
as well as invariance under a rotation by π (which is a consequence of invari-
ance under reflections by two orthogonal axes) for the empirical PSF. While (for
bead 2) rotational invariance was rejected, invariance under a rotation by π (and
hence reflection symmetry) was not rejected at the level of 5%.

Here, we estimate the axes of reflectional symmetry of the PSF and construct the
corresponding confidence intervals. It turns out that the axes are very close to the
coordinate axes of the imaging device. This indicates that the reason for the PSF to
deviate from rotational invariance appears to be some (slight) misalignment of the
optical system or anisotropy of the immersion medium used for object preparation
rather than some random deviation from sphericity of the bead used to image the
PSF.

Further, we propose to reduce the noise level in the PSF by a factor of 2 by av-
eraging along the estimated axes. To investigate the practical merit of this strategy
for recovery of a target image, we use a two-step simulation study. First, the PSF
is estimated by four different methods, then the estimated PSFs are used for sub-
sequent recovery of the target image, and the accuracy of these reconstructions are
compared. For the PSF we use a simple nonparametric estimate of the PSF as well
as a symmetrized version, together with correctly specified and slightly misspec-
ified parametric models. It turns out that while the correctly specified parametric
model performs best for recovering the target image, symmetrizing the nonpara-
metric estimate greatly improves its performance, even beyond that of the slightly
misspecified parametric model.

The paper is organized as follows. In Section 2 we introduce the theoretical
Zernike moments and give their basic invariance properties. Further, we discuss
how to estimate the moments from data generated by our observational model. In
Section 3 we propose the estimation procedure for the angle β of the direction
(cosβ, sinβ) of the axis of reflectional symmetry of the image function f , and
discuss its statistical properties. This includes the issue of uniqueness as well as
consistency, rate of convergence and asymptotic distribution of the estimate. Sec-
tion 4 contains simulation studies concerning the finite sample properties of the
estimator. In Section 5 we discuss reflection symmetry properties of an observed
PSF of a confocal laser scanning microscope (Leica TCS). Further, in a simulation
we show how incorporating reflection symmetry into a simple nonparametric esti-
mate of the PSF significantly improves its properties in the image reconstruction
process. Section 6 gives some concluding remarks, while technical proofs can be
found in the supplementary material in Bissantz, Holzmann and Pawlak (2010).

2. The Zernike orthogonal basis and image reconstruction. Zernike func-
tions, introduced as an orthogonal and rotationally invariant basis of polynomi-
als on the disc in Zernike (1934), and their corresponding moments have been
used extensively in image analysis and pattern recognition; see Bailey and Srinath
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(1996), Khotanzad and Hong (1990) and Mukundan and Ramakrishnan (1998).
The Zernike basis has also been employed as an important tool for the statistical
inference concerning the inverse problem of positron emission tomography [cf.
Jones and Silverman (1989) and Johnstone and Silverman (1990)] and PSF es-
timation in fluorescence microscopy [cf. Dieterlen et al. (2004); Dieterlen et al.
(2008)].

2.1. Zernike polynomials. In the following we identify two-dimensional
space R2 with the complex plane C via (x, y) �→ x + iy, where i is the imag-
inary unit. In particular, eiβ is the unit vector (cosβ, sinβ) at angle β to the x

axis.
Now, the (complex) Zernike orthogonal polynomials are given by Vpq(x, y) =

Rpq(ρ)eiqθ , (x, y) ∈ D, where ρ =
√

x2 + y2, θ = arctan(y/x) and Rpq(ρ) is the
radial Zernike polynomial given explicitly by

Rpq(ρ) =
(p−|q|)/2∑

l=0

(−1)l(p − l)!ρp−2l

l!((p + |q|)/2 − l)!((p − |q|)/2 − l)! .

The indices (p, q) have to satisfy p ≥ 0, |q| ≤ p, and p − |q| has to be even.
We will call such pairs (p, q) admissible. The Zernike polynomials satisfy the
following orthogonality relation over the unit disc D:∫∫

D
Vpq(x, y)V ∗

p′q ′(x, y) dx dy = π/(p + 1)δpp′δqq ′,

where ∗ denotes complex conjugation and δpp′ is the Kronecker delta. This implies
that

‖Vpq‖2 = π/(p + 1) = np,(1)

where ‖ · ‖ is the norm on L2(D). In Bhatia and Wolf (1954), the Zernike polyno-
mials are characterized by a certain uniqueness property, among others, invariant
polynomials defined on D.

2.2. Function approximation. Since the family {Vpq(x, y)} for admissible
(p, q) forms a complete and orthogonal system in L2(D), we can expand a func-
tion f ∈ L2(D) into a series of the Zernike polynomials, that is,

f (x, y) =
∞∑

p=0

p∑
q=−p

n−1
p Apq(f )Vpq(x, y),(2)

where here and throughout the paper the summation is taken over admissible pairs
(p, q). Thus, the Fourier coefficients {Apq(f )} (often referred to as the Zernike
moments) uniquely characterize the image function f . The norming factor n−1

p

arises due to (1), and the Zernike moment Apq(f ) is defined by

Apq(f ) =
∫∫

D
f (x, y)V ∗

pq(x, y) dx dy.
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Owing to Parseval’s formula, we have that for f ∈ L2(D)

‖f ‖2 =
∞∑

p=0

p∑
q=−p

n−1
p |Apq(f )|2.(3)

Let us introduce the notation f̃ (ρ, θ) = f (ρ cos θ, ρ sin θ) for a function f ∈
L2(D). Then by using polar coordinates we obtain

Apq(f ) = 2π

∫ 1

0
cq(ρ, f )Rpq(ρ)ρ dρ,

(4)

cq(ρ, f ) = 1

2π

∫ 2π

0
f̃ (ρ, θ)e−iqθ dθ.

2.3. Image reconstruction. We assume that the data are observed on a sym-
metric square grid of edge width �, that is, xi − xi−1 = yi − yi−1 = � and
xi = −xm−i+1, yi = −ym−i+1, so that (xi, yj ) is the center of the pixel 	ij =
[xi − �

2 , xi + �
2 ] × [yj − �

2 , yj + �
2 ]. Note that m corresponds to 2/�. For

f ∈ L2(D) we shall assume the following observational model:

Zi,j = f (xi, yj ) + εi,j , (xi, yj ) ∈ D,1 ≤ i, j ≤ m,(5)

where the noise process {εi,j } is an i.i.d. random sequence with zero mean, finite
variance Eε2

i,j = σ 2 and finite fourth moment, so that Zi,j is the datum associated
with pixel 	ij . Note that along the boundary of the disc, some lattice squares are
included (if their center is in D) and some are excluded. When reconstructing f ,
this gives rise to an additional error, called geometric error in Pawlak and Liao
(2002). This error can be quantified by using the celebrated problem in analytic
number theory referred to as lattice points of the circle. In applications, the datum
Zi,j might also correspond to the average of f over the pixel 	ij rather than its
value at the center, in such cases we assume negligible variation of f over 	ij .

In the following we need to work with a discretized version of the Zernike
moments. Consider weights wpq(xi, yj ) of the form

wpq(xi, yj ) =
∫∫

	ij

V ∗
pq(x, y) dx dy or wpq(xi, yj ) = �2V ∗

pq(xi, yj ).(6)

Using either version in (6), we estimate the Zernike moment Apq(f ) by

Âpq = ∑
(xi ,yj )∈D

wpq(xi, yj )Zi,j .(7)

For efficient methods for computing the Zernike moments Âpq , see, for example,
Amayeh et al. (2005). Instead of the uniform weights, one could also use a more
sophisticated quadrature rule, particularly if sharp features of f are expected.
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3. Reflection estimation. First we investigate the effect that reflecting an im-
age function f has on its Zernike moments. Suppose that f is reflected at a line
along the direction eiβ , β ∈ [0, π), and denote the reflected function by τβf . Then

one easily shows that (̃τβf )(ρ, θ) = f̃ (ρ,2β − θ) and, consequently, using (4),

Apq(τβf ) = e−2iqβAp,−q(f ).(8)

Consider the following assumption.

ASSUMPTION 1. Suppose that f ∈ L2(D) is invariant under some unique re-
flection τβ∗ .

Indeed, the composition of two reflections along lines eiα1 and eiα2 is a rotation
with angle 2(α2 − α1). Thus, f is invariant under a unique reflection if and only
if f is invariant under some reflection and if f is not invariant under any rotation.

3.1. Contrast functions. Our method for estimating β∗ is based on the expan-
sion (3) and the invariance property of Zernike moments expressed by the formula
in (8). We set

M(β,f ) = ‖f − τβf ‖2 =
∞∑

p=0

n−1
p

p∑
q=−p

|Apq(f ) − e−2iqβAp,−q(f )|2.(9)

Evidently, under Assumption 1 the angle β∗ is the unique zero of the func-
tion M(β,f ). Writing Apq(f ) = |Apq(f )|eirpq(f ) and noting that Apq(f ) =
Ap,−q(f )∗, we calculate

M(β,f ) =
∞∑

p=0

n−1
p

p∑
q=0

4|Apq(f )|2(
1 − cos

(
2rpq(f ) + 2qβ

))
,(10)

where the sums are taken over admissible pairs (p, q). Therefore, β∗ is also
uniquely characterized by the condition cos(2rpq(f ) + 2qβ∗) = 1 or by requir-
ing

rpq(f ) ∈ qβ∗ + πZ(11)

for all p,q with Apq(f ) �= 0.
Thus, a natural way to estimate β∗ is to first estimate a truncated version of the

series defining M(β,f ), and then define an estimate of β∗ as the minimizer of
this estimated contrast function. We first show that suitably truncated versions of
M(β,f ) still uniquely determine β∗. For a fixed N set

MN(β,f ) =
N∑

p=0

n−1
p

p∑
q=−p

|Apq(f ) − e−2iqβAp,−q(f )|2.

This is the truncated counterpart of the series in (9). Evidently, MN(β∗, f ) = 0 for
all N under Assumption 1. We shall call M(β,f ) and MN(β,f ) as well as their
empirical version below contrast functions.
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THEOREM 1. Suppose that f satisfies Assumption 1. Then for sufficiently
large N = N(f ), β∗ is the unique zero of the truncated contrast functions
MN(β,f ).

The proof of Theorem 1, given in the supplementary material in Bissantz, Holz-
mann and Pawlak (2010), reveals that in order to uniquely determine the direc-
tion of the reflection axis eiβ∗

as the zero of the function MN(β,f ) one has
to choose N so large such that the sum defining MN(β,f ) contains nonzero
Apq ’s for which the greatest common divisor (gcd) of the q’s is 1. Thus, we can
choose N as the smallest value such that Ap1q1(f ) �= 0, . . . ,Aprqr (f ) �= 0, for
pi ≤ N, i = 1, . . . , r , with gcd(q1, . . . , qr) = 1.

In practice, MN(β,f ) and hence an appropriate value for N still has to be esti-
mated. One could test sufficiently many moments to be nonzero, however, we pre-
fer to choose N for appropriate estimation of f in the resulting truncated Zernike
series estimate; see Section 5. Apart from its theoretical value, Theorem 1 implies
that even in dim images occurring, for example, in PSF estimation in Section 5,
where only few Zernike moments may be properly estimated, it is still possible to
identify and estimate the symmetry axis.

3.2. Estimation. For estimation purposes, we first estimate the contrast func-
tions MN(β,f ) by

M̂N(β) =
N∑

p=0

n−1
p

p∑
q=−p

|Âpq − e−2iqβÂp,−q |2,

where we write Âpq = |Âpq |eir̂pq . Then we define the estimator of β∗ as

β̂�,N = arg min
β∈[0,π)

M̂N(β).

The estimate β̂�,N depends on the grid size � and, more importantly, on the trun-
cation parameter N . Note that although MN(β∗) = 0, M̂N(β̂�,N) will be positive
a.s. due to noise.

REMARK 1. The estimated contrast function M̂N(β) is simply the squared L2
distance between the Zernike estimate given in polar coordinates by

˜̂
f (ρ, θ) =

N∑
(p,q)

n−1
p Âp,qṼp,q(ρ, θ)

and its reflected version τβf̂ . Note that this is achieved by a special property of
the Zernike polynomials, namely, the set of Zernike polynomials used in the esti-
mate f̂ remains invariant under reflection. As suggested by a referee, an estimate
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similar to β̂�,N would be obtained by estimating the coefficients Ap,q in

f̃ (ρ, θ) − τβf̃ (ρ, θ) =
N∑

(p,q)

n−1
p (Ap,q − Ap,−qe−2βiq)Ṽp,q(ρ, θ)(12)

by least squares for each fixed β , and then choosing the β with minimal RSS.
While our approach is somewhat simpler since we estimate the Ap,q before im-
posing symmetry (and thus independently of β), this approach could potentially be
placed into a likelihood or Bayesian framework as in Pankajakshan et al. (2008).

The next result states uniform convergence in probability of the estimated con-
trast function M̂N(β) to MN(β). This is also used in order to obtain the consistency
of β̂�,N for β∗.

THEOREM 2. For each fixed N , as � → 0,

sup
β∈[0,π)

|M̂N(β) − MN(β,f )| → 0 (P ),(13)

where (P ) denotes convergence in probability.

Note that in Theorem 2, f need not be reflection invariant. The next theorem
gives the consistency of β̂�,N as � → 0 as well as its parametric �-rate of conver-
gence. In all the results that follow we choose the truncation parameter N accord-
ing to the prescription established in Theorem 1, that is, we require that N should
be selected in such a way that β∗ is the unique minimizer of MN(β,f ). We will
refer to such a value of N as “sufficiently large.”

THEOREM 3. Suppose that f ∈ L2(D) is a function of bounded variation and
satisfies Assumption 1. Then for sufficiently large (but fixed) N = N(f ), we have
that, as � → 0,

|β̂�,N − β∗| = OP (�).(14)

Next we establish asymptotic normality for the estimate β̂�,N . In order for the
bias term of the estimated Zernike coefficient to be negligible, we require that the
image function f is Lipschitz continuous.

THEOREM 4. Suppose that f is Lipschitz continuous and satisfies Assump-
tion 1. Then for sufficiently large (but fixed) N = N(f ), we have that, as � → 0,

�−1(β̂�,N − β∗) L→ N

(
0,

8σ 2

M ′′
N(β∗, f )

)
,(15)

where

M ′′
N(β∗, f ) =

N∑
p=0

n−1
p

p∑
q=0

16|Apq(f )|2q2.(16)
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Theorem 4 can be used to construct an asymptotic confidence interval for β∗. To
this end, we need an estimate of the asymptotic variance in the normal limit (15).
We may estimate M ′′

N(β∗, f ) directly by using (16) simply by replacing Apq(f )

by Âpq . However, this may result in underestimation of the asymptotic variance,
and therefore plugging β̂�,N into the second derivative of M̂N(β),

M̂ ′′
N(β) =

N∑
p=0

n−1
p

p∑
q=0

16|Âpq |2q2 cos(2r̂pq + 2qβ),

should generally be preferred. Call either estimate M̂ ′′
N . Further, we need to esti-

mate the error variance σ 2. To this end, one could use the residuals from the fitted
truncated Zernike series. We prefer to use a difference estimate of the form

σ̂ 2 = 1

C(�)

∑
(xi ,yj )∈D

1

4

(
(Zi,j − Zi+1,j )

2 + (Zi,j − Zi,j+1)
2)

,(17)

which does not rely on the same underlying regression estimate. Here the sum is
taken over all (xi, yj ) ∈ D where (xi+1, yj ) ∈ D and (xi, yj+1) ∈ D, and C(�)

is the number of terms in this restricted sum. One can show that if f is Lipschitz
continuous, then σ̂ 2 − σ 2 = OP (�). For detailed information on difference-based
estimators in higher dimensions see Munk et al. (2005).

Using these estimates, we obtain the following confidence interval with nominal
level α for β∗:[

β̂�,N − u1−α · 2
√

2σ̂�

(M̂ ′′
N)1/2

, β̂�,N + u1−α · 2
√

2σ̂�

(M̂ ′′
N)1/2

]
,(18)

where u1−α is the 1 − α-quantile of the standard normal distribution.

REMARK 2. If in Theorem 4 we only assume that f ∈ L2(D) is a function of
bounded variation, then the bias is also of order �, and we get an asymptotic offset
(i.e., a limiting normal law with nonzero mean) in (15).

REMARK 3. If the image f is not reflection invariant, the estimator β̂�,N may
still converge to a certain parameter value β�, which is determined by minimizing
the L2-distance ‖f − τβf ‖2. Then (f + τβ�f )/2 is the best reflection-symmetric
approximation (in the L2 sense) to the original image f . However, since β� is no
longer a zero of the contrast function M(β,f ), Theorem 1 does not hold, and in
order to achieve consistent estimation theoretically, one requires that N → ∞.

REMARK 4. Suppose that f is reflection invariant but is also invariant under
some discrete rotation group. Then there will be a minimal angle α = 2π/d for
some d ∈ N, under rotation of which f is invariant. If we use the estimator β̂�,N

in such a situation, then a unique reflection axis will be between 0 and α, and one
should use the minimizer of M̂N(β) in the interval [0, α) rather than in [0, π).
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4. Finite sample performance.

4.1. Target functions and the shape of their contrast functions. In this section
we discuss the results of a simulation study of the proposed estimation method for
the angle β of reflectional symmetry. We performed simulations with three target
functions, which are given in polar coordinates by

f1(ρ, θ) = c1 · x · (1 − ρ) · (
sin

(
y +

√
x2 + y4

) + sin
(−y +

√
x2 + y4

))
,

f2(ρ, θ) = c2 · ρ · (1 − ρ) · (
ecos(θ)/0.02 + ecos(θ+0.6)/0.02

+ ecos(θ−0.3+π)/0.02 + ecos(θ+0.9+π)/0.02)
,

f3(ρ, θ) = c3 · ρ · (1 − ρ) · (
ecos(θ)/0.2 + ecos(θ+0.9)/0.2 + 0.6 · ecos(θ−1.7)/0.2)

,

where x = ρ cos(θ), y = ρ sin(θ), and c1, c2, c3 are normalization constants such
that the squared functions all integrate to one on the unit disc. Figures 1–3 show

FIG. 1. Reflection symmetric function f1 without noise, with Gaussian noise, and M7(β) (full
curve) and M̂7(β) (dashed curve). Parameters are n = 25 and signal-to-noise-ratio = 5. The vertical
line indicates the direction of reflection symmetry in the true image.
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FIG. 2. Reflection symmetric function f2 without noise, with Gaussian noise, and M7(β) (full
curve) and M̂7(β) (dashed curve). Parameters are n = 25 and signal-to-noise-ratio = 5. The vertical
line indicates the direction of reflection symmetry in the true image.

the target functions without noise and with Gaussian noise, where the signal-to-
noise ratio, defined as the ratio between the peak values of the respective target
function f1, f2, f3 and the standard deviation of the noise σ , is 5. Figure 4 again
shows f1 but with a signal-to-noise ratio of 16.7. Note that the functions f1 and f2
are reflection symmetric, whereas f3 is not. Moreover, in all cases we have used
regularization parameters N chosen according to the selection rule described in
Bissantz, Holzmann and Pawlak (2009) (a stochastic analogue of the numerical
discrepancy principle for parameter selection in inverse problems). The fact that
f1 and f2, in contrast to f3, are reflection symmetric is clearly expressed in the
shape of the associated contrast functions. Indeed, M̂7(β) is far above zero for f3,
in contrast to the case of f1 and f2, where M̂7(β) reaches a minimum close to zero
for noisy data. However, we note that even for f3 there still exists a well-defined
minimum of the contrast function M̂7(β). The right panel in Figure 3 shows a
reflection symmetric version of f3, which has been generated by adding a version
of f3 mirrored w.r.t. the axis given by the direction of the minimum of M̂7(β).
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FIG. 3. The function f3 (which is not reflection symmetric) without noise, with Gaussian noise, and
M7(β) (full curve), M̂7(β) (dashed curve) and a symmetrized version of f3. Parameters are n = 25
and signal-to-noise-ratio = 5.

4.2. Simulated distributions of estimated directions β̂ . In the second part we
have simulated the distribution of β̂ , determined as the minimum of M̂N(β), for a
range of values for the parameters n and the signal-to-noise ratio s/n. Figures 5
and 6 show density plots of the simulated distributions together with normal limits.
For the reflection symmetric functions f1 and f2 we compare the simulated distrib-
utions to their asymptotic counterparts according to (15). Even for images of mod-
erate size such as the unit circle in the square image with edge length (2m+1) = 51
pixels, the simulated distributions are already close to their asymptotic limit.

5. Calibrating the PSF in confocal microscopy.

5.1. Assessing reflectional symmetry of the PSF. In this section we use the
contrast function to estimate the axes of reflection symmetry in an image of the
point-spread function in confocal fluorescence microscopic imaging. Here one ob-
serves count data representing observed pixel-integrated image intensities on a
two-dimensional (or three-dimensional) equidistant grid of pixels. We consider
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FIG. 4. The reflection symmetric function f1 without noise, with Gaussian noise, and M7(β) (full
curve) and M̂7(β) (dashed curve). Parameters are n = 25 and signal-to-noise-ratio = 16.7. The
vertical line indicates the direction of reflection symmetry in the true image.

the two-dimensional case, where the observations are Zi,j = (Kγ )(xi, yj ) + εij ,
with

(Kγ )(x, y) = k ∗ γ (x, y) =
∫

R2
k(x − t1, y − t2)γ (t1, t2) dt1 dt2,(19)

and where “∗” represents the convolution of the “true” image γ ∈ L2 with the so-
called point-spread-function (PSF) k ∈ L2 of the microscope. The standard model
for the distribution of the photon count data Zi,j is that Zi,j is Poisson with the
mean (Kγ )(xi, yj ), all independent.

The PSF represents the image of a point-source observed by the microscope and
describes the blurring effect of the imaging process. As discussed in the introduc-
tion, the PSF is typically estimated by observing a point-like object (called bead)
of known form. Figure 7 (right) shows the image of a bead under a Leica TCS
confocal laser scanning microscope. The (observed) empirical PSF is typically no
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FIG. 5. Simulated (solid curve) and asymptotic (dashed curve) distributions of β̂�,N for f1. The variance of the asymptotic distributions is given as
8σ 2�2

M ′′
N(β∗) (cf. Theorem 3). The parameter N was chosen as 7,8,12 (first row, left to right) and 8,12,12 (second row, left to right).
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FIG. 6. Simulated (solid curve) and asymptotic (dashed curve) distributions of β̂�,N for f2 (left

panels) and f3 (right panels). The variance of the asymptotic distributions is given as 8σ 2�2

M ′′
N(β∗) (cf.

Theorem 3). The parameter N was chosen as 7, except for the lower left where it was chosen as 8.

longer rotationally invariant, but it often remains reflection symmetric under two
(unknown) orthogonal axes, even if, for example, the detector plane was not in
perfect agreement with the focal plane of the microscope; cf. Lehr, Sibarita and
Chassery (1998) and Pankajakshan et al. (2008).

In Bissantz, Holzmann and Pawlak (2009) we applied tests both for rotational
invariance and for invariance under a rotation by π (which is an immediate conse-
quence of reflection symmetry w.r.t. two orthogonal axes) to the observed PSF in
the image bead (Figure 7). It turned out that rotational invariance could be rejected
at a 5% level, but invariance under a rotation by π was not rejected.

For a deeper investigation, we now apply our methodology to estimate the (or-
thogonal) axes of reflection symmetry. The data from fluorescence microscopic
imaging in general is distributed (approximately) according to a Poisson distrib-
ution with expectation given by the respective image intensity. Hence, the noise



1886 N. BISSANTZ, H. HOLZMANN AND M. PAWLAK

FIG. 7. Contrast function of image bead (left), image bead with superposed estimated reflection
axis and the associated asymptotic confidence interval with nominal level 95% (middle), and bead
after averaging along two estimated axes of reflectional symmetry (right). Bead was acquired during
two observation runs of HeLa cervix carcinoma cells with a Leica TCS laser scanning fluorescence
microscope. Here, we used N = 4.

is not homoscedastic as required by model (5). As suggested by a referee, we use
the (variance stabilizing) Anscombe transform [Anscombe (1948)]. Note that re-
flection symmetry is preserved in this process. Further, following Remark 4, we
restrict the range of β to [π/4,3π/4], which yields an estimated angle and asso-
ciated 95% confidence interval of β̂ = 1.54 ± 0.07. The truncation parameter was
selected as N = 4 by the method described in Bissantz, Holzmann and Pawlak
(2009). Using the untransformed data and ignoring heteroscedasticity yields quite
similar results (β̂ = 1.53 ± 0.08), thus, heteroscedasticity appears to be a minor
problem in this context.

Figure 7 (left and middle) shows the contrast function (of the untransformed
data with N = 4) and the image with superposed estimated reflection axis (β̂ ≈
1.53). The optical axis appears to be rather close to the coordinate axis of the
image. In particular, the coordinate axis is covered by the associated 95%-nominal
level confidence interval for β̂ [cf. (18)]. This indicates that the reason for a PSF
which is not rotationally invariant appears to be some (slight) misalignment of the
optical system or anisotropy of the immersion medium used for object preparation
rather than some random deviation from sphericity of the bead used to image the
PSF. In Figure 7 (right), we plot the PSF after averaging along two estimated axes
of reflectional symmetry.

5.2. Performance of symmetrized PSF estimates for image reconstruction. In
this section we discuss the results from an extensive simulation study in which we
investigate the potential benefit of incorporating symmetry information into PSF
estimates.

We shall compare the performance of several models for the PSF for subsequent
image reconstruction in a two-step simulation procedure which mimics the obser-
vational process in confocal microscopy. In the first step, we generate an image of
a point-like object and use it to estimate the PSF in the distinct model classes. In
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the second step, these estimated PSFs are employed to reconstruct (by deconvo-
lution with the estimated PSFs) a target image, and the accuracy of the resulting
reconstructions is compared.

Inference on the PSF as required in the first step has to be conducted from
dim images, and hence requires low-dimensional modeling. A possible approach
is to use a parametric model; however, this involves the risk of misspecification.
As an alternative, one could seek nonparametric estimates for the PSF. Due to
the dimness of the image, nonparametric smoothing algorithms would require a
substantial amount of smoothing. Therefore, the essential local feature of the PSF,
the steep central peak, would be reduced, and hence its optical transfer function
would be distorted. Thus, as an actual estimate of the PSF for the reconstruction
process, the Zernike series estimates or other smoothed estimates should not be
used. However, we argue that even for a dim image the Zernike estimate with
few Zernike moments can be used for recovering the global feature of reflectional
symmetry. Averaging along the estimated axes then reduces the noise level in the
PSF reconstruction, which improves the reconstruction in step 2.

Specifically, the true PSF in the first step in the simulations consists of a bi-
variate Gaussian density function with full width at half maximum [FWHM] of
250 nm along the y-axis and 250/

√
2 nm along the x-axis, and the bead used to

estimate the PSF is assumed to be 50 nm in diameter. Moreover, the (true) peak
intensity in the image of the bead is ≈22, which yields a signal-to-noise ratio for
the brightest pixels of ≈5.

We use four models in which we estimate the PSF from the available (Poisson-
distributed) observations. First, we use two parametric models, one correctly speci-
fied (i.e., the intensities have the shape of a Gaussian density with unknown covari-
ance matrix), the other slightly misspecified with intensity function proportional
to exp(–1/2(q(x, y))0.95) where q(x, y) = (x, y)�−1(x, y)T . Both models are es-
timated by maximum likelihood. Further, we use two nonsmoothed nonparametric
estimates. The first simply consists of the observed raw data, for the second we av-
erage the raw data along the two estimated axes of reflectional symmetry, thereby
reducing the noise level by a factor 2.

In the second step we aim to recover the target image plotted in Figure 8 from
Poisson-observations with intensities given in (19), that is, the convolution of the
target image and the true PSF described above. The target image is of size 8.2 µm
along the x and y-directions and with 128 × 128 pixels along each axis, that is, the
resolution of a pixel is ≈64 nm. The signal-to-noise ratio of the brightest pixels
is ≈20 (and correspondingly lower for most of the image). For the image recon-
struction by deconvolution, the distinct estimated PSFs are employed in the same
algorithm. We use the Expectation Maximization method [cf. Shepp and Vardi
(1982)], also called the Richardson–Lucy algorithm [cf. Richardson (1972) and
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FIG. 8. Test image used in the simulations of the benefit from using an estimated axis of symmetry
for the PSF. Left: true image; right: convolved image with Gaussian noise.

Lucy (1974)], which is one of the most commonly used algorithms for deconvo-
lution problems with positivity constraint. For each estimate of the PSF we record
the smallest L1- and L2-distances attained between any iterate of the Richardson–
Lucy reconstruction based on the respective PSF and the true target image in Fig-
ure 8.

Table 1 shows the mean optimal L1- and L2-distances from 200 simulations of
the imaging process, that is, subsequent execution of steps 1 and 2. It turns out
that while the correctly specified parametric model performs best for recovering
the target image, symmetrizing the nonparametric estimate greatly improves its
performance, even beyond that of the slightly misspecified parametric model.

6. Conclusions. Detection and estimation of symmetry are fundamental con-
cepts in many areas of science and technology. In particular, the concept of sym-
metry plays an important role in image analysis and pattern recognition.

Symmetry is also relevant in many statistical models. An important and well-
studied example is the symmetric location model h(x −θ), where h(x) = h(−x) is
an unknown symmetric density function and θ ∈ R is the location parameter. Such

TABLE 1
Mean optimal L1- and L2-distance achieved between reconstructed image and true image, based

on three different estimates of the PSF

Distance Parametric Parametric Nonparametric Nonparametric
measure (misspecified) without symmetry with symmetry

L1 (×105) 1.3 1.9 2.0 1.7
L2 (×107) 0.6 1.6 1.5 1.2
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models consisting of a Euclidean parameter as well as a nonparametric component
are called semiparametric, and efficient, that is, asymptotically optimal estimation
procedures in such problems are important and difficult issues in statistical infer-
ence [Bickel et al. (1993)].

In this paper we have discussed how to estimate the angle of the axis of re-
flectional symmetry of an image function, and studied its asymptotic proper-
ties. This problem is also of a semiparametric form, with the angle β as the
target parameter, and the image function (that is reflection symmetric with re-
spect to a fixed axis, say, the x-axis) as nonparametric component. Although
we showed that the parametric rate is achievable for estimating the para-
meter β , and also obtained an asymptotic normal law, we did not go into
the problem of semiparametric efficiency and leave this issue for future re-
search.

We have applied our method to calibrating the point-spread function (PSF)
in confocal microscopy. In particular, we have shown how reflection symme-
try (but no rotational invariance) may arise in the PSF. Further, we demon-
strated that estimating the symmetry axes and symmetrizing the image of the
PSF reduces the noise level in nonparametric estimates, and can lead to sub-
stantial improvement in the performance in subsequent image reconstruction al-
gorithms.

Future research will be directed toward elucidating symmetry information and
estimation in more complex microscopic setups, in particular, in 3D-fluorescence
microscopy [e.g., 4PI-microscopy as in Bewersdorf, Schmidt and Hell (2006)].
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well as the reviewers for their helpful comments.

SUPPLEMENTARY MATERIAL

Estimating bilateral symmetry: Technical details (DOI: 10.1214/10-
AOAS343SUPP; .pdf). Here we provide the technical proofs for our results in the
paper “Improving PSF calibration in confocal microscopic imaging—estimating
and exploiting bilateral symmetry.”
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