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TOPOLOGICAL INFERENCE FOR EEG AND MEG1

BY JAMES M. KILNER AND KARL J. FRISTON

University College London

Neuroimaging produces data that are continuous in one or more dimen-
sions. This calls for an inference framework that can handle data that approx-
imate functions of space, for example, anatomical images, time–frequency
maps and distributed source reconstructions of electromagnetic recordings
over time. Statistical parametric mapping (SPM) is the standard framework
for whole-brain inference in neuroimaging: SPM uses random field theory to
furnish p-values that are adjusted to control family-wise error or false discov-
ery rates, when making topological inferences over large volumes of space.
Random field theory regards data as realizations of a continuous process in
one or more dimensions. This contrasts with classical approaches like the
Bonferroni correction, which consider images as collections of discrete sam-
ples with no continuity properties (i.e., the probabilistic behavior at one point
in the image does not depend on other points). Here, we illustrate how random
field theory can be applied to data that vary as a function of time, space or
frequency. We emphasize how topological inference of this sort is invariant to
the geometry of the manifolds on which data are sampled. This is particularly
useful in electromagnetic studies that often deal with very smooth data on
scalp or cortical meshes. This application illustrates the versatility and sim-
plicity of random field theory and the seminal contributions of Keith Worsley
(1951–2009), a key architect of topological inference.

1. Introduction. This paper is about inferring treatment effects or responses
that are expressed in image data. The problem we consider is how to accommo-
date the multiplicity of data and correlations due to smoothness, when adjusting
for the implicit multiple comparison problem. The data we have in mind here are
images that can be treated as discrete samples from a function of some underlying
support: for example, two-dimensional images of the brain sampled from evenly
spaced points (i.e., a grid) in anatomical space. In brief, the multiple comparison
problem can be dissolved by modeling the data as samples from random fields with
known (or estimable) covariance functions over their support. This allows one to
use results from random field theory to determine the topological behavior (e.g.,
the number of peaks above some threshold) of summary statistic images, under the
null hypothesis. Because we treat the data and derived statistical processes as im-
plicit functions of some metric space, this approach is closely related to functional
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data analysis [Ramsay and Silverman (2005)]. When this functional perspective
is combined with random field theory (as a probabilistic model of data), we get a
generic inference framework (topological inference) that is used widely in brain
mapping and other imaging fields.

We will review topological inference in neuroimaging with a special focus on
electromagnetic (EEG and MEG) data. In particular, we stress the generality of
this approach and show that random theory can be applied to data-features com-
monly used in EEG and MEG. These data include interpolated scalp-maps, time–
frequency maps of single-channel data, cortically constrained maps of current den-
sity, source reconstruction on the cortex or brain volume, etc. Irrespective of the
underlying geometry or support of these data, the topological behavior of their as-
sociated statistical parametric maps is invariant. This means one can apply estab-
lished procedures directly to make inferences about evoked and induced responses
in sensor or source-space. This reflects the simplicity and generality of topolog-
ical inference and provides a nice vehicle to illustrate the seminal work of Keith
Worsley, who sadly passed away shortly before this article was written.

Conventional whole-brain neuroimaging data analysis uses some form of statis-
tical parametric mapping. This entails a parametric model (usually a general linear
model) of data at each point in image space to produce a statistical parametric
map (usually of a Student’s t-statistic). Topological inference about regional ef-
fects then uses random field theory to control for the implicit multiple comparisons
problem. This is standard practice in imaging modalities like functional magnetic
resonance imaging (fMRI) and positron emission tomography. However, the ap-
plication to electroencephalography (EEG) and magnetoencephalography (MEG)
data is relatively new. An interesting feature of electromagnetic data is that they
are often formulated on meshes or manifolds, which may seem to complicate the
application of random field theory. This paper shows that random field theory can
be applied directly to electromagnetic data on manifolds and that it accommo-
dates the anisotropic and complicated spatial dependencies associated with smooth
electromagnetic data-features. We have chosen to illustrate topological inference
on electromagnetic data-features because they are inherently smooth and show
profound spatial dependencies, which preclude classical procedures. These depen-
dencies arise from preprocessing steps (e.g., interpolation to produce scalp maps
or source reconstruction, under regularizing smoothness constraints) or from the
nature of the data-features per se (e.g., physiological smoothness in time-series or
time–frequency smoothness induced by wavelet decomposition).

EEG and MEG are related noninvasive neuroimaging techniques that provide
measures of human cortical activity. EEG and MEG typically produce a time-
varying modulation of signal amplitude or frequency-specific power in some peri-
stimulus period, at each electrode or sensor. The majority of researchers are in-
terested in whether condition-specific effects (observed at particular sensors and
peristimulus times) are statistically significant. However, this inference must cor-
rect for the number of statistical tests performed. In other words, the family-wise
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error (FWE) rate should be controlled. For independent observations, the FWE
rate scales with number of observations. A simple but inexact method for control-
ling FWE is a Bonferroni correction. However, this procedure is rarely adopted in
neuroimaging because it assumes that neighboring observations are independent:
when there is a high degree of correlation among neighboring samples (e.g., when
data-features are smooth), the correction is far too conservative.

Although the multiple comparisons problem has always existed for EEG/MEG
analyses (due to the number of time bins in the peristimulus time window), the
problem has become more acute with the advent of high-density EEG-caps and
MEG sensor arrays that increase the number of observations across the scalp. In
many analyses, the multiple comparisons problem is circumvented by restricting
the search-space prior to inference, so that there is only one test per repeated mea-
sure. This is usually accomplished by averaging the data over pre-specified sensors
and time-bins of interest. This produces one summary statistic per subject per con-
dition. In many instances, this is a powerful and valid way to side-step the multiple
comparisons problem; however, it requires the space-of-interest be specified a pri-
ori. A principled specification of this space could use orthogonal or independent
data-features. For example, if one was interested in the attentional modulation of
the N170 (a typical event-related wave recorded 170 ms after face presentation),
one could first define the electrodes and time-bins that expressed a N170 (com-
pared to baseline) and then test for the effects of attention on their average. Note
that this approach assumes that condition-specific effects occur at the same sen-
sors and time and is only valid when selection is not biased [see Howell (1997);
Kriegeskorte et al. (2009)]. In situations where the location of evoked or induced
responses is not known a priori, or cannot be localized independently, one can use
topological inference to search over some space for significant responses; this is
the approach we consider.

This paper comprises two sections. The first reviews the application of random-
field theory [RFT; Worsley et al. (1992, 1996)] to statistical parametric maps
[SPMs; Friston et al. (1991, 1994)] of MEG/EEG data over space, time and fre-
quency. In the second section we illustrate the basic procedures by applying RFT
to SPMs of MEG/EEG data and try to highlight the generality of the approach. In
this article we focus on FWE but note the same topological thinking and random
field theory results can also be used to control false discovery rate [FDR; Ben-
jamini and Hochberg (1995)]. We provide a brief review of Topological FDR for
image analysis in the discussion.

2. Random fields and topological inference. In this section we review RFT
and its central role in statistical parametric mapping. We first provide a heuris-
tic overview and then give details, with a special focus on issues that relate to
EEG/MEG analyses. RFT provides an established method for assigning p-values
to topological features of SPMs in the analysis of functional magnetic resonance
(fMRI) and other anatomical, metabolic or hemodynamic images. More recently,
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it has been applied to hierarchical models of EEG/MEG data [Park et al. (2002);
Barnes and Hillebrand (2003); Kiebel and Friston (2004); Henson et al. (2007);
Garrido et al. (2008)], global field power statistics [Carbonell et al. (2004)], time–
frequency data [Kilner, Kiebel and Friston (2005)], current source density maps
[Pantazis et al. (2005)] and even frequency by frequency coupling maps from dy-
namic causal modeling [Chen, Kiebel and Friston (2008)].

2.1. Statistical parametric mapping. Statistical parametric maps (e.g.,
t-maps) are fields with values that are, under the null hypothesis, distributed ac-
cording to a known probability distribution. This is usually the Student’s t- or
F -distributions. SPMs are interpreted as continuous statistical processes by refer-
ring to the probabilistic behavior of random fields [Worsley et al. (1992, 1996);
Friston et al. (1991, 1995)]. Usually, a general linear model is used to estimate the
parameters that best explain some data-features. One fits a general linear model at
each point (vertex or voxel) of the search-space and computes the usual statistics
[see Friston et al. (1995) for details]; these constitute the SPM. The search-space
can, in principle, be of any dimensionality and could be embedded in a higher
dimensional space. RFT is then used to resolve the multiple comparisons problem
that occurs when making inferences over the search-space: Adjusted p-values are
obtained by using results for the expected Euler characteristic of the excursion set
of a smooth statistical process.

The Euler characteristic (or Euler–Poincaré characteristic) is a topological in-
variant that describes the shape or structure of a manifold, regardless of the way
it is stretched or distorted. It was defined classically for the surfaces of polyhedra,
where it is simply the number of faces and corners, minus the number of edges. In
our context, it effectively counts the number of connected regions (minus the num-
ber of holes) in the excursion set that remains after thresholding an SPM. At very
high thresholds the Euler characteristic (abbreviated here “EC”) basically reduces
to the number of suprathreshold peaks and the expected EC becomes the proba-
bility of getting a peak above threshold by chance (under the Poisson clumping
heuristic).

The expected EC therefore approximates the probability that the SPM exceeds
some height by chance. This is the same as the p-value based on the null distribu-
tion of the maximum statistic over search-space. The ensuing p-values can be used
to find a corrected height threshold or assign a corrected p-value to any observed
peak in the SPM [see Worsley (2007) for an introduction to RFT]. The funda-
mental advantage of RFT is that it models continuous statistical processes and not
a collection of individual statistics. This means that RFT can be used to charac-
terize topological features of the SPM like peaks. The key intuition behind RFT
procedures is that they control the false positive rate of topological features, not
the tests themselves. By way of contrast, a Bonferroni correction controls the false
positive rate of tests (at vertices, time–frequency bins or voxels), which would be
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unnecessarily conservative when the data are smooth. RFT has become a corner-
stone of inference in human brain mapping that enables researchers to adjust their
p-values to control false positive rates over many different sorts of search-spaces
with spatial dependencies.

2.2. Random field theory. The assumptions under which the random field cor-
rection operates are quite simple and are satisfied by high-density EEG/MEG data
because of their inherent smoothness in space and time. As noted above, the key
null distribution is that of the maximum statistic over the search volume. By eval-
uating any observed statistic, in relation to the null distribution of its maximum,
one is implicitly implementing a multiple comparisons procedure for continuous
data. An analytic form of this distribution is derived using results from RFT. These
results use the expected Euler characteristic of excursion sets above some speci-
fied threshold. For high thresholds this expectation is the same as the probability
of getting a maximum statistic above threshold. By treating the data, under the null
hypothesis, as continuous random fields, the distribution of the Euler characteristic
of any statistical process derived from these fields can be used as an approximation
to the null distribution required for inference. When using a general linear model
the random (component) fields correspond to error fields. RFT assumes that these
are a good lattice approximation of an underlying random field. Furthermore, the
expressions require that the error fields are multivariate Gaussian with a differen-
tiable autocorrelation function. It is a common misconception that this correlation
function has to be Gaussian: it does not. Furthermore, the autocorrelation function
does not have to be stationary or isotropic. The ensuing p-value is a function of
the search volume, over any arbitrary number of dimensions, and the local smooth-
ness of the underlying error fields, which can be expressed in terms of full-width,
half-maximum (FWHM). A useful concept that combines these two aspects of the
search-space is the number of “resolution elements” (resels—see below). The re-
sel count corresponds to the number of FWHM elements that comprise the search
volume. Heuristically, these encode the number of independent observations. In
other words, even a large search volume may contain a relatively small number of
resels, if it is smooth. This calls for a much less severe adjustment to the p-value
than would be obtained with a Bonferroni correction based on the number of bins,
voxels or vertices.

We now develop these intuitions more formally, with a didactic summary
of random field theory based on Taylor and Worsley (2007) and implemented
in conventional software such as fMRIStat, SurfStat and SPM8. The associated
software is available from http://www.math.mcgill.ca/keith/fmristat/, http://www.
math.mcgill.ca/keith/surfstat/ and http://www.fil.ion.ucl.ac.uk/spm/.

2.3. The Euler characteristic. Imagine that we have collected some
EEG/MEG data and have interpolated them to produce a 2D scalp-map of re-
sponses at one point in peristimulus time for two conditions and several subjects.

http://www.math.mcgill.ca/keith/fmristat/
http://www.math.mcgill.ca/keith/surfstat/
http://www.fil.ion.ucl.ac.uk/spm/
http://www.math.mcgill.ca/keith/surfstat/
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We now compare the two conditions with a statistical test; such that we now have
T (test)-values at every vertex in our scalp-map. We are interested in the T-value,
above which we can declare that differences are significant at some p-value that is
adjusted for FWE.

RFT gives adjusted p-values by using results for the expected Euler character-
istic (EC) of the excursion set of a smooth statistical process. The expected EC of
the excursion set is an accurate approximation to the p-value of the maximum of
a smooth, nonisotropic random field or SPM of some statistic T (s) at Euclidean
coordinates s ∈ S, above a high threshold t and is given by

P
(
max
s∈S

T (s) ≥ t
)

=
D∑

d=0

�d(S,�)ρd(t),(1)

where �d(S,�) are the Lipschitz–Killing curvatures (LKC), of the D-dimensional
search-space S ⊂ �D , and ρd(u) are the EC densities. These are two important
quantities: put simply, the LKC measures the topologically invariant “volume”
of the search-space. In other words, it is a measure of the manifold or support
of the statistical process that does not change if we stretch or distort it. The EC
density is the corresponding “concentration” of events (excursions or peaks) we
are interested in. Effectively, the product of the two is the number of events one
would expect by chance (the expected Euler characteristic). When this number is
small, it serves as our nominal false positive rate or p-value.

Equation (1) shows that the p-value receives contributions from all dimensions
of the search-space, where the largest contribution is generally from the highest
dimension (D). In the example above, we had a two-dimensional D = 2 search-
space. Each contribution comprises two terms: (i) The LKC, which measures the
effective volume, after accounting for nonisotropic smoothness in the compo-
nent or error fields. This term depends on the geometry of the search-space and
the smoothness of the errors but not the statistic or threshold used for inference.
(ii) Conversely, the EC density, which is the expected number of threshold excur-
sions per LKC measure, depends on the statistic and threshold but not the geom-
etry or smoothness. Closed-form expressions for the EC density are available for
all statistics in common use [see Worsley et al. (2002)].

2.4. Smoothness and resels. The LKC encodes information about the support
and local correlation function of the underlying error fields Z(s). The correlation
structure is specified by their roughness or the variability of their gradients, Ż(s),
at each coordinate

�(s) = Var(Ż(s)).(2)

In the isotropic case, when the correlations are uniform, �(s) = ID×D , the LKC
reduces to intrinsic volume

�d(S, ID×D) = μd(S).(3)
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The intrinsic volume is closely related to the intuitive notion of a volume and can
be evaluated for any regular manifold (or computed numerically given a set of ver-
tices and edges defining the search-space). Note that when S is a D-dimensional
manifold embedded in a higher dimensional space, the higher dimensional vol-
umes are all zero, so that the sum in equation (1) need only go to the dimensional-
ity of the manifold, rather than the dimensionality of the embedding space. In the
example above, we can think of our 2D scalp map embedded in a 3D head-space;
however, we only need consider the two dimensions of the scalp-map or mani-
fold. The LKC term that makes the largest contribution to the p-value is the final
volume term

�D(S,�) =
∫
S
|�(s)|1/2 ds = (4 ln 2)D/2 reselsD(S).(4)

This generalization of the LKC is the resel count [Worsley et al. (1996)], which
reflects the number of effectively independent observations. It can be seen from
equation (4) that the resels (or LKC) increase with both volume and roughness.

2.5. Estimating the resel count. The resel count can be estimated by replacing
the coordinates s ∈ S by normalized error fields u(s) ∈ �n, to create a new space

u(s) = Z(s)√
n

≈ r(s)

‖r(s)‖ .(5)

Here, r(s) are n normalized residual fields from our general linear model. Cru-
cially, the intrinsic volume at any point in this new space is the LKC

�d(S,�) = μd(u(s)).(6)

This elegant device was proposed by Worsley et al. (1999). It says that to esti-
mate the LKC, one simply replaces the Euclidean coordinates by the normalized
residuals, and proceeds as if u(s) were isotropic. The basic idea is that u(s) can
be thought of as an estimator of S in isotropic space, in the sense that the local
geometry of u(s) is the same as the local geometry of S, relative to Z(s) [Taylor
and Worsley (2007)]. This equivalence leads to the following estimator:

�D(S,�) = 1

D!
N∑

i=1

|�uT
i �ui |1/2,(7)

where �u = [�u1, . . . ,�uD] are the finite differences between neighboring ver-
tices of the N components that tile the search manifold (e.g., edges, triangles, tetra-
hedra, etc.), note that this approximation does not depend on the Euclidean coor-
dinates of the vertices, only how they are connected to form components [Worsley
et al. (1999)]. At present, the SPM8 software (but not SurfStat) uses the following
LKC estimator,

�d(S,�) = μd(S)

(
�D(S,�)

μD(S)

)d/D

,(8)
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and the approximation, �uT
i �ui ≈ �rT

i �ri/rT
i ri , which assumes ‖ri‖ ≈ ‖rj‖

for connected vertices; this is generally true, provided the error variance changes
sufficiently smoothly.

The important result above is equation (6), which allows one to estimate the in-
trinsic volume of u(s), which is the LKC of S. However, this is another perspective
on equation (7) that comes from an estimator based on equation (4) [see Kiebel et
al. (1999)],

�D(S,�) =
N∑

i=1

|�(si)|1/2�Si.(9)

Comparison with equation (7) suggests that the determinant of finite differences
can also be regarded as an estimate of the local roughness times the volume �Si

of the ith component of search-space,

|�(si)|1/2�Si = 1

D! |�uT
i �ui |1/2.(10)

Effectively, the dependency of the local LKC on volume and the distances between
vertices (implicit in evaluating the gradients) cancel, so that we need only consider
the finite differences. In short, the geometry encoded in the geodesic distances
among vertices (or voxels) has no effect on the LKC or ensuing p-values. This
means we can take any nonisotropic statistical field defined on any D-dimensional
manifold embedded in a high-dimensional space (e.g., a cortical mesh in anatom-
ical space) and treat is as an isotropic D-dimensional SPM, provided we replace
the gradients of the normalized residuals (which depend on the geometry) with
finite differences among connected vertices (which do not). This invariant aspect
of the resel count (or the LKC) estimator speaks to the topological nature of infer-
ence under random field theory. This is summarized nicely in Taylor and Worsley
(2007):

“Note first that the domain of the random fields could be warped or deformed by a one-
to-one smooth transform without fundamentally changing the nature of the problem.
For example, we could ‘inflate’ the average cortical surface to a sphere and carry out
all our analysis on the sphere. Or we could use any convenient shape: the maximum of
the Student’s t-statistic would be unchanged, and so would the Euler characteristic of
the excursion set. Of course the correlation structure would change, but then so would
the search region, in such a way that the effects of these on the LKC, and hence the
expected Euler characteristic, cancel.”

The fact that the resels are themselves a topological measure is particularly impor-
tant for EEG and MEG data. This means that the resel count does not depend on
the Euclidean coordinates or geometry of the data support. In other words, one can
take data from the vertices of a cortical mesh embedded in a 3D space and treat
it as though it came from a flat surface. This ability to handle nonisotropic corre-
lations on manifolds with an arbitrary geometry reflects the topographic nature of
RFT and may find a particularly powerful application in EEG and MEG research.
In the next section we demonstrate the nature of this application.
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3. Illustrative applications. In this section we illustrate RFT, as imple-
mented in SPM8, to adjust p-values from SPMs of space-time MEG data. Data
were recorded from 14 subjects (9 males, age range 25–45 yrs). All subjects gave
informed written consent prior to testing under local ethical committee approval.
MEG was recorded using 275 third-order axial gradiometers with the Omega275
CTF MEG system (VSMmedtech, Vancouver, Canada) at a sampling rate of
480 Hz. Details of the experimental design will be found in Kilner, Marchant and
Frith (2006). Here, we describe the features of the task that are relevant for the
analyses used in this paper; namely, event-related analyses of right-handed button
presses in the time and frequency domains.

Subjects performed four sessions of a task consecutively. In each session, sub-
jects performed forty button presses with their right index finger, giving a total
of 160 trials. All MEG analyses were performed in SPM8: First, the data were
epoched relative to the button press. The data were band-pass filtered between 0.1
and 45 Hz using a time window of −500 to 1000 ms and down-sampled to 100 Hz.
For event-related field (ERF) analyses, the data were averaged across trials for each
sensor. For time–frequency (TF) analyses, induced oscillations were quantified us-
ing a (complex Morlet) wavelet decomposition of the MEG signal, over a 1–45 Hz
frequency range. The wavelet decomposition was performed for each trial, sensor
and subject. The ensuing time–frequency maps were averaged across trials. For the
purposes of this paper, we were interested in demonstrating significant “rebound”
effects in the 15–30 Hz range [Salmelin and Hari (1994)]. Therefore, the time–
frequency maps were averaged across the 15–30 Hz frequency band to produce a
time-varying modulation of the so-called Beta power at each sensor.

For both the ERF and TF analyses, the sensor-data at each time bin were in-
terpolated to produce a 2D sensor-space map on a 64 × 64 mesh aligned to the
left–right and anterior–posterior axes [e.g., Figure 1(C)]. A 3D data-array was gen-
erated for each subject by stacking these scalp-maps over peristimulus time [Fig-
ure 1(D)]. This produces a 3D image, where the dimensions are space (left–right
and anterior–posterior) and time. For each subject, a second reference 3D image
was generated that was the mean amplitude of the signal at each sensor, replicated
at each time point. These space-time maps were smoothed using a Gaussian kernel
(FWHM 6 × 6 spatial bins and 60 ms) prior to analysis. This smoothing step is
essential. First, it assures the assumptions of RFT are not violated. These assump-
tions are that the error fields conform to a good lattice approximation of a random
field with a multivariate Gaussian distribution. Second, it blurs effects that are focal
in space or time, ensuring overlap among subjects. It should be noted that although
smoothing is an important pre-processing procedure, it is not an inherent part of
topological inference: RFT estimates the smoothness directly from the (normal-
ized residual) data, during the estimation of the resel count. This means one has
the latitude to smooth in a way that emphasizes the data-features of interest. For
example, with cortical or scalp manifolds one might use weighted [e.g., Pantazis et
al. (2005)] or un-weighted graph-Laplacian operators to smooth the data on their
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FIG. 1. Single-subject ERF data. (A) shows the average ERF for a single subject. The data are
plotted for 275 sensors across peristimulus time. (B) shows the average ERF for the same subject
from one sensor. The vertical line indicates the maximum positive value of this ERF. (C) shows the
sensor-space interpolated map across all sensors at −10 ms, indicated by the line in (B). (D) shows
how the 3D sensor-space-time data volume is formed.

meshes [see Harrison et al. (2008) for a fuller discussion]. An un-weighted graph-
Laplacian produces the same smoothing as convolution with a Gaussian kernel on
a regular grid: this is the approach used here.

We then generated SPMs on a regular 3D grid by performing a series of t-tests
comparing the response to the mean image at every bin in scalp-space and time.
This is called a mass-univariate approach and is identical to that adopted in the
analysis of fMRI data.

3.1. Event-related field analysis. The analysis of the ERF is typical of high-
density EEG/MEG studies. Figure 1 illustrates the problem of making a statistical
inference on such multidimensional data. The data for each subject consists of 151
observations across time at 275 observations in sensor-space [Figure 1(A)]. Fig-
ure 1(B) shows the time-course of the ERF at a sensor that evidences a movement-
evoked field [e.g., Hari and Imada (1999)]. Note that the early onset is due to
alignment to the button press and not the onset of movement. If one looks at the
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modulation of this signal across space in the sensor-space map (at the maximum
of the effect), a clear dipole field pattern can be seen [Figure 1(C)].

We now want to test for responses over space and time. An SPM for effects
greater or less than the mean was calculated using a paired t-test over subjects.
In this example, only one peak was greater than a threshold adjusted for the en-
tire search volume [p < 0.05 corrected; Figure 2(A)]. The peak value occurred
120 ms prior to the button press and was within a cluster of right frontal sensors
[Figure 2(A) and Table 1]. Figure 2(B) shows the average (nonstandardized) effect
size across sensor-space at −120 ms: when comparing the thresholded SPM [Fig-
ure 2(A)] and the effect-size map [Figure 2(B)], it can be seen that the peaks of the
SPM and effect-size are in different places. There is no reason why they should be
in the same location, because the Student’s t-statistic reflects the effect-size and
standard error. This example highlights the benefit of inference that is controlled
for FWE across space and time, namely, that one can discover effects that were
not predicted a priori. However, it also suggests significant effects should be inter-
preted in conjunction with the effect-size. In other words, although the peak in the
SPM tells us where differences are significant, it does not necessarily identify the
maximum response in a quantitative sense.

In most instances, searches over SPMs are constrained or directed. This is com-
mon in fMRI when we know a priori where in the brain to look. The same is true for
EEG/MEG data. For the example considered here, we may want to constrain the
search-space to some peristimulus time window. However, in contradistinction to
conventional approaches, we do not average over the volume of interest space but
use it to constrain the search and increase its sensitivity. In this instance, the RFT
adjusts p-values over a smaller volume and implements a less severe adjustment.
For the ERF shown here, given the previous literature, we defined a time-window
of interest of 200 ms, starting at −100 ms before the button press. Within this time-
window, the peak of the SPM occurred at 10 ms at central sensors overlying the left
hemisphere and was significant at p < 0.05 [corrected: Figure 2(C) and Table 2].
Figure 2(C) also shows the thresholded SPM at p < 0.001 (uncorrected) for the
opposite contrast, where responses were greater than the mean. When comparing
this thresholded SPM image to the corresponding effect-size image [Figure 2(D)],
one can see that the sensors that survive the threshold in Figure 2(C) display a
classical single-dipole field pattern [Figure 2(D)].

3.2. Time–frequency analysis. Time–frequency analyses of EEG/MEG record-
ings induce a 4D search-space, at least two spatial dimensions, time and frequency
[Figure 3(A)]. Previously, we have shown that RFT can be applied to control for
FWE across 2D time–frequency SPMs, when the sensor-space of interest can be
defined a priori [Kilner, Kiebel and Friston (2005)]. Here, we show that when the
frequency band of interest can be specified a priori (often an easier specification),
the resulting time-dependent modulation of power in that frequency range can be
treated in an identical fashion to the ERF analysis described above. In other words,
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FIG. 2. SPM analysis of movement ERF. (A) shows the SPM(t), thresholded at p < 0.001 (un-
corrected), showing where the effects were less than the mean. The peak value within this cluster is
significant at p < 0.05 (FWE corrected). (B) shows the sensor-space map of (nonstandardized) effect
size across all sensors at the time where the SPM was maximal. The effect size is proportional to the
grand mean across subjects. (C) shows the SPM, thresholded at p < 0.001 (uncorrected), showing
where the effects were greater and less than the mean. The sensor within these clusters that was
significant at p < 0.05 (corrected for a small search volume) is shown by the white circle. (D) shows
the sensor-space map of effect size across all sensors at the time point where the SPM in (C) was
maximal. (E) shows the time course of the SPM from the sensor shown in white in (C). The dashed
lines show the uncorrected threshold for the Student’s t-statistic at p < 0.001. (F) shows the corre-
sponding plot for the effect size. In both (E) and (F) the arrow shows the time where the SPM was
maximal.

the 4D data-features reduce to 3D, by averaging out frequency. In this example,
we averaged across frequency bins in the 15–30 Hz range [Figure 3(B)].

The space-time SPM for effects greater than the mean was calculated using
a one-sampled t-test as for the ERF analysis above. A large spatial cluster con-
tained a peak-value that was greater than the threshold corrected for the entire
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TABLE 1
Statistical results of a full volume analysis in SPM8. The table entries (from left to right) represent
the following: the adjusted or corrected p-value based on random field theory that controls false

positive rate; the equivalent p-value (q-value) controlling false discovery rate; the maximum
Student’s t-statistic; its Z-score equivalent; its uncorrected p-value; the time at which this peak
occurred. The footnotes provide details of the search volume and topological features expected

under the null hypothesis (see http://www.fil.ion.ucl.ac.uk/spm/ for details)

Peak level

pFWE-corr pFDR-corr t Z puncorrected Time (ms)

0.036 0.017 8.71 4.80 0.000 −120

Statistics: p-values restricted to the entire search volume. Height threshold: T = 3.93, p = 0.001
(0.993); Degrees of freedom = [1.0,12.0]; Extent threshold: k = 0 bins, p = 1.000 (0.993);
Smoothness FWHM = 13.1 17.5 8.6 {bins}; Expected bins per cluster, 〈k〉 = 121.669; Search vol.:
1,808,083 bins; 230.3 resels; Expected number of clusters, 〈c〉 = 4.96; Expected false discovery rate,
≤0.03.

search volume [p < 0.05 corrected: Figure 4(A) and Table 3]. The peak occurred
560 ms after the button press and was within central sensors over both the left
and right hemispheres [Figure 4(A)—the sensor at the peak value is indicated by
the white circle—and Table 1]. Figure 4(B) shows the average (nonstandardized)
effect-size across sensor-space at 560 ms. When comparing the thresholded SPM
[Figure 4(A)] and the effect-size map [Figure 4(B)], it is clear that the sensor at
the peak of the SPM is one of the sensors where the effect is maximal [see also
Figures 4(C) and (D)]. Note that in the effect-size map [Figure 4(B)], the dipole
field effects observed in Figure 2(D) have the same sign, as the frequency decom-
position renders the data-features positive.

4. Discussion. We have illustrated how RFT can be employed to control FWE
when making statistical inference on continuous data, using movement-related

TABLE 2
Statistical results of a small volume analysis in SPM8. This table uses the same format as Table 1

Peak level

pFWE-corr pFDR-corr t Z puncorrected Time (ms)

0.013 0.007 6.86 4.29 0.000 10

Statistics: p-values restricted to −100–100 ms. Height threshold: T = 3.93, p = 0.001 (0.289);
Degrees of freedom = [1.0,12.0]; Extent threshold: k = 0 bins, p = 1.000 (0.289); Smoothness
FWHM = 13.1 17.5 8.6 {bins}; Expected bins per cluster, 〈k〉 = 121.669; Search vol.: 82,340 bins;
11.5 resels; Expected number of clusters, 〈c〉 = 0.34; Expected false discovery rate, ≤0.01.

http://www.fil.ion.ucl.ac.uk/spm/
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FIG. 3. Single-subject time–frequency data. (A) shows the average TF data across trials for the
same subject shown in Figure 1. The data are plotted for 275 sensors across peristimulus time.
(B) shows the average TF data across trials from a single sensor. For the subsequent analysis, the
TF maps were averaged across the 15–30 Hz frequency band for each sensor. This band is shown in
(B) by the dotted lines.

MEG responses that are continuous in space and time. We have not introduced
any novel methodology or statistical results. We have simply emphasized the fact
that established random field theory can be applied directly to smooth, continuous
data-features that conform to its assumptions. The use of RFT may be particularly
relevant for EEG and MEG data analysis, which has to deal with data on manifolds
that are not simple images and may have a complicated geometry. In one sense,
the contribution here is to assert that one does not need novel methods for analyz-
ing EEG and MEG data-features, provided they exhibit continuity or smoothness
properties over connected vertices (or voxels). This is because inference is based
on topological quantities that do not depend on the coordinates or geometry of
those vertices (or voxels).

4.1. Random field theory assumptions. One of the assumptions of RFT is that
the error fields conform to a good lattice approximation of an underlying ran-
dom field [Worsley (2007)]. In other words, the underlying random field must be
sampled sufficiently densely so as to be able to estimate the smoothness of the
underlying random field. In practice, this means that one must ensure that there
is a sufficiently high sampling of EEG/MEG signals across the dimensions of in-
terest. In the examples presented above these would be sensor-space and time. For
high-density EEG and MEG, with a large number of sensors covering the scalp sur-
face, this requirement is clearly met. However, care must be taken if one wanted
to adopt this approach for sparsely sampled EEG/MEG data, as this assumption
may be violated. In such cases, it is noteworthy that RFT can accommodate any
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FIG. 4. SPM analysis of beta rebound. (A) shows the SPM(t), thresholded at p < 0.001 (uncor-
rected), showing where the effects were greater than the mean. The peak value within this cluster is
significant at p < 0.05 (corrected). The most significant sensor is shown by a white circle. (B) shows
the sensor-space map of effect size across all sensors at the time where the SPM was maximal.
(C) shows the time course of the SPM from the sensor shown in white in (A). The dashed lines show
the FWE corrected threshold for the Student’s t-statistic at p < 0.05. (D) shows the corresponding
plot for the effect size. In both (C) and (D) the arrow shows the time where the SPM was maximal.

D-dimensional search-spaces and can therefore be applied to time-courses from a
single sensor or some summary over sensors [cf. Carbonell et al. (2004)].

TABLE 3
Statistical results of the time–frequency analysis in SPM8. See Table 1 for details of the format

Peak level

pFWE-corr pFDR-corr t Z puncorrected Time (ms)

0.033 0.001 9.05 4.75 0.000 560

Statistics: p-values restricted to the entire search volume. Height threshold: T = 4.02, p = 0.001
(0.966); Degrees of freedom = [1.0,11.0]; Extent threshold: k = 0 bins, p = 1.000 (0.966); Smooth-
ness FWHM = 13.3 13.4 17.1 {bins}; Expected bins peir cluster, 〈k〉 = 175.646; Search vol.:
1,808,083 bins; 149.4 resels; Expected number of clusters, 〈c〉 = 3.40; Expected false discovery
rate, ≤0.01.
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RFT requires that the random fields are multivariate Gaussian with a differen-
tiable correlation function [Worsley (2007)]. The correlations do not have to be
stationary when controlling the FWE. This means that any nonstationarity that is
induced by flattening a manifold in 3D-space to a 2D sensor-space does not vi-
olate the assumptions of RFT. RFT procedures can be used to characterize other
topological features of the SPM, namely, the extent and number of clusters. When
using RFT to control the FWE rate for cluster-size inference, one effectively mea-
sures the size of each cluster in resels, which accommodates local smoothness. It
should be noted, however, that the current SPM8 implementation does not do this
properly (for reasons of computational expediency) and that inference on cluster-
size assumes isotropic smoothness, which is usually induced by smoothing the
data [see also Salmond et al. (2002)]. In the absence of this smoothing, better ap-
proximations are available (e.g., SurfStat).

Topological inference enables the control of FWE rate across a search volume
when making statistical inferences. Therefore, the approach can be adopted in
any situation in which one would normally perform parametric statistical tests,
such as a t- or F -test. When parametric statistical tests cannot be used, for ex-
ample, when the errors are not normally distributed, the requisite null distribution
of the maximal statistic can be estimated using nonparametric procedures. Non-
parametric methods have been used to make statistical inference on both MEG
source-space data [Singh, Barnes and Hillebrand (2003); Pantazis et al. (2005)]
and on clusters in space, time and frequency [Maris and Oostenveld (2007), see
also http://www.ru.nl/neuroimaging/fieldtrip/]. However, the analytic and closed
form expressions provided by RFT are based on assumptions that, if met, render
it more powerful or sensitive than equivalent nonparametric approaches [How-
ell (1997)]. Furthermore, with appropriate transformations [e.g., Kiebel, Tallon-
Baudry and Friston (2005)] and post hoc smoothing, it is actually quite difficult to
contrive situations where the errors are not multivariate Gaussian (by the central
limit theorem) and violate the assumptions of RFT.

4.2. Topological inference in space and time. In this note we have shown how
RFT can be used to solve the multiple comparisons problem that besets statisti-
cal inference using EEG/MEG data. This approach has several advantages. First,
it avoids ad hoc or selective characterization of data inherent in conventional ap-
proaches that use averages over pre-specified regions of search-space. Second, in-
ference is based on p-values that are adjusted for multiple nonindependent com-
parisons, even when dependencies have a complicated form. Third, this adjustment
is based explicitly on the search-space, giving the researcher the latitude to restrict
the search-space to the extent that prior information dictates. In short, topological
inference enables one to test for effects without knowing where they are in space
or time. This may be useful, as it could disclose effects that hitherto may have
gone untested, for example, small effects that are highly reproducible. However,
as we intimated above, the neurophysiological interpretation of significant effects

http://www.ru.nl/neuroimaging/fieldtrip/
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must be considered in light of the quantitative estimates one is making an infer-
ence about. In conventional analyses, prior knowledge about the effects of interest
is used to average the data to finesse the multiple comparisons problem. With topo-
logical inference, these a priori constraints are used to reduce the search-space and
adjust the p-values of the SPM within this reduced volume [Figures 2(C)–(E)].
For example, if one is interested in modulations of the N170, one could reduce the
search-space to a time window spanning 140–200 ms post-stimulus. If, in addi-
tion, one had predictions about where this effect should be observed in sensor or
source space, then one could reduce the search volume even further. The advantage
of this, over conventional averaging, is that inference may be more sensitive, as it
pertains to peak responses that are necessarily suppressed by averaging.

4.3. Topological FDR. We have focused on the use of random field theory for
controlling the false positive rate of topological features in statistical maps. How-
ever, there is a growing interest in applying the same ideas to control false discov-
ery rate [Benjamini and Hochberg (1995)]. Crucially, topological FDR controls the
expected false discovery rate (FDR) of features (such as peaks or excursion sets),
as opposed to simply controlling the FDR of point tests (e.g., Student’s t-tests at
each voxel or vertex). This is because FDR procedures in imaging can be problem-
atic and lead to capricious inference [Chumbley and Friston (2009)]. The reason is
that most image analysis deals with signals that are continuous (analytic) functions
of some support; for example, space or time. In the absence of bounded support,
the false discovery rate must be zero. This is because every discovery is a true dis-
covery, given that the signal is (strictly speaking) everywhere. Crucially, one can
finesse this problem by inferring on the topological features of the signal. For ex-
ample, one can assign a p-value to each local maximum in an SPM using random
field theory and identify an adaptive threshold that controls false discovery rate,
using the Benjamini and Hochberg procedure [Chumbley et al. (2010)]. This is
called topological FDR and provides a natural complement to conventional FWE
control. The notion of topological FDR was introduced in a paper that was the last
to be co-authored by Keith Worsley, shortly before his death.

4.4. Conclusion. We have illustrated how topological inference can be applied
to EEG/MEG data-features that vary as a smooth function of frequency, time or
space and have stressed the generality of this application. These procedures have
a number of advantages: (i) They require no a priori specification of where effects
are expressed, (ii) inferences are based on p-values that are adjusted for multiple
comparisons of continuous and highly correlated data-features and (iii) these in-
ferences are potentially more sensitive than tests on regional averages. One might
anticipate that the advances made by Keith Worsley will find new and important
domains of application as people start to appreciate the generality and simplicity
of his legacy.
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