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UPPER LARGE DEVIATIONS FOR THE MAXIMAL FLOW
THROUGH A DOMAIN OF R

d IN FIRST PASSAGE PERCOLATION

BY RAPHAËL CERF AND MARIE THÉRET

Université Paris Sud and École Normale Supérieure

We consider the standard first passage percolation model in the rescaled
graph Z

d/n for d ≥ 2 and a domain � of boundary � in R
d . Let �1 and

�2 be two disjoint open subsets of � representing the parts of � through
which some water can enter and escape from �. We investigate the asymp-
totic behavior of the flow φn through a discrete version �n of � between the
corresponding discrete sets �1

n and �2
n. We prove that under some conditions

on the regularity of the domain and on the law of the capacity of the edges,
the upper large deviations of φn/nd−1 above a certain constant are of vol-
ume order, that is, decays exponentially fast with nd . This article is part of a
larger project in which the authors prove that this constant is the a.s. limit of
φn/nd−1.

1. First definitions and main result. We use notation introduced in [8]
and [9]. Let d ≥ 2. We consider the graph (Zd

n,E
d
n) having for vertices Z

d
n = Z

d/n

and for edges E
d
n , the set of pairs of nearest neighbors for the standard L1 norm.

With each edge e in E
d
n we associate a random variable t (e) with values in R

+. We
suppose that the family (t (e), e ∈ E

d
n) is independent and identically distributed

with a common law �; this is the standard model of first passage percolation on
the graph (Zd

n,E
d
n). We interpret t (e) as the capacity of the edge e; it means that

t (e) is the maximal amount of fluid that can go through the edge e per unit of time.
We consider an open bounded connected subset � of R

d such that the boundary
� = ∂� of � is piecewise of class C 1 [in particular � has finite area, Hd−1(�) <

∞]. It means that � is included in the union of a finite number of hypersurfaces
of class C 1, that is, in the union of a finite number of C1 submanifolds of R

d

of codimension 1. Let �1, �2 be two disjoint subsets of � that are open in �.
We want to define the maximal flow from �1 to �2 through � for the capacities
(t (e), e ∈ E

d
n). We consider a discrete version (�n,�n,�

1
n,�

2
n) of (�,�,�1,�2)

defined by⎧⎨⎩
�n = {x ∈ Z

d
n | d∞(x,�) < 1/n},

�n = {x ∈ �n | ∃y /∈ �n, 〈x, y〉 ∈ E
d
n},

�i
n = {x ∈ �n | d∞(x,�i) < 1/n, d∞(x,�3−i ) ≥ 1/n}, for i = 1,2,

Received July 2009; revised March 2010.
AMS 2000 subject classification. 60K35.
Key words and phrases. First passage percolation, maximal flow, minimal cut, large deviations.

2075

http://www.imstat.org/aap/
http://dx.doi.org/10.1214/10-AAP732
http://www.imstat.org


2076 R. CERF AND M. THÉRET

FIG. 1. Domain �.

where d∞ is the L∞-distance and the notation 〈x, y〉 corresponds to the edge of
endpoints x and y (see Figure 1).

We shall study the maximal flow from �1
n to �2

n in �n. Let us properly define the
maximal flow φ(F1 → F2 in C) [also denoted by φ(F1 → F2 in C ∩ Z

d/n)] from
F1 to F2 in C for C ⊂ R

d (or by commodity the corresponding graph C ∩ Z
d/n).

We will say that an edge e = 〈x, y〉 belongs to a subset A of R
d , which we denote

by e ∈ A if the interior of the segment joining x to y is included in A. We define

Ẽ
d
n as the set of all the oriented edges, that is, an element ẽ in Ẽ

d
n is an ordered

pair of vertices which are nearest neighbors. We denote an element ẽ ∈ Ẽ
d
n by

〈〈x, y〉〉, where x, y ∈ Z
d
n are the endpoints of ẽ and the edge is oriented from x

toward y. We consider the set S of all pairs of functions (g, o), with g : Ed
n → R

+
and o : Ed

n → Ẽ
d
n such that o(〈x, y〉) ∈ {〈〈x, y〉〉, 〈〈y, x〉〉}, satisfying the following:

(1) for each edge e in C we have

0 ≤ g(e) ≤ t (e),

(2) for each vertex v in C \ (F1 ∪ F2) we have∑
e∈C : o(e)=〈〈v,·〉〉

g(e) = ∑
e∈C : o(e)=〈〈·,v〉〉

g(e),

where the notation o(e) = 〈〈v, ·〉〉 [resp., o(e) = 〈〈·, v〉〉] means that there exists
y ∈ Z

d
n such that e = 〈v, y〉 and o(e) = 〈〈v, y〉〉 [resp., o(e) = 〈〈y, v〉〉]. A couple

(g, o) ∈ S is a possible stream in C from F1 to F2; g(e) is the amount of fluid
that goes through the edge e and o(e) gives the direction in which the fluid goes
through e. The two conditions on (g, o) express only the fact that the amount of
fluid that can go through an edge is bounded by its capacity and that there is no
loss of fluid in the graph. With each possible stream we associate the corresponding
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flow

flow(g, o) = ∑
u∈F2,v /∈C : 〈u,v〉∈Ed

n

g(〈u, v〉)1o(〈u,v〉)=〈〈u,v〉〉 − g(〈u, v〉)1o(〈u,v〉)=〈〈v,u〉〉

= ∑
u∈F1,v /∈C : 〈u,v〉∈Ed

n

g(〈u, v〉)1o(〈u,v〉)=〈〈v,u〉〉 − g(〈u, v〉)1o(〈u,v〉)=〈〈u,v〉〉.

This is the amount of fluid that crosses C from F1 to F2 if the fluid respects the
stream (g, o). The two definitions are equivalent since the stream satisfies the node
law at each vertex of C \ (F1 ∪ F2). The maximal flow through C from F1 to F2
is the supremum of this quantity over all possible choices of streams,

φ(F1 → F2 in C) = sup{flow(g, o) | (g, o) ∈ S}.
We recall that we consider an open bounded connected subset � of R

d whose
boundary � is piecewise of class C 1 and two disjoint open subsets �1 and �2 of �.
We denote by

φn = φ(�1
n → �2

n in �n)

the maximal flow from �1
n to �2

n in �n. We will investigate the asymptotic behavior
of φn/nd−1 when n goes to infinity. More precisely, we will show that the upper
large deviations of φn above a certain constant φ̃� are of volume order. Here we
state the precise theorem.

THEOREM 1. We suppose that d(�1,�2) > 0, where d is the Euclidean dis-
tance between these two subsets of R

d . If the law � of the capacity of an edge
admits an exponential moment,

∃θ > 0
∫

R+
eθx d�(x) < +∞,

then there exists a finite constant φ̃� such that for all λ > φ̃�,

lim sup
n→∞

1

nd
log P[φn ≥ λnd−1] < 0.

The description of φ̃� will be given in Section 3. As we will explain in Sec-
tion 2.3, this constant is relevant in the sense that we prove in the companion
papers [3] and [4] that under added geometric assumptions, φ̃� is the almost sure
limit of φn/nd−1. Theorem 1 is needed to prove this a.s. convergence.

REMARK 1. In Theorem 1 we need to impose that d(�1,�2) > 0 because
otherwise we cannot be sure that φ̃� < ∞, as we will see in Section 5. Moreover,
if d(�1,�2) = 0, the upper large deviations of φn/nd−1 may not be of volume
order (see Theorem 10 in Section 2.2 below).
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REMARK 2. The large deviations we obtain are of the relevant order. Indeed,
if all the edges in �n have a capacity which is abnormally big, then the maximal
flow φn will be abnormally big too. The probability for these edges to have an ab-
normally large capacity is of order exp−Cnd for a constant C because the number
of edges in �n is C′nd for a constant C′.

The rest of the article is structured as follows. The background is presented in
Section 2; we first give some added definitions in Section 2.1, then we present
the existing results concerning maximal flows in first passage percolation in Sec-
tion 2.2 and finally, we explain the role of this article in the comprehension of
maximal flows problems in Section 2.3. The constant φ̃� is computed in Section 3.
Section 4 gives a detailed sketch of the proof of Theorem 1. The rest of the article
is devoted to the proof itself.

2. Background.

2.1. Some definitions.

2.1.1. Geometric notation. We start with some geometric definitions. For a
subset X of R

d , we denote by Hs(X) the s-dimensional Hausdorff measure of X

(we will use s = d − 1 and s = d − 2). The r-neighborhood Vi (X, r) of X for the
distance di that can be the Euclidean distance if i = 2 or the L∞-distance if i = ∞,
is defined by

Vi (X, r) = {y ∈ R
d | di(y,X) < r}.

If X is a subset of R
d included in a hyperplane of R

d and of codimension 1 (e.g.,
a nondegenerate hyperrectangle), we denote by hyp(X) the hyperplane spanned by
X and we denote by cyl(X,h) the cylinder of basis X and of height 2h defined by

cyl(X,h) = {x + tv | x ∈ X, t ∈ [−h,h]},
where v is one of the two unit vectors orthogonal to hyp(X) (see Figure 2). For
x ∈ R

d , r ≥ 0 and a unit vector v, we denote by B(x, r) the Euclidean closed ball
centered at x of radius r .

2.1.2. Flow in a cylinder. Here are some particular definitions of flows
through a box. It is important to know them because all our work consists of
comparing the maximal flow φn in �n with the maximal flows in small cylinders.
Let A be a nondegenerate hyperrectangle, that is, a box of dimension d − 1 in R

d .
All hyperrectangles will be supposed to be closed in R

d . We denote by v one of the
two unit vectors orthogonal to hyp(A). For h a positive real number, we consider
the cylinder cyl(A,h). The set cyl(A,h) \ hyp(A) has two connected components
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FIG. 2. Cylinder cyl(X,h).

which we denote by C1(A,h) and C2(A,h). For i = 1,2, let Ah
i be the set of the

points in Ci (A,h) ∩ Z
d
n which have a nearest neighbor in Z

d
n \ cyl(A,h),

Ah
i = {x ∈ Ci (A,h) ∩ Z

d
n | ∃y ∈ Z

d
n \ cyl(A,h), 〈x, y〉 ∈ E

d
n}.

Let T (A,h) [resp., B(A,h)] be the top (resp., the bottom) of cyl(A,h), that is,

T (A,h) = {x ∈ cyl(A,h) | ∃y /∈ cyl(A,h),

〈x, y〉 ∈ E
d
n and 〈x, y〉 intersects A + hv}

and

B(A,h) = {x ∈ cyl(A,h) | ∃y /∈ cyl(A,h),

〈x, y〉 ∈ E
d
n and 〈x, y〉 intersects A − hv}.

For a given realization (t (e), e ∈ E
d
n), we define the variable τ(A,h) = τ(cyl(A,

h), v) by

τ(A,h) = τ(cyl(A,h), v) = φ
(
Ah

1 → Ah
2 in cyl(A,h)

)
and the variable φ(A,h) = φ(cyl(A,h), v) by

φ(A,h) = φ(cyl(A,h), v) = φ
(
B(A,h) → T (A,h) in cyl(A,h)

)
,

where φ(F1 → F2 in C) is the maximal flow from F1 to F2 in C, for C ⊂ R
d

(or by commodity the corresponding graph C ∩ Z
d/n) defined previously. The

dependence in n is implicit here, in fact we can also write τn(A,h) and φn(A,h)

if we want to emphasize this dependence on the mesh of the graph.

2.1.3. Max-flow min-cut theorem. The maximal flow φ(F1 → F2 in C) can
be expressed differently thanks to the max-flow min-cut theorem [1]. We need
some definitions to state this result. A path on the graph Z

d
n from v0 to vm is

a sequence (v0, e1, v1, . . . , em, vm) of vertices v0, . . . , vm alternating with edges
e1, . . . , em such that vi−1 and vi are neighbors in the graph joined by the edge ei ,
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for i in {1, . . . ,m}. A set E of edges in C is said to cut F1 from F2 in C if there is
no path from F1 to F2 in C \ E. We call E an (F1,F2)-cut if E cuts F1 from F2
in C and if no proper subset of E does. With each set E of edges we associate its
capacity which is the variable

V (E) = ∑
e∈E

t(e).

The max-flow min-cut theorem states that

φ(F1 → F2 in C) = min{V (E) | E is a (F1,F2)-cut}.

2.2. State of the art.

2.2.1. Existing laws of large numbers. In this section and the next one we
consider the standard first passage percolation model on the graph (Zd,E

d) instead
of the rescaled graph (Zd

n,E
d
n).

In dimension two, classical problems of distance in first passage percolation
and problems of flows are closely related. By the max-flow min-cut theorem, we
know that the maximal flow from the top to the bottom of a cylinder is equal to the
minimal capacity of a set of edges that cuts the top from the bottom of the cylinder
and we can notice that in dimension two the dual of such a cutset—for the standard
duality of planar graphs—is a path from the left-hand side to the right-hand side of
the dual cylinder; thus, if we give the same capacity at an edge and its dual but we
interpret it as the time needed to cross the dual edge in the dual graph, the minimal
capacity of a cutset in the original cylinder is equal to the minimal time needed
to go from left to right in the dual cylinder. Thus, results concerning maximal
flows in two-dimensional first passage percolation can be obtained thanks to the
known results concerning problems of distance in first passage percolation (see
[7] and [8]). However, such a correspondence does not exist in dimension three or
more; the “dual” of an edge in dimension three is a small plaquette (as defined by
Kesten [9]) orthogonal to this edge that cuts it in its middle of side-length one and
whose sides are parallel to the axis of coordinates. Thus, the dual of a cutset is a
“surface” of plaquettes and there exists no result concerning this kind of object in
the literature of first passage percolation in terms of problems of distance.

The existing results concerning maximal flows in first passage percolation in
dimension three or more follow. The maximal flow has been studied almost ex-
clusively through cylinders, since cylinders have good properties of symmetry and
stacking. The most natural flow to study in a cylinder cyl(nA,h(n)) (where the
height function h satisfies limn→∞h(n) = +∞) is φ(nA,h(n)) but τ(nA,h(n))

has better properties so it is easer to deal with; it is almost subadditive.
Using a subadditive argument and concentration inequalities, Rossignol and

Théret have proved in [12] that τ(nA,h(n)) satisfies a law of large numbers.
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THEOREM 2 (Rossignol and Théret). We suppose that∫
[0,∞[

x d�(x) < ∞.

For every unit vector v, for every nondegenerate hyperrectangle A orthogonal to v,
for every height function h : N → R

+ satisfying limn→∞ h(n) = +∞, we have

lim
n→∞

τ(nA,h(n))

Hd−1(nA)
= ν(v) in L1.

Moreover, if the origin of the graph belongs to A or if∫
[0,∞[

x1+1/(d−1) d�(x) < ∞,

then

lim
n→∞

τ(nA,h(n))

Hd−1(nA)
= ν(v) a.s.

Indeed, thanks to the max-flow min-cut theorem, we know that τ(nA,h(n)) is
equal to the minimal capacity of a ((nA)

h(n)
1 , (nA)

h(n)
2 )-cutset. Roughly speak-

ing, such a cutset has its boundary fixed along ∂(nA) which lies between
(nA)

h(n)
1 and (nA)

h(n)
2 . This property implies that τ(nA,h(n)) is almost subad-

ditive, thus, its convergence is not surprising. In the case where h(n) is negligi-
ble compared to n, then φ(nA,h(n)) satisfies the same law of large numbers as
τ(nA,h(n)) since the cylinder cyl(nA,h(n)) is asymptotically very flat, thus, a
(B(nA,h(n)), T (nA,h(n)))-cutset has also its boundary very close to ∂(nA).

We recall some geometric properties of the map ν :v ∈ Sd−1 �→ ν(v) under the
only condition on � that E(t (e)) < ∞. They have been stated in [12], Section 4.4.
There exists a unit vector v0 such that ν(v0) = 0 if and only if for all unit vector
v, ν(v) = 0 and it happens if and only if �(0) ≥ 1 − pc(d), where pc(d) is the
critical parameter of the bond percolation on Z

d . This property has been proved
by Zhang [15]. Moreover, ν satisfies the weak triangle inequality, that is, if (ABC)

is a nondegenerate triangle in R
d and vA, vB and vC are the exterior normal unit

vectors to the sides [BC], [AC], [AB] in the plane spanned by A, B , C, then

H1([AB])ν(vC) ≤ H1([AC])ν(vB) + H1([BC])ν(vA).

This implies that the homogeneous extension ν0 of ν to R
d , defined by ν0(0) = 0

and for all w in R
d ,

ν0(w) = |w|2ν(w/|w|2)
is a convex function; in particular, since ν0 is finite, it is continuous on R

d . We
denote by νmin (resp., νmax) the infimum (resp., supremum) of ν on Sd−1.
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Kesten, Zhang, Rossignol and Théret have studied the maximal flow between
the top and the bottom of straight cylinders. Let us denote by D(k,m) the cylinder

D(k,m) =
d−1∏
i=1

[0, ki] × [0,m],

where k = (k1, . . . , kd−1) ∈ R
d−1. We denote by φ(k,m) the maximal flow in

D(k,m) from its top
∏d−1

i=1 [0, ki] × {m} to its bottom
∏d−1

i=1 [0, ki] × {0}. Kesten
[9] proved the following result.

THEOREM 3 (Kesten). Let d = 3. We suppose that �(0) < p0 for some fixed
p0 ≥ 1/27 and that

∃γ > 0
∫
[0,+∞[

eγ xd�(x) < ∞.

If m = m(k) goes to infinity with k1 ≥ k2 in such a way that

∃δ > 0 lim
k1≥k2→∞k−1+δ logm(k) = 0,

then

lim
k1≥k2→∞

φ(k,m)

k1k2
= ν((0,0,1)) a.s. and in L1.

Moreover, if �(0) > 1 − pc(d), where pc(d) is the critical parameter for the stan-
dard bond percolation model on Z

d and if∫
[0,+∞[

x6 d�(x) < ∞,

there exists a constant C = C(F) < ∞ such that for all m = m(k) that goes to
infinity with k1 ≥ k2 and satisfies

lim inf
k1≥k2→∞

m(k)

k1k2
> C

for all k1 ≥ k2 sufficiently large, we have

φ(k,m) = 0 a.s.

Zhang [16] improved this result.

THEOREM 4 (Zhang). Let d ≥ 2. We suppose that

∃γ > 0
∫
[0,+∞[

eγ x d�(x) < ∞.

Then for all m = m(k) that goes to infinity when all the ki , i = 1, . . . , d − 1 go to
infinity in such a way that

∃δ ∈ ]0,1] logm(k) ≤ max
i=1,...,d−1

k1−δ
i ,
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we have

lim
k1,...,kd−1→∞

φ(k,m)∏d−1
i=1 ki

= ν((0, . . . ,0,1)) a.s. and in L1.

Moreover, this limit is positive if and only if �(0) < 1 − pc(d).

To show this theorem, Zhang first obtains an important control on the number of
edges in a minimal cutset. Finally, Rossignol and Théret [12] improved Zhang’s re-
sult in the particular case where the dimensions of the basis of the straight cylinder
go to infinity all at the same speed. They obtain the following result.

THEOREM 5 (Rossignol and Théret). We suppose that∫
[0,∞[

x d�(x) < ∞.

For every straight hyperrectangle A = ∏d−1
i=1 [0, ai] × {0} with ai > 0 for all i,

for every height function h : N → R
+ satisfying limn→∞ h(n) = +∞ and

limn→∞ logh(n)/nd−1 = 0, we have

lim
n→∞

φ(nA,h(n))

Hd−1(nA)
= ν((0, . . . ,0,1)) a.s. and in L1.

In dimension two more results are known, as explained previously. We present
here the two results that do not come from the literature of problems of distance
in first passage percolation. Rossignol and Théret [11] studied the maximal flow
from the top to the bottom of a tilted cylinder in dimension two and proved the
following theorem ([11], Corollary 2.10).

THEOREM 6 (Rossignol and Théret). Let v be a unit vector, let A be a non-
degenerate line-segment orthogonal to v and h : N → R

+ a height function sat-
isfying limn→∞ h(n) = +∞ and limn→∞ logh(n)/n = 0. We suppose that there
exists α ∈ [0, π/2] such that

lim
n→∞

2h(n)

H1(nA)
= tanα.

Then, if ∫
[0,∞[

x d�(x) < ∞,

we have

lim
n→∞

φ(nA,h(n))

H1(nA)
= inf

{
ν(v′)
v · v′

∣∣∣ v′ satisfies v · v′ ≥ cosα

}
in L1.
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Moreover, if the origin of the graph is the middle of A, or if∫
[0,∞[

x2 d�(x) < ∞,

then we have

lim
n→∞

φ(nA,h(n))

H1(nA)
= inf

{
ν(v′)
v · v′

∣∣∣ v′ satisfies v · v′ ≥ cosα

}
a.s.

Garet [6] studied the maximal flow σ(A) between a convex bounded set A and
infinity in the case d = 2. By an extension of the max-flow min-cut theorem to
nonfinite graphs, Garet [6] proves that this maximal flow is equal to the minimal
capacity of a set of edges that cuts all paths from A to infinity. Let ∂A be the
boundary of A and ∂∗A the set of the points x ∈ ∂A at which A admits a unique
exterior normal unit vector vA(x) in a measure theoretic sense (see [2], Section 13,
for a precise definition). If A is a convex set, the set ∂∗A is also equal to the set
of the points x ∈ ∂A at which A admits a unique exterior normal vector in the
classical sense and this vector is vA(x). Garet proved the following theorem.

THEOREM 7 (Garet). Let d = 2. We suppose that �(0) < 1 − pc(2) = 1/2
and that

∃γ > 0
∫
[0,+∞[

eγ x d�(x) < ∞.

Then for all convex bounded set A containing 0 in its interior, we have

lim
n→∞

σ(nA)

n
=
∫
∂∗A

ν(vA(x)) dH1(x) = I(A) > 0 a.s.

Moreover, for all ε > 0 there exist constants C1, C2 > 0 depending on ε and �

such that

∀n ≥ 0 P

[
σ(nA)

nI(A)
/∈ ]1 − ε,1 + ε[

]
≤ C1 exp(−C2n).

Nevertheless, a law of large numbers for the maximal flow from the top to the
bottom of a tilted cylinder for d ≥ 3 was not proved yet. In fact, the lack of sym-
metry of the graph induced by the slope of the box is a major issue to extend the
existing results concerning straight cylinders to tilted cylinders. The theorem of
Garet was not extended to dimension d ≥ 3 either.

2.2.2. Large deviations results. The upper and lower large deviations of the
maximal flows φ(nA,h(n)) and τ(nA,h(n)) have been studied in the cases where
the laws of large numbers are known. Let us start with the existing results con-
cerning the upper large deviations of these maximal flows. They are studied in [14]
and [13]. Theorem 4 in [14] deals with the upper large deviations of the variable
φ(nA,h(n)) above ν(v).
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THEOREM 8. We suppose that

∃γ > 0
∫
[0,+∞[

eγ x d�(x) < ∞.

Then for every unit vector v and every nondegenerate hyperrectangle A orthogonal
to v, for every height function h : N → R

+ such that limn→∞ h(n) = +∞ and for
every λ > ν(v) we have

lim inf
n→∞

−1

Hd−1(nA)h(n)
log P

[
φ(nA,h(n))

Hd−1(nA)
≥ λ

]
> 0.

We shall rely on this result for proving Theorem 1. Moreover, Theorem 1 is
a generalization of Theorem 8 where we work in the domain � instead of a
parallelepiped. We stress the fact that ν(v) is not in general the a.s. limit on
φ(nA,h(n))/Hd−1(nA). The corresponding large deviation principle is proved
only in the case of straight cylinders (see Theorems 2 and 3 in [13] that are gath-
ered here).

THEOREM 9. We consider the maximal flow φ[h](n) through the straight cylin-
der [0, n]d−1 × [0, h(n)] from its top to its bottom. We suppose that the height
function h : N → R

+ satisfies

lim
n→∞

h(n)

logn
= +∞.

Then for every λ in R
+, the limit

ψ(λ) = lim
n→∞

−1

nd−1h(n)
log P

[
φ[h](n) ≥ λnd−1]

exists and is independent of h. Moreover, ψ is convex on R
+, finite and continuous

on the set {λ | �([λ,+∞[) > 0}. If∫
[0,+∞[

x d�(x) < ∞,

then ψ vanishes on [0, ν((0, . . . ,0,1))]. If

∃γ > 0
∫
[0,+∞[

eγ x d�(x) < ∞,

then ψ is strictly positive on ]ν((0, . . . ,0,1)),+∞[, and the sequence(
φ[h](n)

nd−1

)
n∈N

satisfies a large deviation principle with speed nd−1h(n) and governed by the good
rate function ψ .
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The lack of symmetry makes it difficult to extend this large deviation principle
to the case of tilted cylinders. The upper large deviations for τ depend a lot on the
moments of �, as proved in Theorem 3 of [14].

THEOREM 10. Let A be a nondegenerate hyperrectangle and �v one of the
two unit vectors normal to A. Let h : N → R

+ be a height function satisfying
limn→∞ h(n) = +∞. The upper large deviations of τ(nA,h(n))/Hd−1(nA) de-
pend on the tail of the distribution of the capacities. Indeed, we obtain that:

(i) If the law of the capacity of the edges has bounded support, then for every
λ > ν(�v) we have

lim inf
n→∞

−1

Hd−1(nA)min(h(n), n)
log P

[
τ(nA,h(n))

Hd−1(nA)
≥ λ

]
> 0;

the upper large deviations are then of volume order for height functions h such
that h(n)/n is bounded and of order nd if limn→∞ h(n)/n = +∞.

(ii) If the capacity of the edges follows the exponential law of parameter 1,
then there exists n0(d,A,h) and for every λ > ν(�v) there exists a positive constant
D depending only on d and λ such that for all n ≥ n0 we have

P[τ(nA,h(n)) ≥ λHd−1(nA)] ≥ exp(−DHd−1(nA)).

(iii) If the law of the capacity of the edges satisfies

∀θ > 0
∫
[0,+∞[

eθx d�(x) < ∞,

then for all λ > ν(�v) we have

lim
n→∞

1

Hd−1(nA)
log P

[
τ(nA,h(n))

Hd−1(nA)
≥ λ

]
= −∞.

This dependence on the moment conditions on � comes from the fact that the
distance between the part of the boundary of the cylinder through which the water
can enter and the part through which it can escape is null.

We just say a few words about lower large deviations, since it is not the
purpose of this article. Rossignol and Théret [12] proved that under some mo-
ment conditions, the lower large deviations of τ(nA,h(n))/Hd−1(nA) [resp.,
for φ(nA,h(n))/Hd−1(nA) when h(n) is negligible compared to n or when
cyl(nA,h(n)) is straight] are of surface order, that is, the probability that these
rescaled flows are abnormally small decays exponentially fast with Hd−1(nA).
They also prove the corresponding large deviation principles.

From now on, we work in the rescaled graph (Zd
n,E

d
n) again.
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2.3. Global project. This article is part of a global project in which we prove
that φn/nd−1 converges a.s. toward φ̃� and we find the right order of the upper
and lower large deviations. Indeed, we prove in [4] the following result.

THEOREM 11. If the law � of the capacity of an edge admits an exponential
moment,

∃θ > 0
∫

R+
eθx d�(x) < +∞

and if �(0) < 1 − pc(d), then there exists a finite constant φ� such that for all
λ < φ�,

lim sup
n→∞

1

nd−1 log P[φn ≤ λnd−1] < 0.

The definition of the constant φ� is given in [4]; it is of the same kind as the
one of φ̃� we will give in Section 3 but slightly different. Finally we prove in [3]
through a completely geometrical study that the constants φ� and φ̃� are equal and
we investigate when they are strictly positive. Thus, by a simple Borel–Cantelli’s
lemma, we obtain in [3] the following result.

THEOREM 12. We suppose that � is a Lipschitz domain and that � is included
in the union of a finite number of oriented hypersurfaces S1, . . . , Sr of class C 1

which are transverse to each other. We also suppose that �1 and �2 are open in �,
that their relative boundaries ∂��1 and ∂��2 in � have null Hd−1 measure and
that d(�1,�2) > 0. We suppose that the law � of the capacity of an edge admits
an exponential moment

∃θ > 0
∫

R+
eθx d�(x) < +∞.

Then there exists a finite constant φ� ≥ 0 such that

lim
n→∞

φn

nd−1 = φ� a.s.

Moreover, this equivalence holds:

φ� > 0 ⇐⇒ �(0) < 1 − pc(d).

Combining Theorems 12, 11 and 1, we prove that the rescaled maximal flow
φn/nd−1 converges a.s. toward a constant φ�, that its upper large deviations are
of volume order and that its lower large deviations are of surface order. These
theorems apply to the maximal flow from the top to the bottom of a tilted cylin-
der. Thus, they generalize the existing results concerning the variable φ(A,h) in
straight cylinders, in the particular case where all the dimensions of the cylinder
go to infinity at the same speed (or, equivalently, the cylinder is fixed and the mesh
of the graph go to zero isotropically). The large deviation principles from above
and below still remain to be proved.
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3. Computation of ˜φ�. We give here a definition of φ̃� in terms of the map ν.
When a hypersurface S is piecewise of class C 1, we say that S is transverse to �

if for all x ∈ S ∩ �, the normal unit vectors to S and � at x are not collinear; if
the normal vector to S (resp., to �) at x is not well defined, this property must be
satisfied by all the vectors which are limits of normal unit vectors to S (resp., �) at
y ∈ S (resp., y ∈ �) when we send y to x—there is at most a finite number of such
limits. We say that a subset P of R

d is polyhedral if its boundary ∂P is included
in the union of a finite number of hyperplanes. For each point x of such a set P

which is on the interior of one face of ∂P , we denote by vP (x) the exterior unit
vector orthogonal to P at x. For A ⊂ R

d , we denote by
◦

A the interior of A. We
define φ̃� by

φ̃� = inf{I�(P ) | P ⊂ R
d,�1 ⊂ ◦

P,� 2 ⊂
◦︷ ︸︸ ︷

R
d \ P ,P is polyhedral,

∂P is transverse to �},
where

I�(P ) =
∫
∂P∩�

ν(vP (x)) dHd−1(x).

See Figure 3 for an example of such a polyhedral set P .
The definition of the constant φ̃� is not very intuitive. We propose to define the

notion of a continuous cutset to have a better understanding of this constant. We
say that S ⊂ R

d cuts �1 from �2 in � if every continuous path from �1 to �2 in
� intersects S . In fact, if P is a polyhedral set of R

d such that

�1 ⊂ ◦
P and � 2 ⊂

◦︷ ︸︸ ︷
R

d \ P ,

FIG. 3. A polyhedral set P as in the definition of φ̃�.
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then ∂P ∩ � is a continuous cutset from �1 to �2 in �. Since ν(v) is the average
amount of fluid that can cross a hypersurface of area one in the direction v per unit
of time, it can be interpreted as the capacity of a unitary hypersurface orthogonal
to v. Thus, I�(P ) can be interpreted as the capacity of the continuous cutset ∂P ∩
� defined by P . The constant φ̃� is the solution of a min-cut problem because it
is equal to the infimum of the capacity of a continuous cutset that satisfies some
specific properties.

We remark that the capacity I� of a continuous cutset is exactly the same as
the one defined by Garet in [6] in dimension two (see Theorem 7), except that we
consider a maximal flow through a bounded domain so our capacity is adapted to
the problems of boundaries that arise. Moreover, φ̃� has the same form as the limit
observed in dimension two in Theorem 6.

4. Sketch of the proof. To prove Theorem 1, we have to study the probability

P[φn ≥ (φ̃� + ε)nd−1](1)

for a positive ε.

Step 1. We first prove that φ̃� is finite, that is, that there exists a polyhedral set
P ⊂ R

d such that ∂P is transverse to � and

�1 ⊂ ◦
P, � 2 ⊂

◦︷ ︸︸ ︷
R

d \ P .

For that purpose, at each point x of �1 we associate a cube of center x, of strictly
positive side-length, which is transverse to �1 and at positive distance of �2 [this
is possible thanks to the regularity of � and the fact that d(�1,�2) > 0]. From this
family of cubes we extract by compactness a finite family of cubes that covers �1.
The set P which is defined as the union of the cubes satisfies the desired properties.

Step 2. We consider a polyhedral set P as in the definition of φ̃� such that I�(P )

is very close to this constant. We want to construct sets of edges near ∂P ∩ �

that cut �1
n from �2

n in �n. Because we took a discrete approximation of � from
the outside, we need to enlarge a little �, because some flow might go from �1

n

to �2
n using paths that lies partly in �n \ �. Thus, we construct a set �′ which

contains a small neighborhood of � (hence, also �n for all n large enough) which
is transverse to ∂P and which is small enough to ensure that I�′(P ) is still very
close to φ�. To construct this set, we cover ∂� with small cubes, by compactness
we extract a finite subcover of ∂� and finally we add the cubes of the subcover to
� to obtain �′. We construct these cubes so that their boundaries are transverse to
∂P and their diameters are uniformly smaller than a small constant, so that �′ is
included in a neighborhood of � as small as we need. Since ∂P is transverse to �,
if we take this constant small enough, we can control Hd−1(∂P ∩ (�′ \ �)) and
thus the difference between I�′(P ) and I�(P ).

Step 3. Then we construct a family of Cn (where C > 0) disjoint sets of edges
that cut �1

n from �2
n in �n and that lie near ∂P . We consider the neighborhood P ′
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of P inside �′ at distance smaller than a tiny constant h and we partition P ′ \ P

into slabs M′(k) of width of order 1/n, so we have Cn such slabs which look like
translations of ∂P ∩ �′ that are slightly deformed and thickened. We prove that
each path from �1

n to �2
n in �n must contain at least one edge that lies in the set

M′(k) for each k, that is, each set M′(k) contains a cutset. Thus, we have found a
family of Cn disjoint cutsets.

Step 4. We almost cover ∂P ∩ �′ by a finite family of disjoint cylinders Bi,j ,
whose bases are hyperrectangles of side length l, that are orthogonal to ∂P , of
height h and such that the part of ∂P which is missing in this covering is very
small. Thus, we obtain that

I�′(P ) is close to
∑

ν(vi,j )l
d−1,(2)

where vi,j gives the direction toward which the cylinder Bi,j is tilted (it is the unit
vector which is orthogonal to the face of ∂P that cuts Bi,j ).

We want to compare φn with the sum of the maximal flows φ(Bi,j , vi,j ). For
each (i, j), let Ei,j be a set of edges that cuts the top from the bottom of Bi,j . The
set

⋃
Ei,j does not cut �1

n from �2
n in �n in general; to create such a cutset we

must add two sets of edges.

(i) A set of edges that covers the part of ∂P ∩�′ that is missing in the covering
by the cylinders Bi,j .

(ii) A set of edges that glues together all the previous sets of edges [the sets
Ei,j and the set described in (i)].

In fact, we have already constructed Cn possible sets of edges as in (i): the edges
that lie in M′(k) \ (

⋃
Bi,j ) for k = 1, . . . ,Cn. We denote these sets by M(k). We

can also find C′n (C′ > 0) disjoint sets of edges that can be the glue described
in (ii); we denote these sets by W(l) for l = 1, . . . ,C ′n. Indeed, we can choose
different sets because we provide the glue more or less in the interior of the cylin-
ders Bi,j . Thus, we obtain that

∀k ∈ {1, . . . ,Cn} ∀l ∈ {1, . . . ,C ′n} ⋃
Ei,j ∪ M(k) ∪ W(l)

cuts �1
n from �2

n in �n.

Then

φn ≤∑
φ(Bi,j , vi,j ) + min

k=1,...,Cn
V (M(k)) + min

l=1,...,C′n
V (W(l)).(3)

Combining (2) and (3) we see that if φn ≥ (φ̃� + ε)nd−1, one of the following
events must happen:

(a) ∃j ∈ J φ(Bj , vj ) ≥ (ν(vj ) + ε/2)ld−1nd−1,
(b) ∀k ∈ {1, . . . ,Cn} V (M(k)) ≥ ηnd−1,
(c) ∀l ∈ {1, . . . ,C′n} V (W(l)) ≥ ηnd−1,
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where η is a very small constant (depending on ε and φ�).

Step 5. It consists in taking care of the probability that the events (a), (b) or
(c) happen. The probability of (a) has already been studied in [14]; cf. Theorem 8
above; the upper large deviations of the variable φ in a cylinder above ν are of
volume order. The events (b) and (c) are of the same type and their probability is
of the form

P

[
αnd−1∑
m=1

tm ≥ ηnd−1

]Dn

,(4)

where (tm)m∈N is a family of i.i.d. variables of distribution function �, D is a
constant, η is a very small constant and αnd−1 is the cardinality of the family of
variables we consider. If α < ηE[t1]−1 and if the law � admits one exponential
moment, the Cramér theorem in R states that the probability (4) decays exponen-
tially fast with nd . Note the role of the optimization over Dn different probabilities
to obtain the correct speed of decay. The proof would have been slightly simpler
if we would have proven only that the decay of the probability (1) is at least expo-
nential in nd−1.

Step 6. To complete the proof, it is enough to control the cardinality of the sets
M(k) and W(l) for each k, l, to ensure that we can use the Cramér theorem as
explained in Step 5. This can be done using the geometrical properties of ∂P (it is
polyhedral and transverse to ∂�′).

5. The constant ˜φ� is finite. To prove that φ̃� < ∞, it is sufficient to exhibit
a set P satisfying all the conditions given in the definition of φ̃�. Indeed, if such a
set P exists, then

φ̃� ≤ νmaxHd−1(∂P ∩ �) < ∞
since a polyhedral set has finite perimeter in �. We will construct such a set P .
The idea of the proof is the following. We will cover �1 with small hypercubes
which are transverse to �1 and at positive distance of � 2. Then, by compactness,
we will extract a finite covering. We will denote by P the union of the hypercubes
of this finite covering. Then P satisfies the desired properties.

We prove a geometric lemma.

LEMMA 1. Let � be an hypersurface (i.e., a C1 submanifold of R
d of codi-

mension 1) and let K be a compact subset of �. There exists a positive M =
M(�,K) such that

∀ε > 0 ∃r > 0 ∀x, y ∈ K |x − y|2 ≤ r ⇒ d2(y, tan(�, x)) ≤ Mε|x − y|2
[tan(�, x) is the tangent hyperplane of � at x].



2092 R. CERF AND M. THÉRET

PROOF. By a standard compactness argument, it is enough to prove the fol-
lowing local property:

∀x ∈ � ∃M(x) > 0 ∀ε > 0 ∃r(x, ε) > 0 ∀y, z ∈ � ∩ B(x, r(x, ε))

d2(y, tan(�, z)) ≤ M(x)ε|y − z|2.
Indeed, if this property holds, we cover K by the open balls

◦
B(x, r(x, ε)/2),

x ∈ K , we extract a finite subcover
◦
B(xi, r(xi, ε)/2), 1 ≤ i ≤ k, and we set

M = max{M(xi) : 1 ≤ i ≤ k}, r = min{r(xi, ε)/2 : 1 ≤ i ≤ k}.
Now let y, z belong to K with |y − z|2 ≤ r . Let i be such that y belongs
to B(xi, r(xi, ε)/2). Since r ≤ r(xi, ε)/2, then both y, z belong to the ball
B(xi, r(xi, ε)) and it follows that

d2(y, tan(�, z)) ≤ M(xi)ε|y − z|2 ≤ Mε|y − z|2.
We turn now to the proof of the above local property. Since � is an hypersurface,

for any x in � there exists a neighborhood V of x in R
d , a diffeomorphism f :V �→

R
d of class C1 and a (d − 1)-dimensional vector space Z of R

d such that Z ∩
f (V ) = f (� ∩ V ) (see, e.g., [5], 3.1.19). Let A be a compact neighborhood of x

included in V . Since f is a diffeomorphism, the maps y ∈ A �→ df (y) ∈ End(Rd),
u ∈ f (A) �→ df −1(u) ∈ End(Rd) are continuous. Therefore, they are bounded

∃M > 0 ∀y ∈ A ‖df (y)‖ ≤ M, ∀u ∈ f (A) ‖df −1(u)‖ ≤ M

[here ‖df (x)‖ = sup{|df (x)(y)|2 : |y|2 ≤ 1} is the standard operator norm in
End(Rd)]. Since f (A) is compact, the differential map df −1 is uniformly con-
tinuous on f (A),

∀ε > 0 ∃δ > 0 ∀u, v ∈ f (A) |u − v|2 ≤ δ ⇒ ‖df −1(u) − df −1(v)‖ ≤ ε.

Let ε be positive and let δ be associated to ε as above. Let ρ be positive and small
enough so that ρ < δ/2 and B(f (x), ρ) ⊂ f (A) [since f is a C1 diffeomorphism,
f (A) is a neighborhood of f (x)]. Let r be such that 0 < r < ρ/M and B(x, r) ⊂
A. We claim that M associated to x and r associated to ε, x answer the problem.
Let y, z belong to � ∩ B(x, r). Since [y, z] ⊂ B(x, r) ⊂ A, and ‖df (ζ )‖ ≤ M

on A, then

|f (y) − f (x)|2 ≤ M|y − x|2 ≤ Mr < ρ, |f (z) − f (x)|2 < ρ,

|f (y) − f (z)|2 < δ, |f (y) − f (z)|2 < M|y − z|2.
We next apply a classical lemma of differential calculus (see [10], I, 4, Corollary 2)
to the map f −1 and the interval [f (z), f (y)] [which is included in B(f (x), ρ) ⊂
f (A)] and the point f (z)∣∣y − z − df −1(f (z))

(
f (y) − f (z)

)∣∣
2

≤ |f (y) − f (z)|2 sup{‖df −1(ζ ) − df −1(f (z))‖ : ζ ∈ [f (z), f (y)]}.
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The right-hand member is less than M|y − z|2ε. Since z + df −1(f (z))(f (y) −
f (z)) belongs to tan(�, z), the proof is complete. �

We come back to our case. The boundary � of � is piecewise of class C 1,
that is, it is included in a finite union of C 1 hypersurfaces which we denote by
(S1, . . . , Sp). The hypersurfaces S1, . . . , Sp being C 1 and the set � compact, the
maps x ∈ � �→ vSk

(x), 1 ≤ k ≤ p [where vSk
(x) is the unit normal vector to Sk at

x] are uniformly continuous:

∀δ > 0 ∃η > 0 ∀k ∈ {1, . . . , p} ∀x, y ∈ Sk ∩ �

|x − y|2 ≤ η ⇒ |vSk
(x) − vSk

(y)|2 < δ.

Let η∗ be associated to δ = 1 by this property. Let k ∈ {1, . . . , p}. The set Sk ∩ �

is a compact subset of the hypersurface Sk . Applying the previous lemma, we get

∃Mk ∀δ0 > 0 ∃ηk > 0 ∀x, y ∈ Sk ∩ �

|x − y|2 ≤ ηk ⇒ d2(y, tan(Sk, x)) ≤ Mkδ0|x − y|2.
Let M0 = max1≤k≤p Mk and let δ0 in ]0,1/2[ be such that M0δ0 < 1/2. For each
k in {1, . . . , p}, let ηk be associated to δ0 as in the above property and let

η0 = min
(

min
1≤k≤p

ηk, η
∗, 1

8d
dist(�1,�2)

)
.

We build a family of cubes Q(x, r), indexed by x ∈ � and r ∈ ]0, r�[ such that
Q(x, r) is a cube centered at x of side length r which is transverse to �. For
x ∈ R

d and k ∈ {1, . . . , p}, let pk(x) be a point of Sk ∩ � such that

|x − pk(x)|2 = inf{|x − y|2 :y ∈ Sk ∩ �}.
Such a point exists since Sk ∩ � is compact. We define then for k ∈ {1, . . . , p}

∀x ∈ R
d vk(x) = vSk

(pk(x)).

We also define

dr = inf
v1,...,vp∈Sd−1

max
b∈Bd

min
1≤k≤p

e∈b

(|e − vk|2, |−e − vk|2),

where Bd is the collection of the orthonormal basis of R
d and Sd−1 is the unit

sphere of R
d . Let η be associated to dr/4 as in the above continuity property. We

set

r� = η

2d
.

Let x ∈ �. By the definition of dr , there exists an orthonormal basis bx of R
d such

that

∀e ∈ bx ∀k ∈ {1, . . . , p} min
(|e − vk(x)|2, |−e − vk(x)|2)> dr

2
.
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Let Q(x, r) be the cube centered at x of sidelength r whose sides are parallel to
the vectors of bx . We claim that Q(x, r) is transverse to � for r < r� . Indeed, let
y ∈ Q(x, r) ∩ �. Suppose that y ∈ Sk for some k ∈ {1, . . . , p}, so that vk(y) =
vSk

(y) and |x − pk(x)|2 < dr� . In particular, we have |y − pk(x)|2 < 2dr� < η

and |vSk
(y) − vk(x)|2 < dr/4. For e ∈ bx ,

dr

2
≤ |e − vk(x)|2 ≤ |e − vSk

(y)|2 + |vSk
(y) − vk(x)|2

whence,

|e − vSk
(y)|2 ≥ dr

2
− dr

4
= dr

4
.

This is also true for −e, therefore, the faces of the cube Q(x, r) are transverse
to Sk .

Now we consider the collection( ◦
Q(x, r), x ∈ �1, r < r�

)
.

It covers �1. By compactness of �1, we can extract a finite covering (
◦

Q(xi, ri), i ∈
I ) from this collection. We define

P =⋃
i∈I

Q(xi, ri).

We claim that P satisfies all the hypotheses in the definition of φ̃�. Indeed, P is
obviously polyhedral and transverse to �. Moreover, we know that

�1 ⊂ ◦
P

and since d(P,� 2) > 0, we also obtain that

� 2 ⊂
◦︷ ︸︸ ︷

R
d \ P .

6. Definition of the set �′. Let λ be in ]φ̃�,+∞[. We are studying

P[φn ≥ λnd−1].
Suppose first that φ̃� > 0. There exists a positive s such that λ > φ̃�(1 + s)2. By
definition of φ̃�, for every positive s, there exists a polyhedral subset P of R

d ,
such that ∂P is transverse to �,

�1 ⊂ ◦
P, � 2 ⊂

◦︷ ︸︸ ︷
R

d \ P

and

I�(P ) ≤ φ̃�(1 + s).
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Then λ > I�(P )(1 + s) and

P[φn ≥ λnd−1] ≤ P[φn ≥ I�(P )(1 + s)nd−1].
Since ∂P is transverse to �, we know that there exists δ0 > 0 (depending on λ, P

and �) such that for all δ ≤ δ0,

Hd−1(∂P ∩ (V2(�, δ) \ �
))≤ sI�(P )

2νmax
.

Thus, for any set �′ satisfying � ⊂ �′ ⊂ V2(�, δ0), we have∫
∂P∩�′

ν(vP (x)) dHd−1(x) ≤ I�(P )(1 + s/2),

then λ > (1 + s/2)(
∫
∂P∩�′ ν(vP (x)) dHd−1(x)) and

P[φn ≥ λnd−1] ≤ P

[
φn ≥

(∫
∂P∩�′

ν(vP (x)) dHd−1(x)

)
(1 + s/2)nd−1

]
.

Suppose now that φ̃� = 0. Then for an arbitrarily fixed s ∈ ]0,1[, there exists a
polyhedral subset P of R

d , such that ∂P is transverse to �,

�1 ⊂ ◦
P, � 2 ⊂

◦︷ ︸︸ ︷
R

d \ P

and

I�(P ) ≤ λ

1 + s

and, thus, λ > I�(P )(1 + s). If I�(P ) > 0, we can use exactly the same argument
as previously. We suppose that I�(P ) = 0. We know as previously that there exists
δ0 > 0 (depending on λ, P and �) such that for all δ ≤ δ0,

Hd−1(∂P ∩ (V2(�, δ) \ �
))

<
λ

νmax(1 + s/2)
.

Thus, in any case, we obtain that there exists δ0 > 0 such that, for any set �′
satisfying � ⊂ �′ ⊂ V2(�, δ0), we have

P[φn ≥ λnd−1] ≤ P

[
φn ≥

(∫
∂P∩�′

ν(vP (x)) dHd−1(x)

)
(1 + s/2)nd−1

]
.

We will construct a particular set �′ satisfying � ⊂ �′ ⊂ V2(�, δ0). In the pre-
vious section we have associated to each couple (x, r) in �× ]0, r�[ a hypercube
Q(x, r) centered at x, of sidelength r , and which is transverse to �. Using exactly
the same method, we can build a family of hypercubes(

Q′(x, r), x ∈ �, r < r(�,P )

)
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such that Q′(x, r) is centered at x, of sidelength r and it is transverse to � and ∂P .
The family ( ◦

Q′(x, r), x ∈ �, r < min
(
r(�,P ), δ0/(2d)

))
is a covering of the compact set �, thus we can extract a finite covering from this
collection; we denote it by (

◦
Q′(xi, ri), i ∈ J ). We define

�′ = � ∪ ⋃
i∈J

◦
Q′(xi, ri).

Since ri ≤ δ0/(2d) for all i ∈ J , we have �′ ⊂ V2(�, δ0). Moreover, ∂P is trans-
verse to the boundary �′ of �′. Finally, if we define

δ1 = min
i∈J

ri/2,

we know that V2(�, δ1) ⊂ �′ and thus, for all n ≥ 2d/δ1, we have �n ⊂ �′.

7. Existence of a family of (�1
n,�2

n)-cuts. In this section we prove that we
can construct a family of disjoint (�1

n,�
2
n)-cuts in �n. Let ζ be a fixed con-

stant larger than 2d . We consider a parameter h < h0 = d(∂P,�1 ∪ �2). For
k ∈ {0, . . . , �hn/ζ�} we define

P(k) = {x ∈ R
d | d(x,P ) ≤ kζ/n}

and for k ∈ {0, . . . , �hn/ζ� − 1} we define

U (k) = (

◦︷ ︸︸ ︷
R

d \ Pk+1) \ ◦
Pk

= {x ∈ R
d | kζ/n ≤ d(x,P ) < (k + 1)ζ/n}

and M′(k) = U (k) ∩ �′ (see Figure 4). We will prove the following lemma.

LEMMA 2. There exists N large enough such that for all n ≥ N , every path
on the graph (Zd

n,E
d
n) from �1

n to �2
n in �n contains at least one edge which is

included in the set M′(k) for k ∈ {0, . . . , �hn/ζ� − 1}.

This lemma states precisely that for all k ∈ {0, . . . , �hn/ζ�−1}, M′(k) contains
a (�1

n,�
2
n)-cut in �n.

PROOF OF LEMMA 2. Let k ∈ {0, . . . , �hn/ζ� − 1}. Let γ be a discrete path
from �1

n to �2
n in �n. In particular, γ is continuous, so we can parametrize it:

γ = (γt )0≤t≤1. There exists N large enough such that for all n ≥ N , we have

�n ⊂ �′, �1
n ⊂ V2(�

1,2d/n) ⊂ ◦
Pk
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FIG. 4. The sets P , U (k) and M′(k).

and

�2
n ⊂ V2(�

2,2d/n) ⊂
◦︷ ︸︸ ︷

R
d \ Pk+1 .

Since γ is continuous, we know that there exists t1, t2 ∈ ]0,1[ such that

t1 = sup{t ∈ [0,1] | γt ∈ ◦
Pk},

t2 = inf{t ≥ t1 | γt ∈
◦︷ ︸︸ ︷

R
d \ Pk+1}.

Since

◦
Pk ∪ U (k) ∪

◦︷ ︸︸ ︷
R

d \ Pk+1

is a partition of R
d , we know that (γt )t1≤t<t2 , which is a continuous path, is in-

cluded in U (k). The length of (γt )t1≤t<t2 is larger than d(γt1, γt2). The segment
[γt1, γt2] intersects

{x ∈ R
d | d(x,P ) = (k + 1/2)ζ/n}

at a point z and we know that

V2
(
z, ζ/(2n)

)⊂ ◦︷ ︸︸ ︷
V (k) .

Thus, d(γt1, γt2) ≥ ζ/n and then the length of (γt )t1≤t<t2 is larger than ζ/n. Fi-
nally, γ is composed of edges of length 1/n and ζ ≥ 2d so (γt )t1≤t<t2 and, thus, γ

contains at least one edge which is included in U (k). Noticing that for all n ≥ N ,

γ ⊂ �n ⊂ �′,
we obtain that this edge belongs to U (k) ∩ �′ = M′(k). �
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8. Covering of ∂P ∩�′ by cylinders. From now on we only consider n ≥ N .
According to Lemma 2, we know that each set M′(k) for k ∈ {0, . . . , �hn/ζ� − 1}
contains a (�1

n,�
2
n)-cut in �n, thus, if we denote by M ′(k) the set of the edges

included in M′(k), we obtain

φn ≤ min
{
V (M ′(k)), k ∈ {0, . . . , �hn/ζ� − 1}}.

However, we do not have estimates on V (M ′(k)) that allow us to control φn using
only the previous inequality. What we can use are the upper large deviations for
the maximal flow from the top to the bottom of a cylinder (Theorem 8). In this
section, we will transform our family of cuts (M ′(k)) by replacing a huge part of
the edges in each M′(k) by the edges of minimal cutsets in cylinders.

We denote by Hi, i = 1, . . . , N , the intersection of the faces of ∂P with �′. For
each i = 1, . . . , N , we denote by vi the exterior normal unit vector to P along Hi .
We will cover ∂P ∩ �′ by cylinders except a surface of Hd−1 measure controlled
by a parameter ε. To explain the construction of a cutset we will do with a huge
number of cylinders, we present first the simpler construction of a cutset using one
cylinder. Let R be a hyperrectangle that is included in Hj for a j ∈ {1, . . . , N } and
let B be the cylinder defined by

B = {x + tvj | x ∈ R, t ∈ [0, h]},
where h ≤ h0 is the same parameter as previously. The cylinder B is built on
∂P ∩ �′, in R

d \ ◦
P . We recall that h0 = d(∂P,�1 ∪ �2) > 0, so we know that

d(B,�1 ∪ �2) > 0. We denote by Ea the set of the edges included in

Ea = {x + tvj | x ∈ R,d(x, ∂R) < ζ/n, t ∈ [0, h]}.
The set Ea is a neighborhood in B of the “vertical” faces of B , that is, the faces of
B that are collinear to vj . We denote by Eb a set of edges in B that cuts the top
R + hvj from the bottom R of B . Let M ′(k) be the set of the edges included in
M′(k), for a k ∈ {0, . . . , �hn/ζ� − 1}. Let B ′ be the thinner cylinder

B ′ = {x + tvj | x ∈ R,d(x, ∂R) ≥ ζ/n, t ∈ [0, h]}.
Thus, for all k ∈ {0, . . . , �hn/ζ� − 1}, the set of edges(

M ′(k) ∩ (Rd \ B ′)
)∪ Ea ∪ Eb

cuts �1
n from �2

n in �n. Indeed, the set of edges M ′(k) is already a cut between
�1

n and �2
n in �n. We remove from it the edges that are inside B ′ which is in the

interior of B and we add to it a cutset Eb from the top to the bottom of B and
the set of edges Ea that glue together Eb and M ′(k) ∩ (Rd \ B ′). This property is
illustrated in the Figure 5.

REMARK 3. In this figure, we have represented Eb as a surface (so a path in
dimension 2) that separates the top from the bottom of the cylinder to illustrate the
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FIG. 5. Construction of a (�1
n,�2

n)-cut in �n using a cutset in a cylinder.

fact that Eb cuts all discrete paths from the bottom to the top of B . Actually, we
can mention that it is possible to define an object which could be the dual of an
edge in dimension d ≥ 2 (as a generalization of the dual of a planar graph). This
object is a plaquette, that is, a hypersquare of sidelength 1/n that is orthogonal to
the edge and cuts it in its middle and whose sides are parallel to the hyperplanes
of the axis. Then the dual of a cutset is a hypersurface of plaquettes, thus, Figure 5
is somehow intuitive.

We use exactly the same construction, but with a large number of cylinders, that
will almost cover ∂P ∩ �′. We consider a fixed ε > 0. There exists a l sufficiently
small (depending on F , P and ε) such that there exists a finite collection (Ri,j , i =
1, . . . , N , j = 1, . . . ,Ni) of hypersquares of side l of disjoint interiors satisfying
Ri,j ⊂ Hi for all i ∈ {1, . . . , N } and j ∈ {1, . . . ,Ni}, and for all i ∈ {1, . . . , N },

{x ∈ Hi | d(x, ∂Hi) ≥ εHd−2(∂Hi)
−1N −1}

⊂
Ni⋃

j=1

Ri,j ⊂ {x ∈ Hi | d(x, ∂Hi) ≥ εHd−2(∂Hi)
−1N −12−1}.

We immediately obtain that

Hd−1

(
(∂P ∩ �′)

∖ N⋃
i=1

Ni⋃
j=1

Ri,j

)
≤ ε.
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We remark that ∫
∂P∩�′

ν(vP (x)) dHd−1(x) ≥
N∑

i=1

Nil
d−1ν(vi),

so that

P[φn ≥ λnd−1] ≤ P

[
φn ≥ (1 + s/2)nd−1

N∑
i=1

Nil
d−1ν(vi)

]
.

Let h < h0. For all i ∈ {1, . . . , N } and j ∈ {1, . . . ,Ni}, we define

Bi,j = {x + tvi | x ∈ Ri,j , t ∈ [0, h]}.
Since all the Bi,j are at strictly positive distance of ∂Hi , there exists a positive
h1 such that for all h < h1, the cylinders Bi,j have pairwise disjoint interiors.
We thus consider h < min(h0, h1) (see, e.g., Figure 6). At this point, we could
define a neighborhood of the vertical faces of each cylinder Bi,j , and do the same
construction as in the previous example with one cylinder. Actually, we need to
choose a little bit more carefully the sets of edges we define along the vertical
faces of the cylinders. We will not consider only each cylinder Bi,j , but also thinner
versions of these cylinders of the type

Bi,j (k) = {x + tvj | x ∈ Ri,j , d(x, ∂Ri,j ) > kζ/n, t ∈ [0, h]}
for different values of k. We will then consider the edges included in a neighbor-
hood of the vertical faces of each Bi,j (k) [see the set Wi,j (k) above] and choose

FIG. 6. Covering of ∂P ∩ �′ by cylinders.
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k to minimize the capacity of the union over i and j of these edges. The reason
why we need this optimization is also the reason why we built a family (M ′(k))

of cutsets and not only one cutset from �1
n to �2

n in �n; we will try to explain it in
Remark 4.

Here are the precise definitions of the sets of edges. We still consider the same
constants ζ bigger than 2d and h < min(h0, h1). We define another positive con-
stant η that we will choose later (depending on P , s and �). For i in {1, . . . , N }
and j in {1, . . . ,Ni} we recall the definition of Bi,j :

Bi,j = {x + tvi | x ∈ Ri,j , t ∈ [0, h]}
and we define the following subsets of R

d :

B ′
i,j = {x + tvi | x ∈ Ri,j , d(x, ∂Ri,j ) > η, t ∈ [0, h]},

∀k ∈ {0, . . . , �ηn/ζ − 1�}
Wi,j (k) = {x ∈ Bi,j | kζ/n ≤ d2(x, ∂Ri,j + Rvi) < (k + 1)ζ/n},

∀k ∈ {0, . . . , �hnκ/ζ − 1�}
M(k) = M′(k)

∖(⋃
i,j

B ′
i,j

)
(see Figures 7 and 8). We denote by Wi,j (k) the set of the edges included in
Wi,j (k) and we define W(k) = ⋃

i,j Wi,j (k). We also denote by M(k) the edges
included in M(k). Exactly as in the construction of a cutset with one cylinder,
we obtain a cutset that is built with cutsets in each cylinders Bi,j . Indeed, if we
denote by Ei,j a set of edges that is a cutset from the top to the bottom of Bi,j

FIG. 7. The set Wi,j (k).
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FIG. 8. The set M(k).

(oriented toward the direction given by vi ), then for each k1 ∈ {0, . . . , �ηn/ζ − 1�}
and k2 ∈ {0, . . . , �hn/ζ − 1�}, the set of edges⋃

i=1,...,N
j=1,...,Ni

Ei,j ∪ W(k1) ∪ M(k2)

contains a cutset from �1
n to �2

n in �n. We deduce that

φn ≤∑
i,j

φBi,j
+ min

k1
V (W(k1)) + min

k2
V (M(k2)).(5)

9. Control of the cardinality of the sets of edges W and M . For the sake
of clarity, we do not recall the sets in which the parameters take its values; we
always assume that they are the following: i ∈ {1, . . . , N }, j ∈ {1, . . . ,Ni}, k1 ∈
{0, . . . , �ηn/ζ −1�} and k2 ∈ {0, . . . , �hn/ζ −1�}. We have to evaluate the number
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of edges in the sets W(k1) and M(k2) to control the terms mink1 V (W(k1)) and
mink2 V (M(k2)) in (5). There exist constants c1(d,�), c2(P, d,�) such that

cardW(k1) ≤ c1
Hd−1(∂P ∩ �′)

ld−1 ζ ld−2hnd−1 ≤ c2l
−1hnd−1.

The cardinality of M(k2) is a little bit more complicated to control. We will di-
vide M(k) [resp., M(k)] into three parts: M(k) ⊂ M1(k) ∪ M2(k) ∪ M3(k) [resp.,
M(k) ⊂ M1(k) ∪ M2(k) ∪ M3(k)], that are represented in Figure 8.

We define R′
i,j = {x ∈ Ri,j | d(x, ∂Ri,j ) > η} which is the basis of B ′

i,j . The set

M1(k) is a translation of the sets Hi \ (
⋃Ni

j=1 R′
i,j ) along the direction given by vi

enlarged with a thickness ζ/(nκ),

M1(k) ⊂
N⋃

i=1

{
x + tvi | x ∈ Hi

∖(
Ni⋃

j=1

R′
i,j

)
, t ∈ [kζ/n, (k + 1)ζ/n[

}
.

Here we have an inclusion and not an equality because M1(k) can be a truncated
version of this set (truncated at the junction between the translates of two different
faces). Since we know that

Hd−1

(
(∂P ∩ �′)

∖ N⋃
i=1

Ni⋃
j=1

Ri,j

)
≤ ε

and

Hd−1

( N⋃
i=1

Ni⋃
j=1

(Ri,j \ R′
i,j )

)
≤ Hd−1(∂P ∩ �′)

ld−1 ld−2η = Hd−1(∂P ∩ �′)l−1η,

we have the following bound on the cardinality of M1(k):

card(M1(k)) ≤ c3(ε + l−1η)nd−1

for a constant c3(d,P,�,�′).
The part M2(k) corresponds to the edges included in the “bends” of the neigh-

borhood of ∂P located around the boundary of the faces of ∂P in �′, denoted by
M2(k), that is,

M2(k) ⊂⋃
i,j

(
V2
(
Hi ∩ Hj, (k + 1)ζ/n

) \ V2(Hi ∩ Hj, kζ/n)
)

and there exists a constant c4(d,P,�′) such that

cardM2(k) ≤ c4|kζ/n|d−2nd−1 ≤ c4h
d−2nd−1.

The last part M3(k) corresponds to the part of M(k) that is near the boundary
�′ of �′. Indeed, �′ is not orthogonal to ∂P , thus, for some k, the set M(k) may
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contain edges that are not included in

N⋃
i=1

{
x + tvi | x ∈ Hi

∖(
Ni⋃

j=1

R′
i,j

)
, t ∈ [kζ/n, (k + 1)ζ/n[

}
,

nor in ⋃
i,j

(
V2
(
Hi ∩ Hj, (k + 1)ζ/n

) \ V2(Hi ∩ Hj, kζ/n)
)

(see Figure 8). However, M(k) ⊂ U (k), the problem is to evaluate the difference of
cardinality between the different M(k) due to the intersection of U (k) with �′. We
have constructed �′ such that �′ is transverse to ∂P precisely to obtain this control.
The sets �′ and ∂P are polyhedral surfaces which are transverse. We denote by
(Hi , i ∈ I ) [resp., (H′

j , j ∈ J )] the hyperplanes that contain ∂P (resp., �′) and
by vi (resp., v′

j ) the exterior normal unit vector to P along Hi (resp., �′ along
H′

j ). The set �′ ∩ ∂P is included in the union of a finite number of intersections
Hi ∩ H′

j of transverse hyperplanes. To each such intersection Hi ∩ H′
j , we can

associate the angles between vi and v′
j and between vi and −v′

j in the plane of
dimension 2 spanned by vi and v′

j . Each such angle is strictly positive because Hi

is transverse to H′
j and so the minimum θ0 over the finite number of defined angles

is strictly positive. This θ0 and the measure Hd−2(∂P ∩ �′) give to us a control on
the volume of M3(k) and, thus, on card(M3(k)), as soon as these sets belong to
a neighborhood of ∂P ∩ �′ (see Figure 9). Thus, there exist h2(�

′,P ) > 0 and a
constant c5(d,P,�,�′) such that for all h ≤ h2,

card(M3)(k) = c5hnd−1.

FIG. 9. The set M3(k).
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We conclude that there exists a positive constant c6(d,P,�,�′) such that

cardM(k) ≤ c6(ε + l−1η + hd−2 + h)nd−1.

10. Calibration of the constants. We remark that the sets W(k) [resp., the
sets M(k)] are pairwise disjoint for different k. Then we obtain that

P[φn ≥ λnd−1]

≤ P

[
φn ≥ (1 + s/2)nd−1

N∑
i=1

Nil
d−1ν(vi)

]

≤ P

[ N∑
i=1

Ni∑
j=1

φBi,j
≥ (1 + s/4)nd−1

N∑
i=1

Nil
d−1ν(vi)

]

+ P

[
min
k1

V (W(k1)) ≥ (s/8)nd−1
N∑

i=1

Nil
d−1ν(vi)

]

+ P

[
min
k2

V (M(k2)) ≥ (s/8)nd−1
N∑

i=1

Nil
d−1ν(vi)

]

≤
N∑

i=1

Ni∑
j=1

(
max
i,j

P[φBi,j
≥ ld−1ν(vi)(1 + s/4)nd−1]

)

+ P

[
c2l

−1hnd−1∑
i=1

t (ei) ≥ (s/8)nd−1
N∑

i=1

Nil
d−1ν(vi)

]�ηn/ζ�

+ P

[c6(ε+l−1η+hd−2+h)nd−1∑
i=1

t (ei) ≥ (s/8)nd−1
N∑

i=1

Nil
d−1ν(vi)

]2�hn/ζ�
.

The terms

P[φBi,j
≥ ld−1ν(vi)(1 + s/4)nd−1]

have already been studied in [14] (we recalled it as Theorem 8 in this paper).
It remains to study two terms of the type

P(n) = P

(
αnd−1∑
i=1

t (ei) ≥ βnd−1

)
.

As soon as β > αE(t) and the law of the capacity of the edges admits an exponen-
tial moment, the Cramér theorem in R allows us to affirm that

lim sup
n→∞

1

nd−1 log P(n) < 0.
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Moreover, for all

ε ≤ ε0 = 1

2νmax

∫
P∩�′

ν(vP (x)) dHd−1(x),

we have
N∑

i=1

Nil
d−1ν(vi) ≥

∫
∂P∩�′

ν(vP (x)) dHd−1(x) − ενmax

≥ 1

2

∫
∂P∩�′

ν(vP (x)) dHd−1(x)

≥ νmin

2
Hd−1(∂P ∩ �′).

Thus, for all ε < ε0 and h < min(h0, h1, h2), if the constants satisfy the two fol-
lowing conditions:

c2l
−1h < Hd−1(∂P ∩ �′)νminE(t (e))s/16(6)

and

c6(ε + l−1η + hd−2 + h) < Hd−1(∂P ∩ �′)νminE(t (e))s/16,(7)

thanks to Theorem 8 and the Cramér theorem in R, we obtain that

lim sup
n→∞

1

nd
log P[φn ≥ λnd−1] < 0

and Theorem 1 is proved. We claim that it is possible to choose the constants such
that conditions (6) and (7) are satisfied. Indeed, we first choose ε < ε0 such that

ε <
1

4

Hd−1(∂P ∩ �)νminE(t (e))s

16c6
.

To this fixed ε corresponds a l. Knowing ε and l, we choose h ≤ min(h0, h1, h2)

and η such that

max(h,hd−2, l−1h, l−1η) <
1

4

Hd−1(∂P ∩ �′)νminE(t (e))s

16 max(c2, c6)
.

The proof of Theorem 1 is complete.

REMARK 4. We try here to explain why we built several sets W(k1) and
M(k2), and not only one couple of such sets, that would have been sufficient to
construct a cutset from �1

n to �2
n in �n. To use estimates of upper large devi-

ations of maximal flows in cylinder we already know, we want to compare φn

with
∑

i,j φBi,j
. Heuristically, to construct a (�1

n,�
2
n)-cut in �n from the union of

cutsets in each cylinder Bi,j , we have to add edges to glue together the different
cutsets at the common boundary of the small cylinders and to extend these cutsets
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to (∂P ∩ �n) \⋃N
i=1

⋃Ni

j=1 Ri,j . Yet we want to prove that the upper large devia-
tions of φn are of volume order. If we only consider one possible set E of edges
such that

φn ≤∑
i,j

φBi,j
+ V (E),

we will obtain that

P[φn ≥ λnd−1] ≤∑
i,j

P[φBi,j
≥ ld−1ν(vi)(1 + s/4)nd−1]

+ P

[
V (E) ≥ nd−1

N∑
i=1

Nil
d−1ν(vi)s/4

]
.

We can choose such a set E so that it contains less than δnd−1 edges for a small δ

[e.g., E is equal to W(k1) ∪ M(k2) for a fixed couple (k1, k2)] but the probability

P

[
δnd−1∑
i=1

t (ei) ≥ Cnd−1

]

does not decay exponentially fast with nd in general. To obtain this speed of decay,
we have to make an optimization over the possible choices of the set E, that is, we
choose E among a set of C′n possible disjoint sets of edges E1, . . . ,EC′n; in this
case, we obtain that

φn ≤∑
i,j

φBi,j
+ min

k=1,...,C′n
V (Ek)

and so

P[φn ≥ λnd−1] ≤∑
i,j

P[φBi,j
≥ ld−1ν(vi)(1 + s/4)nd−1]

(8)

+
C′n∏
k=1

P

[
V (Ek) ≥ nd−1

N∑
i=1

Nil
d−1ν(vi)s/4

]
.

It is then sufficient to prove that for all k, P[V (Ek) ≥ C′′nd−1] decays exponen-
tially fast with nd−1 to conclude that the last term in (8) decays exponentially fast
with nd . Theorem 8 gives a control on the terms

P[φBi,j
≥ ld−1ν(vi)(1 + s/4)nd−1].

The conclusion is that to obtain the volume order of the upper large deviations,
the optimization over the different possible values of k1 and k2 is really important,
even if it is not needed if we only want to prove that P(φn ≥ λnd−1) goes to zero
when n goes to infinity.
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