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STABILITY OF JOIN THE SHORTEST QUEUE NETWORKS

BY MAURY BRAMSON1

University of Minnesota

Join the shortest queue (JSQ) refers to networks whose incoming jobs
are assigned to the shortest queue from among a randomly chosen subset
of the queues in the system. After completion of service at the queue, a job
leaves the network. We show that, for all nonidling service disciplines and for
general interarrival and service time distributions, such networks are stable
when they are subcritical. We then obtain uniform bounds on the tails of the
marginal distributions of the equilibria for families of such networks; these
bounds are employed to show relative compactness of the marginal distribu-
tions. We also present a family of subcritical JSQ networks whose workloads
in equilibrium are much larger than for the corresponding networks where
each incoming job is assigned randomly to a queue. Part of this work gener-
alizes results in [Queueing Syst. 29 (1998) 55–73], which applied fluid limits
to study networks with the FIFO discipline. Here, we apply an appropriate
Lyapunov function.

1. Introduction. Join the shortest queue (JSQ) refers to networks whose in-
coming “jobs” (or “customers”) are assigned to the shortest queue from among
a randomly chosen subset of queues in the system. Here, shortest queue means
the queue with the fewest jobs. (One could also consider the queue with the least
remaining work.) Jobs are assumed to arrive in the network through one or more
random streams of jobs. An arriving job is presented with a random subset B of
the queues, with probability depending only on the stream, and chooses the queue
in B with the fewest jobs; when two or more queues have the fewest jobs, one of
these queues is chosen according to some rule. Jobs at queues are served accord-
ing to some discipline, such as first-in, first-out (FIFO), last-in, first-out (LIFO), or
processor sharing (PS) and, upon completion of service, leave the network.

A family of such networks is given by the mean field rule where |B| = D,
D ≥ 1, is fixed, and B is chosen uniformly from among the

(N
D

)
such sets, where N

is the total number of queues. An alternative rule is given by choosing D queues
with replacement from among the N queues, as in Vvedenskaya, Dobrushin and
Karpelevich [21]. A natural setting for both rules is where all jobs arrive at a sin-
gle Poisson stream with rate αN , with all jobs having the same service distribu-
tion F(·), with mean m, and are served according to the same discipline at each

Received April 2009; revised March 2010.
1Supported in part by NSF Grants DMS-02-26245 and CCF-07-29537.
MSC2010 subject classifications. 60K25, 68M20, 90B15.
Key words and phrases. Join the shortest queue, stability.

1568

http://www.imstat.org/aap/
http://dx.doi.org/10.1214/10-AAP726
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


STABILITY OF JOIN THE SHORTEST QUEUE NETWORKS 1569

queue. Such networks are subcritical when αm < 1, that is, the long term rate at
which jobs arrive in the network is strictly less than the total rate at which jobs are
served when no queues are empty. When αm < 1 and F(·) is exponentially dis-
tributed, it is elementary to show that the network is stable, that is, the underlying
Markov process is positive Harris recurrent. It will therefore have an equilibrium
distribution. In this setting, the choice of service discipline (when not relying on
the residual service times) does not affect the distribution of the number of jobs
at each queue, and the state space can be chosen so that it depends only on the
number of jobs at each queue. When D = 1, we will say that each incoming job is
assigned randomly to a queue; when, in addition, F(·) is exponentially distributed,
the network will consist of N independent M/M/1 queues.

The asymptotic behavior of the equilibria of such networks, with D fixed as
N → ∞, has been studied since the mid 1990s. Let E(N)(·) denote the equilibrium
distribution function at a single queue for the network of N queues. In [21], it was
shown that, for ρ = αm < 1,

lim
N→∞ Ē(N)(�) = ρ1+D+···+D� = ρ(D�+1−1)/(D−1) for � ∈ Z+,(1.1)

where Ē(N)(·) = 1 − E(N)(·), and D > 1 is required for the second equality.
Hence, the tail of limN→∞ E(N)(·) decreases doubly exponentially fast when
D > 1; when D = 1, the exponential tail is that of the corresponding M/M/1
queue. This rapid decrease in the tail has different applications, such as in the de-
sign of complex networking systems where memory is at a premium. See Azar et
al. [1], Luczak and McDiarmid [12, 13], Martin and Suhov [14], Mitzenmacher
[16], Suhov and Vvedenskaya [19], Vocking [20], and Vvedenskaya and Suhov
[22] for related work on JSQ networks and ball-bin models in both theoretical and
applied contexts.

The study of networks with given N has been more restricted. Foley and Mc-
Donald [10] studied the equilibria for small values of N .

Little work has been done on networks with nonexponential service distribu-
tions. In this setting, the stability of subcritical networks is no longer obvious. In
particular, jobs might be assigned to short queues where the remaining work (or
workload) is high, which can cause service inactivity after queues with many jobs,
but low remaining work, empty. If the system can be “tricked” too often in this
manner, it is conceivable that it is unstable while nevertheless being subcritical.
For general service distributions, the evolution of the system will be influenced by
the service discipline, which complicates analysis.

For JSQ networks with general service times, Foss and Chernova [11] is the
main work that analyzes stability. Under the FIFO discipline, stability for a broad
family of subcritical networks is demonstrated in [11], including those with the
JSQ rule, for general service distributions and for arrivals given by a single re-
newal stream. Fluid limits are employed as the main tool. In this more general
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framework, the appropriate definition for subcritical is no longer transparent. It
will be discussed in the next subsection.

For our results, we adopt the same basic framework as in [11] for JSQ networks,
but instead consider general service disciplines. We also allow multiple arrival
streams. For general service disciplines, the number of partially served jobs may
be large and known fluid limit techniques cannot be applied. Instead, we employ
an appropriate Lyapunov function.

In this paper, we first show stability of subcritical networks for all nonidling dis-
ciplines. We then obtain uniform bounds on the tails of the marginal distributions
of the equilibria for families of such networks; these bounds are employed to show
relative compactness of the marginal distributions. Both the uniform bounds and
relative compactness will be important tools for investigating, in the mean field
setting, the limiting behavior, as N → ∞, of the equilibria distributions E(N)(·)
at single queues for service disciplines such as FIFO, LIFO and PS (see Bram-
son, Lu and Prabhakar [6, 7]). Appropriate analogs of (1.1), for large values of �,
will hold under certain restrictions. We lastly present a family of subcritical mean
field networks, with N = D = 2, where the service discipline is chosen so that the
corresponding equilibria have much larger workload than do the corresponding
M/G/1 queues. This shows that the JSQ rule does not always provide efficient
service of jobs.

Main results. We present our main results here, Theorems 1.1–1.3, and discuss
their ramifications. In the next subsection, we will give a general outline of the
paper.

In order to avoid technical details, we postpone until Section 2 details regarding
the construction of the state space S and of the Markov process X(t), t ≥ 0, un-
derlying a JSQ network. We require at this point only limited specifics about the
construction, namely that a state x ∈ S is specified by descriptors that include the
number of jobs zn at each queue n, n = 1, . . . ,N ; the residual interarrival times
uk , k = 1, . . . ,K , at each of the arrival streams, which are given by independent
renewal processes; the residual service times vn,i , n = 1, . . . ,N and i = 1, . . . , zn,
for each of the jobs currently in the network; and the ages on,i for each of these
jobs. (In the construction of S in Section 2, normalized versions of uk , vn,i and on,i

are used.) When the arrival streams are Poisson, or when the service time distribu-
tions are the same and exponentially distributed, the corresponding descriptor may
be dropped. The underlying Markov process X(·) takes values in S and is strong
Markov.

In order to state our results, we need to specify the notion of subcriticality that
was mentioned in the context of [11]. This requires the introduction of various
terminology. We denote by Gk(·), k = 1, . . . ,K , the distribution function for the
interarrival time of jobs at the kth renewal stream, and by αk the reciprocal of its
mean, with αk > 0 being assumed. We denote by pk,B the probability that a job
from arrival stream k chooses the shortest queue from the set B , B ⊆ BN , where
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BN = {1, . . . ,N}. We refer to B as the selection set and the rule corresponding to
a given choice of pk,B , k = 1, . . . ,K , B ⊆ BN , as the selection rule. For n ∈ B ,
such a job is a potential arrival at n.

We denote by Fj (·), with j = (k,B,n) for k = 1, . . . ,K , B ⊆ BN and n ∈ B ,
the distribution function for the service time (i.e., service requirement) of jobs
from the kth renewal stream and selection set B that are served at queue n; by mj ,
the mean of Fj (·); and, by μj = 1/mj , the corresponding service rate. As in [11],
we will require that either (a) Fj (·) depend only on n or (b) Fj (·) depend only
on k and B , in which case we may write either Fn(·) or Fk,B(·) (and mn or mk,B ,
respectively, μn or μk,B ) when the context is clear. (When neither (a) nor (b) holds,
analysis is more complicated and, as explained in Section 6 of [11], stability likely
does not follow from subcriticality.) In [6, 7, 21], Fj (·) = F(·) does not depend
on k, B or N and there is a single renewal stream; in this setting, one can employ
the notation α, m and μ. As in [11], we refer to networks satisfying (a) as class
independent and (b) as station independent.

For the class independent case, we define the traffic intensity

ρ1 = max
B⊆BN

{(∑
n∈B

μn

)−1 ∑
k

∑
A⊆B

αkpk,A

}
(1.2)

and, for the station independent case,

ρ2 = max
B⊆BN

{
|B|−1

∑
k

∑
A⊆B

αkpk,Amk,A

}
.(1.3)

When ρ1 < 1, respectively, ρ2 < 1, we say the network is subcritical. As was
observed in [11], it is not difficult to check that when ρi > 1 in either (1.2) or
(1.3), the corresponding network will be unstable. This behavior does not depend
on the service discipline.

When the network is both class and station independent, (1.2) and (1.3) reduce
to

ρ
def= ρ1 = ρ2 = max

B⊆BN

{
m

|B|
∑
k

∑
A⊆B

αkpk,A

}
.(1.4)

Let H be a subgroup of the permutation group on BN on which all queues com-
municate [i.e., for given n1, n2 ∈ BN , π(n1) = n2 for some π ∈ H ], and assume
the symmetry condition∑

k

∑
A⊆Bπ

αkpk,A = ∑
k

∑
A⊆B

αkpk,A for all B ⊆ BN and π ∈ H(1.5)

is satisfied, where Bπ = {n :n = π(n′) for some n′ ∈ B}. (This holds, in particu-
lar, in the mean field setting.) Also, assume the network is both class and station
independent. Then it is not difficult to check that (1.4) reduces to

ρ =
(∑

k

αk

)
m/N.(1.6)
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(Note that, for given A, A ⊆ Bπ for at most |H ||B|/N permutations π ∈ H , with
equality holding when A is a singleton.)

In addition to subcriticality, we will require the following condition on JSQ
networks for Theorems 1.1–1.3: for some � ∈ Z+,0 and h(·), with h(t) > 0 for
all t ,

Px(at most � potential arrivals at n occur over (0,mmaxt]) ≥ h(t)(1.7)

for all x, t and n, where mmax def= maxj mj . Note that this condition depends only
on the distributions Gk(·) and probabilities pk,A. It is met in most cases, for in-
stance, if (a) for each k and n,

∑
A�n pk,A < 1, in which case one can set � = 0, or

(b) for each k and y, Gk(y) < 1, where � = K + 1 suffices. Condition (a) always
holds in the mean field setting when D < N ; Condition (b) is equivalent to (1.11),
which is required for Corollary 1.1.

In Theorems 1.1–1.3, we will employ the nonnegative function ‖x‖, or norm,
for x ∈ S. It is defined in terms of the norms ‖x‖L, ‖x‖R and ‖x‖A by

‖x‖ = ‖x‖L + ‖x‖R + ‖x‖A.(1.8)

We define these components of ‖x‖ in Section 4. Without going into details here,
we note that ‖x‖L depends on the number of jobs and a truncation of the resid-
ual service time of each job; ‖x‖R depends on just the residual service time of
each job and will be employed for residual service times greater than the previ-
ous truncation; and ‖x‖A measures the residual interarrival times with appropriate
weighting. For given M > 0, we denote by τM(1) the stopping time

τM(1) = inf{t ≥ 1 :‖X(t)‖ ≤ M}.(1.9)

We now state Theorem 1.1. Here and elsewhere in the paper, we implicitly as-
sume the discipline is nonidling. In Section 2, we will also specify mild conditions
on how the service effort devoted to individual jobs is allowed to change over time.

THEOREM 1.1. For each subcritical JSQ network satisfying (1.7), there exist
M and C1 so that

Ex[τM(1)] ≤ C1(‖x‖ ∨ 1) for all x,(1.10)

where ‖x‖ is the norm given in (1.8).

For certain service disciplines, such as FIFO and PS, the condition (1.7) can be
avoided; this is noted after the proof of Proposition 5.1. As mentioned above, (1.7)
will in most cases be satisfied irrespective of the service discipline.

The condition (1.10) will imply the positive Harris recurrence of X(·) provided
that the states in the state space S communicate with one another in an appropriate
sense. Petite sets are typically employed for this purpose; they will be defined in
Section 2. A petite set A has the property that each measurable set B is “equally
accessible” from all points in A with respect to a given nontrivial measure.
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THEOREM 1.2. Suppose that a JSQ network is subcritical, satisfies (1.7), and
that AM = {x :‖x‖ ≤ M} is petite for each M > 0 for the norm in (1.8). Then X(·)
is positive Harris recurrent.

Theorem 1.2 will follow from Theorem 1.1 by standard reasoning. More detail
is provided in Section 2.

A standard criterion that ensures the above sets AM are petite is given by the
following two conditions on the interarrival times. In various works on stability
(e.g., [3, 8, 11]), these conditions are employed rather than the more abstract notion
of petite set. The first condition is that the distribution Gk(·) is unbounded for
each k, that is,

Ḡk(y)
def= 1 − Gk(y) > 0 for all y.(1.11)

The second condition is that, for some �k ∈ Z+, the �k-fold convolution G
∗�k

k (·) of
Gk(·) and Lebesque measure are not mutually singular. That is, for some nonneg-
ative qk(·) with

∫ ∞
0 qk(s) ds > 0,

G
∗�k

k (d) − G
∗�k

k (c) ≥
∫ d

c
qk(s) ds(1.12)

for all c < d . When the interarrival times are exponentially distributed, both (1.11)
and (1.12) are immediate. More detail is given in Section 2.

We therefore have the following corollary of Theorem 1.2. As noted earlier,
(1.7) is automatic in this setting.

COROLLARY 1.1. Suppose that a subcritical JSQ network has interarrival
times that satisfy (1.11) and (1.12). Then X(·) is positive Harris recurrent.

By employing Theorem 1.2 and the bounds obtained in the derivation of The-
orem 1.1, one can obtain uniform bounds on the equilibria restricted to individual
queues and to individual arrival streams for families of JSQ networks. Such a fam-
ily A will be required to satisfy the following uniformity conditions on the service
and interarrival distributions F

(a)
j (·) and G

(a)
k (·), for a ∈ A:

sup
a∈A

max
j

μ
(a)
j

∫ ∞
M/μ

(a)
j

yF
(a)
j (dy) → 0 as M → ∞(1.13)

and

sup
a∈A

max
k

α
(a)
k

∫ ∞
M/α

(a)
k

yG
(a)
k (dy) → 0 as M → ∞.(1.14)

We require

sup
a∈A

ρ
(a)
i < 1,(1.15)
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where ρ
(a)
i = ρ

(a)
1 or ρ

(a)
i = ρ

(a)
2 , depending on whether the network is class inde-

pendent or station independent. Setting

(
◦
mratio)(a) =

⎧⎪⎨
⎪⎩

1 for class independent networks,
maxk,B m

(a)
k,B

mink,B m
(a)
k,B

for station independent networks,

we also require that

◦
mratio def= sup

a∈A
(

◦
mratio)(a) < ∞.(1.16)

We also need a uniform version of (1.7), namely that, for some � ∈ Z+,0 and
h(·), with h(t) > 0 for all t ,

P (a)
x

(
at most � potential arrivals at n occur over

(
0, (mmax)(a)t

]) ≥ h(t)(1.17)

for all a ∈ A, x, t and n. Here, P
(a)
x (·) denotes the transition kernel with respect

to a. When the selection rules p
(a)
k,B satisfy p

(a)
k,B = 0 for |B| ≥ M for some M not

depending on a, we will say the selection rules have uniformly bounded support.
In many cases of interest, conditions (1.13)–(1.17) are not difficult to check.

For instance, when each network has a single Poisson arrival stream and F
(a)
j (·)

does not depend on j or a, all conditions except for (1.15) and (1.17) are automatic.
When, in addition, the selection rules have uniformly bounded support, then (1.17)
also holds.

By Theorem 1.2, for any subcritical JSQ network a ∈ A, with AM petite for
M > 0, the underlying Markov process X(a)(·) is positive Harris recurrent; this
follows by employing the analog of (1.8),

‖x‖(a) = ‖x‖(a)
L + ‖x‖(a)

R + ‖x‖(a)
A .(1.18)

In the statement of Theorem 1.3, we also employ the local norm at n = 1, . . . ,N(a),

|x|(a)
n = zn + �(a)

n + w(a)
n for x ∈ S(a).(1.19)

Here, zn is the number of jobs at queue n and w
(a)
n is the weighted workload at n,

that is,

w(a)
n =

zn∑
i=1

w
(a)
n,i =

zn∑
i=1

μ
(a)
jn,i

vn,i ,(1.20)

where μ
(a)
jn,i

denotes the service rate of the ith job at queue n and vn,i is the residual

service time of this job. The term �
(a)
n is the maximum weighted age at n, that is,

�(a)
n = max

i=1,...,zn

�
(a)
n,i = max

i=1,...,zn

μ
(a)
jn,i

on,i ,(1.21)



STABILITY OF JOIN THE SHORTEST QUEUE NETWORKS 1575

where on,i is the age of the ith job at queue n (the time since its arrival at n). We
set

s
(a)
k = α

(a)
k uk,(1.22)

where uk is the residual interarrival time at the arrival stream k; we refer to s
(a)
k

as the weighted interarrival time. (Since x and z do not explicitly depend on a ∈ A,
the corresponding superscripts are omitted.) We will employ, in Section 4, some
of the terminology and conditions introduced in (1.13)–(1.22), when demonstrat-
ing Theorem 1.1 for a given JSQ network.

Since X(a)(·) is positive Harris recurrent, it will have a unique equilibrium mea-
sure on S(a), which we denote by E (a). In order to ensure that the marginal dis-
tribution at a given queue n does not depend on n, we also assume that, for some
subgroup H(a) of the permutation group on BN(a)+K(a) , with queues being mapped
to queues, arrival streams to arrival streams and on which all queues (but not nec-
essarily all arrival streams) communicate,

X(a)
π (·) and X(a)(·) are stochastically equivalent for all π ∈ H(a).(1.23)

[That is, X
(a)
π (·) and X(a)(·) have the same joint distributions.] Here, X

(a)
π (·) is

the stochastic process induced from X(a)(·) by permuting the queues and arrival
streams according to π . We will call such a JSQ network symmetric. As an exam-
ple of such a JSQ network, one can consider N queues arranged uniformly along a
circle, along with N arrival streams that alternate with the queues, with jobs arriv-
ing at a given stream by selecting the shortest queue within a preassigned distance
of the stream, and the service discipline and service and interarrival distributions
not depending on the queue, arrival stream or selection set.

Employing the preceding conditions, we now state our third main result. Here
and later on, E (a)(·) denotes the probability of the indicated event with respect to
the measure E (a), and X and S(a) denote the random variables corresponding to
x and s(a). [The random variables S(a) = (S

(a)
1 , . . . , S

(a)
N ) should not be confused

with the state space.]

THEOREM 1.3. Suppose that a family A of JSQ networks satisfies the uni-
formity conditions (1.13)–(1.17) and (1.23), and that, for each network a ∈ A,
AM = {x :‖x‖(a) ≤ M} is petite for each M > 0 with respect to the norms in
(1.18). Then

sup
a∈A

E (a)(|X|(a)
n > M

) → 0 as M → ∞,(1.24)

for each n, and

sup
a∈A

max
k

E (a)(S(a)
k > M

) → 0 as M → ∞.(1.25)
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The limits (1.24) and (1.25) supply uniform bounds on the number of jobs,
maximum weighted age and weighted workload at each individual queue n, and
on the weighted interarrival times at each arrival stream k. When these limits hold,
we say the equilibria E (a), for a ∈ A, are locally bounded. Note that, on account
of (1.23), the probabilities in (1.24) do not depend on n.

In many cases of interest, the conditions in Theorem 1.3 are not difficult to
check. As mentioned in conjunction with (1.13)–(1.17), when each member of

A has a single Poisson arrival stream, F
(a)
j (·) does not depend on j or a, and

the selection rules have uniformly bounded support, then all of these properties
except (1.15) hold. Since (1.11) and (1.12) hold for Poisson arrivals, the sets AM

are petite. Also, under (1.23), the traffic intensity can be written as in (1.6). We
therefore obtain the following corollary of Theorem 1.3. Recall that a selection
rule is mean field if, for a given D, each nonrepeating D-tuple is chosen with
equal probability from among the N(a) queues, and note that JSQ networks with
a mean field selection rule and for which F

(a)
j does not depend on j or a are also

symmetric.

COROLLARY 1.2. Suppose that each member of a family A of JSQ networks
has a single Poisson arrival stream, that F

(a)
j does not depend on j or a, that the

selection rules have uniformly bounded support, and that

sup
a∈A

α(a)m/N(a) < 1.(1.26)

If (1.23) is satisfied, then (1.24) and (1.25) hold. In particular, if the selection rules
are mean field, then (1.24) and (1.25) hold.

As mentioned earlier, when a JSQ network has a single Poisson arrival stream,
one can omit the interarrival times from the state space descriptor. In this case, the
limit (1.25) is no longer relevant in Theorem 1.3 and Corollary 1.2.

When A is given by a family of networks indexed by the number N of queues,
Theorem 1.3 provides local bounds on E (N) as N → ∞. These bounds can be used
to show the relative compactness of the restriction of E (N) to finite sets of queues;
this is done in Theorem 6.1. As mentioned earlier, these local bounds and relative
compactness of the sequence provide a framework for approximating the corre-
sponding marginal distributions for large N [6, 7]. In this context, one employs
appropriate mean field equations corresponding to the marginal distributions of
the equilibrium E (∞) of a limiting infinite system. Under appropriate assumptions
on the service times, the solutions of these mean field equations satisfy bounds on
the number of jobs that are on the same order as in the limit in (1.1).

In Section 7, we present a family of mean field, symmetric networks, with a sin-
gle Poisson arrival stream, N = D = 2, and an appropriate service discipline that
illustrates how the JSQ rule can produce equilibria for which the typical workload
is incredibly large, much larger than the workload for the analogous network with
D = 1. So, in terms of workload, the JSQ rule can sometimes yield poor results.
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Outline of the paper and main ideas. In Section 2, we will provide a brief
background on Markov processes that will be relevant to the space S and Markov
process X(·) employed in the introduction, and we will provide a more detailed
construction of S and X(·). We will also provide the background that is needed to
derive Theorem 1.2 from Theorem 1.1 and to obtain Corollary 1.1. The machinery
for this is standard in the context of queueing networks and is easily modified so
as to apply to JSQ networks.

In Section 3, we provide an alternative formulation of the traffic intensities in
(1.2) and (1.3) that we employ in successive sections. This formulation will enable
us to compare JSQ networks to networks with appropriate random assignment of
jobs to queues.

Theorem 1.1 is demonstrated in Sections 4 and 5. The main tool is an appropri-
ate Lyapunov function that is given in terms of the norms ‖x‖L, ‖x‖R and ‖x‖A in
(1.8). Our analysis involves decomposing time into random intervals over which
no jobs enter the network. Over each such interval, the evolution of the system
is deterministic and ‖X(t)‖ is shown to be decreasing at large values. At times t

where a job enters the network, the average value of ‖X(t)‖ − ‖X(t−)‖ is shown
to be negative. Applying the strong Markov property and iterating over such inter-
vals until time τM , τM = inf{t :‖X(t)‖ ≤ M}, will imply (1.10) of Theorem 1.1. At
the end of Section 5, we briefly discuss the networks mentioned at the beginning
of the introduction where jobs are assigned to the queue with the least remaining
work. We refer to such networks as join the least loaded queue (JLLQ) networks.
The JLLQ rule is easier to handle than the JSQ rule. It is analyzed in [11] using
fluid limits; here, we mention an alternative approach. At the end of the section,
we also mention analogs of Theorem 1.1 where the state space S is modified.

Theorem 1.3 is demonstrated in Section 6. The basic idea there is to employ
estimates from Sections 4 and 5 to obtain lower bounds on the rate at which
‖X(a)(t)‖(a) decreases at large values of |X(a)(t)|(a)

n . If these values occur with
too high a probability at a given a ∈ A, it will follow that, for appropriate t ,

EE (a)

[∥∥X(a)(t)
∥∥(a)]

< EE (a)

[∥∥X(a)(0)
∥∥(a)]

.

Since E (a) is an equilibrium, this is not possible, which gives us upper bounds on
the probabilities in (1.24) and (1.25). Theorem 6.1 follows quickly from Theo-
rem 1.3 and Prohorov’s theorem.

In Section 7, we discuss the family of networks mentioned earlier, with N =
D = 2, whose equilibria have very large workload. This behavior arises because
of the manner in which the service discipline restricts service for jobs with large
residual service time. The main result is given in Theorem 7.1. Because of the
length of the argument, we provide a condensed proof of part of the theorem.

Notation. For the reader’s convenience, we mention here some of the notation
in the paper. The term x indicates a state in the state space S and the corresponding
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term X(t) (or X) indicates a random state at time t (or with respect to a given
measure); quantities such as zn and Zn(t), and wn,i and Wn,i(t) (or, Zn and Wn,i )
play analogous roles. The results in this paper are for class independent and for
station independent networks; in order to avoid repeating all statements and proofs
for the two cases, we employ notation with the symbol ◦, such as

◦
mk,A, which

will have different meanings in the two cases. The main norms with which we will
work are ‖ ·‖, ‖ ·‖L, ‖ ·‖R and ‖ ·‖A. The symbols L, R and A also appear in other
contexts, such as for the numbers Li , i = 1, . . . ,4, service effort per job Rn,i and
sets A; the meaning should always be clear from the context. The symbols Z+ and
R+ denote the positive integers and positive real numbers, with Z+,0 = Z+ ∪ {0}
and R+,0 = R+ ∪{0}; �y� denotes the integer part of y ∈ R+ and 1{A} denotes the
indicator function of the event A.

2. Markov process background. In this section, we provide a more detailed
description of the construction of the Markov process X(·) that underlies a JSQ
network. We then show how Theorem 1.2 and its corollary follow from Theo-
rem 1.1. Analogs of this material for queueing networks are given in Bramson [4],
and, for networks with weighted max–min fair policies, in Bramson [5]. Because
of the similarity of these settings, we present a summary here and refer the reader
to [4] for more detail.

Construction of the Markov process. We define the state space S to be the set

(Z3 × 2BN × R
3)∞ × R

K(2.1)

subject to the following constraints. The components sk , k = 1, . . . ,K , of R
K are

all positive; they correspond to the residual interarrival times uk of the K arrival
streams, scaled by the arrival rates αk as in (1.22). Only a finite number of the 7-
tuples of coordinates of (Z3 ×2BN ×R

3)∞ are nonzero. Such a 7-tuple corresponds
to a particular job in the network: the first coordinate n, n = 1, . . . ,N , corresponds
to the queue of the job and the second coordinate i, i = 1, . . . , zn, gives its rank at
the queue based on the time of arrival there, with “older” jobs receiving a lower
rank. The third and fourth coordinates k, k = 1, . . . ,K , and A, ∅ �= A ⊆ BN ,
correspond to the arrival stream and selection set of the job when it entered its
queue. The fifth coordinate �, � ≥ 0, measures the age o of the job, scaled by
μjn,i

, as in (1.21); the sixth coordinate w, w > 0, measures its residual service
time v, scaled by μjn,i

, as in (1.20); and the last coordinate r , r ∈ [0,1], is the
current service effort devoted to the job. (If one wishes, one can introduce other
coordinates in the state space descriptor, such as the elapsed time since the last
arrival from each stream, or the amount of service already received by each job.)
Since the discipline is assumed to be nonidling, the sum of the last coordinates for
all jobs at a given nonempty queue must equal 1. Note that for given N and K , the
state space S constructed in this manner is unique.
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The last five coordinates may be considered as functions of the first two, and
written as kn,i , An,i , �n,i , wn,i and rn,i . The third and fourth coordinates, kn,i and
An,i , are needed because of how ‖ · ‖ is defined in Section 4 and can be omitted for
class independent networks. Various coordinates can also be omitted for particular
service disciplines (such as FIFO).

For given N ′ ≤ N and K ′ = K , one can define S′ as above, but with n =
1, . . . ,N ′. Then S′ is the projection of S obtained by restricting nonzero 7-tuples
to the first N ′ queues. For x ∈ S, the projection x′ ∈ S′ of x is the element obtained
by omitting 7-tuples with n > N ′. One can define projections of S onto spaces S′
corresponding to other subsets of {1, . . . ,N} analogously, but we will not use these
in the paper.

Employing the above notation, we construct a metric d(·, ·) on S: for given
x, x′ ∈ S, with the coordinates labelled correspondingly, we set

d(x, x′) =
N∑

n=1

∞∑
i=1

(
(|�n,i − �′

n,i | + |wn,i − w′
n,i | + |rn,i − r ′

n,i |) ∧ 1
)

+
N∑

n=1

∞∑
i=1

(1{kn,i �= k′
n,i} + 1{An,i �= A′

n,i})(2.2)

+
N∑

n=1

|zn − z′
n| +

K∑
k=1

|sk − s′
k|.

One can check that d(·, ·) is separable and locally compact; more detail is given
on page 82 of [4]. One can also check that the sets EM ⊂ S, M > 1, defined by
zn ≤ M , �n,i ≤ M , 1/M ≤ wn,i ≤ M and 1/M ≤ sk ≤ M , for all n = 1, . . . ,N ,
k = 1, . . . ,K and i = 1, . . . , zn are compact with respect to d(·, ·). We equip S

with the standard Borel σ -algebra inherited from d(·, ·), which we denote by S .
In Lemma 4.1, we will show ‖ · ‖L, ‖ · ‖R and ‖ · ‖A are continuous in d(·, ·).

At the end of Section 6, we will employ the partial completion S̄ of S that is
obtained by allowing the weighted residual service times wn,i to take values in
[0,∞) rather than just (0,∞). Otherwise, the construction of S̄ is the same as
that just given for S. The metric d̄(·, ·) is defined analogously to d(·, ·), and the
Borel σ -algebra S̄ is defined correspondingly. Under d̄(·, ·), the sets ĒM ⊂ S̄,
M > 1, defined by zn ≤ M , �n,i ≤ M , 0 ≤ wn,i ≤ M and 1/M ≤ sk ≤ M , for
all n = 1, . . . ,N , k = 1, . . . ,K and i = 1, . . . , zn are compact. One can define
projections from S̄ onto spaces S̄′ in the same manner as was done from S onto S′.

The Markov process X(t), t ≥ 0, underlying the network is defined to be the
right continuous process taking values x in S whose evolution is determined by
the given JSQ rule together with the assigned service discipline. Jobs (n, i) are
allocated service according to rates Rn,i(t) (the service effort per job) that are as-
sumed to be constant in between arrivals and departures of jobs at the queues. Over
such an interval, Ln,i(t) increases at rate μjn,i

, and Wn,i(t) and Sk(t) decrease at
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rates μjn,i
Rn,i(t) and αk , respectively. [We write Ln,i(t) for the age functions to

avoid possible confusion later with constants Li that will be introduced.] Upon
an arrival or departure, rates are re-assigned according to the discipline. The re-
striction made here for the discipline, that service rates remain constant between
arrivals and departures of jobs, is for convenience, and allows one to inductively
construct X(·) over increasing times in a simple way. The standard service disci-
plines satisfy this property. We also note that the construction here is not restricted
to the JSQ rule, and applies to other rules for assigning arriving jobs to a queue.

Along the lines of page 85 of [4], a filtration (Ft ), t ∈ [0,∞], can be assigned to
X(·) so that X(·) is Borel right and, in particular, is strong Markov. The processes
X(·) fall into the class of piecewise-deterministic Markov processes, for which the
reader is referred to Davis [9] for more detail.

Recurrence. The Markov process X(·) is said to be Harris recurrent if, for
some nontrivial σ -finite measure ϕ,

ϕ(B) > 0 implies Px(ηB = ∞) = 1 for all x ∈ S,

where ηB = ∫ ∞
0 1{X(t) ∈ B}dt . If X(·) is Harris recurrent, it possesses a station-

ary measure π that is unique up to a constant multiple. When π is finite, X(·) is
said to be positive Harris recurrent.

A practical condition for determining positive Harris recurrence can be given
by using petite sets. A nonempty set A ∈ S is said to be petite if for some fixed
probability measure a on (0,∞) and some nontrivial measure ν on (S,S ),

ν(B) ≤
∫ ∞

0
P t(x,B)a(dt)

for all x ∈ A and B ∈ S . Here, P t(·, ·), t ≥ 0, is the semigroup associated with
X(·). As mentioned in the introduction, a petite set A has the property that each
set B is “equally accessible” from all points x ∈ A with respect to the measure ν.
Note that any nonempty measurable subset of a petite set is also petite.

For given δ > 0, set

τA(δ) = inf {t ≥ δ :X(t) ∈ A}
and τA = τA(0). Then τA(δ) is a stopping time. Employing petite sets and τA(δ),
one has the following characterization of Harris recurrence and positive Harris
recurrence. (The Markov process and state space need to satisfy minimal regu-
larity conditions, as on page 86 of [4].) The criteria are from Meyn and Tweedie
[15]; discrete time analogs of the different parts of the proposition have long been
known, see, for instance, Nummelin [17] and Orey [18].

THEOREM 2.1. (a) A Markov process X(·) is Harris recurrent if and only if
there exists a closed petite set A with

Px(τ
A < ∞) = 1 for all x ∈ S.(2.3)
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(b) Suppose the Markov process X(·) is Harris recurrent. Then X(·) is positive
Harris recurrent if and only if there exists a closed petite set A such that, for some
δ > 0,

sup
x∈A

Ex[τA(δ)] < ∞.(2.4)

Theorem 1.2 and its corollary. Theorem 1.2 follows from Theorems 1.1, 2.1
and the elementary continuity result, Lemma 4.1. To see this, note that both con-
ditions (2.3) and (2.4) of Theorem 2.1 are immediate consequences of (1.10) of
Theorem 1.1, with A = AM , for appropriate M , and δ = 1 since, in Theorem 1.2,
AM is assumed to be petite. By Lemma 4.1, the norm ‖ · ‖ in (1.8) is continuous
in the metric d(·), and hence AM is also closed. It therefore follows from Theo-
rem 2.1 that X(·) is positive Harris recurrent, which implies Theorem 1.2.

Corollary 1.1 follows immediately from Theorem 1.2 and the assertion, be-
fore the statement of the corollary, that the sets AM are petite under the assump-
tions (1.11) and (1.12). A somewhat stronger version of the analogous assertion
for queueing networks is demonstrated in Proposition 4.7 of [4]. (The proposi-
tion states that the sets A are uniformly small.) The reasoning is the same in both
cases and does not involve the JSQ rule or the service discipline. The argument,
in essence, requires that one wait long enough for the network to have at least
a given positive probability of being empty; the time t does not depend on x for
‖x‖ ≤ M . This will follow from (1.11) and the definition of ‖ ·‖ in Section 4, since
the work in the network is bounded by a linear function of M . Since the residual
interarrival times are also bounded by a linear function of M , by using (1.12), one
can also show that the joint distribution function of the residual interarrival times
has an absolutely continuous component at this time, whose density is bounded
away from 0. It will follow that the set AM is petite with respect to ν, with a cho-
sen as the point mass at t , if ν is concentrated on the empty states, where it is a
small enough multiple of |R|-dimensional Lebesque measure restricted to a small
cube.

3. A useful routing lemma. In this section, we rephrase the conditions (1.2)
and (1.3) that are used to define subcriticality for class independent and station
independent JSQ networks by using sums that will be more convenient for us to
work with when proving Theorem 1.1 in Sections 4 and 5. For this, we employ
Lemma 3.1. The desired sums for class independent and station independent JSQ
networks are then given in the following corollary.

For the lemma, we employ the following notation. We consider βk,A,n ≥ 0 for
k = 1, . . . ,K , n = 1, . . . ,N and A ⊆ BN , where BN = {1, . . . ,N}, and assume
that, for each k and A,

βk,A,n > 0 iff βk,A,n′ > 0 for all n,n′ ∈ A,(3.1)
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that is, whether or not βk,A,n is zero does not depend on n, for n ∈ A. For each
B ⊆ BN , let {rB,n, n = 1, . . . ,N} be a probability distribution concentrated on B ,
with rB,n > 0 for n ∈ B , so that for each k, B , and A ⊆ B , and n restricted to B ,

γk,A,B
def= rB,nβk,A,n does not depend on n.(3.2)

LEMMA 3.1. Suppose that βk,A,n, γk,A,B and rB,n are chosen as in (3.1)–
(3.2), and moreover that γk,A,B satisfies∑

k

∑
A⊆B

γk,A,B ≤ ρ for all B ⊆ BN(3.3)

for some ρ. Then, for each k and A, there is a probability distribution {qk,A,n, n =
1, . . . ,N} concentrated on A, so that∑

k

∑
A⊆BN

βk,A,nqk,A,n ≤ ρ for all n.(3.4)

As a consequence of Lemma 3.1, we obtain the following two inequalities from
(1.2) and (1.3).

COROLLARY 3.1. (a) Suppose that (1.2) holds for a class independent JSQ
network. Then, for each k and A, there is a probability distribution qk,A,n concen-
trated on A so that∑

k

∑
A⊆BN

αkpk,Aqk,A,nmn ≤ ρ1 for all n.(3.5)

(b) Suppose that (1.3) holds for a station independent JSQ network. Then, for
each k and A, there is a probability distribution qk,A,n concentrated on A so that∑

k

∑
A⊆BN

αkpk,Aqk,A,nmk,A ≤ ρ2 for all n.(3.6)

Corollary 3.1 converts (1.2) and (1.3) into (3.5) and (3.6), which will be eas-
ier to work with in Section 4. When ρ1 < 1, respectively, ρ2 < 1, these inequal-
ities imply that the network, where incoming jobs are assigned the queue n with
probabities qk,A,n, is subcritical. On the other hand, by substituting B for BN in
the inner sum and summing over n, one can check that the inequalities in (3.5),
respectively, (3.6), cannot be strict for all n. These conditions therefore give an
alternative characterization for subcriticality when ρi < 1. (We will not need this
in the paper.)

One can check that when the JSQ network is symmetric, one may set qk,A,n =
1/|A| for n ∈ A. This follows by summing the left-hand side of (3.6) over all n and
comparing the sum with the right-hand side of (1.3), for B = BN .
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PROOF OF COROLLARY 3.1. (a) We apply Lemma 3.1, setting

βk,A,n = αkpk,Amn, rB,n = μn1{n ∈ B}
/ ∑

n′∈B

μn′, ρ = ρ1.(3.7)

It is easy to check that the conditions (3.1) and (3.2) are satisfied with this choice
of βk,A,n and rB,n. Substitution of these quantities into (3.3) gives the quantity in
braces on the right-hand side of (1.2) for each choice of B , and substitution into
(3.4) gives (3.5). Part (a) of the corollary therefore follows from the lemma.

(b) The argument for this part is analogous to the first part; here, we set

βk,A,n = αkpk,Amk,A, rB,n = 1{n ∈ B}/|B|, ρ = ρ2.(3.8)

It is easy to check that the conditions (3.1)–(3.2) are again satisfied. Substitution
into (3.3) gives the quantity in braces on the right-hand side of (1.3) and substitu-
tion into (3.4) gives (3.6). Part (b) of the corollary therefore also follows from the
lemma. �

We now prove the lemma.

PROOF OF LEMMA 3.1. For a family of probability distributions qk,A,n, in-
dexed by k and A, and concentrated on A, set ζ

(q)
k,A,n = βk,A,nqk,A,n,

V (q) = ∑
n

(∑
k

∑
A⊆BN

ζ
(q)
k,A,n − ρ

)2

(3.9)

and

V min = min
q

V (q).(3.10)

One can check that V (q) is continuous in q and that the set of q is compact with
respect to the metric

d(q, q ′) = max
k,A,n

|qk,A,n − q ′
k,A,n|.(3.11)

So, V min is attained at some qmin. We set

Amin =
{
n : ∑

k

∑
A⊆BN

ζmin
k,A,n > ρ

}
,

(3.12)

Āmin =
{
n : ∑

k

∑
A⊆BN

ζmin
k,A,n ≥ ρ

}
,

where ζmin
k,A,n

def= βk,A,nq
min
k,A,n. In order to show (3.4), it suffices to show Amin = ∅.

We first claim that for any k′, A′ ⊆ BN and n1 ∈ Āmin,

A′ ⊆ Āmin if ζmin
k′,A′,n1

> 0.(3.13)
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We argue by contradiction and show that if (3.13) is violated for some k′, A′ and
n1, then for appropriate q̃ , V (q̃) < V (qmin), which is not possible. The proof of
this does not use (3.3).

For such A′ and n1, n1 ∈ A′ since ζmin
k′,A′,· is concentrated on A′. We choose

n2 ∈ A′ − Āmin and define a new family of probability distributions q̃k,A,· by

q̃k,A,n = qmin
k,A,n unless k = k′, A = A′ and either n = n1 or n = n2,

q̃k′,A′,n1 = qmin
k′,A′,n1

− ε,

q̃k′,A′,n2 = qmin
k′,A′,n2

+ ε,

where ε > 0 is small.
For small enough ε > 0,(∑

k

∑
A⊆BN

ζ̃k,A,n1 − ρ

)2

−
(∑

k

∑
A⊆BN

ζmin
k,A,n1

− ρ

)2

(3.14)

<

(∑
k

∑
A⊆BN

ζmin
k,A,n2

− ρ

)2

−
(∑

k

∑
A⊆BN

ζ̃k,A,n2 − ρ

)2

,

where ζ̃k,A,n = βk,A,nq̃k,A,n. The inequality is obvious when n1 ∈ Amin, since the
left-hand side of (3.14) will be negative and the right-hand side will be positive.
When n1 ∈ Āmin − Amin, the inequality is also true since the left-hand side is
bounded above by a multiple of ε2 (with the second term being 0), and the right-
hand side is bounded below by a multiple of ε. For n �= n1, n2,(∑

k

∑
A⊆BN

ζ̃k,A,n − ρ

)2

=
(∑

k

∑
A⊆BN

ζmin
k,A,n − ρ

)2

.(3.15)

So, by (3.14) and (3.15), V (q̃) < V (qmin), which contradicts the definition of qmin.
This shows (3.13).

Employing (3.13), we now show that Amin = ∅. One has

ρ ≥ ∑
k

∑
A⊆Āmin

γk,A,Āmin = ∑
k

∑
A⊆Āmin

N∑
n=1

γk,A,Āminq
min
k,A,n

= ∑
k

∑
A⊆Āmin

∑
n∈Āmin

rĀmin,nβk,A,nq
min
k,A,n(3.16)

= ∑
n∈Āmin

rĀmin,n

∑
k

∑
A⊆BN

ζmin
k,A,n.

The inequality follows from (3.3), the second equality follows from (3.2) since rB,·
is concentrated on B , and the third equality follows from the definition of ζmin

k,A,n
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and (3.13). But, on account of the definitions of Amin and Āmin, the last quantity
in (3.16) is at least

ρ
∑

n∈Āmin

rAmin,n = ρ,

with strict inequality holding if Amin �= ∅ because all the terms in the sum are
strictly positive. Since the strict inequality contradicts (3.16), this implies Amin =
∅, and hence the inequality in (3.4), as desired. �

4. Definitions of norms and basic inequalities. This section introduces the
norms and provides the basic inequalities we will need in Sections 5 and 6 for the
proofs of Theorems 1.1 and 1.3. The section consists of two subsections. We first
define the norms appearing in (1.8), ‖ · ‖L, ‖ · ‖R and ‖ · ‖A, in terms of which ‖ · ‖
was defined. We then state and prove Propositions 4.1 and 4.2. These propositions
give inequalities on the decrease of ‖ · ‖ and lie at the heart of the analysis in
Sections 5 and 6. Proposition 4.2 is the only place in the first six sections of the
paper where the JSQ property is employed.

Definition of the norms. In (1.8), we defined the norm ‖ · ‖ in terms of the
norms ‖ · ‖L, ‖ · ‖R and ‖ · ‖A. We now define these norms.

Recall from Section 1 that zn denotes the number of jobs at queue n; wn de-
notes the weighted workload at the queue, which is defined in (1.20) along with
wn,i ; rn,i denotes the service effort for job (n, i); and sk denotes the weighted in-
terarrival time at the arrival stream k, and is given by (1.22). The notation Zn(·),
Wn(·), Wn,i(·), Rn,i(·) and Sk(·) will be used for the corresponding quantities of
the process X(·). We also employ the arrival rates αk , mean service times mj , ser-
vice rates μj and transition probabilities pk,A that were introduced earlier, as well
as the transition probabilities qk,A,n that are given in Corollary 3.1 for class inde-
pendent and station independent JSQ networks. We will set ε1 = 1 − ρ1 for class
independent networks and ε1 = 1 − ρ2 for station independent networks, where ρi

are the traffic intensities.
For x ∈ S, set

‖x‖L =
N∑

n=1

‖x‖L,n, ‖x‖R =
N∑

n=1

‖x‖R,n, ‖x‖A =
K∑

k=1

‖x‖A,k.(4.1)

(The subscripts L, R and A are mnemonics for “left,” “right” and “arrivals.”) We
define these individual components as follows. Since ‖x‖L,n is defined in terms of
quantities obtained from ‖x‖R,n, we define the latter first.

For n = 1, . . . ,N , set

‖x‖R,n =
zn∑

i=1

◦
mkn,i ,An,i

ψW(wn,i),(4.2)
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where wn,i = μjn,i
vn,i . The other components in (4.2) are defined as follows:

◦
mk,A =

{
1 for class independent networks,
mk,A for station independent networks,(4.3)

and kn,i and An,i denote the arrival stream and selection set for the ith job cur-
rently at queue n. The function ψW : R+,0 → R+,0 is required to be continuously
differentiable, with ψW(0) = 0, ψ ′

W(y) > 0, ψ ′
W(y) ↗ ∞ as y ↗ ∞, and∫ ∞

0
ψW(μjy)Fj (dy) ≤ ε2 for all j,(4.4)

where ε2 = (ε1)
2/40. Since Fj (·) has finite mean, it is not difficult to choose such

a ψW(·).
The norm ‖ · ‖R will be the main contributor to ‖ · ‖ for jobs with large residual

service times; service of such a job (n, i) sharply decreases ‖ · ‖R when ψ ′
W(wn,i)

is large. The term
◦
mk,A is needed because of the different definitions of the traffic

intensities ρ1 and ρ2 for class independent and station independent networks.
For n = 1, . . . ,N , we set

‖x‖L,n =
(

zn∑
i=1

◦
mkn,i ,An,i

(w+
n,i ∧ L2)

)
ψZ(zn).(4.5)

Here,

w+
n,i = wn,i + ε2(4.6)

and

ψZ(y) =
{

ε1 + (ε3/L2) log(y + 1) for y ∈ [0,L3],
ε1 + (ε3/L2) log(L3 + 1) for y > L3

(4.7)

for a small ε3 > 0, which will be defined in (4.20) in terms of ε1 and other quanti-
ties.

We choose L2 in (4.5) and (4.7) so that

ψ ′
W(L2) = 2L1(4.8)

for given L1, with L1 ≥ 4 and L1 large enough so that L2 ≥ ε2. We will specify
L1 later as we find convenient. We choose L3 so that

ψZ(L3) = ε1 + (ε3/L2) log(L3 + 1) = L1;(4.9)

it follows that when w ≥ L2,

ψZ(y) ≤ 1
2ψ ′

W(w) for all y.(4.10)

Note that L2 → ∞ and L3 → ∞ as L1 → ∞. The inequality (4.10) is used in
Proposition 4.1, and will tell us that, for large residual service times, the norm
‖ · ‖R is “more powerful” than ‖ · ‖L.
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The following provides some motivation for the definition of ‖x‖L,n. The norm
‖ · ‖L will be the main contributor to ‖ · ‖ for jobs with moderate residual service
times. The terms w+

n,i ∧ L2 and ψZ(zn) are each bounded, with the term w+
n,i

decreasing continuously over time as the corresponding job is served; we employ
w+

n,i rather than wn,i , in (4.5), to ensure ‖x‖L,n → ∞ as zn → ∞. The inclusion
of the term ψZ(zn), which is nondecreasing in zn, is reasonable since more jobs at
a queue should correspond to a greater value of ‖ · ‖L.

For k = 1, . . . ,K , we set

‖x‖A,k = (1 + ε1/2)
∑

A⊆BN

(
N∑

n=1

pk,Aqk,A,n
◦
mk,AψZ(zn)

)
ψA(sk).(4.11)

Here, qk,A,n is chosen as in the corollary to Lemma 3.1 and sk = αkuk . We require
that ψA(·) be locally Lipschitz on [0,∞), with

ψA(y) = M1 − y for y ∈ [0,M1],(4.12)

and ψ ′
A(y) > 0 for y ∈ (M1,∞) and appropriate M1 ≥ 1, with ψ ′

A(y) ↗ ∞ as
y ↗ ∞, so that ∫ ∞

M1/αk

(
ψA(αky) + αky

)
Gk(dy) ≤ ε2.(4.13)

Since Gk(·) has finite mean, it is not difficult to choose such M1 and ψA(·). Be-
cause Gk(·) has mean 1/αk and (4.12) is satisfied, (4.13) implies that

M1 −
∫ ∞

0
ψA(αky)Gk(dy) ≥ 1 − ε2,(4.14)

which will be used in the proof of Proposition 5.1.
The norm ‖ · ‖A is chosen so that it interfaces properly with ‖ · ‖L: in between

arrivals, ‖X(t)‖A will increase more slowly than ‖X(t)‖L + ‖X(t)‖R decreases;
at an arrival, the average decrease of ‖X(t)‖A will more than offset the increase in
‖X(t)‖L + ‖X(t)‖R because of (4.4) and (4.14), and the choice of ε3 in (4.7).

Note that the weighted ages �n,i are not employed in the definition of ‖ · ‖. They
are not needed, in particular, to show petiteness of bounded sets in ‖·‖ under (1.11)
and (1.12), since they do not appear when zn = 0. (See, e.g., the end of Section 2.)

In Section 2, we demonstrated Theorem 1.2 by employing Theorem 1.1 and
Lemma 4.1, with the latter asserting that ‖ · ‖ is continuous in the metric d(·, ·).
Having defined ‖ · ‖, we now state and prove the lemma.

LEMMA 4.1. The norm ‖ · ‖ given by (1.8) is continuous in the metric d(·, ·)
given by (2.2).

PROOF. It suffices to show each of the norms ‖ · ‖L, ‖ · ‖R and ‖ · ‖A is contin-
uous in d(·, ·). The argument in each case is elementary. Noting that d(x, x′) < 1
implies zn = z′

n for all n, and that w+
n,i = wn,i + ε2 is continuous in wn,i , for given
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i, the continuity of ‖ · ‖L is not difficult to see. For the same reasons and since
ψW(·) and ψA(·) are locally Lipschitz, ‖ · ‖R and ‖ · ‖A are also continuous. �

Basic inequalities. In this subsection, we demonstrate Propositions 4.1 and
4.2, which are at the foundation of the analysis in Sections 5 and 6. The evolution
of X(t) between arrivals of jobs is deterministic. In Proposition 4.1, we provide
upper bounds on the rate of change of ‖X(t)‖ there by employing its components
‖X(t)‖L, ‖X(t)‖R and ‖X(t)‖A, which exist almost everywhere since the under-
lying functions are locally Lipschitz except where jobs arrive or depart, with jumps
being negative at departures. We set

◦
μn =

{
μn for class independent networks,
1 for station independent networks,

(4.15)

and note that

◦
μn = ◦

mk,Aμj .(4.16)

For Proposition 4.1, as elsewhere in the paper, we assume the network is either
class or station independent.

PROPOSITION 4.1. For every subcritical JSQ network,

‖X(t)‖′
L + ‖X(t)‖′

R ≤ ‖X(t)‖′
L + 1

2
‖X(t)‖′

R

(4.17)
≤ ∑

n

◦
μn

(
ε1 − ψZ(Zn(t))

)

for almost all t . Moreover, for any subset K of {1, . . . ,K},∑
k∈K

‖X(t)‖′
A,k ≤ (1 + ε1/2)ρi

∑
n

◦
μnψZ(Zn(t))(4.18)

for almost all t , for i = 1,2. Consequently, for almost all t ,

‖X(t)‖′ ≤ (ε1/2)
∑
n

◦
μn

(
2 − ψZ(Zn(t))

)
.(4.19)

The inequality (4.19) follows immediately from (4.17) and (4.18), with K =
{1, . . . ,K}, together with (1.8), since ε1 = 1 − ρi . The purpose of the term
1
2‖X(t)‖′

R in the middle quantity in (4.17) is to permit a sharper upper bound, for
large ‖X(t)‖R , by including the contribution from ψW(·) in (4.2). This strength-
ening of (4.19) will be applied in the proof of case (c) of Proposition 5.1. Also,
since ψ ′

A(y) → ∞ as y → ∞, the inclusion in the first sum in (4.18) of terms cor-
responding to certain k /∈ K can improve the bound on the right-hand side, which
will allow us to strengthen (4.19) for large ‖X(t)‖A.
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PROOF OF PROPOSITION 4.1. We need to demonstrate the first two displays.
For (4.17), we note that

‖X(t)‖′
L + 1

2
‖X(t)‖′

R

≤ −∑
n

◦
μnψZ(Zn(t))

Zn(t)∑
i=1

1{W+
n,i(t) < L2}Rn,i(t)

− 1

2

∑
n

◦
μn

Zn(t)∑
i=1

ψ ′
W(Wn,i(t))1{W+

n,i(t) ≥ L2}Rn,i(t)

≤ −∑
n

◦
μnψZ(Zn(t))

Zn(t)∑
i=1

1{W+
n,i(t) < L2}Rn,i(t)

− ∑
n

◦
μnψZ(Zn(t))

Zn(t)∑
i=1

1{W+
n,i(t) ≥ L2}Rn,i(t)

= −∑
n

◦
μnψZ(Zn(t))1{Zn(t) > 0} ≤ ∑

n

◦
μn

(
ε1 − ψZ(Zn(t))

)
holds almost everywhere. The first inequality follows from the definitions of
‖ · ‖L, ‖ · ‖R and (4.16), since Zn(·) is constant almost everywhere. For this, note
that W ′

n,i(t) = −μjn,i
Rn,i(t) almost everywhere. The second inequality follows

from (4.10), with the last inequality using ψZ(0) = ε1 and
∑

i Rn,i(t) = 1, when
Zn(t) > 0. This implies (4.17).

For (4.18), we apply the definition of ‖ · ‖A,k in (4.11) to obtain, for almost all t ,∑
k∈K

‖X(t)‖′
A,k ≤ (1 + ε1/2)

∑
k∈K

∑
A

∑
n

αkpk,Aqk,A,n
◦
mk,AψZ(Zn(t))

≤ (1 + ε1/2)ρi

∑
n

◦
μnψZ(Zn(t)),

where the first inequality follows from ψ ′
A(y) ≥ −1, and the second inequality

follows from the corollary to Lemma 3.1. �

We still need to specify the constant ε3 that was employed in (4.7); for later
reference, we also recall the constant ε2 from equations (4.4) and (4.6):

ε2 = M1
◦
mratioε3 = (ε1)

2/40.(4.20)

Recall that M1 is specified in (4.12) and (4.13), and
◦
mratio is defined as in the

equation before (1.16). In Proposition 4.2, we show that, for this choice of ε2 and
ε3, the expected increase in ‖ · ‖ is nonpositive at the time T of the first arrival of
a job in the network. We note that, for X(0) = x fixed, T is deterministic, as is the
evolution of X(·) up through T −.
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PROPOSITION 4.2. For every JSQ network,

Ex[‖X(T )‖] ≤ ‖X(T −)‖ for all x.(4.21)

PROOF. We consider the contribution to ‖ · ‖ from ‖ · ‖L, ‖ · ‖R and ‖ · ‖A,
assuming that a single arrival occurs from stream k at time T ; when arrivals si-
multaneously occur from other streams, the corresponding bounds can be applied
sequentially.

For ‖ · ‖L, one has

Ex[‖X(T )‖L] − ‖X(T −)‖L

= ∑
A

∑
n

pk,Aq∗
k,A,n

Zn(T −)∑
i=1

◦
mkn,i ,An,i

(
W+

n,i(T ) ∧ L2
)(

ψZ

(
Zn(T −) + 1

)

− ψZ(Zn(T −))
)

(4.22)

+ ∑
A

∑
n

pk,Aq∗
k,A,n

◦
mk,AψZ

(
Zn(T −) + 1

)

×
∫ ∞

0

(
(μjy + ε2) ∧ L2

)
Fj (dy)

for each x, where, for given k and A, q∗
k,A,n is the probability that the arriving

job is assigned to queue n. As previously, j = (k,A,n). Because of the JSQ rule,
q∗
k,A,n is concentrated on the shortest queues in A. Since by (4.7),

ψZ

(
Zn(T −) + 1

) − ψZ(Zn(T −)) ≤ ε3/L2
(
Zn(T −) + 1

) ≤ ε3/L2,(4.23)

the first term on the right-hand side of (4.22) is at most

ε3
◦
mratio

∑
A

pk,A
◦
mk,A.(4.24)

On the other hand, since∫ ∞
0

(
(μjy + ε2) ∧ L2

)
Fj (dy) ≤ μj

∫ ∞
0

yFj (dy) + ε2 = 1 + ε2,

which does not depend on n, and since ψZ(y) is increasing in y and qk,A,n is
concentrated on A, the last term on the right-hand side of (4.22) is at most

(1 + ε2)
∑
A

∑
n

pk,Aqk,A,n
◦
mk,AψZ

(
Zn(T −) + 1

)
.(4.25)

In other words, removing the truncation by L2 in the integral and replacing q∗
k,A,n

(which is concentrated on the shortest queues in A) by qk,A,n can only increase
this term. Note that this is the only place in the first six sections of the paper where
the JSQ property is employed. It follows from the bounds (4.24) and (4.25) that

Ex[‖X(T )‖L] − ‖X(T −)‖L
(4.26)

≤ (1 + ε2)
∑
A

∑
n

pk,Aqk,A,n
◦
mk,A

(
ψZ

(
Zn(T −) + 1

) + ◦
mratioε3

)
.
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For ‖ · ‖R , it follows from (4.2) and (4.4) that

Ex[‖X(T )‖R] − ‖X(T −)‖R

= ∑
A

∑
n

pk,Aq∗
k,A,n

◦
mk,A

∫ ∞
0

ψW(μjy)Fj (dy)(4.27)

≤ ε2
∑
A

pk,A
◦
mk,A.

On the other hand, it follows from (4.11) that

Ex[‖X(T )‖A] − ‖X(T −)‖A

≤ (1 + ε1/2)(ε3/L2)M1
∑
A

pk,A
◦
mk,A(4.28)

− (1 − ε2)(1 + ε1/2)
∑
A

∑
n

pk,Aqk,A,n
◦
mk,AψZ

(
Zn(T −) + 1

)
.

In the first term, the factors ε3/L2 and M1 are due to (4.23) and (4.12), since
ψA(0) = M1, and in the second term, the factor 1 − ε2 is due to (4.14).

Combining (4.26)–(4.28), it follows that

Ex[‖X(T )‖] − ‖X(T −)‖
≤ (4M1

◦
mratioε3 + ε2)

∑
A

pk,A
◦
mk,A

− [(1 − ε2)(1 + ε1/2) − (1 + ε2)]
× ∑

A

∑
n

pk,Aqk,A,n
◦
mk,AψZ

(
Zn(T −) + 1

)
.

Since ψZ(y) ≥ ε1 for all y, it follows from (4.20) that this is at most

−(ε2
1/8)

∑
A

pk,A
◦
mk,A ≤ 0.

So

Ex[‖X(T )‖] ≤ ‖X(T −)‖,
as desired. �

The following upper bound is a consequence of Propositions 4.1 and 4.2 and
the strong Markov property. It will be applied in the proof of Theorem 5.1.

COROLLARY 4.1. For every subcritical JSQ network,

Ex[‖X(t)‖] − ‖x‖ ≤ C2t for all t and x,(4.29)

where C2 = ∑
n

◦
μn.
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PROOF. Denoting by T1, T2, . . . the times at which arrivals occur and applying
the strong Markov property, one can repeatedly apply Propositions 4.1 and 4.2 over
the intervals (0, T1 ∧ t], (T1 ∧ t, T2 ∧ t], . . . . Over each such interval, it follows from
(4.19) and (4.21) that

Ex[‖X(Ti+1 ∧ t)‖] − Ex[‖X(Ti ∧ t)‖]
(4.30)

≤
(∑

n

◦
μn

)
Ex[(Ti+1 ∧ t) − (Ti ∧ t)]

for each i, since ψZ(y) > 0 for all y. Summing over i gives

Ex[‖X(t)‖] − ‖x‖ ≤ t
∑
n

◦
μn,

and hence (4.29). �

5. Proof of Theorem 1.1. In this section, we demonstrate Theorem 1.1. The
proof is organized as follows. We first show it suffices to demonstrate Theorem 5.1,
which is a slight variant of Theorem 1.1. The demonstration of Theorem 5.1 is then
reduced to showing Proposition 5.1. The inequality in the proposition is expressed
in terms of expected values of the norm ‖ · ‖ at stopping times σ that will be
introduced shortly. Most of the rest of the section is devoted to showing Proposition
5.1, for which Propositions 4.1 and 4.2 are employed. At the end of the section,
we briefly discuss a simpler alternative approach that can be applied to certain
service disciplines; we also mention analogs of Theorem 1.1 where the state space
is modified. We then discuss the stability of the JLLQ rule.

In order to demonstrate Theorem 1.1, we need to verify the inequality (1.10). In
Theorem 5.1, we will instead demonstrate the variant (5.1). We recall that

τM = inf{t :‖X(t)‖ ≤ M}.

THEOREM 5.1. For each subcritical queueing network satisfying (1.7), there
exists M so that

Ex[τM ] ≤ C3‖x‖ for all x,(5.1)

where ‖x‖ is the norm given in (1.8) and C3 = (ε1
∑

n
◦
μn)

−1.

The inequality (1.10) follows quickly from Theorem 5.1 and Corollary 4.1. By
(4.29),

Ex[‖X(1)‖] ≤ ‖x‖ + C2 for all x,

where C2 = ∑
n

◦
μn. Restarting the process at time 1 and applying (5.1) to x′ =

X(1) implies that

Ex[τM(1)] ≤ C3(‖x‖ + C2) + 1,
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which implies (1.10) with C1 = C3 ∨ (C2C3 + 1).
The proof of Corollary 4.1 did not require any conditions on the evolution of

X(·). In order to demonstrate Theorem 5.1, we need to consider the behavior of
X(·) when its norm is large. If Zn(·) is uniformly large over an interval for some
n, we will be able to apply (4.19) of Proposition 4.1. If either ‖X(·)‖R or ‖X(·)‖A

is large, we will be able to employ versions of (4.17) and (4.18). In each of these
cases, we also apply Proposition 4.2. Iteration of these bounds and application of
the strong Markov property as in the proof of the corollary will then imply the
theorem.

In order to demonstrate (5.1), we need only consider ‖x‖ > M . On account of
(1.8), ‖x‖ > M implies that, for given ML, MR and MA with

M = ML + MR + MA,(5.2)

either (a) ‖x‖L > ML, (b) ‖x‖L ≤ ML and ‖x‖A > MA, or (c) ‖x‖L ≤ ML,
‖x‖A ≤ MA and ‖x‖R > MR . We will analyze these three cases for appropriate
ML, MA and MR .

Denote by T the time of the first arrival in the network. We introduce the stop-
ping time σ , where

σ = inf{t :‖X(t)‖L ≤ ML} ∧ T(5.3)

for x satisfying (a) and

σ = inf{t :‖X(t)‖A ≤ MA} ∧ T(5.4)

for x satisfying (b). For x satisfying (c), we set

σ = tx ∧ T ′
x,�+1.(5.5)

Here, tx is deterministic and will be defined in (5.23); � is given in (1.7). (As
mentioned there, � = 0 for many applications.) The term T ′

x,i is the time of the ith
arrival at the queue nx , with nx being specified just before (5.23). We also set

◦
μratio =

{
max

n

◦
μn/min

n

◦
μn for class independent networks,

1 for station independent networks,

and recall L1, which was introduced in (4.8).
We will show the following proposition.

PROPOSITION 5.1. For each subcritical JSQ network satisfying (1.7) and for
L1 satisfying L1 ≥ 4N

◦
μratio, there exist ML, MR and MA, so that for x satisfying

either (a), (b) or (c), and σ chosen as in (5.3)–(5.5),

Ex[σ ] ≤ C3
(‖x‖ − Ex[‖X(σ−)‖]),(5.6)

where C3 is as in Theorem 5.1.
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Recall that ‖X(·)‖ has negative jumps at departures. It therefore follows from
Proposition 4.2 and the strong Markov property that

Ex[‖X(σ)‖] ≤ Ex[‖X(σ−)‖] for all x.(5.7)

Together with (5.6), this implies

Ex[σ ] ≤ C3
(‖x‖ − Ex[‖X(σ)‖])(5.8)

for x chosen as in the proposition.
It is not difficult to demonstrate Theorem 5.1 by iterating (5.8) and applying the

strong Markov property.

PROOF OF THEOREM 5.1 USING (5.8). Iteration of (5.8), by applying the
stopping rule σ at each step, induces a sequence of stopping times

0 < σ1 < σ2 < · · · ,
with the sequence stopping at σI if ‖X(σI )‖ ≤ M . Repeated application of (5.8),
together with the strong Markov property, implies that, for each i ≤ I ,

Ex[σi] ≤ C3
(‖x‖ − Ex[‖X(σi)‖]) ≤ C3‖x‖(5.9)

for all x. [The sum of the bounds obtained from the right-hand side of (5.8) forms
a telescoping series.] On the other hand, over every finite time interval, there are
only a finite number of arrivals and, in between arrivals, only the norm ‖ · ‖A

can increase; hence only a finite number of stopping times can occur over a finite
interval. It therefore follows from (5.9) and τM ≤ σI that σI < ∞ almost surely,
with

Ex[τM ] ≤ Ex[σI ] ≤ C3‖x‖ for all x.(5.10)

This implies (5.1) of Theorem 5.1. �

Most of the rest of this section is devoted to demonstrating Proposition 5.1. To
do so, we consider separately the cases (a), (b) and (c) that are given after (5.2).
Cases (a) and (b) will be easy to show; case (c) requires more effort. We employ
the notation

◦
mmax = max

k,A

◦
mk,A.(5.11)

For later use, we also set
◦
mmin = mink,A

◦
mk,A and ◦

μmin = minn
◦
μn.

PROOF OF CASE (a) OF PROPOSITION 5.1. Under the condition (a), for each
t ∈ [0, σ ), there exists an n(t) so that ‖X(t)‖L,n(t) > ML/N , and hence by the
definition of ‖ · ‖L,n and by (4.9),

Zn(t)(t) > ML/
( ◦
mmaxL2NψZ

(
Zn(t)(t)

)) ≥ ML/(
◦
mmaxL1L2N).
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Setting

ML = ◦
mmaxL1L2L3N,(5.12)

it follows that Zn(t)(t) > L3, and hence ψZ(Zn(t)(t)) = L1. Since L1 ≥ 4N
◦
μratio,

it follows from (4.19) of Proposition 4.1 that, almost everywhere on (0, σ ),

‖X(t)‖′ ≤ −(ε1/2)
∑
n

◦
μn

(
ψZ(Zn(t)) − 2

) ≤ −ε1
∑
n

◦
μn.

This implies case (a) of (5.6). �

We next demonstrate case (b).

PROOF OF CASE (b) OF PROPOSITION 5.1. Under the condition (b), for each
t ∈ [0, σ ), there exists a k(t) so that ‖X(t)‖A,k(t) > MA/K , and hence by the
definition of ‖ · ‖A,k and by (4.9),

ψA

(
Sk(t)(t)

)
> MA/(2

◦
mmaxL1K).(5.13)

Choose y1 > M1 large enough so that

ψ ′
A(y1) ≥ 2

(∑
n

◦
μn

)/
min
k,A

(αk
◦
mk,A)(5.14)

and ψ ′
A(y2) ≥ ψ ′

A(y1) for y2 > y1; this is possible since ψ ′
A(y) ↗ ∞ as y ↗ ∞.

Setting

MA = 2
◦
mmaxL1KψA(y1),(5.15)

it follows, from (5.13), that ψA(Sk(t)(t)) > ψA(y1) for each t , and hence that
Sk(t)(t) > y1 and ψ ′

A(Sk(t)(t)) ≥ ψ ′
A(y1). For MA as in (5.15), differentiation of

‖X(·)‖A,k using (4.11) and the lower bound ε1 for ψZ(y) therefore imply that, at
k = k(t) with t ∈ [0, σ ),

‖X(t)‖′
A,k ≤ −ε1

∑
A

∑
n

pk,Aqk,A,nαk
◦
mk,Aψ ′

A(y1),(5.16)

which by (5.14) is at most −2ε1
∑

n
◦
μn.

We apply (4.18) of Proposition 4.1, with K equal to the complement of {k(t)}.
Adding (4.17) to (4.18), one obtains the analog of (4.19), but with the additional
term inherited from (5.16), namely, almost everywhere on [0, σ ),

‖X(t)‖′ ≤ −(ε1/2)
∑
n

◦
μn

(
2 + ψZ(Zn(t))

) ≤ −ε1
∑
n

◦
μn.(5.17)

Case (b) of (5.6) follows. �

We now begin the argument for case (c) of Proposition 5.1. This is the only
part that requires the condition (1.7). It requires more work than the other two
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cases since, when ‖x‖R is large, we need sufficient service of some job (n, i),
with large wn,i , to ensure a rapid decrease of ‖ · ‖. Since any service discipline is
allowed, such service need not occur at all, or even most, times. We will instead
show that for ‖x‖L ≤ ML, with ML not too large, and ‖x‖R > MR , with MR enor-
mous, there is a small (but, nevertheless, large enough) probability that a job (n, i)

with enormous wn,i receives sufficient service so that the corresponding derivative
ψ ′

W(wn,i) induces an enormous decrease over (0, σ ) of ‖ · ‖R , and hence of ‖ · ‖.
In particular, sufficient service of such a job (n, i) must occur if (0, σ − mmax] is
sufficiently long to allow complete service of all jobs at n with smaller weighted
residual service times. (Recall that mmax = maxj mj .)

We will identify the job (n, i), with “large wn,i ,” that was referred to in the
last paragraph in terms of a rapidly increasing sequence w(1),w(2), . . . . This se-
quence will also be used to define tx , which was used in the definition of σ in (5.5).
We construct w(i) and corresponding sequences p(0),p(1), . . . and t (0), t (1), . . .

inductively.
Set

p(i) = h
(
t (i) + 1

)
,(5.18)

where h(·) is given in (1.7). We choose w(i) and t (i) so that

ψ ′
W

(
w(i) − 1

) = C42i+�+2(
t (i − 1) + 1

)
/p(i − 1)(5.19)

and

t (i) =
i∑

�=1

w(�) + 2�.(5.20)

Here, C4 = ∑
n

◦
μn/

◦
μmin, ψW(·) and � are as in (4.2) and (1.7), respectively. [Note

that, on account of (4.4), the range of ψ ′
W(·) contains [1,∞), and so (5.19) can

always be solved for w(i) and given i.] Often, p(i) will decrease very rapidly to 0,
and w(i) and t (i) will increase very rapidly. The factor 2i in (5.19) is not required
for the proof of Proposition 5.1, but will be used in the next section. Employing
w(i) and ML, we set

MR = ◦
mmaxNψW

(�C5ML�∑
i=1

w(i)

)
,(5.21)

where C5 = 1/(ε1ε2
◦
mmin).

The sequence w(i) was defined in (5.19) with Lemma 5.1 in mind. For the
lemma, we relabel the residual service times wn,i , i = 1, . . . , zn, in order of in-
creasing value at each n, employing the notation w′

n,1,w
′
n,2, . . . ,w

′
n,zn

. We employ
k′
n,i and A′

n,i for the corresponding renewal streams and selection sets.

LEMMA 5.1. Suppose that for given n, ‖x‖R,n > MR/N and zn ≤ C5ML.
Then, for some i = 1, . . . , zn, w′

n,i > w(i).
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PROOF. If w′
n,i ≤ w(i) for all i = 1, . . . , zn, then

‖x‖R,n =
zn∑

i=1

◦
mk′

n,i ,A
′
n,i

ψW(w′
n,i) ≤ ◦

mmax
�C5ML�∑

i=1

ψW(w(i))

(5.22)

≤ ◦
mmaxψW

(�C5ML�∑
i=1

w(i)

)
< ‖x‖R,n,

which is a contradiction. The first inequality holds since zn ≤ C5ML, the second
inequality since ψW(·) is convex with ψW(0) = 0, and the last inequality since
‖x‖R,n > MR/N . �

Suppose that for a given x ∈ S, ‖x‖R,n > MR/N and zn ≤ C5ML for some
queue n, which we denote by nx . (In case of more than one such n, choose one of
them.) As before Lemma 5.1, denote by w′

nx,i , i = 1, . . . , znx , the ordered sequence
obtained from wnx,i , i = 1, . . . , znx . We set

tx = mmax(
t (ix − 1) + 1

)
,(5.23)

where ix is the smallest index i at which w′
nx,i > w(i). On account of Lemma 5.1,

such an index exists. The time tx is used to define σ in (5.5) in case (c).
Using the preceding construction, we now complete the proof of Proposi-

tion 5.1.

PROOF OF CASE (c) OF PROPOSITION 5.1. Under case (c), ‖x‖R > MR , and
hence ‖x‖R,n > MR/N for some queue n. Moreover, since ‖x‖L ≤ ML,

zn ≤ ‖x‖L,n/(ε1ε2
◦
mmin) ≤ ML/(ε1ε2

◦
mmin) = C5ML,(5.24)

with (4.6) and (4.7) being used for the first inequality. So, the assumptions of
Lemma 5.1 are satisfied, and nx , tx and ix can be defined as immediately following
the lemma.

Let Bx denote the event where at most � potential arrivals occur at nx by time
tx and their service times are each at most 2mmax. One can check that

Px(Bx) ≥ 2−�h(tx/mmax) = 2−�p(ix − 1),(5.25)

where h(·) is as in (1.7). For the inequality, note that the probability of a service
time being at most 2mmax is at least 1/2, and that the probability this occurs for all
service times for up to � jobs is at least 1/2� , after conditioning on knowing the
arrival streams and selection sets of the jobs. The equality follows from (5.18) and
(5.23).

On Bx , σ = tx . Moreover, by time tx , the total service devoted to jobs at nx ,
with i ≥ ix , is at least mmax, since the total time required to serve all initial jobs i,
with i < ix , and the at most � arriving jobs is at most

ix−1∑
i=1

mj ′
nx ,i

w′
nx,i + 2�mmax ≤ mmax

(
ix−1∑
i=1

w(i) + 2�

)
= tx − mmax(5.26)
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for j ′
n,i defined analogously to k′

n,i and A′
n,i , where the equality follows from

(5.20) and (5.23). Since ψ ′
W(·) is nondecreasing, it follows that, on Bx ,

‖x‖R,nx − ‖X(tx−)‖R,nx ≥ mmax ◦
μminψ ′

W(w′
nx,ix

− 1)
(5.27)

≥ mmax ◦
μminψ ′

W

(
w(ix) − 1

)
.

Consequently,

Ex[‖x‖R,nx − ‖X(σ−)‖R,nx ;Bx]
= Ex[‖x‖R,nx − ‖X(tx−)‖R,nx ;Bx]

(5.28)
≥ mmax ◦

μmin2−�p(ix − 1)ψ ′
W

(
w(ix) − 1

)
= C4

◦
μmin2ix+2tx ≥ 4C4

◦
μmintx,

with the first inequality following from (5.25) and (5.27), and the last equality
following from (5.19).

On the other hand,

Ex[‖x‖ − ‖X(σ−)‖] − 1

2
Ex[‖x‖R,nx − ‖X(σ−)‖R,nx ;Bx]

(5.29)

≥ −
(∑

n

◦
μn

)
Ex[σ ].

To see this, note that, on intervals between arrivals, ‖X(t)‖R,n is decreasing for all
n, and so [‖X(t)‖ − 1

2‖X(t)‖R,nx 1{ω ∈ Bx}]′ ≤ [‖X(t)‖ − 1
2‖X(t)‖R

]′(5.30)

almost everywhere. But at the time Ti of an arrival in the network,[‖X(Ti)‖ − 1
2‖X(Ti)‖R,nx 1{ω ∈ Bx}]

− [‖X(Ti−)‖ − 1
2‖X(Ti−)‖R,nx 1{ω ∈ Bx}](5.31)

≤ ‖X(Ti)‖ − ‖X(Ti−)‖
since ‖X(Ti)‖R,nx ≥ ‖X(Ti−)‖R,nx .

One obtains [
‖X(t)‖ − 1

2
‖X(t)‖R,nx 1{ω ∈ Bx}

]′
≤ ∑

n

◦
μn(5.32)

by applying (4.17) and (4.18) of Proposition 4.1 to the right-hand side of (5.30)
to get the analog of (4.19) [with 1

2‖X(t)‖′
R , rather than ‖X(t)‖′

R being applied
in (4.17)]. Also, by applying Proposition 4.2 to the conditional expectation with
respect to FTi− of the right-hand side of (5.31), one obtains

Ex

[‖X(Ti)‖ − 1
2‖X(Ti)‖R,nx 1{ω ∈ Bx}]

(5.33)
≤ Ex

[‖X(Ti−)‖ − 1
2‖X(Ti−)‖R,nx 1{ω ∈ Bx}].
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One then obtains (5.29) from (5.32) and (5.33) and the strong Markov property by
arguing as in the proof of Corollary 4.1.

It follows immediately from (5.28) and (5.29) that

‖x‖ − Ex[‖X(σ−)‖] ≥ 2C4
◦
μmintx −

(∑
n

◦
μn

)
Ex[σ ].

Since C4 = (
∑

n
◦
μn)/

◦
μmin and tx ≥ σ , this implies

‖x‖ − Ex[‖X(σ−)‖] ≥
(∑

n

◦
μn

)
Ex[σ ],

which demonstrates case (c) of (5.6) of Proposition 5.1. �

We note that, in some instances, the proof of case (c) of Proposition 5.1 is not
needed, or can be simplified. For instance, if all of the service distributions have
bounded support then, on account of (5.24), case (c) will be vacuous if MR is
chosen to be a large enough multiple of ML, and so the proofs of the first two parts
suffice.

Suppose, instead, that the service discipline is PS. Then, at any time t and
queue n with Zn(t) ≤ ML, ‖X(t)‖R,n decreases at rate

◦
μn

Zn(t)

Zn(t)∑
i=1

ψ ′
W(Wn,i(t)) ≥

◦
μn

ML

ψ ′
W

(
Wn(t)/ML

)
.(5.34)

If ML is fixed and MR is chosen large enough then, for ‖X(t)‖R,n > MR , the right-
hand side of (5.34) is at least 4

∑
n′

◦
μn′ for some n. One can then argue analogously

to the proof of case (b) that ‖X(t)‖ decreases at least at rate
∑

n′
◦
μn′ for ‖X(t)‖R >

MR , which will imply (5.6) in case (c) as well. One can employ a similar argument
for the FIFO service discipline, although one first needs to redefine the state space
S so as to suppress information from the state space descriptor on the service
times of jobs for which service has not yet begun. In none of these instances is
the assumption (1.7) used, since lower bounds on the service effort devoted to
jobs with large residual service times always hold. (Such lower bounds will not in
general hold for LIFO and certain other standard service disciplines.)

When the interarrival times of a queueing network are exponentially distributed,
one has the option of removing the residual interarrival times from the state space
descriptor of the process X(·). The resulting process X′(·), which takes values
x′ in the corresponding space S′, will also be Markov under service disciplines
that do not employ the omitted information. It is easy to see that positive Harris
recurrence of X(·) implies the same for X′(·); its equilibrium is the projection of
the equilibrium of X(·). If one wishes, one can instead demonstrate the analog of
Theorem 1.1 directly for X′(·) by employing the norm ‖ · ‖′, with

‖x′‖′ = ‖x′‖L + ‖x′‖R,(5.35)
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where ‖ · ‖L and ‖ · ‖R are defined as in (4.5) and (4.2). The proof simplifies some-
what, since one can combine Propositions 4.1 and 4.2, and one only requires the
bounds (4.17), (4.26) and (4.27) given there. Since the state with no jobs is accessi-
ble and petite, positive Harris recurrence follows from this version of Theorem 1.1.
One can also show the analog of Theorem 1.3, which is proved in the next section.

As mentioned in Section 2, one can enrich the space S by introducing other co-
ordinates in the state space descriptor, such as (a) the elapsed time since the last
arrival from each stream, or (b) the amount of service already received by each
job. The arguments we have given for Theorems 1.1 and 1.2 remain the same in
these settings, since the randomness of the networks—due to future interarrival
and service times, and choices of the selection set—is not affected; nor is the norm
‖ ·‖. Theorem 1.3 can also be extended without difficulty to these settings, with the
corresponding quantities being included in (1.24) and (1.25) if desired. It is easy
to see from the summary of its proof that Corollary 1.1 holds under the enrich-
ment (b); Corollary 1.1 also holds under (a), although an extra step is required at
the end of the proof to match up the new coordinates. Similar comments hold for
Corollary 1.2. In each of the above cases, when the interarrival times are exponen-
tially distributed, one can simultaneously include new coordinates as in (b) while
removing the coordinates corresponding to the residual interarrival time from the
state space descriptor, as in the previous paragraph.

JLLQ networks. At the beginning of Section 1, we briefly mentioned JLLQ
networks, where jobs are assigned to the queue with the smallest workload, that
is, to the queue n where

∑n
i=1 vn,i is smallest. When two or more queues have

the smallest workload, one of these queues is chosen according to some rule. The
traffic intensities ρi , i = 1,2, are defined as in (1.2) and (1.3) for the class and
station independent cases, and the network is said to be subcritical if ρi < 1.

The stability of the network is not affected by the (nonidling) service discipline,
since the evolution of the workload at a queue is not affected. Analogs of Theo-
rems 1.1 and 1.2, and Corollary 1.1 for the stability of subcritical JLLQ networks
hold, as do the uniform bounds in Theorem 1.3 and Corollary 1.2, with the as-
sumptions (1.7) and (1.17) no longer being needed.

Stability of subcritical JLLQ networks is intuitively more obvious than for sub-
critical JSQ networks, since the system cannot be “tricked” into sending jobs into
queues with high remaining work. Stability is also easier to show. In [11], it was
shown by using the same argument involving fluid limits that was used for JSQ
networks with the FIFO service discipline. One can also show stability, as well as
uniform bounds on the marginal distributions, with the aid of an appropriate norm
that satisfies the analog of Theorem 1.1. We do not supply a proof here, but provide
some motivation.

Such a norm ‖ · ‖ is given by

‖x‖ =
N∑

n=1

ψ(gn),(5.36)
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with

gn =
zn∑

i=1

◦
mkn,i ,An,i

w+
n,i + (1 + ε1/2)

K∑
k=1

∑
A⊆BN

pk,Aqk,A,n
◦
mk,AψA(sk).(5.37)

The quantities
◦
mk,A, w+

n , ε1, pk,A, qk,A,n, sk and ψA(·) are the same as those that
were employed in Section 4 to define the norm ‖·‖ there. The function ψ : R+,0 →
R+,0 is required to be twice continuously differentiable, with ψ(0) = 0, ψ ′(y) > 0,
ψ ′(y) → ∞ as y → ∞, ψ ′′(y) > 0, ψ ′′(y) → 0 as y → ∞, and∫ ∞

0
ψ(y)Fj (dy) < ∞ for all j.

The first sum in (5.37) plays a role similar to ‖ · ‖L,n for the JSQ rule, and the
double sum in (5.37) plays a role similar to ‖ · ‖A. (When the interarrival times are
exponentially distributed, one can remove them from the state space descriptor, and
omit the double sum.) The function ψ(·) has been chosen so that for large ‖X(t)‖,
‖X(t)‖′ < −C6 for given C6 > 0. Since ψ ′(y) → ∞ as y → ∞, the idling at
empty queues does not affect this bound except in the computation of the constant.
Also, since ψ ′′(y) → 0 as y → ∞, ψ ′(y) is “almost constant” locally for large
y, which can be employed in conjunction with the subcriticality of the network to
induce a negative drift for ‖X(t)‖ at large values. We omit the details.

6. Uniform bounds on families of JSQ networks and tightness. In Theo-
rem 1.2, we demonstrated positive Harris recurrence for the Markov process X(·)
for subcritical JSQ networks, provided the sets AM given there are petite. Such
a network therefore has an equilibrium probability measure E . Here, we consider
the equilibria E (a), a ∈ A, of families A of such networks, and demonstrate the
uniform bounds on the tails of these equilibria that are given in (1.24) and (1.25)
of Theorem 1.3. The proof of (1.24) occupies most of this section. After proving
the theorem, we then apply it to show tightness and relative compactness of the
marginal distributions under additional assumptions on the service disciplines.

We introduce the notation

γ (a)
z (M) = E (a)(Z1 > M), γ

(a)
� (M) = E (a)(L(a)

1 > M
)
,

(6.1)
γ (a)
w (M) = E (a)(W(a)

1 > M
)

and

γ (a)
s (M) = max

k
E (a)(S(a)

k > M
)
.(6.2)

The quantities zn, �
(a)
n , w

(a)
n and s

(a)
k were defined in (1.19)–(1.22); Zn, L(a)

n , W
(a)
n

and S
(a)
k are the corresponding random variables. (Recall that L(a)

n is employed
to avoid possible confusion with the constants Li .) On account of the symmetry
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condition (1.23), the probabilities in (6.1) do not depend on the specific queue n

that is chosen; we denote by z1, �(a)
1 and w

(a)
1 the coordinates of a particular queue.

To demonstrate (1.24) and (1.25) of Theorem 1.3, it suffices to show that

γ (a)
z (M), γ

(a)
� (M), γ (a)

w (M), γ (a)
s (M) → 0 as M → ∞,(6.3)

uniformly in a ∈ A.
The argument for γ

(a)
s (M) is elementary. The arrival flows are renewal

processes with densities G
(a)
k (dy). The densities of the corresponding station-

ary distributions are therefore αkyG
(a)
k (dy). Substituting this into (1.14) implies

γ
(a)
s (M) → 0 uniformly in a as M → ∞, as desired.

The main idea in showing (6.3) for γ
(a)
z (M) and γ

(a)
w (M) will be to employ

the bounds from Sections 4 and 5, for large ‖ · ‖(a)
L,n and ‖ · ‖(a)

R,n, to show that

if at a given queue n either the queue length zn or the weighted workload w
(a)
n

is large with nonnegligible probability with respect to a given initial measure ν,
then Eν[‖X(a)(t)‖(a)] will decrease over an appropriate time interval. Since the
measures E (a) are stationary, this behavior will provide a contradiction unless (6.3)
holds for both γ

(a)
z (·) and γ

(a)
w (·). We first demonstrate (6.3) for γ

(a)
z (·), which is

not difficult. The argument for γ
(a)
w (·) is more involved, and relies on the argument

for ‖ · ‖R,n in Section 5.
The limit in (6.3) for γ

(a)
� (M) follows without difficulty from that for γ

(a)
w (M).

The basic idea is that jobs will not have time to age significantly before the queue
empties, if the workload is typically low. We present this argument next.

PROOF OF (6.3) FOR γ
(a)
� (·). It suffices to show that, for each δ > 0,

γ
(a)
� (M) ≥ δ ⇒ M ≤ M1(δ)(6.4)

for some function M1(·) that does not depend on a. The argument involves parti-

tioning the time interval [0, g(a)M], g(a) def= (mmax)(a), into subintervals of length
g(a)M2(δ), for appropriate M2(δ). One applies (6.3), for γ

(a)
w (·), and (1.17) to ob-

tain lower bounds on the probability that a given queue is empty sometime on such
an interval. Appropriate events corresponding to the intervals will be disjoint, and
adding their probabilities will then imply (6.4).

We choose M2(·) so that

sup
a∈A

γ (a)
w

(
M2(δ) − 2�

) ≤ δ/2,(6.5)

where � is as in (1.17). Also, denote by A
(a)
i (δ), i = 0,1,2, . . . , the events on

which at most � potential arrivals occur at the queue over (ig(a)M2(δ), (i +
1)g(a)M2(δ)], with each such arrival having service time at most 2g(a). As in
(5.25),

Px

(
A

(a)
i (δ)

) ≥ 2−�h(M2(δ))(6.6)
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for all x and a. If we choose M so that γ
(a)
� (M) ≥ δ for a given δ and a, it follows

from (6.5), (6.6) and the stationarity of E (a) that

PE (a)

(
L(a)

1 (iM2(δ)) > M,W
(a)
1 (iM2(δ)) ≤ M2(δ) − 2�;A(a)

i (δ)
)

(6.7)
≥ δ2−�−1h(M2(δ)).

If at some time τ ∈ [ig(a)M2(δ), g
(a)M], Z

(a)
1 (τ ) = 0 holds then, for each

t ∈ [τ, g(a)M], it is immediate that L1(t) ≤ M . On the other hand, under the
event B

(a)
i (δ) on the left-hand side of (6.7), the total amount of work ini-

tially at or entering the queue over [ig(a)M2(δ), (i + 1)g(a)M2(δ)] is at most
g(a)(M2(δ)− 2� + 2�) = g(a)M2(δ), which implies it will be empty at some time
in [ig(a)M2(δ), (i + 1)g(a)M2(δ)]. Hence, on B

(a)
i (δ),

L(a)
1 (t) ≤ M for t ∈ [

(i + 1)g(a)M2(δ), g
(a)M

]
.(6.8)

It follows from (6.8) and the definition of B
(a)
i (δ) that, for γ

(a)
� (M) ≥ δ and

M ≥ IM2(δ), I ∈ Z+, the events B
(a)
i (δ), i = 0, . . . , I − 1, are disjoint. Taking

their union, it follows from (6.7) that

PE (a)

(
I−1⋃
i=0

B
(a)
i (δ)

)
≥ Iδ2−�−1h(M2(δ)).

Consequently, I ≤ 2�+1/(δh(M2(δ))), and so, under γ
(a)
� (M) ≥ δ,

M ≤ (
2�+1/(δh(M2(δ))) + 1

)
M2(δ)

def= M1(δ),

which does not depend on a. This implies (6.4). �

Demonstration of (6.3) for γ
(a)
z (·). The uniformity conditions (1.13)–(1.16)

ensure that the norms ‖ · ‖(a), a ∈ A, can be defined, for a given L1, by choosing
the quantities ψZ(·), ψW(·), ψA(·), L2, L3, M1, ε1, ε2 and ε3 from Section 4 so
as not to depend on a. The uniform bounds obtained from these choices will be
applied to show (6.3) for both γ

(a)
z (·) and γ

(a)
w (·). The term L1, L1 ≥ 4, should be

thought of as a free variable; when showing (6.3), we will let L1 → ∞.
To see the above claim on the choice of these quantities, first note that there exist

functions ψW(·) and ψA(·) satisfying the regularity and monotonicity properties
given after (4.3) and (4.11), with ψA(·) satisfying (4.12) for appropriate M1, so
that the following analogs of (4.4) and (4.13) hold:

sup
a∈A

max
j

∫ ∞
0

ψW

(
μ

(a)
j y

)
F

(a)
j (dy) ≤ ε2(6.9)

and

sup
a∈A

max
k

∫ ∞
M1/α

(a)
k

(
ψA

(
α

(a)
k y

) + α
(a)
k y

)
G

(a)
k (dy) ≤ ε2,(6.10)
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where ε2 = (ε1)
2/40 as in (4.20); ε1 is determined by the left-hand side of (1.15).

Both inequalities follow without difficulty from (1.13) and (1.14); the uniform
limits of the tails in (1.13) and (1.14) permit the choice of ψW(·) and ψA(·) as in
(6.9) and (6.10), with ψ ′

W(y) ↗ ∞ and ψ ′
A(y) ↗ ∞ as y ↗ ∞.

As in (4.20), set ε3 = (ε1)
2/(40M1

◦
mratio), but with

◦
mratio given by (1.16). For

given L1, L2 and L3 are chosen as in (4.8) and (4.9). The function ψZ(·) is then
specified in (4.7), using these choices of ε1, ε3, L2 and L3. Employing these quan-
tities, one defines ‖ ·‖(a)

R , ‖ ·‖(a)
L and ‖ ·‖(a)

A as in (4.2), (4.5) and (4.11), and ‖ ·‖(a)

as in (1.18). These norms will depend on a in general.
Rather than deal directly with ‖ · ‖(a), we need to employ a truncated version in

order to guarantee that its expectation with respect to E (a) is finite. We denote by
‖ · ‖(a,L1) the norm on S(a) for given L1 and, by

‖x‖(a,�) def= ‖x‖(a,L1) ∧ M̄ for x ∈ S(a),(6.11)

its truncation at a given value M̄ , with �
def= (L1, M̄). (If the expectation of

‖ · ‖(a,L1) with respect to E (a), a ∈ A, is finite, one can set M̄ = ∞.) Since E (a),
a ∈ A, is invariant,

EE (a)

[∥∥X(a)(t)
∥∥(a,�)] = EE (a)

[∥∥X(a)(0)
∥∥(a,�)] for all t.(6.12)

As in Section 5, we denote by T the time of the first arrival in the network. Here
and later on, when the context is clear, we drop the superscript (a) for quantities
such as X(·) and Zn(·) that are associated with the networks.

PROOF OF (6.3) FOR γ
(a)
z (·). We decompose

EE (a)

[‖X(0)‖(a,�) − ‖X(t)‖(a,�)](6.13)

into two parts, depending on whether T > t or T ≤ t . For small t , the part with
T > t will contribute the main term. For ‖x‖(a,L1) ≤ M̄ and given L1 and M̄ , one
has

Ex

[‖x‖(a,�) − ‖X(t)‖(a,�);T > t
]

≥ Ex

[‖x‖(a,L1) − ‖X(t)‖(a,L1);T > t
]

≥ Ex

[(
ε1

◦
μ(a)/2

)∑
n

∫ t

0

(
ψZ(Zn(t

′)) − 2
)
dt ′;T > t

]
(6.14)

≥ Ex

[(
ε1

◦
μ(a)/2

)∑
n

(
(L1/2)

∫ t

0
1{Zn(t

′) > L3}dt ′

− 2
∫ t

0
1{Zn(t

′) ≤ L3}dt ′
)
;T > t

]
,

with the first inequality holding since ‖X(t)‖(a,�) ≤ ‖X(t)‖(a,L1), the second in-
equality following from (4.19) of Proposition 4.1, and ψZ(L3) = L1 ≥ 4 being
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used for the third inequality. Here, ◦
μ(a) def= ◦

μ
(a)
n , which is constant in n by assump-

tion.
On the other hand, for fixed a and L1,

E (a)(‖X‖(a,L1) > M̄
) → 0 as M̄ → ∞.

Also, ‖X(0)‖(a,�) ≥ ‖X(t)‖(a,�) for ‖X(0)‖(a,L1) > M̄ , and the quantity inside
Ex[·] for the last term in (6.14) is always at most (ε1

◦
μ(a)/4)L1N

(a)t . It therefore
follows from (6.14) that

EE (a)

[‖X(0)‖(a,�) − ‖X(t)‖(a,�);T > t
]

≥ EE (a)

[(
ε1

◦
μ(a)/2

)∑
n

(
(L1/2)

∫ t

0
1{Zn(t

′) > L3}dt ′

(6.15)

− 2
∫ t

0
1{Zn(t

′) ≤ L3}dt ′
)
;T > t

]

− L1N
(a)tδ

(a)
1 (M̄)

for appropriate δ
(a)
1 (·), with δ

(a)
1 (M̄) ↘ 0 as M̄ ↗ ∞.

We now set M = L3, for M in (6.3). Since Zn(·) has right continuous sample
paths and so cannot immediately fall below L3 if Zn(0) > L3, the right-hand side
of (6.15) is at least

N(a)t
(
ε1

◦
μ(a)((L1/4)γ (a)

z (L3) − 1
) − L1δ

(a)
1 (M̄) − L1δ

(a)
2 (t)

)
for appropriate δ

(a)
2 (·), with δ

(a)
2 (t) ↘ 0 as t ↘ 0. Hence, for large enough M̄ and

small enough t ,

EE (a)

[‖X(0)‖(a,�) − ‖X(t)‖(a,�);T > t
]

(6.16)
≥ ε1

◦
μ(a)N(a)t

(
(L1/4)γ (a)

z (L3) − 2
)
.

On the other hand, by employing (4.19) of Propositions 4.1, 4.2 and the strong
Markov property, it follows that

EE (a)

[‖X(0)‖(a,�) − ‖X(t)‖(a,�);T ≤ t
] ≥ −ε1

◦
μ(a)N(a)tPE (a) (T ≤ t).(6.17)

One can see this by considering the above difference over [0, T ] and [T , t], and,
for the second part, arguing as in the proof of Corollary 4.1.

Combining (6.16) and (6.17), and choosing M̄ large enough and t small enough,
one obtains

EE (a)

[‖X(0)‖(a,�) − ‖X(t)‖(a,�)] ≥ ε1
◦
μ(a)N(a)t

(
(L1/4)γ (a)

z (L3) − 3
)
.(6.18)

By the invariance of E (a), the left-hand side of (6.18) is zero, and so

γ (a)
z (L3) ≤ 12/L1.(6.19)

The limit (6.3) follows by letting L1 → ∞. �
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Demonstration of (6.3) for γ
(a)
w (·). On account of the limiting behavior in (6.3)

for γ
(a)
z (·), it suffices to instead show that

γ̃ (a)
w (M) → 0 as M → ∞(6.20)

uniformly in a for

γ̃ (a)
w (M)

def= E (a)(W(a)
1 > M ′,Z1 ≤ M

)
,(6.21)

where M ′ is a function of M with M ′ → ∞ as M → ∞. We employ the same
basic framework here as we did in analyzing γ

(a)
z (·), and will apply the truncated

norm in (6.11) to (6.12), which we will show is violated unless the limit in (6.3)
holds. As in the analysis of γ

(a)
z (·), we set M = L3 here; we will set M ′ = L4,

which will be a function of L3 (and hence of L1) and will be defined in (6.23). As
in the demonstration of (6.3) for γ

(a)
z (·), we continue to drop the superscript (a)

when convenient and the context is clear.
The argument relies heavily on the constructions employed for the demonstra-

tion of case (c) of Proposition 5.1. We briefly recall the quantities that were em-
ployed and whether they depend on a ∈ A. The quantities ψZ(·), ψW(·), ψA(·),
L2, L3, M1, ε1, ε2 and ε3 were specified in the previous subsection and do not
depend on a. As before, the quantity L1 is allowed to vary, with L2 and L3 be-
ing functions of L1. We recall the terms � and h(·) from (1.17), and the terms
p(·), w(·) and t (·) from (5.18)–(5.20), none of which depends on a. Instead of
employing C4 = ∑

n
◦
μn/

◦
μmin as in (5.19), we now set

C4 = L3.(6.22)

Also, rather than employing the quantities ML and MR from (5.12) and (5.21), we
use L3 and

L4
def= ψW

(
L3∑
i=1

w(i)

)
.(6.23)

Defining w′
n,i as before Lemma 5.1, the conclusions of the lemma continue to hold

if w
(a)
n > L4 and zn ≤ L3 replace the conditions on ‖x‖R,n and zn there, with the

argument in the proof being the same. If w
(a)
n > L4 and zn ≤ L3, for given x and

n, we define tx,n in terms of ix,n as in (5.23), but with ix,n being the smallest index
i at which w′

n,i > w(i).
Both ix,n and tx,n depend on x, and we wish to employ a fixed time that does

not. For this, we note it follows from (6.21) that, for each a ∈ A, there is a value
i(a) at which

E (a)(iX,1 = i(a),W
(a)
1 > L4,Z1 ≤ L3

) ≥ 2−i(a)

γ̃ (a)
w (L3).(6.24)

After having chosen i(a), we set

t (a) = (mmax)(a)(t(i(a) − 1
) + 1

)
.(6.25)
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We also denote by B
(a)
n , n = 1, . . . ,N , the events where at most � potential ar-

rivals occur at queue n by time t (a), their service times are each at most 2(mmax)(a),
iX(0),n = i(a), W(a)

n (0) > L4 and Zn(0) ≤ L3. It follows from (5.25) and (6.24) that

PE (a)

(
B(a)

n

) ≥ 2−i(a)−�p
(
i(a) − 1

)
γ̃ (a)

w (L3) for all n.(6.26)

In the following proof, i(a), t (a) and B
(a)
n will assume the roles played by ix , tx and

Bx in the proof of case (c) of Proposition 5.1.

PROOF OF (6.3) FOR γ
(a)
w (·). We first note that, for given M̄ ,

EE (a)

[‖X(0)‖(a,�) − ∥∥X(
t (a)−)∥∥(a,�)]

(6.27)
≥ EE (a)

[‖X(0)‖(a,L1) − ∥∥X(
t (a)−)∥∥(a,L1); ‖X(0)‖(a,L1) ≤ M̄

]
since ‖X(t(a)−)‖(a,�) ≤ ‖X(t(a)−)‖(a,L1). Setting

�
(a)
1 = 1

2

∑
n

EE (a)

[‖X(0)‖(a,L1)
R,n − ∥∥X(

t (a)−)∥∥(a,L1)
R,n ;

(6.28)
B(a)

n ,‖X(0)‖(a,L1) ≤ M̄
]

and

�
(a)
2 = EE (a)

[‖X(0)‖(a,L1) − ∥∥X(
t (a)−)∥∥(a,L1);

(6.29)
‖X(0)‖(a,L1) ≤ M̄

] − �
(a)
1 ,

we rewrite the right-hand side of (6.27) as

EE (a)

[‖X(0)‖(a,L1) − ∥∥X(
t (a)−)∥∥(a,L1); ‖X(0)‖(a,L1) ≤ M̄

]
(6.30)

= �
(a)
1 + �

(a)
2 .

We first analyze �
(a)
1 , which will be the main term. The same reasoning as in

(5.27) shows that �
(a)
1 is at least

1
2(mmax)(a) ◦

μ(a)N(a)PE (a)

(
B

(a)
1 ,‖X(0)‖(a,L1) ≤ M̄

)(
ψ ′

W

(
w

(
i(a)) − 1

))
.

This is at least

1
2(mmax)(a) ◦

μ(a)N(a)(2−i(a)−�p
(
i(a) − 1

)
γ̃ (a)
w (L3) − δ

(a)
3 (M̄)

)
× ψ ′

W

(
w

(
i(a)) − 1

)
(6.31)

≥ C4
◦
μ(a)N(a)γ̃ (a)

w (L3)t
(a)

for γ̃
(a)
w (L3) > 0. The first line follows from (6.26), with δ

(a)
3 (M̄) ↘ 0 as M̄ ↗ ∞,

and the following inequality follows [like the last equality in (5.28)] from (5.19),
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for large enough M̄ . Combining the above inequalities, one obtains, for large
enough M̄ ,

�
(a)
1 ≥ C4

◦
μ(a)N(a)γ̃ (a)

w (L3)t
(a).(6.32)

This holds trivially for γ̃
(a)
w (L3) = 0.

We claim, on the other hand, that

�
(a)
2 ≥ − ◦

μ(a)N(a)t (a).(6.33)

The argument for this is essentially the same as that given for (5.29) in the proof of
case (c) of Proposition 5.1. On intervals between arrivals, ‖X(t)‖R,n is decreasing
for all n, and so, for all ω,[

‖X(t)‖(a,L1) − 1

2

∑
n

‖X(t)‖(a,L1)
R,n 1

{
ω ∈ B(a)

n

}]′

(6.34)

≤
[
‖X(t)‖(a,L1) − 1

2
‖X(t)‖(a,L1)

R

]′

holds almost everywhere. Also, at the time Ti of an arrival in the network,[
‖X(Ti)‖(a,L1) − 1

2

∑
n

‖X(Ti)‖(a,L1)
R,n 1

{
ω ∈ B(a)

n

}]

−
[
‖X(Ti−)‖(a,L1) − 1

2

∑
n

‖X(Ti−)‖(a,L1)
R,n 1

{
ω ∈ B(a)

n

}]
(6.35)

≤ ‖X(Ti)‖(a,L1) − ‖X(Ti−)‖(a,L1)

since ‖X(Ti)‖(a,L1)
R,n ≥ ‖X(Ti−)‖(a,L1)

R,n . Arguing as after (5.32), one obtains the
upper bound ◦

μ(a)N(a) for the right-hand side of (6.34), and 0 for the expecta-
tion, over ‖X(0)‖(a,L1) ≤ M̄ , of the right-hand side of (6.35). Application of these
bounds, together with the strong Markov property, will then imply (6.33).

Combining the bounds in (6.32) and (6.33), it follows from (6.27) that

EE (a)

[‖X(0)‖(a,�) − ∥∥X(
t (a)−)∥∥(a,�)]

(6.36)
≥ C4

◦
μ(a)N(a)γ̃ (a)

w (L3)t
(a) − ◦

μ(a)N(a)t (a)

for large M̄ . Since we have set C4 = L3, this is at least(
L3γ̃

(a)
w (L3) − 1

) ◦
μ(a)N(a)t (a).

On the other hand, since E (a) is invariant, the left-hand side of (6.36) equals 0.
Therefore,

γ̃ (a)
w (L3) ≤ 1/L3,
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and hence γ̃
(a)
w (L3) → 0 uniformly in a as L3 → ∞. This implies (6.20), and

hence (6.3) for γ
(a)
w (·), as desired. �

At the end of Section 5, it was noted that the proof of Theorem 1.1 simplifies
for certain service disciplines, such as PS and FIFO. In particular, the proof of case
(c) of Proposition 5.1 can be replaced by a simpler argument, as was outlined at
the end of that section. The same is true for the demonstration of (6.3) for γ

(a)
w (·).

For disciplines such as PS and FIFO, one can give a simpler argument along the
lines of (6.3) for γ

(a)
z (·), by investigating the decrease in the expected value of

the corresponding norms over a small enough time interval [0, t]. The reasoning is
similar to that provided at the end of Section 5. Analogs of the other observations
at the end of Section 5 also hold in the uniform setting of Section 6 as well.

Tightness and relative compactness of families of networks. We are interested
here in the behavior of the projections of the equilibria measures E (a) and Ē (a)

onto (S′)(a) and (S̄′)(a), a ∈ A, for families A of JSQ networks, with K(a) ≡ K ,
for (S′)(a) and (S̄′)(a) defined as in Section 2. The networks will be assumed to
satisfy the hypotheses of Theorem 1.3. The measures Ē (a), a ∈ A, are the natural
extensions of E (a), a ∈ A, from S(a) to S̄(a); they are concentrated on S(a). The
spaces (S′)(a) and (S̄′)(a) are assigned a fixed value N ′, N ′ ≤ N(a), for all a ∈ A
(corresponding to the first N ′ queues); they are identical for different a, and hence
can be denoted by S′ and S̄′. Such S′ and S̄′, which are projections of each S(a)

and S̄(a), will be referred to as common projections of the family A. We denote the
corresponding projected measures by (E (a))′ and (Ē (a))′.

As examples of such families of networks, one can think of JSQ networks in-
dexed by N , the number of queues for the network, with the number of arrival
streams K being fixed. For N ≥ N ′, for given N ′, the networks will share the
common projection S′ obtained by retaining only the first N ′ queues. As N → ∞,
one can investigate the limiting behavior of the projections (E (N))′ of the equilibria
E (N) onto S′.

To examine the common projections of E (a) and Ē (a), for a ∈ A, we recall from
Section 2 the compact sets EM in S and the compact sets ĒM in S̄. The corre-
sponding sets for the projections S′ of S and S̄′ of S̄ will be compact with respect
to their respective metrics; we also denote these sets by EM and ĒM , respectively.

Under the assumptions of Theorem 1.3, the uniform limits (1.24) and (1.25)
hold. The projections (Ē (a))′ onto S̄′ of the measures Ē (a) are therefore tight with
respect to the induced metrics. That is, for each ε > 0, there is a compact set
B ⊂ S̄′ so that (Ē (a))′(B) ≥ 1 − ε for all a ∈ A. The sets ĒM can be employed
to see this: The conditions zn ≤ M , �

(a)
n,i ≤ M and 0 ≤ w

(a)
n,i ≤ M in the definition

of ĒM clearly suffice for (1.24). On the other hand, the probability of at least one
arrival in the network over (0,1/αkM) from a given arrival stream k is at most
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1/M for a network in equilibrium, and so the condition 1/M ≤ s
(a)
k ≤ M suffices

for (1.25).
For certain service disciplines, the projections (E (a))′ onto S′ of the measures

E (a) are also tight. In addition to employing the reasoning of the previous para-
graph, one also needs to show that

sup
a∈A

E (a)(W(a)
n,i < 1/M for some i,Zn > 0

) → 0 as M → ∞(6.37)

for given n. When the projections (E (a))′ are tight, it will be more informative to
work with them than with the projections (Ē (a))′, since all limits will be concen-
trated on S′.

Tightness of (E (a))′ is not difficult to show for PS networks since, when the
number of jobs at a queue is bounded, each job must be served at at least a given
rate. When there are jobs with scaled residual service times close to 0, these jobs
will quickly leave the queue. On the other hand, the scaled rate at which jobs leave
the queue is bounded in equilibrium, which therefore gives an upper bound on the
expected number of jobs in equilibrium with scaled residual service times close
to 0.

For FIFO networks, (6.37) will not be true in general since, depending on the
choice of the network a, the distributions F

(a)
j (·) might be concentrated arbitrarily

close to 0, and jobs that are not the oldest at their queue will not be served until
the departure of older jobs. For families A of networks where the service time
distributions do not depend on a, (6.37) is not difficult to check, with the argument
being similar to the argument for PS networks just mentioned. On the other hand,
equation (6.37) will hold for general service distributions in the setting obtained
by restricting the state space S by suppressing information on the service times of
jobs for which service has not yet begun; this setting was mentioned at the end of
Section 5. The argument in this setting proceeds as before.

Families of measures (E (a))′, a ∈ A, need not be tight for arbitrary service dis-
ciplines. This is the case for LIFO service disciplines, even when N(a) = K(a) ≡ 1.
For example, consider a family of networks A = {5,6, . . . ,N, . . .} having service
distributions F (N)(·) with μ(N) ≡ 2 and point masses of size at least 1/3 at 1, and
having interarrival distributions G(N)(·) with α(N) ≡ 1 and support on (0,2], and
with point masses of size at least 1/2 at 1 − 1/N . With probability at least 1/2,
an arriving job will immediately begin receiving service that continues until its
residual service time is reduced to 1/N , at which time its service is taken over by
a new arrival. Using this, one can show that, for each N , the probability under the
corresponding equilibrium measure E (N) of there being at least one job with resid-
ual service time at most 1/N is at least 1/25. This contradicts (6.37) and hence
contradicts tightness.

If on the other hand, for a family of networks with LIFO service disciplines, the
arrival streams are Poisson, it seems clear that (6.37) will hold, although the author
does not see how to show this.
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A family of probability measures on a metric space is relatively compact if, for
each sequence drawn from the family, there is a subsequence that converges to
some probability measure on the space. It follows from Prohorov’s theorem that a
tight family of measures is automatically relatively compact (see, e.g., [2]). Com-
bining this with the preceding discussion of the projected measures (Ē (a))′ and
(E (a))′ on common projections S̄′, respectively S′, for a family of JSQ networks,
one obtains the following conclusion from Theorem 1.3.

THEOREM 6.1. Suppose that a family A of JSQ networks, with K(a) ≡ K ,
satisfies the uniformity conditions (1.13)–(1.17) and (1.23), and that for each net-
work a ∈ A, AM = {x :‖x‖(a) ≤ M} is petite for each M > 0 with respect to the
norms in (1.18). Then the projected measures (Ē (a))′ on each common projection
S̄′ of the family A are relatively compact. Moreover, if (6.37) also holds, then the
projected measures (E (a))′ on each common projection S′ are relatively compact.

By restricting the family A of networks under consideration, one obtains the
following analog of Corollary 1.2.

COROLLARY 6.1. Suppose that each member of a family A of JSQ networks
has a single Poisson arrival stream, that F

(a)
j does not depend on j or a, that the

selection rules are mean field and have uniformly bounded support, and that (1.26)
holds. Then the projected measures (Ē (a))′ on each common projection S̄′ of the
family A are relatively compact. Moreover, if (6.37) also holds, then the projected
measures (E (a))′ on each common projection S′ are relatively compact.

7. A family of JSQ networks with large workload. In Section 6, we demon-
strated Theorem 1.3. The limit (1.24) there states that in equilibrium, at each
queue, the tails for the distribution on the number of jobs, their weighted ages
and the weighted workload can be bounded uniformly for general families of net-
works. This bound does not depend on the service discipline. If one examines the
proof of the theorem, one sees that the bounds that are obtained for the weighted
workload are actually extremely weak. The term M ′ in the definition of γ̃

(a)
w (·)

in (6.21) is given by M ′ = L4, with L4 being defined in (6.23) in terms of the
sequence w(1),w(2), . . . and L3. As noted after (5.21), w(i) will often increase
very rapidly. In fact, one can check that, for Poisson arrival streams and service
distributions having any given number of moments, w(i) can grow like

w(i + 1) ≥ ebw(i),(7.1)

where b > 0 depends on the number of moments. The growth of M ′ in terms of M ,
with M = L3, will therefore be far too rapid to infer anything useful quantitatively
about the tail of the distribution of the weighted workload in equilibrium for a
member of the family of networks.
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Rather than providing quantitative information, the purpose of the uniform
bounds in (1.24) of Theorem 1.3 was to establish tightness of the distributions
on the number of jobs, weighted ages and weighted workload at a queue. This was
discussed in Sections 1 and 6. One can, however, ask whether the rapid growth
exhibited in (7.1), and hence by L4, is an artifact of the proof or whether simi-
lar bad behavior is in fact possible for the workloads of subcritical JSQ queueing
networks. This point is of course relevant in deciding whether it is always advan-
tageous to employ the JSQ rule for assigning arriving jobs, as opposed to, say,
randomly choosing the queue, e.g., letting D = 1, in the setting of Section 1.

In this section, we present a family of networks for which the weighted work-
load exhibits bad behavior in an extreme manner that is of the order as that sug-
gested by (7.1). The structure of the networks in the family is elementary in most
aspects. Each network in the family possesses a single Poisson arrival stream and
two queues to which jobs are directed; the state space S is therefore the same for
each network. The selection set always consists of both queues, and the service
distributions are both class and station independent. When the two queues have
equal numbers of jobs, an arriving job will choose each of them with probability
1
2 . The rates of the Poisson arrivals will depend on the network as will the service
distributions, but the traffic intensity for the different networks will be uniformly
bounded away from one. The service discipline will be the same for all networks,
but the discipline is concocted so as to produce inefficient service. In particular,
service will be nonlocal in the sense that the choice of which jobs to serve will
depend on the entire state of the network.

As we will see, this discipline will cause certain jobs with large service times to
be served very slowly, with service being concentrated on the jobs with shorter ser-
vice times at that queue, which therefore quickly leave the queue. The other queue
will, during such times, serve its jobs with longer service times first, which causes
it to accumulate jobs with short service times. The presence of these unserved jobs
induces arriving jobs to be directed to the first queue. Since these arriving jobs at
the first queue will be served before a job with large service time is served, this
slows down the rate at which such a job is served. Before such a job with large
service time receives all of its service, with high probability, a job with substan-
tially greater service time will enter the queue, which causes the workload at the
queue to grow. Iterating this behavior produces the growth in workload in which
we are interested. This behavior occurs with few jobs at the queue in relation to its
workload.

The remainder of the section is organized as follows. We first complete the
description of the family of JSQ networks whose description was begun in the next
to last paragraph. We then state Theorem 7.1, which describes the behavior of the
weighted workload, in equilibrium, of these networks. The proof of the theorem
consists of three parts and includes an induction argument on the size of a quantity
related to the weighted workload.
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The family of queues is indexed by ε, with ε > 0. Rather than directly give
the service distributions and Poisson intensity of arrivals, we specify them as fol-
lows. The service distribution F (ε)(·) of jobs at each network is assumed to be

discrete, having point masses at h(0), h(1), h(2), . . . , with h(0) = δ
def= γ0ε, for

γ0 ∈ (0, 1
200 ], h(1) = 1, h(2) ∈ 2Z+ with h(2) ≥ c1, where c1 ≥ 100 will be speci-

fied in the proof of Proposition 7.1 and does not depend on ε or γ0, h(3) = (h(2))3,
and

h(i + 1) = e
√

h(i) for i = 3,4, . . . ;(7.2)

we will restrict the family to indices ε with ε ≤ 1/(h(3))5. [For convenience, we set
h(−1) = 0.] We will refer to jobs with (initial) service time δ as quick, those with
service time 1 as moderate, and those with service time h(i), i ≥ 2, as large. Jobs
with these service times are assumed to arrive in the network at rate 2/ε for h(0),
2(1 − η) for h(1), where η ∈ (0, 1

100 ], and at rate 2(h(i))−i for h(2), h(3), . . . .

One can check that the traffic intensity ρ is given by

ρ = γ0 + 1 − η +
∞∑
i=2

(h(i))1−i .(7.3)

We require that

ρ ≤ 1 − η/2,(7.4)

which is easy to do, because of the freedom in our choices for δ and h(2). Note
that the arriving moderate jobs require most of the work. Because of the growth
of the exponents in the arrival rates for h(i) as i → ∞, the distribution functions
F (ε)(·) have all moments. Note that as ε ↘ 0, the mean of the service time goes
to 0. This, together with the fixed arrival rates for moderate and large jobs, implies
that the uniformity condition (1.13) in Theorem 1.3 is not satisfied.

We still need to specify the service discipline; as mentioned above, it depends
on the entire state of the network. We first introduce some terminology. At each
time, one of the queues will be the designated queue, with the other being the other
queue. Provided the network is not empty, the designated queue will not be empty,
in which case one of its jobs will be the designated job. We denote by Y (ε)(t) the
residual service time at time t of the designated job; when both queues are empty,
set Y (ε)(t) = 0.

At t = 0, if the network is not empty, we choose one of the nonempty queues
as the designated queue and a job with the largest residual service time for that
queue as the designated job. This queue will remain the designated queue until it
is empty and the other queue is not.

As time increases, a job becomes the designated job upon its arrival at the des-
ignated queue, if its service time is larger than or equal to the residual service time
of the current designated job (and automatically becomes the designated job if the
queue is empty). Only new jobs can become designated jobs, with the exception
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being when service of a designated job is completed (that is, the job leaves the net-
work). It will follow from the service discipline given in the next paragraph that
the queue must then be empty; the other queue (if not empty) then becomes the
designated queue, with the job with the largest residual service time at the queue
becoming the designated job. In order to indicate the designated queue and job, an
additional coordinate needs to be added to the state space S (which we continue to
denote by S).

The allocation of service is specified as follows. At the designated queue, the
designated job will only be served when there are no other jobs there. When a
job arrives or departs from the network, among the nondesignated jobs, the job
with the shortest residual service time at the designated queue receives all of the
service at the queue; this service continues until the next arrival or departure from
the network. At the other queue, upon an arrival or departure, the job with the
longest residual service time receives all of the service, with the job continuing
to receive this service until the next arrival or departure. When the designated
queue and other queue switch, the service rules also switch. One can check that
the designated job has the largest residual service time among jobs at its queue,
although not necessarily among jobs in the entire network.

By (7.4), each member of the family of JSQ networks defined above is subcriti-
cal. Moreover, since the arrival stream is Poisson, the conditions (1.11) and (1.12)
are satisfied. Consequently, by Corollary 1.1, the Markov process X(ε)(·) under-
lying each network is positive Harris recurrent, and so has an equilibrium mea-
sure E (ε). The following result gives a lower bound on the distribution of the sum
W

(ε)
1 + W

(ε)
2 of the weighted workloads of E (ε). (As shown in the proof, the same

bounds hold for the sum of the unweighted workloads.) Here, we set γ1 = 1
2000 .

THEOREM 7.1. For the family of networks defined above,

E (ε)(W(ε)
1 + W

(ε)
2 ≤ h(�γ1/ε�)) ≤ 1/h(�γ1/ε�).(7.5)

On account of the recursion for h(i) given by (7.2), h(�γ1/ε�) will be enormous
when 1/ε is a moderate multiple of 2000, and in particular grows much more
rapidly than 1/ε; presumably, this rapid growth also holds for much smaller values
than 2000. The square root in (7.2) is chosen for convenience; it can be replaced
by any power strictly less than 1, if h(3) is replaced by a correspondingly higher
power of h(2). Note that the rate of growth given here is somewhat slower than
that of w(i) in (7.1).

It follows from (7.5) that the weighted workload under E (ε) is typically at least
of order h(�γ1/ε�). This contrasts with the mean weighted workload for the equi-
libria of the networks obtained by setting D = 1, which is of order 1/ε. (The mean
workload for the equilibria of those networks is bounded over all ε.)

Theorem 7.1 holds because, when a designated queue has designated job with
residual service time h(i), a job with service time h(i + 1) is more likely to arrive
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at the queue before the residual service time of the designated job decreases to
h(i −1), provided that i ≤ γ1/ε. One can therefore compare X(ε)(·) with a discrete
time birth–death process on 0,1, . . . , �γ1/ε� + 1, with uniform positive drift. The
comparison ceases to be valid when the designated queue has too large a multiple
of 1/ε jobs.

Proof of Theorem 7.1. In order to make the preceding paragraph precise, we
will employ a recursion argument that requires two propositions. The first propo-
sition asserts that the above behavior occurs for i = 2; the second proposition em-
ploys the first proposition and an induction argument to show this behavior for
general i. Since the proof of the first proposition is fairly long and involves a sub-
stantial number of estimates, we give a condensed proof of it.

For these propositions, we need to employ a modification of the process X(ε)(·).
We define a new family of Markov processes X(ε,κ)(·), κ = 0,1, . . . ,K(ε), with
K(ε) = �γ1/ε�, where X(ε,κ)(·) evolves in the same manner as X(ε)(·), but with
the following modification of the JSQ rule: an arriving job at time t selects the
queue with the smaller value of Z

(ε,κ)
d (t−)+κ and Z

(ε,κ)
o (t−), where Z

(ε,κ)
d (·) and

Z
(ε,κ)
o (·) denote the number of jobs at the designated queue and other queue for the

network indexed by (ε, κ). The term κ will serve as a “handicap” for the designated
queue. As before, we denote by Y (ε,κ)(·) the residual service time of the designated
job. Note that, for κ = 0, the queue selection rule is JSQ and Y (ε,0)(·) = Y (ε)(·).

Proposition 7.1 gives the following uniform bound on Y (ε,κ)(·) over all κ ≤
K(ε). We denote by y the residual service time of the designated job for a state
x ∈ S.

PROPOSITION 7.1. Suppose that x ∈ S is any state for which y = h(2). Let T

denote the stopping time at which either Y (ε,κ)(T ) = h(1) or Y (ε,κ)(T ) = h(�), for
� ≥ 3, first occurs. Then, for κ ≤ K(ε),

Px

(
Y (ε,κ)(T ) = h(1)

) ≤ 1/h(2).(7.6)

The bound (7.6) depends strongly on our construction of X(ε,κ)(·), where the
designated queue tends to receive more jobs than the other queue.

Proposition 7.2 generalizes Proposition 7.1 to h(i), 2 ≤ i ≤ K(ε) + 1, by ap-
plying Proposition 7.1 together with an induction argument. The proposition is
stated for κ ≤ K(ε) − i + 1, although only the case κ = 0 is directly applied in
the demonstration of Theorem 7.1. General κ are needed for the comparison in the
first paragraph of the proof in the induction argument.

PROPOSITION 7.2. Suppose that x ∈ S is any state for which y = h(i) for
given i, with 2 ≤ i ≤ K(ε) + 1. Let T denote the stopping time at which either
Y (ε,κ)(T ) = h(i − 1) or Y (ε,κ)(T ) = h(�), for � ≥ i + 1, first occurs. Then, for
κ ≤ K(ε) − i + 1,

Px

(
Y (ε,κ)(T ) = h(i − 1)

) ≤ 1/h(i).(7.7)
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We first prove Theorem 7.1, assuming Proposition 7.2. As mentioned earlier,
the argument compares Y ε(·) to a birth–death process.

PROOF OF THEOREM 7.1 ASSUMING PROPOSITION 7.2. Theorem 7.1 will
follow from Proposition 7.2 by using the reasoning outlined in the paragraph be-
fore the beginning of this subsection. To see this, we first consider the sequence of
stopping times T (0), T (1), T (2), . . . that are defined inductively as follows, when
Y (ε)(0) = h(i0) for some i0 ≥ 1. We set T0 = 0 and, when i0 ≥ 2, denote by T (1)

the first time at which either Y (ε)(T (1)) = h(i0 − 1) or Y (ε)(T (1)) = h(�), for
� ≥ i0 + 1. When i0 = 1, T (1) denotes the first time at which Y (ε)(T (1)) = h(�),
for � ≥ 2. The times T (2), T (3), . . . are defined analogously.

For n = 0,1,2, . . . , we define the function H
(ε)
1 (n) by setting H

(ε)
1 (n) = i ∧

(K(ε) + 1), where i is the value at which Y (ε)(T (n)) = h(i), and denote by Gn =
FT (n) the σ -algebra at this time. It follows from the strong Markov property and

Proposition 7.2, with κ = 0 and 2 ≤ i ≤ K(ε) + 1 that, for H
(ε)
1 (n) = i,

P
(
H

(ε)
1 (n + 1) = i − 1 | Gn

) ≤ 1/4(7.8)

for all ε; when i = 1, the corresponding probability is 0.
One can compare H

(ε)
1 (·) with the birth–death process H

(ε)
2 (·) on i = 1,2, . . . ,

K(ε) + 1, where

P
(
H

(ε)
2 (n + 1) = i − 1 | H(ε)

2 (n) = i
) = 1/4,

P
(
H

(ε)
2 (n + 1) = i + 1 | H(ε)

2 (n) = i
) = 3/4

for i �= 1,K(ε) + 1, with the values i instead of i − 1 and i instead of i + 1 being
taken at 1 and K(ε) + 1, respectively. In particular, under H

(ε)
1 (0) = H

(ε)
2 (0), one

can couple H
(ε)
1 (·) and H

(ε)
2 (·) so that

H
(ε)
1 (n) ≥ H

(ε)
2 (n) for all n.(7.9)

Note that H
(ε)
2 (·) is Markov, but H

(ε)
1 (·) is not.

Let E (ε)
2 denote the equilibrium measure on {1,2, . . . ,K(ε) + 1} of the process

H
(ε)
2 (·). The process is reversible with respect to E (ε)

2 , with

E (ε)
2 (B) = 1/3, E (ε)

2 ({Kε + 1}) = 2/3,(7.10)

where B = {1,2, . . . ,K(ε)}.
Also, let L

(ε)
N,1(A), L

(ε)
N,2(A) denote the number of visits for H

(ε)
1 (·), H

(ε)
2 (·) to

a set A, over 1, . . . ,N , starting from any initial state. By (7.9) and (7.10),

lim sup
N→∞

1

N
L

(ε)
N,1(B) ≤ lim

N→∞
1

N
L

(ε)
N,2(B) = 1/3,

(7.11)

lim inf
N→∞

1

N
L

(ε)
N,1

({
K(ε) + 1

}) ≥ lim
N→∞

1

N
L

(ε)
N,2

({
K(ε) + 1

}) = 2/3
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both hold almost surely.
When Gn is given, with H

(ε)
1 (n) = i ≤ K(ε), then T (n + 1) − T (n) is sto-

chastically dominated by an exponentially distributed random variable with mean
1
2h(i + 1)i+1. On the other hand, when Gn is given, with H

(ε)
1 (n) = K(ε) + 1,

then T (n + 1) − T (n) stochastically dominates a random variable with mean
1
8h(K(ε) + 2)K

(ε)+2. The upper bound is due to the rate at which jobs of size at
least h(i + 1) enter the network, as given below (7.2). The lower bound employs
this rate, together with (7.8), to compare T (n + 1) − T (n), restricted to the out-
come H

(ε)
1 (n + 1) = K(ε) + 1, to the restriction of an exponentially distributed

random variable.
We let

U
(ε)
N (A) =

∫ T (N)

0
1
{
Y (ε)(t) ∈ A

}
dt

denote the occupation time for Y (ε)(·) of the set A up to the random time T (N),
starting from a given initial state. Recall that if H

(ε)
1 (n) = i, then Y (ε) > h(i − 1)

for t ∈ [T (n), T (n+1)). It follows from this, (7.11), the two bounds in the previous
paragraph, and the strong law applied to the incremental times T (n + 1) − T (n)

that

lim sup
N→∞

1

N
U

(ε)
N

([
0, h

(
K(ε))]) ≤ 1

3
· 1

2
· h(

K(ε) + 1
)K(ε)+1

,

lim inf
N→∞

1

N
U

(ε)
N

((
h
(
K(ε)),∞)) ≥ 2

3
· 1

8
· h(

K(ε) + 2
)K(ε)+2

hold almost surely. Since U
(ε)
N ([0,∞)) = T (N), it follows that

lim sup
N→∞

U
(ε)
N ([0, h(K(ε))])

T (N)
≤ 2h(K(ε) + 1)K

(ε)+1

h(K(ε) + 2)K
(ε)+2

(7.12)
≤ 1/h

(
K(ε) + 2

) ≤ 1/h
(
K(ε)).

Since the process X(ε)(·) is ergodic, it follows from (7.12) that

E (ε)(Y (ε) ≤ h
(
K(ε))) ≤ 1/h

(
K(ε)).(7.13)

The residual service time Y (ε) of the designated job is bounded above by the
(unweighted) workload in the network, which is at most 2ε(W

(ε)
1 + W

(ε)
2 ) since

the mean service time is less than 2ε. Theorem 7.1 therefore follows from (7.13)
and the definition of K(ε), after dropping the 2ε coefficient. �

We now prove Proposition 7.1. The proof for the proposition is fairly long and
requires a number of steps, where one obtains various bounds on the number of
jobs entering each of the two queues. For these bounds, we will repeatedly employ
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elementary large deviation bounds involving sums of independent random vari-
ables. We assume the reader is familiar with these types of estimates and sketch
the corresponding steps. The first part of the proof, through (7.21), is given in
detail.

CONDENSED PROOF OF PROPOSITION 7.1. Our basic reasoning will be as
follows: When the other queue is not empty, there will typically be either moderate
or large jobs there. On account of the service discipline at the queue, the moderate
and large jobs will be served before the quick jobs, which allows quick jobs to
accumulate. This contrasts with service at the designated queue, where quick jobs
are served first and so do not accumulate. Therefore, because of the JSQ rule,
when there are jobs in the other queue, most arriving jobs will select the designated
queue. Since there will be jobs in the other queue most of the time, this implies
that the amount of work in the designated queue will typically have a positive
drift. The probability will therefore be small that Y (ε,κ)(t) ≤ 1

2h(2) before time

t0
def= (h(3))4 = (h(2))12. But by time t0, there will, with high probability, be many

arriving jobs in the network with service time at least h(3), and hence at least one
such large job will arrive at the designated queue. So (7.6) of the proposition will
follow.

We first introduce some notation consisting of the events A1(n),A2(n),
. . . ,A8(n), with n = 1, . . . , t0, and the stopping time T0. We denote by A1(n)

the event on which the amount of work present at the designated queue at time n

is at least 1
2h(2) and at all previous times is at least 1

2h(2) − 1. Note that the des-
ignated queue remains the same over [0, n] on A1(n). It is easy to see that, under
A1(n), Y (ε,κ)(t) ≥ 1

2h(2) − 1 for t ≤ n + 1, that

A1(n)c = ∅ for n ≤ 1
2h(2),(7.14)

and that Y (ε,κ)(T ) = h(1), with T ≤ t0, can only occur when A1(t0)
c occurs, where

T is given in the statement of the proposition.
All of the other events A2(n), . . . ,A8(n) are assumed to be subsets of A1(n)

that, in addition, satisfy the following properties. The event A2(n) occurs if the
designated queue at no time in [0, n] has more than 1/(1000ε) jobs; A3(n) is the
event for which the other queue at no time in [0, n] has more than 1/(500ε) jobs
that were not present at time 0. The event A4(n) occurs if the subset of [0, n] on
which the other queue is empty has Lebesque measure at most 5

13n. The event
A5(n) occurs if a total of at most n/(200ε) jobs ever arrive at the other queue
at times in (0, n] at which there is a job in the queue with residual service time
strictly greater than δ; A6(n) is the event on which at most 1

100n of these arriving
jobs are moderate or large. Let T0 be the first time at which the other queue has at
most 1/(500ε) jobs. The event A7(n) occurs if the subset of [T0, n] on which the
other queue is not empty and has only jobs with residual service times at most δ

has Lebesque measure at most 1
50n. The event A8(n) occurs if at least n moderate
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or large jobs arrive at the designated queue over (0, n]. Except for (7.15), where
A8(n) is employed, the precise definitions of the events A2(n), . . . ,A8(n) will not
be needed until the paragraph after (7.21).

One can check that

A1(n)c ⊆ A8(n − 1)c for n ≥ 1
2h(2).(7.15)

For this, note that A1(n − 1)c ⊆ A8(n − 1)c and that if ω ∈ A1(n − 1) ∩ A1(n)c,
then the amount of work present in the designated queue at time n is less than
1
2h(2), which implies ω ∈ A8(n − 1)c.

In order to show (7.6), we may assume that, at time 0, the designated queue
has only a single job, consisting of a designated job with residual service time
h(2). Otherwise, one can wait until all jobs, except for the designated job, leave
the queue, or a job with service time at least h(3) arrives at the designated queue.
Since the designated job is served last, one or the other event must eventually
happen. If the former occurs, reset the time to 0.

Let B(n) be the subset of A1(n) on which no job with service time at least
h(3) arrives at the designated queue by time n. Most of the work in showing (7.6)
consists of showing the following bounds involving B(t0) and A�(n):

Px(B(t0)) ≤ 2e−c2h(2)(7.16)

and

Px

(
A1(n) ∩ A�(n)c

) ≤ e−c2h(2) for � = 2, . . . ,8(7.17)

for integers n ∈ [1
2h(2), t0] and appropriate c2 > 0 not depending on the choice of

c1, which is given before (7.2). The inequalities (7.16) and (7.17), for � = 8, will be
applied in the next paragraph. The other inequalities in (7.17) are needed to show
this inequality. We assume that c1 is chosen large enough so that (c′

1)
14 ≤ ec′

1c2 for
c′

1 ≥ c1.
We now show (7.6) and afterwards motivate the inequalities. We may assume,

by induction on n,

Px

(
A1(n − 1)c

) ≤ (n − 1)e−c2h(2);(7.18)

(7.18) trivially holds for n − 1 ≤ 1
2h(2) on account of (7.14). Because of (7.15)

and (7.17), with � = 8, it follows from (7.18) that

Px(A1(n)c) ≤ ne−c2h(2).(7.19)

Consequently, (7.19) holds for all n ≤ t0 and, in particular,

Px(A1(t0)
c) ≤ t0e

−c2h(2) = (h(2))12e−c2h(2).(7.20)

As pointed out after (7.14), Y (ε,κ)(T ) = h(1), with T ≤ t0, can only occur under
this event.
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We have so far not employed (7.16). By (7.16),

Px

(
T > t0;A1(t0)

) ≤ 2e−c2h(2).

Together with (7.20), this implies that the event in (7.6) occurs with probability at
most

2(h(2))12e−c2h(2) ≤ 1/h(2),(7.21)

with the inequality holding because of the assumption on c1 given above and
h(2) ≥ c1. This implies (7.6).

The rest of the proof of (7.6) is spent justifying (7.16) and (7.17). We begin by
justifying (7.17), which requires most of the work; (7.16) will then follow quickly.

The exponential bounds in (7.17) follow from elementary large deviation
bounds, involving sums of i.i.d. random variables, that can be obtained by us-
ing Markov’s inequality or by comparison with a birth–death process. We assume
here that the reader is familiar with such bounds. Since the bounds for some of the
previous indices � are used to derive (7.17) for larger �, the coefficient c2,� in the
exponent of the inequality corresponding to (7.17) for a specific � may depend on
�; after computing this bound for each �, one can then set c2 = min� c2,� to obtain
(7.17).

The inequality in (7.17) for A2(n)c follows from elementary large deviations
bounds and the JSQ rule (with handicap κ). To see this, note that there is initially
only one job at the designated queue and (a) The number of moderate and large
jobs entering the network will be of smaller order of magnitude than 1/(1000ε)

off of a set of probability e−h(2) [since 1/(1000ε) ≥ (h(3))5/1000 ≥ h(2) and
t0 = (h(3))4 ≤ 10−6(h(3))5 ≤ 10−6/ε]. (b) Work from quick jobs enters the net-
work at rate at most 1/100 (since γ0 ≤ 1/200), which is less than the rate 1 of
service at the designated queue. Comparison with the corresponding birth–death
process therefore implies that the net number of quick jobs entering and leaving the
designated queue up to any time before t0 is of smaller order than 1/(1000ε), off of
a set of probability e−h(2) [since t0e

−1/(1000ε) ≤ (h(3))4 exp{−(h(3))4} � e−h(2)].
The inequality for A3(n)c follows immediately from the inequality for A2(n)c,

since it is assumed that the handicap κ is at most Kε ≤ 1/(2000ε) and so
1/(1000ε) + Kε + 1 ≤ 1/(500ε).

In order to show the inequality (7.17) for A4(n)c, note that when the other queue
is empty but the designated queue is not, the rate at which jobs with service time
1 arrive at the other queue is 2(1 − η) ≥ 9/5. When these jobs are being served,
the other queue is not empty. Under A1(n), the designated queue is never empty
on [0, n]. Noting that 1 − 9

5 · 5
14 = 5

14 , the frequency over [0, n], for which the
other queue is empty, is therefore typically at most 5/14. The inequality in (7.17)
follows from an elementary large deviations bound.

We next show (7.17) for A5(n)c. On A1(n), the other queue remains the same
over (0, n]. Over this interval, the set of times having a job at the other queue, with
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residual service time strictly greater than δ, is the union of disjoint intervals, each
with length at least 2/3, except for the first interval [since h(1) = 1 and δ < 1/3].
The number of such intervals is at most 3

2n + 2 ≤ 2n. Note that no quick jobs are
served at the other queue over such intervals. Also, at most n moderate or large
jobs entering the other queue over (0, n] can complete their service over (0, n]. It
follows that, on A1(n)∩A3(n), there are at most 1/(500ε) jobs arriving at the other
queue over any such interval, and hence at most n/(250ε) + n ≤ n/(200ε) jobs
arriving at the other queue over such intervals. The inequality (7.17) for A5(n)c

therefore follows from that for A3(n)c.
Ordering these at most n/(200ε) jobs in the order in which they arrive at the

other queue, the service time of a job is independent of the service time of previous
such jobs (although the total number of arriving jobs will not be independent).
Since the probability a job is either moderate or large is less than ε, the probability
of there being at least n/100 moderate and large jobs among n/(200ε) jobs, n ≥
h(2)/2, is exponentially small in h(2). The inequality (7.17) for A6(n)c therefore
follows from that for A5(n)c.

For A7(n)c, note that there will typically be approximately 2n/ε arrivals in the
network by time n ≥ 1

2h(2) and so, by an elementary large deviations argument,
there will be at least 3n/ε arrivals with an exponentially small probability in h(2).
At time T0, there are at most 1/(500ε) jobs at the other queue, and so there will be
a total of at most 4n/ε jobs at the other queue after time T0. The amount of time
spent serving a job after it has residual service time δ is of course δ, and so the
time spent serving all of these jobs is at most 4(δ/ε)n ≤ 1

50n, which demonstrates
(7.17) in this case as well.

We still need to show the inequality for A8(n)c. For this, note that by (7.17),
with � = 4 and � = 7,

Px

(
A1(n) ∩ (

A4(n)c ∪ A7(n)c
)) ≤ 2e−(c2,4∧c2,7)h(2),(7.22)

and denote by H ⊆ [T0, n] the random set where there is at least one job at the
other queue with residual service time strictly greater than δ. Then (7.22) gives an
upper bound on the probability that A1(n) occurs and the measure of H is less
than

n − T0 −
(

5

13
n + 1

50
n

)
≥ 7

12
n − T0.

Setting H ′ = (0, T0] ∪ H , this implies |H ′| ≥ 7
12n off of the exceptional event.

Since the service time of an arriving job is independent of the service times of
previous jobs and η ≤ 1/100, a large deviations bound implies that at least 8

7n

moderate and large jobs enter the network on H ′, off of an event of exponentially
small probability in h(2).

On the other hand, on A6(n), at most 1
100n moderate and large jobs arrive at the

other queue during H . Also, on A2(n), no jobs can arrive at the other queue before
time T0, since the handicap κ ≤ 1/(2000ε). So, on A2(n) ∩ A6(n), at most 1

100n
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moderate and large jobs arrive at the other queue during H ′. Together with the
last paragraph and (7.17), for � = 2 and � = 6, this implies that, off of an event of
exponentially small probability in h(2), when A1(n) occurs, at least 8

7n− 1
100n ≥ n

medium and large jobs arrive at the designated queue over H ′, and hence over
(0, n]. This gives the inequality (7.17) for A8(n)c.

We now demonstrate (7.16). Setting n = t0 and � = 8, we first note that, by
(7.17),

Px

(
A1(t0) ∩ A8(t0)

c) ≤ e−c2h(2).(7.23)

On A8(t0) ⊆ A1(t0), at least t0 = (h(3))4 medium and large jobs arrive at the des-
ignated queue over (0, t0]. The probability such a job has service time at least h(3)

is greater than (h(3))−3. So, when (h(3))4 such jobs occur, the probability at least
one of them has service time at least h(3) is greater than 1 − 2e−h(3). The bound
(7.16) follows from this and (7.23). This completes the proof of the proposition.

�

We now prove Proposition 7.2. The argument involves repeated couplings.

PROOF OF PROPOSITION 7.2. We apply induction to demonstrate the propo-
sition. The case where i = 2 was demonstrated in Proposition 7.1, so we still need
to show that (7.7) holds for i + 1 given that it holds for i. The argument for this
involves repeatedly coupling the process X(ε,κ)(·), with Y (ε,κ)(0) = h(i + 1), to
one of two processes X(ε,κ)(·) and X(ε,κ+1)(·), with Y (ε,κ)(0) = Y (ε,κ+1)(0) =
h(i). In our couplings, we refer to the networks corresponding to X(ε,κ)(·), with
Y (ε,κ)(0) = h(i + 1), on the one hand, and to the other two processes, on the other
hand, as the first and second networks. As in the proof of Proposition 7.1, we may
assume that, at time 0, the designated queue of the first network has only a single
job, consisting of a designated job at h(i + 1).

We compare the first network, with index (ε, κ) for given κ ≤ K(ε) − i, to the
second network with the same index and having the exact same number of jobs
with the exact same residual service times and designated job, except that the des-
ignated job of the second network has residual service time h(i) instead of h(i+1).
(Recall that the designated job is not required to have the largest residual service
time in the network.) One can couple the processes so that their evolution is ex-
actly the same, with respect to service of individual jobs and arrivals, until either
(a) the residual service time of the designated job of the second network reaches
h(i − 1), (b) an arrival at the designated queue has service time h(i), or (c) an
arrival at the designated queue has service time at least h(i + 1). In the last two
cases, the arriving job becomes the designated job in the second network and, in
the last case, it becomes the designated job in the first network.

By the induction assumption, the event in (a) occurs with probability at most
1/h(i). We consider such an event a minor failure. At the time σ at which it occurs,
the designated job of the first network will have residual service time

h(i + 1) − h(i) + h(i − 1) ≥ h(i + 1) − h(i).
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When the event in (c) occurs, we refer to it as a minor success.
At the time σ the event in (b) occurs, we change the coupling. We now couple

the first network to the second network with index (ε, κ + 1), and having the same
number of jobs with the same residual service times and designated queue as the
first network, after ignoring the designated job of the first network. The second
network therefore has one less job than the first network at time σ . The job that
has arrived at time σ has service time h(i) and so will be the designated job for the
second network. It has the greatest residual service time for the designated queue
in the first network, except for the designated job, and will be served last except
for that job; it will referred to as the associate designated job of the first network.

Since the first and second networks differ only by the presence of the large
designated job in the former, and since the handicap of the second network is one
greater than that for the first network, the networks can be coupled so that their
evolution is the same until the time σ1 at which either the event (a) or the event (c)
in the second to last paragraph occurs. Under (a), a minor failure occurs whereas,
under (c), a minor success occurs. The minor failure occurs with probability at
most 1/h(i), at which time the associate designated job of the first network and
the designated job of the second network each have residual service time h(i − 1)

and the designated job of the first network still has residual service time at least
h(i + 1) − h(i).

Combining the preceding two couplings, it follows from the above reasoning
that the probability a minor failure occurs before a minor success is at most 2/h(i).
One can repeat this reasoning up to n(i) times, where

n(i)
def= �h(i + 1)/h(i)� − 2,

so that either (d) n(i) minor failures or (e) a minor success has occurred. At this
time σ2, the residual service time of the designated job of the first network is still
greater than h(i). The probability of the event in (d) is at most (2/h(i))n(i). If
the residual service time of this job decreases to h(i) before (e) occurs, we say a
failure occurs.

When a minor success occurs, the arriving job has service time at least h(i + 1)

and becomes the designated job. If the service time of the arriving job is at least
h(i + 2), we call the minor success a success and stop the procedure. If a minor
success that is not a success occurs, one can repeat the above comparisons, starting
as before with a single job at the designated queue. Letting Q(i) denote the number
of minor successes occurring before a failure and B denote the event that a success
occurs before a failure, it follows from the previous paragraph and the definition
of h(·) that

Px

(
Q(i) ≤ e2

√
h(i+1);Bc) ≤ e2

√
h(i+1)

(
2

h(i)

)n(i)

(7.24)

≤
(

2e

h(i)

)h(i+1)/h(i)

≤ 1

2h(i + 1)
.
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On the other hand, the probability that a minor success will actually be a success
is at least

1
2(h(i))i/

(
h(i + 1)

)i+1 ≥ 1/
(
h(i + 1)

)i+1 ≥ e−√
h(i+1).(7.25)

Together with (7.24), (7.25) implies that the probability of a failure occurring be-
fore a success is at most(

1 − e−√
h(i+1))e2

√
h(i+1) + 1

2h(i + 1)

≤ exp
{−e

√
h(i+1)} + 1

2h(i + 1)
≤ 1

h(i + 1)
.

Since success and failure correspond to the two events in the statement of Propo-
sition 7.2, this implies (7.7) of the proposition. �
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