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This article is concerned with the fluctuations and the concentration
properties of a general class of discrete generation and mean field particle in-
terpretations of nonlinear measure valued processes. We combine an original
stochastic perturbation analysis with a concentration analysis for triangular
arrays of conditionally independent random sequences, which may be of in-
dependent interest. Under some additional stability properties of the limiting
measure valued processes, uniform concentration properties, with respect to
the time parameter, are also derived. The concentration inequalities presented
here generalize the classical Hoeffding, Bernstein and Bennett inequalities for
independent random sequences to interacting particle systems, yielding very
new results for this class of models.

We illustrate these results in the context of McKean–Vlasov-type diffusion
models, McKean collision-type models of gases and of a class of Feynman–
Kac distribution flows arising in stochastic engineering sciences and in mole-
cular chemistry.

1. Introduction.

1.1. Mean field particle models. Let (En)n≥0 be a sequence of measurable
spaces equipped with some σ -fields (En)n≥0, and we let P(En) be the set of all
probability measures over the set En, with n ≥ 0. We consider a collection of
transformations �n+1 : P(En) → P(En+1), n ≥ 0, and we denote by (ηn)n≥0 a
sequence of probability measures on En satisfying a nonlinear equation of the
following form:

ηn+1 = �n+1(ηn).(1.1)

These discrete time versions of conservative and nonlinear integro-differential type
equations in distribution spaces arise in a variety of scientific disciplines includ-
ing in physics, biology, information theory and engineering sciences. To motivate
the article, before describing their mean field particle interpretations, we illustrate
these rather abstract evolution models working out explicitly some of these equa-
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tions in a series of concrete examples. The first one is related to nonlinear fil-
tering problems arising in signal processing. Suppose we are given a pair signal-
observation Markov chain (Xn,Yn)n≥0 on some product space (Rd1 × R

d2), with
some initial distribution and Markov transition of the following form:

P
(
(X0, Y0) ∈ d(x, y)

) = η0(dx)g0(x, y)λ0(dy),

P
(
(Xn+1, Yn+1) ∈ d(x, y)|(Xn,Yn)

) = Mn+1(Xn, dx)gn+1(x, y)λn+1(dy).

In the above display, λn stands for some reference probability measures on R
d2 ,

gn is a sequence of positive functions, Mn+1 are Markov transitions from R
d1 into

itself and finally η0 stands for some initial probability measure on R
d1 . For a given

sequence of observations Y = y delivered by some sensor, the filtering problem
consists of computing sequentially the flow of conditional distributions defined by

η̂n = Law(Xn|Y0 = y0, . . . , Yn = yn)

and

ηn+1 = Law(Xn+1|Y0 = y0, . . . , Yn = yn).

These distributions satisfy a nonlinear evolution equation of the form (1.1) with
the transformations

�n+1(ηn)(dx′) =
∫

η̂n(dx)Mn+1(x, dx′) and
(1.2)

η̂n(dx) = Gn(x)∫
ηn(dx′)Gn(x′)

ηn(dx)

for some collection of likelihood functions Gn = gn(·, yn). Replacing these func-
tions by some ]0,1]-valued potential function Gn on R

d1 , we obtain the condi-
tional distributions of a particle absorption model X′

n with free evolution transi-
tions Mn and killing rate (1 − Gn). More precisely, if T stands for the killing time
of the process, we have that

η̂n = Law(X′
n|T > n) and ηn+1 = Law(X′

n+1|T > n).(1.3)

These nonabsorption conditional distributions arise in the analysis of confine-
ment processes, as well as in computational physics with the numerical solving
of Schrödinger ground state energies (see, e.g., [11, 13, 28]).

Another important class of measures arising in particle physics and stochastic
optimization problems is the class of Boltzmann distributions, also known as the
Gibbs measure, defined by

ηn(dx) = 1

Zn

e−βnV (x)λ(dx),(1.4)

with some reference probability measure λ, some inverse temperature parameter
and some nonnegative potential energy function V on some state space E. The nor-
malizing constant Zn is sometimes called “partition function” or the “free energy.”
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In sequential Monte Carlo methodology, as well as in operation research literature,
these multiplicative formulae are often used to compute rare events probabilities,
as well as the cardinality or the volume of some complex state spaces. Further de-
tails on these stochastic techniques can be found in the series of articles [5, 29, 30].
To fix the ideas we can consider the uniform measure on some finite set E. Surpris-
ingly, this flow of measures also satisfies the above nonlinear evolution equation,
as soon as ηn is an invariant measure of Mn, for each n ≥ 1, and the potential func-
tions Gn are chosen of the following form: Gn = exp ((βn+1 − βn)V ). The parti-
tion functions can also be computed in terms of the flow of measures (ηp)0≤p<n

using the easy-to-check multiplicative formula,

Zn = ∏
0≤p<n

∫
ηp(dx)Gp(x),

as soon as β0 = 0. In statistical mechanics literature, the above formula is some-
times called the Jarzynski or the Crooks equality [8, 19, 20]. Notice that the sto-
chastic models discussed above remain valid if we replace e−βn+1V by any col-
lection of functions gn+1 s.t. gn+1 = gn × Gn = ∏

0≤p≤n Gp , for some potential
functions Gn, with n ≥ 0. Further details on this model, with several worked-out
applications on concrete hidden Markov chain problems and Bayesian inference
can be found in the article [10] dedicated to sequential Monte Carlo technology.
All of the models discussed above can be abstracted in a single probabilistic model.
The latter is often called a Feynman–Kac model, and it will be presented in some
details in Section 2.1.

The mean field-type interacting particle system associated with equation (1.1)
relies on the fact that the one-step mappings can be rewritten in the following form:

�n+1(ηn) = ηnKn+1,ηn(1.5)

for some collection of Markov kernels Kn+1,μ indexed by the time parameter
n ≥ 0, and the set of measures μ on the space En. We already mention that
the choice of the Markov transitions Kn,η is not unique. Several examples are
presented in Section 2 in the context of Feynman–Kac semigroups or McKean–
Vlasov diffusion-type models. To fix the ideas, we can choose elementary transi-
tions Kn,η(x, dx′) = �n(η)(dx′) that do not depend on the state variable x.

In the literature on mean field particle models, the transitions Kn,η are called
a choice of McKean transitions. These models provide a natural interpretation of
the flow of measures ηn as the laws of the time inhomogeneous Markov chain Xn

with elementary transitions

P(Xn ∈ dx|Xn−1) = Kn,ηn−1(Xn−1, dx) with ηn−1 = Law(Xn−1)

and starting with some initial random variable with distribution η0 = Law(X0).
The Markov chain Xn can be thought of as a perfect sampling algorithm. For
a thorough description of these discrete generation and nonlinear McKean-type
models, we refer the reader to [9]. In the further development of the article, we



1020 P. DEL MORAL AND E. RIO

always assume that the mappings

(xi
n)1≤i≤N ∈ EN

n �→ Kn+1,1/N
∑N

j=1 δ
x
j
n

(xi
n,An+1)

are E ⊗N
n -measurable, for any n ≥ 0, N ≥ 1, and 1 ≤ i ≤ N , and any measur-

able subset An+1 ⊂ En+1. In this situation, the mean field particle interpreta-
tion of this nonlinear measure valued model is an EN

n -valued Markov chain
ξ

(N)
n = (ξ

(N,i)
n )1≤i≤N , with elementary transitions defined as

P
(
ξ

(N)
n+1 ∈ dx|F (N)

n

) =
N∏

i=1

Kn+1,ηN
n

(
ξ (N,i)
n , dxi)

(1.6)

with ηN
n := 1

N

N∑
j=1

δ
ξ

(N,j)
n

.

In the above displayed formula, F N
n stands for the σ -field generated by the ran-

dom sequence (ξ
(N)
p )0≤p≤n, and dx = dx1 × · · ·× dxN stands for an infinitesimal

neighborhood of a point x = (x1, . . . , xN) ∈ EN
n . The initial system ξ

(N)
0 con-

sists of N independent and identically distributed random variables with common
law η0. As usual, to simplify the presentation, when there is no possible confu-
sion we suppress the parameter N , so that we write ξn and ξ i

n instead of ξ
(N)
n and

ξ
(N,i)
n . The state components of this Markov chain are called particles or some-

times walkers in physics to distinguish the stochastic sampling model with the
physical particle in molecular models.

The rationale behind this is that ηN
n+1 is the empirical measure associated with

N independent variables with distributions Kn+1,ηN
n
(ξ i

n, dx), so as soon as ηN
n is a

good approximation of ηn then, in view of (1.6), ηN
n+1 should be a good approxi-

mation of ηn+1. Roughly speaking, this induction argument shows that ηN
n tends

to ηn, as the population size N tends to infinity.
These stochastic particle algorithms can be thought of in various ways: from

the physical view point, they can be seen as microscopic particle interpretations of
physical nonlinear measure valued equations. From the pure mathematical point
of view, they can also be interpreted as natural stochastic linearizations of non-
linear evolution semigroups. From the probabilistic point of view, they can be
interpreted as interacting recycling acceptance-rejection sampling techniques. In
this case, they can be seen as a sequential and interacting importance sampling
technique.

For instance, in the context of the nonlinear filtering equation (1.2), the mean
field particle model associated with the flow of optimal one-step predictors ηn, with
the McKean transitions Kn,η(x, dx′) = �n(η)(dx′), is the (Rd1)N -valued Markov
chain defined by sampling N conditionally independent random variables ξn+1 =
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(ξ i
n+1)1≤i≤N , with common distribution given by

�n+1

(
1

N

N∑
j=1

δ
ξ

j
n

)
(dx) =

N∑
i=1

Gn(ξ
i
n)∑N

j=1 Gn(ξ
j
n )

Mn+1(ξ
i
n, dx).(1.7)

By construction, the resulting particle model is a simple genetic-type stochastic
algorithm: the mutation and the selection transitions are dictated by the predic-
tion and the updating transitions defined in (1.2). During the selection transition,
one updates the positions of the particles in accordance with the fitness likelihood
functions Gn. This mechanism is called the selection-updating transition as the
more likely particles with high Gn-potential value are selected for reproduction.
In other words, this transition allows particles to give birth to some particles at the
expense of light particles which die. The second mechanism is called the mutation-
prediction transition since at this step each particle evolves randomly according to
the transition kernels Mn. Another important feature of genetic-type particle mod-
els is that their ancestral or their complete genealogical tree structure can be used
to approximate the smoothing problem, including the computation of the distribu-
tion of the signal trajectories given the observations. Further details on this subject
can be found in [9, 13].

The same genetic-type particle algorithm applies for the particle absorption
model (1.3) and the Boltzmann–Gibbs model (1.4), by replacing, respectively,
the likelihood functions by the nonabsorption rates Gn and the fitness functions
Gn = exp ((βn+1 − βn)V ).

In the reverse angle, the occupation measures of a given genetic-type particle
mean field model converge, as the size of the population tends to infinity, to the
solution of an evolution equation of the form (1.1), with the one-step transforma-
tions (1.2). These limiting models are often called the infinite population models.
For a recent treatment on these genetic models, we refer the reader to [16].

The origins of genetic-type particle methods can be traced back in physics and
molecular chemistry in the 1950s with the pioneering works of Harris and Kahn
[17] and Rosenbluth and Rosenbluth [27]. During the last two decades, the mean
field particle interpretations of these discrete generation measure valued equations
were increasingly identified as a powerful stochastic simulation algorithm with
emerging subjects in physics, biology and engineering sciences. They have led
to spectacular results in signal processing processing with the corresponding par-
ticle filter technology, in stochastic engineering with interacting-type Metropolis
and Gibbs sampler methods, as well as in quantum chemistry with quantum and
diffusion Monte Carlo algorithms leading to precise estimates of the top eigen-
values and the ground states of Schroedinger operators. For a thorough discussion
on these application areas, we refer the reader to [9, 10, 15], and the references
therein. To motivate the article, we illustrate the fluctuation and the concentration
results presented in this work with three additional illustrative examples, including
Feynman–Kac models, McKean–Vlasov diffusion-type models, as well as inter-
acting jump type McKean model of gases.
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We end this Introduction with some more or less traditional notation used in
the present article. We denote, respectively, by M(E), M0(E) and B(E), the set
of all finite signed measures on some measurable space (E, E ), the convex sub-
set of measures with null mass and the Banach space of all bounded and mea-
surable functions f equipped with the uniform norm ‖f ‖. We also denote by
Osc1(E), the convex set of E -measurable functions f with oscillations osc(f ) ≤ 1.
We let μ(f ) = ∫

μ(dx)f (x), be the Lebesgue integral of a function f ∈ B(E),
with respect to a measure μ ∈ M(E). We recall that a bounded integral op-
erator M from a measurable space (E, E ) into an auxiliary measurable space
(F, F ) is an operator f �→ M(f ) from B(F ) into B(E) such that the functions
M(f )(x) := ∫

F M(x, dy)f (y) are E -measurable and bounded, for any f ∈ B(F ).
A Markov kernel is a positive and bounded integral operator M with M(1) = 1.
Given a pair of bounded integral operators (M1,M2), we let (M1M2) the com-
position operator defined by (M1M2)(f ) = M1(M2(f )). For time homogenous
state spaces, we denote by Mm = Mm−1M = MMm−1 the mth composition of
a given bounded integral operator M , with m ≥ 1. A bounded integral operator
M from a measurable space (E, E ) into an auxiliary measurable space (F, F )

also generates a dual operator μ �→ μM from M(E) into M(F ) defined by
(μM)(f ) := μ(M(f )). We also used the notation

K
([f − K(f )]2)

(x) := K
([f − K(f )(x)]2)

(x)

for some bounded integral operator K and some bounded function f .
When the bounded integral operator M has a constant mass, that is, when

M(1)(x) = M(1)(y) for any (x, y) ∈ E2, the operator μ �→ μM maps M0(E) into
M0(F ). In this situation, we let β(M) be the Dobrushin coefficient of a bounded
integral operator M defined by the formula β(M) := sup{osc(M(f ));f ∈
Osc1(F )}.

1.2. Description of the main results. The mathematical and numerical analy-
sis of the mean field particle models (1.6) is one of the most attractive research
areas in pure and applied probability, as well as in advanced stochastic engineer-
ing and computational physics.

The fluctuation analysis of these discrete generation particle models around
their limiting distributions is often restricted to Feynman–Kac-type models (see,
e.g., [7, 9, 12, 14] and references therein) or specific continuous time mean field
models including McKean–Vlasov diffusions and Boltzmann-type collision mod-
els of gases [24, 31].

In the present article, we design an original and natural stochastic perturbation
analysis that applies to a rather large class of models satisfying a rather weak first-
order regularity property. We combine an original stochastic perturbation analysis
with a concentration analysis for triangular arrays of conditionally independent
random sequences, which may be of independent interest. Under some additional
stability properties of the limiting measure valued processes, uniform concentra-
tion properties with respect to the time parameter are also derived. The concen-
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tration inequalities presented here generalize the classical Hoeffding, Bernstein
and Bennett inequalities for independent random sequences to interacting particle
systems, yielding very new results for this class of models.

To describe with some precision this first main result we observe that the lo-
cal sampling errors associated with the corresponding mean field particle model
are expressed in terms of the centered random fields WN

n , given by the following
stochastic perturbation formulae:

ηN
n = ηN

n−1Kn,ηN
n−1

+ 1√
N

WN
n .(1.8)

To analyze the propagation properties of these local sampling errors, up to a
second-order remainder measure, we further assume that the one-step mappings
�n governing equation (1.1) have a first-order decomposition

�n(η) − �n(μ) � (η − μ)Dμ�n(1.9)

with a first-order integral operator Dμ�n from B(En) into B(En−1), s.t.
Dμ�n(1) = 0. The precise definition of the first-order regularity property (1.9)
is provided in Definition 3.1.

Our first main result is a functional central limit theorem for the random fields

V N
n := √

N [ηN
n − ηn].(1.10)

This fluctuation theorem takes, basically, the following form.

THEOREM 1.1.

• The sequence (WN
n )n≥0 converges in law, as N tends to infinity, to the sequence

of n independent, Gaussian and centered random fields (Wn)n≥0 with a covari-
ance function given for any f,g ∈ B(En), and any n ≥ 1, by

E(Wn(f )Wn(g)) = ηn−1Kn,ηn−1

([f − Kn,ηn−1(f )][g − Kn,ηn−1(g)])(1.11)

and, for n = 0, by

E(W0(f )W0(g)) = η0
[(

f − η0(f )
)(

g − η0(g)
)]

.

• For any fixed time horizon n ≥ 0, the sequence of random fields V N
n converges

in law, as the number of particles N tends to infinity, to a Gaussian and centered
random fields

Vn =
n∑

p=0

Wp Dp,n.

In the above display, Dp,n stands for the semigroup associated with the operator
Dn = Dηn−1�n.

A complete detailed proof of the functional central limit theorem stated above
is provided in Section 5, dedicated to a stochastic perturbation analysis of mean
field particle models.
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We let �p,n = �p+1,n ◦ �p+1, 0 ≤ p ≤ n, be the semigroup associated with
the measure valued equation defined in (1.1). For p = n, we use the convention
�n,n = Id, the identity operator. By construction, we have

�p,n(η) − �p,n(μ) � (η − μ)Dμ�p,n and Dηp�p,n = Dp,n.

The fluctuation theorem stated above shows that the fluctuations of ηN
n around the

limiting measure ηn is precisely dictated by first-order differential-type operators
Dηp�p,n of the semigroup �p,n around the flow of measures ηp , with p ≤ n.
Furthermore, for any fn ∈ Osc1(En), one observes that

E(Vn(fn)
2) =

n∑
p=0

E((Wp[Dηp�p,n(fn)])2)

(1.12)

≤
n∑

p=0

σ 2
pβ(D�p,n)

2 := σ 2
n

with the uniform local variance parameters

σ 2
n := sup

fn∈Osc1(En)

sup
μ∈P(En−1)

∣∣μ(
Kn,μ[fn − Kn,μ(fn)]2)∣∣

and

β(D�p,n) := sup
η∈P(Ep)

β(Dη�p,n).

The second part of this article is concerned with the concentration properties of
mean field particle models. These results quantify exponentially small probabilities
of deviations events between the occupation measures ηN

n and their limiting values.
The exponential deviation events discussed in this article are described in terms of
the parameters

σ 2
n ≤ β2

n :=
n∑

p=0

β(D�p,n)
2 and b	

n := sup
0≤p≤n

β(D�p,n).

Besides the fact that the nonasymptotic analysis of weakly dependent variables is
rather well developed, the concentration properties of discrete generation and in-
teracting particle systems often resume to asymptotic large deviation results, or to
nonasymptotic rough exponential estimates (see, e.g., [9] and references therein).
Our main result on this subject is an original concentration theorem that includes
Hoeffding, Bennett and Bernstein exponential inequalities for mean field particle
models. This result takes, basically, the following form.

THEOREM 1.2. For any N ≥ 1, n ≥ 0, fn ∈ Osc1(En), and any x ≥ 0 the
probability of each of the following pair of events is greater than 1 − e−x

V N
n (fn) ≤ rn√

N

(
1 + ε−1

0 (x)
) + √

Nσ 2
nb

	
nε

−1
1

(
x

Nσ 2
n

)
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and

V N
n (fn) ≤ rn√

N

(
1 + ε−1

0 (x)
) + √

2xβn.

In the above display, rn stands for some parameter whose values only depend on
the amplitude of the second-order terms in the development (1.9), and the pair of
functions (ε0, ε1) are defined by

ε0(λ) = 1
2

(
λ − log (1 + λ)

)
, ε1(λ) = (1 + λ) log (1 + λ) − λ.(1.13)

Under additional stability properties of the semigroup associated with the limiting
model (1.5), the parameters (σ n,βn, b

	
n, rn) are uniformly bounded w.r.t. the time

parameter.

A complete detailed proof of the functional concentration inequalities stated in
Theorem 1.2 is provided in Section 5.3. Some of the consequences of the concen-
tration inequalities stated above are provided in Section 4. To give a flavor of these
results, using a Bernstein-type concentration inequality we will check that

lim sup
N→∞

log P

(
V N

n (fn) ≥ rn√
N

+ λ

)
≤ − λ2

2(b	
nσn)2 .(1.14)

The detailed proof of this asymptotic estimate is provided on page 1032. This
observation shows that this concentration inequality is “almost” asymptotically
sharp, with a variance-type term whose values are pretty close to the exact limiting
variances presented in (1.12). A more precise asymptotic estimate would require
a refined moderate deviation analysis. We hope to discuss these properties in a
forthcoming study.

The outline of the rest of the article is as follows. To motivate the present article,
we have collected in Section 2 three different classes of abstract mean field particle
models that can be studied using the fluctuation and the concentration analysis
developed in this article.

In Section 3, we discuss the main regularity properties used in our analysis. In
Section 4, we illustrate the impact of Theorem 1.2 with some more Bennett and
Hoeffding-type concentration properties, as well as Bernstein-type concentration
inequalities and uniform exponential deviation properties w.r.t. the time parame-
ter. Section 5 is mainly concerned with the detailed proofs of the theorems stated
above. We combine a natural stochastic perturbation analysis with nonlinear semi-
group techniques that allow us to describe both the fluctuations and the concen-
tration of the mean field measures in terms of the local error random field models
introduced in (1.8). The functional central limit theorem is proved in Section 5.1. In
Appendix A.6, we provide a preliminary convex analysis including estimates of in-
verses of Legendre–Fenchel transformations of classical convex functions needed
in this article. In Section 5.2, we prove a technical concentration lemma for tri-
angular arrays of conditionally independent random variables. In Section 5.3, we
apply this lemma to prove concentration inequalities for mean field models.
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2. Some illustrative examples.

2.1. Feynman–Kac models. As mentioned in the Introduction, the first proto-
type model we have in mind is a class of Feynman–Kac distribution flow equation
arising in a variety of application areas including stochastic engineering, physics,
biology and Bayesian statistics. These models are defined in terms of a series of
bounded and positive integral operators Qn from En−1 into En with the following
dynamical equation:

∀fn ∈ B(En) ηn(fn) = ηn−1(Qn(fn))/ηn−1(Qn(1))(2.1)

with a given initial distribution η0 ∈ P(E0). To avoid unnecessary technical dis-
cussions we simplify the analysis and we assume that

∀n ≥ 0 0 < inf
x∈En

Gn(x) ≤ sup
x∈En

Gn(x) < ∞ with Gn(x) := Qn+1(1)(x).

Rewritten in a slightly different way, we have

ηn = �n(ηn−1) := �n−1(ηn−1)Mn with Mn(fn) = Qn(fn)/Qn(1)

and the Boltzmann–Gibbs transformation �n from P(En) into itself given by

∀fn ∈ B(En) �n(ηn)(fn) = ηn(Gnfn)/ηn(Gn).

Using the ratio formulation (2.1) of the semigroup, we will check in Appendix A.3
that the first-order decomposition (1.9) is met with the first-order operator defined
by

Dμ�n(f ) := 1

μQn(1)
Qn

(
f − �n(μ)(f )

)
.

The nonlinear filtering model (1.2), the particle absorption model (1.3) and the
Boltzmann–Gibbs distribution flow (1.4) can be abstracted in this framework by
setting

Qn+1(x, dx′) = Gn(x)Mn+1(x, dx′).
We leave the reader to check that this flow of measures satisfy the recursive

equation (1.1) for any choice of Markov transitions given below:

Kn+1,ηn(x, dy) = εnGn(x)Mn(x, dy) + (
1 − εnGn(x)

)
�n+1(ηn)(dy).(2.2)

In the above displayed formula εn stands for some [0,1]-valued parameters that
may depend on the current measure ηn and such that ‖εnGn‖ ≤ 1. In this situ-
ation, the mean field N -particle model associated with the collection of Markov
transitions (2.2) is a combination of simple selection/mutation genetic transi-
tion ξn � ξ̂n = (̂ξ i

n)1≤i≤N � ξn+1. During the selection stage, with probability
εnGn(ξ

i
n), we set ξ̂ i

n = ξ i
n; otherwise, the particle jumps to a new location, ran-

domly drawn from the discrete distribution �n(η
N
n ). During the mutation stage,

each of the selected particles ξ̂ i
n � ξ i

n+1 evolves according to the transition Mn+1.
If we set εn = 0, the above particle model reduces to the simple genetic-type model
discussed in (1.7) in the Introduction.
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2.2. Gaussian mean field models. The concentration analysis presented in this
article is not restricted to Feynman–Kac-type models. It also applies to McKean-
type models associated with a collection of multivariate Gaussian-type Markov
transitions on En = R

d , defined by

Kn,η(x, dy) = 1√
(2π)d det(Qn)

(2.3)

× exp
{
−1

2

(
y − dn(x, η)

)′
Q−1

n

(
y − dn(x, η)

)}
dy,

with a nonsingular, positive and semi-definite covariance matrix Qn and some
sufficiently regular drift mapping dn : (x, η) ∈ R

d × P(Rd) �→ d(x, η) ∈ R
d . In

Appendix A.5, for d = 1 we will check that any linear drift function dn of the
form dn(x, η) = an(x) + η(bn)cn(x), with some measurable (and nonnecessarily
bounded) function an, and some pair of functions bn and cn ∈ B(R), the first-order
decomposition (1.9) is met with the first-order operator defined by

Dμ�n(f )(x) := [Kn,μ(f )(x) − �n(μ)(f )]
+ bn(x)

∫
μ(dy)cn(y)Kn,μ(y, dz)f (z)

(
z − dn(y,μ)

)
.

In this context, the N -mean field particle model is given by the following recur-
sion:

∀1 ≤ i ≤ N ξi
n = dn(ξ

i
n−1, η

N
n−1) + Wi

n,

where (Wi
n)i≥0 is a collection of independent and identically distributed d-

valued Gaussian random variables with covariance matrix Qn. The connection be-
tween these discrete generation models and the more traditional continuous time
McKean–Vlasov diffusion models is as follows. Consider the partial differential
equation

∂tμt = 1

2

d∑
i,j=1

∂2
xi ,xj (μt ) −

d∑
i=1

∂xi (b
i
t (·, ηt )μt ),

where μt is a probability measure on R
d , and bt some drift term associated with

some interaction kernels b′
t and given by

bt (x,μ) =
∫

b′
t (x, x′)μ(dx′).

Under appropriate regularity conditions, one can show that ηt is the marginal dis-
tribution at time t of the law of the solution of the nonlinear stochastic differential
equation

dXt = bt (Xt ,μt ) dt + dBt ,(2.4)
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where Bt is a d-dimensional Brownian motion. These models have been intro-
duced in the late-1960s by McKean [23]. The convergence of the mean field par-
ticle model associated with the diffusion (2.4) has been deeply studied in the mid-
1990s by Bossy and Talay [3, 4], Méléard [24] and Sznitman [32]. We also refer
the reader to the more recent treatments on McKean–Vlasov diffusion models by
Bolley, Guillin and Malrieu [1] and Bolley, Guillin and Villani [2]. Besides the
fact that these continuous time probabilistic models are directly connected to a
rather large class of physical equations, to get some computationally feasible so-
lution, some kind of time discretization scheme is needed. Mimicking traditional
time discretization techniques of deterministic dynamical systems, several natural
strategies can be used. For instance, we can use a Euler-type discretization of the
diffusion given by (2.4) as follows:

X�
tn

− X�
tn−1

= btn−1(X
�
tn−1

,μtn−1)� + (Btn − Btn−1)

on the time mesh (tn)n≥0, with (tn − tn−1) = �, with some initial random variable
with distribution μ0 = Law(X�

0 ). In this situation, the elementary transitions of the
approximated random states X�

tn
are of the form (2.3), with the identity covariance

matrices Qn = Id, and the drift functions dn(x, η) = x + btn−1(x, η). The refined
convergence analysis of these discrete time approximation models for more gen-
eral models, including granular media equations is developed Malrieu and Talay
[21, 22].

We mention that the semigroup derivation approach for functional fluctuation
theorems and concentration inequalities developed in this article do not apply di-
rectly to any nonlinear diffusion equations with general interaction kernels ct . The
semigroup derivation technique requires one to control recursively time the in-
tegrability properties of the semigroup associated with the first and second-order
derivative terms. A rather crude sufficient condition is to assume that the drift terms
dn is of the form discussed in the discrete time model.

2.3. A McKean model of gases. We end this section with a mean field particle
model arising in fluid mechanics. We consider a measurable state space (Sn, Sn)

with a countably generated σ -field and an (Sn ⊗ En)-measurable mapping an be
a from (Sn × En) into R+ such that

∫
νn(ds)an(s, x) = 1, for any x ∈ En, and

some bounded positive measure νn ∈ M(Sn). To illustrate this model, we can take
a partition of the state En = ⋃

s∈Sn
As associated with a countable set Sn equipped

with the counting measure νn(s) = 1 and set an(s, x) = 1As (x). We let Kn+1,η be
the McKean transition defined by

Kn+1,η(x, dy) =
∫

νn(ds)η(du)an(s, u)Mn+1((s, x), dy).(2.5)

In the above displayed formula, Mn stands for some Markov transition from
(Sn ×En) into En+1. The discrete time version of McKean’s two-velocities model
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for Maxwellian gases corresponds to the time homogenous model on En = Sn =
{−1,+1} associated with the counting measure νn and the pair of parameters

an(s, x) = 1s(x) and Mn+1((s, x), dy) = δsx(dy).

In this situation, the measure valued equation (1.1) takes the following quadratic
form:

ηn+1(+1) = ηn(+1)2 + (
1 − ηn(+1)

)2
.

We leave the reader to write out the mean field particle interpretation of this model.
For more details on this model, we refer to [31]. In Appendix A.4, we will check
that the first-order decomposition (1.9) is met with the first-order operator defined
by

Dμ�n+1(f )(x) = [Kn+1,μ(f )(x) − �n+1(μ)(f )]
+

∫
νn(ds)[a(s, x) − μ(a(s, ·))]μ(Mn+1(f )(s, ·)).

3. Some weak regularity properties. To describe precisely the concentration
inequalities developed in the article, we need to introduce a first round of notation.

DEFINITION 3.1. We let ϒ(E,F ) be the set of mappings � :μ ∈ P(E) �→
�(μ) ∈ P(F ) satisfying the first-order decomposition

�(μ) − �(η) = (μ − η)Dη� + R�(μ,η).(3.1)

In the above displayed formula, the first-order operators (Dη�)η∈P(E) is some
collection of bounded integral operators from E into F such that

∀η ∈ P(E),∀x ∈ E (Dη�)(1)(x) = 0 and
(3.2)

β(D�) := sup
η∈P(E)

β(Dη�) < ∞.

The collection of second-order remainder signed measures (R�(μ,η))(μ,η)∈P(E2)

on F are such that

|R�(μ,η)(f )| ≤
∫

|(μ − η)⊗2(g)|R�
η (f, dg),(3.3)

for some collection of integral operators R�
η from B(F ) into the set Osc1(E)2 such

that

sup
η∈P(E)

∫
osc(g1)osc(g2)R

�
η

(
f, d(g1 ⊗ g2)

) ≤ osc(f )δ(R�)

(3.4)
with δ(R�) < ∞.
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This rather weak first-order regularity property is satisfied for a large class of
one-step transformations �n associated with a nonlinear measure valued process
(1.1). For instance, in Section 5.3 we shall prove that the Feynman–Kac trans-
formations �n introduced in (2.1) belong to the set ϒ(En−1,En). The latter is
also met for the Gaussian transitions introduced in (2.3) and for the McKean-type
model of gases (2.5) presented in Section 2.3. The proof of this assertion is rather
technical and it is postponed in Appendix A.4.

We assume that the one-step mappings

�n :μ ∈ P(En−1) −→ �n(μ) := μKn,μ ∈ P(En)

governing equation (1.1) are chosen so that �n ∈ ϒ(En−1,En), for any n ≥ 1.
The main advantage of the regularity condition comes from the fact that �p,n ∈
ϒ(Ep,En) with the first-order decomposition-type formula

�p,n(η) − �p,n(μ) = [η − μ]Dμ�p,n + R�p,n(η,μ),

for some collection of bounded integral operators Dμ�p,n from Ep into En and
some second-order remainder signed measures R�p,n(η,μ). For further use, we
let rn be the second-order stochastic perturbation term related to the quadratic
remainder measures R�p,n and defined by

rn :=
n∑

p=0

δ(R�p,n).

4. Some exponential concentration inequalities. Let us examine some more
or less direct consequences of the concentration inequalities stated in Theorem 1.2.

When the Markov kernels Kn,μ = Kn do not depend on the measure μ, the N -
particle model reduces to a collection of independent copies of the Markov chain
with elementary transitions Pn = Kn. In this special case, the second-order para-
meters vanish (i.e., rn = 0), while the first-order expansion parameters (σn,βn) are
related to the mixing properties of the semigroup of the underlying Markov chain;
that is, we have that

σ 2
n =

n∑
p=0

σ 2
pβ(Pp,n)

2 ≤ β2
n =

n∑
p=0

β(Pp,n)
2 with Pp,n = Kp+1, . . . ,Kn−1Kn,

with the Dobrushin ergodic coefficient β(Pp,n) associated with Pp,n. When the
chain is asymptotically stable in the sense that supn≥0

∑n
p=0 β(Pp,n) < ∞, the

first-order expansion parameters given above are uniformly bounded with respect
to the time parameter.

In more general situations, the analysis of these parameters depends on the
model at hand. For instance, for time homogeneous Feynman–Kac models [i.e.,
En = E and (Gn,Mn) = (G,M)] these parameters can be related to the mixing
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properties of the Markov chain associated with the transitions M . To be more pre-
cise, let us suppose that the following condition is met:

(M)m ∃m ≥ 1,∃εm > 0 s.t.
(4.1)

∀(x, y) ∈ E2 Mm(x, ·) ≥ εmMm(y, ·).
It is well known that the mixing-type condition (M)m is satisfied for any aperiodic
and irreducible Markov chains on finite spaces, as well as for bi-Laplace exponen-
tial transitions associated with a bounded drift function and for Gaussian transi-
tions with a mean drift function that is constant outside some compact domain. To
go one step further, we introduce the following quantities:

δm := sup
∏

0≤p<m

(
G(xp)/G(yp)

)
.(4.2)

In the above displayed formula, the supremum is taken over all admissible pair of
paths with elementary transitions M . In this situation, we can check that

rn ≤ 4�3,1(m), b	
n ≤ 2δm/εm

as well as

σ 2
n ≤ 4�2,2(m)σ 2 and β2

n ≤ 4�2,2(m)

with the uniform local variance parameter σ 2 and a collection of parameters
�k,l(m) such that �k,l(m) ≤ mδm−1δ

k
m/εk+2

m . The detailed proof of these esti-
mates can be found in Appendix A.3.

As we mentioned above, in the special case where the Markov kernels Kn,μ =
Kn do not depend on the measure μ, the random measures ηN

n coincide with the
occupation measure associated with N independent and identically distributed ran-
dom variables with common law ηn. In this situation, the pair of events described
in Theorem 1.2 resumes to the following Bennett and Hoeffding-type concentra-
tion events, respectively, given by

[ηN
n − ηn](fn) ≤ σ 2

nb
	
nε

−1
1

(
x

Nσ 2
n

)
and [ηN

n − ηn](fn) ≤
√

2x

N
βn.

The first inequality can be described more explicitly using the analytic estimates

ε−1
1 (x) ≤

√
2x + (4x/3) − log(1 + (x/3) + √

2x)

log(1 + (x/3) + √
2x)

≤ (x/3) + √
2x.

In the context of Feynman–Kac models, the second-order terms can be esti-
mated more explicitly using the upper bounds

ε−1
0 (x) ≤ 2x + log

(
1 + 2x + 2

√
x
) + log(1 + 2x + 2

√
x) − 2

√
x

2x + 2
√

x
≤ 2x + 2

√
x.
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A detailed proof of the upper bounds given above is detailed in Appendix A.6,
dedicated to the convex analysis of the Legendre–Fenchel transformations used in
this article. The second rough estimate in the r.h.s. of the above displayed formulae
leads to Bernstein-type concentration inequalities.

COROLLARY 4.1. For any N ≥ 1 and any n ≥ 0, we have the following
Bernstein-type concentration inequalities:

1

N
log P

(
[ηN

n − ηn](fn) ≥ rn

N
+ λ

)
≥ λ2

2

((
b	
nσn +

√
2rn√
N

)2

+ λ

(
2rn + b	

n

3

))−1

and

− 1

N
log P

(
[ηN

n − ηn](fn) ≥ rn

N
+ λ

)
≥ λ2

2

((
βn +

√
2rn√
N

)2
+ 2rnλ

)−1
.

In terms of the random fields V N
n , the first concentration inequality stated in

Corollary 4.1 takes the following form:

− log P

(
V N

n (fn) ≥ rn√
N

+ λ

)

≥ λ2

2

((
b	
nσn +

√
2rn√
N

)2

+ λ√
N

(
2rn + b	

n

3

))−1

−→
N→∞

λ2

2(b	
nσn)2 .

This proves the asymptotic estimate presented in (1.14).
Last, but not least, without further work, Theorem 1.2 leads to uniform concen-

tration inequalities for mean field particle interpretations of Feynman–Kac semi-
groups.

COROLLARY 4.2. In the context of Feynman–Kac models, under the mixing
type condition (M)m introduced in (4.1), for any N ≥ 1, any n ≥ 0 and any x ≥ 0
the probability of each of the following pair of events:

[ηN
n − ηn](fn) ≤ 4

N
�3,1(m)

(
1 + ε−1

0 (x)
)

+ 8δm

εm

�2,2(m)σ 2ε−1
1

(
x

4σ 2�2,2(m)N

)
and

[ηN
n − ηn](fn) ≤ 4

N
�3,1(m)

(
1 + ε−1

0 (x)
) + 2

√
2�2,2(m)x

N

is greater than 1 − e−x .
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5. A stochastic perturbation analysis.

5.1. Proof of the functional central limit theorem.

DEFINITION 5.1. We say that a collection of Markov transitions Kη from a
measurable space (E, E ) into another (F, F ) satisfies condition (K) as soon as the
following Lipschitz-type inequality is met for every f ∈ Osc1(F ):

(K) ‖[Kμ − Kη](f )‖ ≤
∫

|(μ − η)(h)|T K
η (f, dh).(5.1)

In the above display, T K
η stands for some collection of bounded integral operators

from B(F ) into B(E) such that

sup
η∈P(E)

∫
osc(h)T K

η (f, dh) ≤ osc(f )δ(T K),(5.2)

for some finite constant δ(T �) < ∞. In the special case where Kη(x, dy) =
�(η)(dy), for some mapping � :η ∈ P(E) �→ �(η) ∈ P(F ), condition (5.1) is
a simple Lipschitz-type condition on the mapping �. In this situation, we denote
by (�) the corresponding condition; and whenever it is met, we says that the map-
ping � satisfy condition (�).

We further assume that we are given a collection of McKean transitions Kn,η

satisfying the weak Lipschitz-type condition stated in (5.1). In this situation, we
already mention that the corresponding one-step mappings �n(η) = ηKn,η, and
the corresponding semigroup �p,n satisfies condition (�p,n) for some collection

of bounded integral operators T
�p,n
η .

In the context of Feynman–Kac-type mdels, it is not difficult to check that con-
dition (�n) is equivalent to the fact that the McKean transitions Kn,η given in
(2.2) satisfy the Lipschitz condition (5.1). The latter is also met for the Gaussian
transitions introduced in (2.3) as soon as the drift function d(x, η) is sufficiently
regular. As before, this condition is met for the Gaussian transitions introduced in
(2.3) and for the McKean-type model of gases (2.5) presented in Section 2.3. For
a more detailed discussion on these stability properties, we refer the reader to the
Appendix, on page 23.

Notice that the centered random fields WN
n introduced in (1.8) have conditional

variance functions given by

E(WN
n (fn)

2|F N
n−1) = ηN

n−1
[
Kn,ηN

n−1

((
fn − Kn,ηN

n−1
(fn)

)2)]
.(5.3)

Using Kintchine’s inequality, for every f ∈ Osc1(En), N ≥ 1 and any n ≥ 0 and
m ≥ 1 we have the L2m almost sure estimates

E
(|WN

n (fn)|2m|F (N)
n−1

)1/(2m) ≤ b(2m) with b(2m)2m := 2−m(2m)!/m!.(5.4)

We can also prove the following theorem.
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THEOREM 5.2. The sequence (WN
n )n≥0 converges in law, as N tends to in-

finity, to the sequence of n independent, Gaussian and centered random fields
(Wn)n≥0 described in Theorem 1.1.

The proof of this theorem follows the same line of arguments as those we used
in [9] in the context of Feynman–Kac models. For completeness, and for the con-
venience of the reader, the complete proof of this result is housed in Appendix A.2.

Let us examine some direct consequences of this result. Combining the Lip-
schitz property (�p,n) of the semigroup �p,n with the decomposition

[ηN
n − ηn] =

n∑
p=0

[�p,n(η
N
p ) − �p,n(�p(ηN

p−1))],

we find that

√
N |[ηN

n − ηn](fn)| =
n∑

p=0

∫
|WN

p (h)|T �p,n

�p(ηN
p−1)

(f, dh).

In the above displayed formulae, we have used the convention �0(η
N−1) = η0, for

p = 0. From the previous L2m almost sure estimates, we readily conclude that

sup
N≥1

√
NE

(|[ηN
n − ηn](fn)|2m)1/(2m) ≤ b(2m)

n∑
p=0

δ(T �p,n).

We are now in position to prove the fluctuation Theorem 1.1. Using the decom-
position

V N
n = WN

n + V N
n−1Dn + √

NR�n(ηN
n−1, ηn−1),

we readily prove that

V N
n =

n∑
p=0

WN
p Dp,n + 1√

N
RN

n ,(5.5)

with the remainder second-order measure

RN
n := N

n−1∑
p=0

R
�p+1
p+1 (ηN

p , ηp)Dp+1,n.

In the above display, Dp,n = Dp+1, . . . , Dn−1Dn stands for the semigroup as-
sociated with the integral operators Dn := Dηn−1�n, with the usual convention
Dn,n = Id, for p = n. Using a first-order derivation formula for the semigroup
�p,n (cf., e.g., Lemma A.1 on page 1039), it is readily checked that

Dηp�p,n = (Dηp�p+1)(Dηp+1�p+1,n) = Dp+1(Dηp�p,n) = Dp,n.
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Using the fact that

|RN
n (fn)| ≤

n−1∑
p=0

∫
|(V N

p )⊗2(g)|R�p+1
ηp (f, dg),

we conclude that, for any m ≥ 1, we have

E(|RN
n (fn)|m)1/m ≤ b(2m)2

n−1∑
p=0

β(Dp+1,n)

( p∑
q=0

δ(T �q,p )

)2

δ(R�p+1).

This clearly implies that 1√
N

RN
n converge in law to the null measure, in the sense

that 1√
N

RN
n (fn) converge in law to zero, for any bounded test function fn on En.

Using the fact that WN
n converges in law to the sequence of n independent, ran-

dom fields Wn, the proposition is now a direct consequence of the decomposition
formula (5.5). This ends the proof of Theorem 1.1.

5.2. A concentration lemma for triangular arrays. For every n ≥ 0 and N ≥ 1,
we let X

(N)
n := (X

(N,i)
n )1≤i≤N be a triangular array of random variables defined on

some filtered probability space (�, F N
n ) associated with a collection of increasing

σ -fields (F N
n )n≥0. We assume that (X

(N,i)
n )1≤i≤N are F N

n−1-conditionally inde-
pendent and centered random variables. Suppose furthermore that

∀n ≥ 0 an ≤ X(N,i)
n ≤ bn and E

((
X(N,i)

n

)2|F N
n−1

) ≤ c2
n

for some collection of finite constants (an, bn, cn), with the convention F N−1 =
{∅,�} for n = 0. For any n ≥ 0, let

T N
n := SN

n + RN
n where �SN

n := SN
n − SN

n−1 =
N∑

i=1

X(N,i)
n

and RN
n is a random perturbation term such that

∀m ≥ 1 E(|RN
n |m)1/m ≤ b(2m)2dn

for some finite constant dn. We use the convention SN−1 = 0, for n = 0. We set

c2
n := (b	

n)
−2

n∑
p=0

c2
p and δ2

n :=
n∑

p=0

δ2
p

with the middle point

δn := bn − an

2
.
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LEMMA 5.3. For any N ≥ 1 and any n ≥ 0, the probability of each of the
following pair of events

T N
n ≤ dn

(
1 + ε−1

0 (x)
) + Nc2

nb
	
nε

−1
1

(
x

Nc2
n

)
(5.6)

and

T N
n ≤ dn

(
1 + ε−1

0 (x)
) + δn

√
2xN(5.7)

is greater than 1 − e−x , for any x ≥ 0.

REMARK 5.4. Notice that (5.7) gives always a better concentration inequality
when

∑n
p=0 c2

p ≥ ∑n
p=0 δ2

p . In the opposite situation, if
∑n

p=0 c2
p <

∑n
p=0 δ2

p , in-
equality (5.6) gives better concentration estimates for sufficiently small values of
the precision parameter x.

Before getting into the details of the proof of the above lemma, we examine
some direct consequences of these inequalities based on Legendre–Fenchel trans-
forms estimates developed in Appendix A.6. First, combining (A.16) with (A.15)
we observe that, with probability greater than 1 − e−x ,

T N
n ≤ dn

(
1 + 2

√
x + θ0(x)

) + b	
n

(
cn

√
N

√
2x + Nc2

nθ1

(
x

Nc2
n

))
with the pair of functions

θ0(x) := 2x + log
(
1 + 2

√
x + 2x

) − 2
√

x + log(1 + 2
√

x + 2x)) − 2
√

x

2x + 2
√

x
≤ 2x

and

θ1(x) :=
√

2x + (4x/3)

log(1 + (x/3) + √
2x)

− 1 − √
2x ≤ x

3
.

The upper bounds given above together with (A.8) imply that, with probability
greater than 1 − e−x ,

T N
n ≤ dn + Anx +

√
2xBN

n ,

where

An :=
(

2dn + b	
n

3

)
and BN

n := (√
2dn + b	

ncn

√
N

)2
.

Using these successive upper bounds, we arrive at the following Bernstein-type
inequality:

− 1

N
log P

(
T N

n

N
≥ dn

N
+ λ

)
(5.8)

≥ λ2

2

((
b	
ncn +

√
2dn√
N

)2

+ λ

(
2dn + b	

n

3

))−1

.
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In much the same way, starting from (5.6), we have, with probability greater
than 1 − e−x ,

T N
n ≤ dn

(
1 + 2

(
x + √

x
)) + δn

√
2xN = dn + Anx +

√
2xBN

n ,(5.9)

with the pair of constants

An := 2dn and BN
n := (√

2dn + δn

√
N

)2
.

Using these successive upper bounds, we arrive at the following Bernstein-type
inequality:

− 1

N
log P

(
T N

n

N
≥ dn

N
+ λ

)
≥ λ2

2

((
δn +

√
2dn√
N

)2

+ 2dnλ

)−1

.(5.10)

PROOF OF LEMMA 5.3. First, we observe that

∀t ∈ [0,1/(2dn)[ E(etRN
n ) ≤ ∑

m≥0

(tdn)
m

m! b(2m)2m.

To obtain a more explicit form of the r.h.s. term, we recall that b(2m)2m = E(X2m)

with a Gaussian centered random variable with E(X2) = 1 and

∀d ∈ [0,1/2[ E(exp {dX2}) = ∑
m≥0

sm

m!b(2m)2m = 1√
1 − 2d

.

From this observation, we readily find that

∀t ∈ [0,1/(2dn)[ LN
0,n(t) := log E

(
et(RN

n −dn)) ≤ α0,n(t) := α0(tdn).

Using (A.7), we obtain the following almost sure inequality:

log E(et�SN
n |F N

n−1) ≤ N

(
cn

bn

)2

α1(bnt).

It implies that

∀t ≥ 0 LN
1,n(t) := log E(etSN

n ) ≤ N

n∑
p=0

(
cp

bp

)2

α1(bpt) ≤ αN
1,n(t),

with the increasing and convex function αN
1,n(t) = Nc2

nα1(b
	
nt).

Using (A.8), we now obtain the following Cramér–Chernoff estimate:

∀x ≥ 0 P
(
SN

n + RN
n ≥ rn + (LN	

0,n)
−1(x) + (LN	

1,n)
−1(x)

) ≤ e−x.(5.11)

In other words, the probability that

SN
n + RN

n ≤ rn + (LN	
0,n)

−1(x) + (LN	
1,n)

−1(x)
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is greater than 1 − e−x , which, together with the homogeneity properties of the
inverses of Legendre–Fenchel transforms recalled in Appendix A.6, gives (5.6).

The proof of (5.7) is based on Hoeffding’s inequality,

8 log E(etX
(N,i)
n |F N

n−1) ≤ t2(bn − an)
2.

From these estimates, we readily find that LN
1,n(t) ≤ αN

2,n(t) := Nδ2
nt

2/2. Arguing
as before, we find that

(LN	
1,n)

−1(x) ≤ (αN	
2,n)

−1(x) =
√

2xNδ2
n.

We end the proof of the second assertion using (5.11). This ends the proof of the
lemma. �

5.3. Concentration properties of mean field models. This section is concerned
with the proof of Theorem 1.2. To simplify the presentation, we set

D(N)
p,n := D�p(ηN

p−1)
�p,n and Rp,n = R�p,n.

Under our assumptions, we have the almost sure estimates

sup
N≥1

β
(

D(N)
p,n

) ≤ β(D�p,n) := sup
η∈P(Ep)

β(Dη�p,n).

In this notation, one important consequence of the above lemma is the following
decomposition:

V N
n := √

N [ηN
n − ηn]

= √
N

n∑
p=0

[�p,n(η
N
p ) − �p,n(�p(ηN

p−1))] = IN
n + JN

n

with the pair of random measures (IN
n , JN

n ) given by

IN
n :=

n∑
p=0

WN
p D(N)

p,n and JN
n := √

N

n∑
p=0

Rp,n(η
N
p ,�p(ηN

p−1)).

In what follows fn stands for some test function fn ∈ Osc1(En). Combining (5.4)
with the generalized Minkowski integral inequality we find that

NE
(|Rp,n(η

N
p ,�p(ηN

p−1))(fn)|m|F (N)
p−1

)1/m ≤ b(2m)2δ(R�p,n),

from which we readily conclude that

E
(|√NJN

n (fn)|m)1/m = NE

(∣∣∣∣∣
n∑

p=0

Rp,n(η
N
p ,�p(ηN

p−1))(fn)

∣∣∣∣∣
m)1/m

≤ b(2m)2
n∑

p=0

δ(R�p,n).
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Notice that

√
NIN

n =
n∑

p=0

N∑
i=1

X (N,i)
p,n (fn) where X (N,i)

p,n (fn) = U(N,i)
p

(
D(N)

p,n (fn)
)
,

and the random measures U
(N,i)
p are given, for any gp ∈ Osc1(Ep), by

U(N,i)
p (gp) := gp

(
ξ (N,i)
p

) − Kp,ηN
p−1

(gp)
(
ξ

(N,i)
p−1

)
.

In the further development of this section, we fix the final time horizon n and the
the function fn ∈ Osc1(En). To clarify the presentation, we omit the final time
index and the test function fn, and we set, for any p in [0, n],

X(N,i)
p = X (N,i)

p,n (fn), SN
p =

p∑
q=0

N∑
i=1

X(N,i)
q

and

RN
p := N

p∑
k=0

Rq,n(η
N
q ,�q(η

N
q−1)).

At the final time horizon, we have

p = n �⇒ SN
n = √

NIN
n and RN

n = √
NJN

n .

By construction, these variables form a triangular array of F N
p−1-conditionally

independent random variables and

E
((

X(N,i)
p

)2|F N
p−1

) = 0.

In addition, we readily check the following almost sure estimates:∣∣X(N,i)
p

∣∣ ≤ β(D�p,n) and E
((

X(N,i)
p

)2|F N
p−1

)1/2 ≤ σpβ(D�p,n)

for any 0 ≤ p ≤ n. The proof of the theorem is now a direct consequence of Lem-
ma 5.3.

APPENDIX

A.1. A first-order composition lemma.

LEMMA A.1. For any pair of mappings �1 ∈ ϒ(E0,E1) and �2 ∈ ϒ(E1,E2)

the composition mapping (�2 ◦ �1) ∈ ϒ(E0,E2) and we have the first-order
derivation-type formula

Dη(�2 ◦ �1) = Dη�1D�1(η)�2.(A.1)
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PROOF. To check this property, we first observe that under this condition, we
clearly have the Lipschitz property,

|[�(μ) − �(η)](f )| ≤
∫

|(μ − η)(h)|T �
η (f, dh),(�)

for some collection of integral operators T �
η from B(F ) into the set Osc1(E) such

that

sup
η∈P(E)

∫
osc(h)T �

η (f, dh) ≤ osc(f )δ(T �)(A.2)

for some finite constant δ(T �) < ∞. Using this property, we easily check that
(A.1) is met with

β
(

D(�2 ◦ �1)
) ≤ β(D�2)β(D�1)

and

δ(R�2◦�1) ≤ δ(T �1) + δ(T �1)2δ(R�2).

This ends the proof of the lemma. �

We also mention that for any pair of mappings �1 :η ∈ P(E0) �→ �1 ∈ P(E1)

and �2 :η ∈ P(E1) �→ �1 ∈ P(E2), the composition mapping � = �2 ◦ �1 satis-
fies condition (�) as soon as this condition is met for each mapping. In this case,
we also notice that

δ(T �2◦�1) ≤ δ(T �2) × δ(T �1).

Suppose we are given a mapping � defined in terms of a nonlinear transport for-
mula

�(η) = ηKη,

with a collection of Markov transitions Kη from a measurable space (E, E ) into
another (F, F ) satisfying condition (K). Using the decomposition

�(μ) − �(η) = [η − μ]Kη + μ[Kμ − Kη],
we readily check that

(K) �⇒ (�) with T �
η (f, dh) = δKη(f )(dh) + T K

η (f, dh).

A.2. Proof of Theorem 5.2. Let F N = {F N
n ;n ≥ 0} be the natural filtration

associated with the N -particle system ξ
(N)
n . The first class of martingales that

arises naturally in our context is the R
d -valued and F N -martingale MN

n (f ) de-
fined by

MN
n (f ) =

n∑
p=0

[ηN
p (fp) − �p(ηN

p−1)(fp)],(A.3)
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where fp :xp ∈ Ep �→ fp(xp) = (f u
p (xp))u=1,...,d ∈ R

d is a d-dimensional and
bounded measurable function. By direct inspection, we see that the vth compo-
nent of the martingale MN

n (f ) = (MN
n (f u))u=1,...,d is the d-dimensional and FN -

martingale defined for any u = 1, . . . , d by the formula

MN
n (f u) =

n∑
p=0

[ηN
p (f u

p ) − �p(ηN
p−1)(f

u
p )]

=
n∑

p=0

[ηN
p (f u

p ) − ηN
p−1Kp,ηN

p−1
(f u

p )],

with the usual convention K0,ηN−1
= η0 = �0(η

N−1) for p = 0. The idea of the proof

consists of using the CLT for triangular arrays of R
d -valued random variables

([18], Theorem 3.33, page 437). We first rewrite the martingale
√

NMN
n (f ) in the

following form:

√
NMN

n (f ) =
N∑

i=1

n∑
p=0

1√
N

(
fp

(
ξ (N,i)
p

) − Kp,ηN
p−1

(fp)
(
ξ

(N,i)
p−1

))
.

This readily yields
√

NMN
n (f ) = ∑(n+1)N

k=1 UN
k (f ) where for any 1 ≤ k ≤ (n +

1)N with k = pN + i for some i = 1, . . . ,N and p = 0, . . . , n

UN
k (f ) = 1√

N

(
fp

(
ξ (N,i)
p

) − Kp,ηN
p−1

(fp)
(
ξ

(N,i)
p−1

))
.

We further denote by GN
k the σ -algebra generated by the random variables ξ

j
p for

any pair index (j,p) such that pN + j ≤ k. It can be checked that, for any 1 ≤
u < v ≤ d and for any 1 ≤ k ≤ (n + 1)N with k = pN + i for some i = 1, . . . ,N

and p = 0, . . . , n, we have E(UN
k (f u)|GN

k−1) = 0 and

E(UN
k (f u)UN

k (f v)|GN
k−1)

= 1

N
Kp,ηN

p−1
[(f u

p − Kp,ηN
p−1

f u
p )(f v

p − Kp,ηN
p−1

f v
p )](X(N,i)

p−1

)
.

This also yields that

pN+N∑
k=pN+1

E(UN
k (f u)UN

k (f v)|F N
k−1)

= ηN
p−1

[
Kp,ηN

p−1
[(f u

p − Kp,ηN
p−1

f u
p )(f v

p − Kp,ηN
p−1

f v
p )]].

Our aim is now to describe the limiting behavior of the martingale
√

NMN
n (f ) in

terms of the process XN
t (f )

def.= ∑[Nt]+N
k=1 UN

k (f ). By the definition of the particle
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model associated with a given mapping �n, and using the fact that [ [Nt]
N

] = [t],
one gets that for any 1 ≤ u, v ≤ d

[Nt]+N∑
k=1

E(UN
k (f u)UN

k (f v)|F N
k−1)

= CN[t](f u, f v) + [Nt] − N[t]
N

(
CN[t]+1(f

u, f v) − CN[t](f u, f v)
)
,

where, for any n ≥ 0 and 1 ≤ u, v ≤ d ,

CN
n (f u, f v) =

n∑
p=0

ηN
p−1

[
Kp,ηN

p−1

(
(f u

p − Kp,ηN
p−1

f u
p )(f v

p − Kp,ηN
p−1

f v
p )

)]
.

Under our regularity conditions on the McKean transitions, this implies that for
any 1 ≤ i, j ≤ d ,

[Nt]+N∑
k=1

E(UN
k (f u)UN

k (f v)|F N
k−1)

P−−−→
N→∞ Ct(f

u, f v),

with

Cn(f
u, f v) =

n∑
p=0

ηp−1
[
Kp,ηp−1

(
(f u

p − Kp,ηp−1f
u
p )(f v

p − Kp,ηp−1f
v
p )

)]
and, for any t ∈ R+,

Ct(f
u, f v) = C[t](f u, f v) + {t}(C[t]+1(f

u, f v) − C[t](f u, f v)
)
.

Since ‖UN
k (f )‖ ≤ 2√

N
(
∨

p≤n ‖fp‖), for any 1 ≤ k ≤ [Nt] + N , the condi-
tional Lindeberg condition is clearly satisfied, and therefore one concludes that
the R

d -valued martingale {XN
t (f ); t ∈ R+} converges in law to a continuous

Gaussian martingale {Xt(f ); t ∈ R+} such that, for any 1 ≤ u, v ≤ d and t ∈ R+,
〈X(f u),X(f v)〉t = Ct(f

u, f v). Recalling that XN[t](f ) = √
NMN[t](f ), we con-

clude that the R
d -valued and F N -martingale

√
NMN

n (f ) converges in law to an
R

d -valued and Gaussian martingale Mn(f ) = (Mn(f
u))u=1,...,d such that for any

n ≥ 0 and 1 ≤ u, v ≤ d

〈M(f u),M(f v)〉n =
n∑

p=0

ηp−1
[
Kp,ηp−1

(
(f u

p − Kp,ηp−1f
u
p )(f v

p − Kp,ηp−1f
v
p )

)]
,

with the convention K0,η−1 = η0 for p = 0.
To take the final step, we let (ϕn)n≥0 be a sequence of bounded measurable

functions, respectively, in B(En)
dn . We associate with ϕ = (ϕn)n the sequence of

functions f = (fp)0≤p≤n defined for any 0 ≤ p ≤ n by the following formula:

fp = (f u
p )u=0,...,n = (0, . . . ,0, ϕp,0, . . . ,0) ∈ B(Ep)d0+···+dp+···+dn.



CONCENTRATION INEQUALITIES FOR MEAN FIELD PARTICLE MODELS 1043

In the above display, 0 stands for the null function in B(Ep)dq (for q �= p). By
construction, we have, f u

u = ϕu and for any 0 ≤ u ≤ n, we have that

f u = (f u
p )0≤p≤n

= (0, . . . ,0, ϕu,0, . . . ,0)

∈ B(E0)
d0 × · · · × B(Eu)

du × · · · × B(En)
dn

so that
√

NMN
n (f u) = √

N [ηN
u (ϕu) − ηN

u−1Ku,ηN
u−1

(ϕu)] = V N
u (ϕu)

and therefore
√

NMN
n (f ) := (√

NMN
n (f u)

)
0≤u≤n = (V N

u (ϕu))0≤u≤n := V N
n (ϕ).

We conclude that V N
n (ϕ) converges in law to an (n + 1)-dimensional and centered

Gaussian random field Vn(ϕ) = (Vu(ϕu))0≤u≤n with, for any 0 ≤ u, v ≤ n,

E(Vu(ϕ
1
u)Vv(ϕ

2
v))

= 1u(v)ηu−1[Ku,ηu−1(ϕ
1
u − Ku,ηu−1ϕ

1
u)Ku,ηu−1(ϕ

2
u − Ku,ηu−1ϕ

2
u)].

This ends the proof of the theorem.

A.3. Feynman–Kac semigroups. In the context of Feynman–Kac flows (2.1)
discussed in the Introduction, the semigroup �p,n is given by the following for-
mula:

ηn(f ) = ηp(Qp,n(f ))

ηp(Qp,n(1))
with Qp,n = Qp+1, . . . ,Qn−1Qn.

For p = n, we use the convention Qn,n = Id, the identity operator. Also observe
that

[�p,n(μ) − �p,n(η)](f ) = 1

μ(Gp,n,η)
(μ − η)Dη�p,n(f ),

with the first-order operator

Dη�p,n(f ) := Gp,n,ηPp,n

(
f − �p,n(η)(f )

)
.

In the above display Gp,n,η and Pp,n stand for the potential function and the
Markov operator given by

Gp,n,η := Qp,n(1)/η(Qp,n(1)) and Pp,n(f ) = Qp,n(f )/Qp,n(1).

It is now easy to check that

R�p,n(μ,η)(f ) := − 1

μ(Gp,n,η)
[μ − η]⊗2(

Gp,n,η ⊗ Dp,n,η(f )
)
.



1044 P. DEL MORAL AND E. RIO

Using the fact that

Dη�p,n(f )(x) = Gp,n,η(x)

∫
[Pp,n(f )(x) − Pp,n(f )(y)]Gp,n,η(y)η(dy),

we find that

∀f ∈ Osc1(En) ‖Dη�p,n(f )‖ ≤ qp,nβ(Pp,n)

with

qp,n = sup
x,y

Qp,n(1)(x)

Qp,n(1)(y)
.

This implies that

β(D�p,n) ≤ 2qp,nβ(Pp,n).

Finally, we observe that

|R�p,n(μ,η)(f )| ≤ (2q2
p,nβ(Dp,n))

∣∣∣∣[μ − η]⊗2
(

Gp,n,η

2qp,n

⊗ Dp,n,η(f )

β(Dp,n)

)∣∣∣∣
from which one concludes that

δ(R�p,n) ≤ 2q2
p,nβ(D�p,n) ≤ 4q3

p,nβ(Pp,n).

We end this section with the analysis of these quantities for the time homoge-
neous models discussed in (4.1) and (4.2). Under the condition (M)m we have for
any n ≥ m ≥ 1 and p ≥ 1,

qp,p+n ≤ δm/εm and β(Pp,p+n) ≤ (1 − ε2
m/δm−1)

�n/m�.(A.4)

The proof of these estimates relies on semigroup techniques (see [9], Chapter 4, for
details). Several contraction inequalities can be deduced from these results, given
below.

For any k ≥ 0 and for l = 1,2,
n∑

p=0

qk
p,nβ(Pp,n)

l ≤ �k,l(m) := m(δm/εm)k

1 − ((1 − ε2
m/δm−1))l

.(A.5)

Notice that

�k,l(m) ≤ mδm−1
δk
m/εk+2

m

(2 − (ε2
m/δm−1))l−1 ≤ mδm−1δ

k
m/εk+2

m ,

and that

rn ≤ 4�3,1(m) and b	
n ≤ 2δm/εm

as well as

σ 2
n ≤ 4�2,2(m)σ 2 and β2

n ≤ 4�2,2(m) with σ 2 := sup
n≥1

σ 2
n (≤1).
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A.4. McKean mean field model of gases. We consider McKean-type models
of gases (2.5) presented in Section 2.3. To simplify the presentation, we consider
time homogeneous models, and we supress the time index. In this notation, we find
that

[Kη − Kμ](f )(x) =
∫

ν(ds)[η − μ](a(s, ·))M(f )(s, x).

Observe that

[η − μ](Kη − Kμ)(f )(x) =
∫

ν(ds)[η − μ](a(s, ·))[η − μ](M(f )(s, ·)).
Using the decomposition

�(η) − �(μ) = (η − μ)Kμ + μ(Kη − Kμ) + [η − μ](Kη − Kμ)(A.6)

we readily check that � ∈ ϒ(E,E) with the first-order operator

Dμ�(f )(x) = [Kμ(f )(x) − �(μ)(f )]
+

∫
ν(ds)[a(s, x) − μ(a(s, ·))]μ(M(f )(s, ·))

and the second-order remainder measure

R�(μ,η)(f ) =
∫

[η − μ]⊗2(gs)ν(ds) with gs = a(s, ·) ⊗ M(f )(s, ·).
In this situation, we notice that

β(D�) ≤ β(M)

[
1 +

∫
ν(ds)osc(a(s, ·))

]
and

δ(R�) ≤ β(M)

∫
ν(ds)osc(a(s, ·)).

A.5. Gaussian semigroups. To simplify the presentation, we only discuss
time homogenous and one-dimensional models. We consider the one-dimensional
gaussian transitions on E = R defined below:

Kη(x, dy) = 1√
2π

exp
{
−1

2

(
y − d(x, η)

)2
}

dy

with some linear drift function dn of the form d(x, η) = a(x) + η(b)c(x), with
some measurable (and nonnecessarily bounded) function a, and some pair of func-
tions b and c ∈ B(R). We use the decomposition

[Kη − Kμ](f )(x) =
∫

Kμ(x, dy)�(�μ,η(x, y))f (y)

+
∫

Kμ(x, dy)�μ,η(x, y)f (y)
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with �(u) = eu − 1 − u and the function �μ,η(x, y) defined by

�μ,η(x, y) = log
dKη(x, ·)
dKμ(x, ·)(y) = �(1)

μ,η(x, y) + �(2)
μ,η(x, y)

with

�(1)
μ,η(x, y) := [d(x, η) − d(x,μ)][y − d(x,μ)] = c(x)(η − μ)(b)[y − d(x,μ)],

�(2)
μ,η(x, y) := −1

2 [d(x, η) − d(x,μ)]2 = −1
2c(x)2[(η − μ)(b)]2.

Under our assumptions on the drift function d , we have∣∣�(1)
μ,η(x, y)

∣∣ ≤ ‖c‖osc(b)|y − d(x,μ)| and
∣∣�(2)

μ,η(x, y)
∣∣ ≤ ‖c‖2 osc(b)2/2.

Using the fact that |�(u)| ≤ e|u|u2/2, after some elementary manipulations we
prove that

sup
x∈R

∣∣∣∣[Kη − Kμ](f )(x) −
∫

Kμ(x, dy)�(1)
μ,η(x, y)f (y)

∣∣∣∣ ≤ C[(η − μ)(b)]2‖f ‖

with some finite constant C < ∞ whose values only depend on ‖c‖ and osc(b).
On the other hand, we have∫

(η − μ)(dx)

∫
Kμ(x, dy)�(1)

μ,η(x, y)f (y) = (η − μ)⊗2(
b ⊗ (K ′

μ(f ))
)

and ∫
μ(dx)

∫
Kμ(x, dy)�(1)

μ,η(x, y)f (y) = (η − μ)(b)μ(K ′
μ(f ))

with the bounded integral operator K ′
μ defined by

K ′
μ(f )(x) = c(x)

∫
Kμ(x, dy)[y − d(x,μ)]f (y).

Using the decomposition (A.6) we prove that

�(η)
(
f − �(μ)(f )

) = (η − μ)Dμ�(f ) + R�(η,μ)(f ),

with the first-order operator

Dμ�(f ) = Kμ

(
f − �(μ)(f )

) + bμ(K ′
μ(f ))

and a second-order remainder term such that

|R�(η,μ)(f )| ≤ C′[∣∣(η − μ)⊗2(
b ⊗ (K ′

μ(f ))
)∣∣ + [(η − μ)(b)]2 osc(f )

]
with some finite constant C′ < ∞ whose values only depend on ‖c‖ and osc(b).
Using the fact that

K ′
μ(1) = 0 and ‖K ′

μ(f )‖ = ∥∥K ′
μ

(
f − �(μ)(f )

)∥∥ ≤ ‖c‖osc(f ),

we conclude that (3.3) and (3.4) are met with δ(R�) ≤ C′ osc(b)(2‖c‖ + osc(b)),
and condition (3.2) is satisfied with β(D�) ≤ 1 + ‖c‖osc(b).
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A.6. Legendre transform and convex analysis. We associate with any in-
creasing and convex function L : t ∈ Dom(L) �→ L(t) ∈ R+ defined in some do-
main Dom(L) ⊂ R+, with L(0) = 0, the Legendre–Fenchel transform L	 defined
by the variational formula

∀λ ≥ 0 L	(λ) := sup
t∈Dom(L)

(
λt − L(t)

)
.

Note that L	 is a convex increasing function with L	(0) = 0 and its inverse (L	)−1

is a concave increasing function [with (L	)−1(0) = 0].
For instance, the Legendre–Fenchel transforms (α	

0, α
	
1) of the pair of convex

nonnegative functions (α0, α1) given below:

∀t ∈ [0,1/2[ α0(t) := −t − 1
2 log (1 − 2t)

and

∀t ≥ 0 α1(t) := et − 1 − t

are simply given by

α	
0(λ) = 1

2

(
λ − log (1 + λ)

)
and α	

1(λ) = (1 + λ) log (1 + λ) − λ.

Recall that, for any centered random variable Y with values in ]−∞,1] such
that E(Y 2) ≤ v, we have

E(etY ) ≤ vet + e−vt

1 + v
≤ 1 + vα1(t) ≤ exp(vα1(t)).(A.7)

We refer to [6] for a proof of (A.7) and for more precise results. For any pair of
such functions (L1,L2), it is readily checked that

∀t ∈ Dom(L2) L1(t) ≤ L2(t) and Dom(L2) ⊂ Dom(L1)

⇓
L	

2 ≤ L	
1 and (L	

1)
−1 ≤ (L	

2)
−1.

For any pair of positive numbers (u, v), We also have that

∀t ∈ v−1 Dom(L2) L1(t) = uL2(vt)

⇓
∀λ ≥ 0 L	

1(λ) = uL	
2

(
λ

uv

)
and ∀x ≥ 0 (L	

1)
−1(x) = uv(L	

2)
−1

(
x

u

)
.

As a simple consequence of the latter results, let us quote the following property
that will be used later in the further development of Section 5.3:

u ≤ u and v ≤ v �⇒ uv(L	
2)

−1
(

x

u

)
≤ uv(L	

2)
−1

(
x

u

)
.
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Here we want to give upper bounds on the inverse functions of the Legendre trans-
forms. Our motivation is due to the following result, which avoids the loss of a
factor 2 when adding exponential inequalities. Let A and B be centered random
variables with finite log-Laplace transform, which we denote by αA and αB , in a
neighborhood of 0. Then, denoting by αA+B the log-Laplace transform of A + B ,

(α	
A+B)−1(t) ≤ (α	

A)−1(t) + (α	
B)−1(t)(A.8)

for any positive t (see [25], Lemma 2.1).
In order to obtain analytic approximations of these inverse functions, one can

use the Newton algorithm: let

F(z) = z + x − α∗(z)
(α∗)′(z)

,

and define the sequence (zn) by zn = F(zn−1). From the properties of the
Legendre–Fenchel transform, we also have that

F(z) =
(

α((α′)−1(z)) + x

(α′)−1(z)

)
.(A.9)

Now recall the variational formulation of the inverse of the Legendre–Fenchel
transform,

(α	)−1(x) = inf
t>0

t−1(
α(t) + x

)
,(A.10)

valid for any x ≥ 0 (see [26], page 159 for a proof of this formula). From this
formula, assuming that α′′(0) > 0 and setting z = α′(t), we get that

(α	)−1(x) = inf
z∈α′(Dom(α))

F (z).(A.11)

Let then f (z) = α((α′)−1(z)) + x and g(z) = (α′)−1(z). From the strict convexity
of α, the function t → t−1((α(t) + x) a unique minimum tx and is decreasing
with negative derivative for t < tx , increasing with positive derivative for t > tx . It
follows that f/g has a unique critical point z(x), which is the unique global strict
minimum of F and the unique fixed point of F . Furthermore z(x) = (α	)−1(x).

Let z0 > 0 be in the interior of the image by α′ of the domain of α. If z0 > z(x),
then (zn) is a decreasing sequence of numbers bounded from below by z(x). Hence
(zn) decreases to z(x) as n tends to ∞. If z0 < z(x) and F(z0) belongs to the
interior of α′(Dom(α)), then z1 > z(x) and (zn)n>0 is decreasing to z(x).

We now recall the convergence properties of the Newton algorithm. Assume that
z0 > z(x) and let A be a positive real such that F ′′(z) ≤ 2A for any z in [z(x), z0].
Then, by the Taylor formula at order 2,

0 ≤ zn − z(x) ≤ A2n−1(
z0 − z(x)

)(2n)
,(A.12)

which provides a supergeometric rate of convergence if A(z0 − z(x)) < 1.
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Since F depends on x, A is a function of x. In order to get estimates of the
rate of convergence of zn to z(x) for small values of x, we now assume that α′ is
convex. We will prove that

A := 1

2
sup

z≥z(x)

F ′′(z) ≤ (α	)−1(x)

2xα′′(0)
.(A.13)

To prove (A.13), we start by computing F ′′ = (f/g)′′. Since f ′ = zg′,
(f/g)′ = g′(zg − f )g−2.

Now (zg − f )′ = g + (zg′ − f ′) = g. It follows that

(f/g)′′ = g′g−1 + (zg − f )(g′′g−2 − 2g′2g−3).

Next, for z ≥ z(x), zg(z) − f (z) ≥ 0, so that

(f/g)′′(z) ≤ g′g−1 + (zg − f )g′′g−2.

Under the additional assumption that α′ is convex, the inverse function (α′)−1 = g

is concave, so that g′′ ≤ 0. In that case, for z ≥ z(x),

(f/g)′′(z) ≤ g′(z)/g(z) = (logg)′(z).
Now logg is the inverse function of ψ(t) = α′(et ). From the properties of α′, the
function ψ is convex, so that logg is concave. Hence (logg)′ is nonincreasing,
which implies that

F ′′(z) ≤ g′(z(x))/g(z(x)) = z(x)g′(z(x))/f (z(x)) for any z ≥ z(x).

Since f (z) ≥ x and g′(z(x)) ≤ g′(0) = 1/α′′(0), we get (A.13), noticing that
z(x) = F(z(x)) = (α	)−1(x).

We now apply these results to the functions α0 and α1. Using the fact that

t2

2
≤ α1(t) := et − 1 − t ≤ α1(t) := t2

2(1 − t/3)

for every t ∈ [0,3[, and applying (B.5), page 153 in [26], we get that
√

2x ≤ (α	
1)

−1(x) ≤ (α	
1)

−1(x) = √
2x + (x/3).

Also, by the second part of Theorem B.2 in [26], the function α	
1, which is the

inverse function of the above function, satisfies

α	
1(t) ≥ t2

2(1 + (t/3))
,(A.14)

which is the usual bound in the Bernstein inequality. Now z = et − 1, and conse-
quently t = log(1 + z) and

F(z) = x + z − log(1 + z)

log(1 + z)
.
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Set z0 = √
2x + (x/3). Then z0 > z(x). Hence z(x) < z1 < z0 (here z1 = F(z0)).

So

(α	
1)

−1(x) ≤ z1 :=
√

2x + (4x/3) − log(1 + (x/3) + √
2x)

log(1 + (x/3) + √
2x)

(A.15)
≤ (x/3) + √

2x.

Furthermore, from (A.12) and (A.13) and the fact that z0 − z(x) ≤ x/3,

0 ≤ z1 − (α	
1)

−1(x) ≤ x

18
(α	

1)
−1(x),

which ensures that

18z1/(18 + x) ≤ (α	
1)

−1(x) ≤ z1.

In the same way, noticing that

t2/(1 − 4t/3) ≤ α0(t) ≤ t2/(1 − 2t) for any t ∈ [0,1/2[,
we get

2
√

x + (4x/3) ≤ (α	
0)

−1(x) ≤ 2
√

x + 2x := z0.

By definition of α0, we have α′
0(t) = 2t/(1 − 2t). Let z = 2t/(1 − 2t). Then t =

z/(2 + 2z), so that

F(z) = x + α0((α
′
0)

−1(t))

(α′
0)

−1(t)
= 2x + log(1 + z) + 2x + log(1 + z) − z

z
.

Computing z1 = F(z0), we get

(α	
0)

−1(x) ≤ z1 := 2x + log
(
1 + 2x + 2

√
x
)

+ log(1 + 2x + 2
√

x) − 2
√

x

2x + 2
√

x
(A.16)

≤ 2x + 2
√

x,

which improves on the previous upper bound. Furthermore, from (A.12) and
(A.13)

0 ≤ z1 − (α	
0)

−1(x) ≤ x

9
(α	

0)
−1(x),

which ensures that

9z1/(9 + x) ≤ (α	
0)

−1(x) ≤ z1.
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