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‘We consider a processor sharing queue where the number of jobs served
at any time is limited to K, with the excess jobs waiting in a buffer. We
use random counting measures on the positive axis to model this system.
The limit of this measure-valued process is obtained under diffusion scaling
and heavy traffic conditions. As a consequence, the limit of the system size
process is proved to be a piece-wise reflected Brownian motion.

1. Introduction. This paper is concerned with developing a diffusion approx-
imation for a limited processor sharing (LPS) queue, which consists of a single
server and an infinite capacity buffer. In such a system, the server can serve up
to K > 1 jobs simultaneously, equally distributing its attention to each of them. In
other words, each job in the server is processed at a rate that is the reciprocal of the
number of jobs in the server. An arriving job will immediately enter the server and
start receiving service if there are less than K jobs in the server when it arrives;
otherwise it will wait in the buffer. A job will leave the system immediately after
the server has fulfilled its service requirement. When the number of jobs in the
server drops from K to K — 1, the server will immediately admit the longest wait-
ing customer from the buffer, if there is one. We assume that jobs arrive according
to a general arrival process, and the job sizes are independent of each other and
identically distributed.

Note that letting K = co makes the system a standard processor sharing (PS)
queue, which has been the focal point of significant recent research activity. The
PS discipline can be viewed as an idealization of time-sharing protocols in com-
puter systems, as described in [20] and [23]. The advantage is that a big job will
not block the whole system as in a first-come-first-serve (FCFS) queue. However,
allowing too many jobs to time-share at once can lead to significant overhead due
to switching, and hence reduce overall performance. This point has already been
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observed in early studies of operating systems [5, 8], as well as in more recent
Web server design papers [10, 18] and database implementation papers [16, 24].
So in the modeling of many computer and communication systems, a sharing limit
is normally imposed, which results in the LPS model.

Despite the numerous applications, there are only a few studies on the LPS
queue. Avi-Itzhak and Halfin [2] propose an approximation for the mean response
time assuming Poisson arrivals. A computational analysis based on matrix geo-
metric methods is performed in Zhang and Lipsky [27, 28]. Some stochastic or-
dering results are derived in Nuyens and van de Weij [21]. Recently, Zhang, Dai
and Zwart [29] have developed a fluid approximation for the LPS queue using the
framework of measure-valued processes. As a continuation of [29], the present
study investigates a diffusion approximation for the LPS queue in the heavy traffic
regime.

In our model, the system consists of a server for serving jobs and a buffer for
holding the waiting jobs. We model the LPS queue by means of a measure-valued
process (Q(-), Z(-)). Each component of the process takes values in the space of
finite, nonnegative Borel measures on R = [0, 00). For each t > 0, Z(¢) puts unit
mass at the residual job size of each job in the server at time ¢t > 0, and Q(¢) puts
unit mass at the job size of each job in the buffer at time # > 0. The main insight
of our approach is to design the stochastic dynamic equations (2.5) and (2.6) using
the measure valued process (Q(-), Z(-)), which can describe the evolution of the
system. Our asymptotic regime is when the sharing limit K is large and the queue
is critically loaded. Following the standard practice in the literature, we consider a
sequence of queues indexed by r € R,.. We assume that lim, ,oc K" /r = K >0
and the traffic intensity goes to the critical value 1 as in (2.23), where K" is the
sharing limit in the rth queue. (Superscript r indicates a quantity that is associated
with the rth queue.)

We are interested in the limit of the diffusion scaled process

<l o (%), 13’(#.))
r r

as r goes to infinity. As shown in Williams [26], a key step to obtain a diffusion
limit in heavy traffic is to establish a state-space collapse (SSC) result. In our set-
ting, the SSC means that the diffusion-scaled measure-valued process, which is an
infinite-dimensional object, is close to a deterministic function of the diffusion-
scaled, one-dimensional workload process. (See Definition 2.1 for the lifting map
to define the function.) The workload process is invariant under any nonidling
service policy, and its diffusion limit is a one-dimensional reflected Brownian mo-
tion (RBM). The main result of this paper (Theorem 2.1) is that our measure-
valued diffusion limit is a deterministic function of the one-dimensional RBM. As
a corollary, the diffusion-scaled system size process converges in distribution to a
piecewise linear RBM.
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Most of this paper is devoted to proving the SSC result for each fixed time
T > 0 (Theorem 2.2). Our proof strategy is analogous to the modular approach
proposed in Bramson [6] and Williams [26]. For our sequence of systems, we
define a critically loaded measure-valued fluid model. The fluid model in this paper
is the same LPS fluid model developed in [29], specialized for the critically loaded
case. We show that our fluid model exhibits an SSC: each fluid model solution
converges to an equilibrium state in some uniform sense, and each equilibrium
state has an SSC.

We adopt Bramson’s framework in [6] to translate the fluid model SSC result
into the diffusion-scaled SSC result. The diffusion scaled process on the interval
[0, T'] corresponds to unscaled process on the interval [0, r2T]. Fix a constant
L > 1, the interval [0, 72T is covered by the |rT | + 1 overlapping intervals

[rm,rm +rL], m=0,1,...,[rT].

On each of these intervals, the diffusion scaled process can be viewed as a shifted,
fluid-scaled process defined by

1 1
<—Q’(rm+rt),—Z’(rm+rt)), 0<tr<L.
r r

To carry out the translation, we need to show that (a) each limit from the family of
shifted, fluid-scaled processes is a solution to the fluid model (such a limit is called
a fluid limit in this paper, also known as a “cluster point” in [6]); (b) the set of fluid
limits is “rich”: with large probability, each shifted, fluid-scaled measure-valued
process is close to some fluid limit. A major step to proving (a) and (b) is to show,
with large probability, the precompactness of the shifted fluid scaled processes (see
Theorem 4.1 for details). Since m ranges from O to | T |, this involves a substantial
refinement of the arguments in [29], where the case m = 0 is treated.

Establishing SSC for the fluid model requires a study of equilibrium states for
the LPS fluid model developed in [29]. In Section 3, we characterize the set of
equilibrium states, and show that each fluid model solution with initial condition
belonging to a compact set converges uniformly to its equilibrium state. The coun-
terpart of this study for standard PS queues has been carried out in [22]. Standard
PS queues are relatively tractable since their fluid models can be related (by means
of a time-change) to a renewal equation. This is not the case for LPS systems
(as explained in [29]), so a different approach is necessary. The idea behind the
proof of the uniform convergence is to carefully track the total mass of the fluid
model, and determine whether it is eventually bigger, smaller or equal to the shar-
ing limit K. Several insights (explained in Sections 3.2 and 3.3) lead us to apply a
uniform version of the renewal theorem which is new to the best of our knowledge.
This version is given in Appendix B.1.

The framework of measure-valued process has been successfully applied to
study models where multiple jobs are processed at the same time. The main idea
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is to use a sufficiently detailed state descriptor to adequately describe the sys-
tem. A sequence of papers, Gromoll, Puha and Williams [14], Puha and Williams
[22] and Gromoll [12], has successfully established the fluid and diffusion ap-
proximations for PS queues using measure-valued processes. More recently, the
framework of measure-valued process has been further developed by Gromoll and
Kruk [13] and Gromoll, Robert and Zwart [15] in the study of queues with dead-
lines/impatience. Doytchinov, Lehoczky and Shreve [9] applied a similar frame-
work to study the earliest deadline first discipline. This framework is also applied
by Kaspi and Ramanan [19] on many-server queues. The results in the present pa-
per can be seen as an extension of the results in the papers [12, 22], which carry
out a similar program for the standard PS queue.

This paper is organized as follows. A model description and an overview of
the main results is given in Section 2. Section 3 investigates the convergence of
each fluid model solution to its equilibrium state. Precompactness of the family
of shifted fluid scaled processes is established in Section 4. Section 5 uses the
precompactness to show the “richness” of the fluid limits, and then concludes with
a proof of state-space collapse. Several additional useful results, such as a uniform
version of the renewal theorem, and a useful bound for the Prohorov metric are
developed in Appendices B and C.

1.1. Notation. The following notation will be used throughout. Let N, Z and
R denote the set of natural numbers, integers and real numbers, respectively. Let
R, = [0, 00). For a, b € R, write a™ for the positive part of a, |a] for the integer
part, [a] for |a] + 1, a vV b for the maximum and a A b for the minimum.

Let M denote the set of all nonnegative finite Borel measures on [0, 00). To
simplify the notation, let us take the convention that for any Borel set A C R,
V(AN (—o00,0)) =0 forany v € M. For vy, v, € M, the Prohorov metric is defined
to be

d[vi, 2] =inf{e > 0:v1(A) < v (A®) + € and
2(A) < v1(A®) + ¢ for all Borel set A C R},

where A® = {b € R:inf,c4s|a — b| < ¢}. This same metric was defined and used in
Gromoll and Kruk [13]; they showed that the space M is complete and separable
under the metric. For any Borel measurable function g: R — R, the integration
of this function with respect to the measure v € M, fR+ g(x)v(dx), is denoted by
(g, v).

Let M x M denote the Cartesian product. There are a number of ways to define
the metric on the product space. For convenience, we define the metric to be the
maximum of the Prohorov metric between each component. With a little abuse of
notation, we still use d to denote this metric.

Let (E, ) be a general metric space. We consider the space D of all right-
continuous E-valued functions with finite left limits defined either on a finite in-
terval [0, T'] or the infinite interval [0, co). We refer to the space as D([0, T'], E)
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or D([0, c0), E) depending on the function domain. The space D is also known as
the space of cadlag functions. For g(-), g’(-) € D([0, T'], E), the uniform metric is
defined as

(1.1) vrlg. g'1= sup m[g(®). g (D]

0<t<T

However, a more useful metric we will use is the following Skorohod J; metric:
(1.2) orlg. &1= inf (Ifll7 Vurlg & o D,
fenr

where g o f(-) = g(f(-)) for t > 0 and A7 is the set of strictly increasing and
continuous mapping of [0, 7] onto itself and

Ifl7 = sup |log

0<s<t<T

If g(-) and g'(-) are in the space D([0, 00), E), the Skorohod J; metric is defined
as

(1.3) olg. g'1= fo e T(orlg. g1 A 1)dT,

AQRPAON
t

— S

By “convergence in the space D,” we mean the convergence under the Skorohod
Ji topology, which is induced by the Skorohod J; metric [11].

We use “—” to denote the convergence in the metric space (E, ), and “="
to denote the convergence in distribution of random variables taking values in the
metric space (E, ).

2. Models and main results. In this section, we first introduce the mathe-
matical model. We then present the main results of this paper. Following this, is an
outline of our proof.

2.1. The limited processor sharing queue. We consider a G/GI/1 queue op-
erated under the limited processor sharing policy, with the sharing limit equal to K.
Weuse Q(t), Z(t) and X (¢) to denote the number of jobs in the buffer, the number
of jobs in service, and the total number of jobs in the system at time ¢, respectively.
Thus,

2.1 X®)=0®)+Z@) fort > 0.

We adopt the convention that Q(-), Z(-) and X (-) are right continuous. The sys-
tem is allowed to be nonempty initially, that is, X (0) > 0. We index jobs by i =
—X0)+1,-X0)+2,...,0,1,.... The first X (0) jobs are initially in the system,
with jobs i = —X(0) + 1,...,—Q(0) in service and jobs i = —Q0) + 1,...,0
waiting in the buffer. Jobs arrived after time O are indexed by i =1, 2, ..., accord-
ing to the order of arrival. When a batch arrival occurs, an arbitrary rule is used to
break the tie for the arrivals in the batch. The service policy in this model is FCFS.
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Let E(¢) denote the number of jobs that arrive at the buffer during time interval
(0, t], for all ¢ > 0. Our arrival process {E(¢),t > 0} is assumed to be general, as
long as it satisfies a functional central limit theorem [see (2.14)]. According to the
policy, a job may have to wait for a certain amount of time after arrival to get ser-
vice. Let w; denote the waiting time, and U; denote the arrival time of the ith job
for all i > —X(0). By convention, U; =0 for i <0, and w; =0 for i < —Q(0).
Let

T, =U; +w;, i >—X(0).

The quantity t; can be viewed as the time that the ith job starts service. We use v;
to denote the job size of the ith job for all i > —Q(0). We assume that {v;}7°_
is a sequence of i.i.d. random variables with distribution F (). Denote v the prob-
ability measure associated with the distribution function F'(-). For jobs with index
—X(0) <i <—0(0), that is, the first Z(0) jobs that are initially in service, we use
v; to denote the remaining job size of the job. The sequence {ﬁi}?:_oo is allowed
to be general. We call {E(-), {v;}72,} the stochastic primitives of the system, and
{Z(0), Q(0), {v:}%__, {3:}%___,} the initial conditions of the system.

Now we introduce a measure-valued state descriptor (Q(-), Z(-)) e M x M,
which describes the evolution of the system with given initial conditions and sto-
chastic primitives. For any Borel set A C [0, 00), Q(¢)(A) denotes the total number
of jobs in the buffer whose job size belongs to A; and for any Borel set A C (0, c0),
Z(t)(A) denotes the total number of jobs in service whose residual job size be-
longs to A. Since no job can be in service with residual job size 0, Z(¢)({0}) =0
for all # > 0. It is clear that we have the following relationship:

(1) = (1, Q(n), Z(t) = (1, 2(1)).
Define the cumulative service amount up to time ¢ by
t
2.2) s = [ vz,
0

where ¥ (x) = 1/x if x > 0 and ¥ (x) =0 if x = 0. A job will have received a
cumulative amount of processing time

t
sen= [ wEz@)dr
)
during time interval [s, ¢] if it is in service in this time period. Let

(2.3) B(t) = E(1) — Q(1).

Note that at time ¢ > 0, B(¢) is the index of the last job which has entered into
service by time ¢. Thus,

(2.4) B(s,t) = B(t) — B(s)
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represents the number of jobs which have left the buffer and entered the server
during time interval (s, #]. Using the notation introduced in this section, the state
descriptor can be written as

E(r)
(2.5) QA= > 8,4,  AC[0,00),
i=B(t)+1
-0(0)
ZOA) = > S5(A+S0)
i=—X(0)+1

(2.6)
B(t)

+ > 5,(A+S@,n),  AC(0,0),
i=—0(0)+1

with Z(¢)({0}) = 0, where §,(A) denotes the Dirac measure of point a on R and
A+ y={a+ y:a € A}. Due to the LPS policy, the sharing limit K must be
enforced at any time 7,

2.7) 0 = (X —K)",
(2.8) Z(@t) = (X(t) AK).

We call (2.5) and (2.6) the stochastic dynamic equations and (2.7) and (2.8) the
policy constraints.

For ¢ > 0, the workload of the system W (¢) is defined to be the amount of time
that the server remains busy if no more arrivals are allowed into the system at
time ¢. Using the state descriptor (Q, Z), we can recover the workload W(z) at
time ¢ > 0 by

(2.9) W) = (x, Q) + Z(1)),

where x denotes the identity function on R.

2.2. Main results. Consider a sequence of limited processor sharing queues
indexed by r, where r increases to oo through a sequence in (0, 0o). Each queue
is defined in the same way as in Section 2.1. To distinguish models with different
indices, quantities of the rth model are accompanied by superscript . Each model
may be defined on a different probability space (2", 7", P"). Our results concern
the asymptotic behavior of the descriptor under the diffusion scaling, which is de-
fined by

(2.10) ()= Lo ),  Z@)= Lo (r’1),
r r

for all + > 0. We are also interested in other diffusion scaled quantities like the
workload and queue length processes. Note that Q" (-), Z"(-) and W' (-) are actu-
ally functions of (Q"(-), Z"(-)), so the scaling for these quantities is defined as the
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functions of the corresponding scaling for (Q"(-), Z"(-)), that is,

. . 1
(2.11) 0" ()= (1,9 (1)) = ;Q’(rzt),
(2.12) 727 = (1,2 (t)) = %Zr(rzt),
. . . 1
(2.13) W)= (x, QW)+ 2 @)= ;Wr(rzt),
for all ¢t > 0.

To establish results on the convergence of the above sequence of stochastic
processes, we need the following conditions, which are quite general and standard.
We assume that the arrival processes satisfy

Er(rz.) _ )\‘rr2'

(2.14) —— = E*() asr — 00,
r
for some sequence {)\"} that satisfies
(2.15) lim A" =X >0,
r—0o0

and E*(-) is a Brownian motion with drift O and variance Ac2. And the probability
measure V" of job sizes in the rth system satisfies that as r — oo

(2.16) dp’,v] — 0,

(2.17) lim sup/ x* 2Py (dx) = 0 for some p > 0,
[N,00)

N—oo r
where the probability measure v satisfies
(2.18) v has no atoms.

Assumption (2.17) is stronger than the “two-plus-epsilon moment” assumption
needed for a functional central limit theorem. The stronger assumption is used in
a separate part of our analysis to estimate moments of the shifted fluid scaled state
descriptors (see Lemma D.1, and its application in Lemma 4.3). The extra moment
assumption also appears in [12, 13]. Since the space is scaled by r in the diffusion
scaling, the sharing limit should be scaled accordingly:

(2.19) rl_i)rgoK’/r—>K>0.

Also, the following initial condition will be assumed:

(2.20) (Q7(0), 2" (0)) = (&%, u™),

(2.21) (X7, Q7(0) + Z7(0)) = (x TP EF 4 ut),

as r — 00, where p is the same as in (2.17), (§*, u*) e M x M and

(2.22) w* has no atoms.



DIFFUSION LIMITS OF LPS QUEUES 753

Define the traffic intensity of the rth stochastic system by p” = A" (x, v"). We need
the following heavy traffic condition:

(2.23) Tim r(1—p")=6>0.

Let 8 = (x, v) be the mean and c? = M be the squared coefficient of
variation (SCV) of the job size distribution v. The following proposition is a well-
known heavy traffic approximation for the workload process of a single queue

operated under a nonidling policy. Readers are referred to [12] for a proof.

PROPOSITION 2.1.  Assume (2.14)—(2.17), (2.20), (2.21) and (2.23). The se-
quence of diffusion scaled workload process

W’ () = W*() asr — oo,

where W*(-) is a reflected Brownian motion with drift —0, variance ,B(CZ + c?)
and initial value w* = (x, &* 4+ u*).

Since the LPS is also a nonidling service policy, the above result on the work-
load process is still true for our model. However, it remains an open question about
the job size process X (-) and many other performance processes as introduced in
Section 2.1. Our main result establishes the diffusion limit for the measure-valued
processes (Theorem 2.1), from which the diffusion limit of queue length process
follows directly (Corollary 2.1).

Denote

:86 = (X’ Ue>a

where v, is the equilibrium measure of v, that is, v, ([0, x]) = %fé‘ v((y,00))dy
for all x > 0. We have the following definition.

DEFINITION 2.1. Let Ak, : Ry — M x M be the lifting map associated with
the probability measure v and constant K given by

Ax v = ((w —gﬁeﬁ b Y /\ﬂeKﬂe vg)

forw e Ry.

Note that Ak, maps the workload, which is in R, to a measure-valued state,
which is in M x M. The intuition is that the remaining job sizes of those in service
have the probability measure v, which is the equilibrium distribution of the job
size distribution v. The total workload embodied in jobs that are in service is w A
KB, because at most K jobs are allowed in service. Dividing it by B, gives the
number of jobs in service. The remaining workload (w — KB,)* = w — (w A
K B.) resides in the buffer, where each job size follows the probability measure v.
Dividing this amount by £, the mean of v, gives the number of jobs in buffer.
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Our main result requires that the limit (§*, u*) in (2.20) satisfies
(2.24) &, 1) = Ag yu*.

A similar condition on the initial state is also imposed for proving a diffusion
limit in queueing networks [6, 26]. When (2.24) does not hold, it is likely that
some delayed versions of theorems are still true as in Theorem 3 of Bramson [6];
however, we will not pursue such generalization in this paper.

THEOREM 2.1. Assume (2.14)—(2.23). The sequence of diffusion scaled state
descriptors
(Q ) Z' ()= Mg W) asr— oo,
where W*(-) is the reflected Brownian motion in Proposition 2.1.

COROLLARY 2.1 (Piecewise reflected Brownian motion). Assume (2.14)—
(2.23). The sequence of diffusion scaled system size process

X'()=(1,9)+Z()
converges in distribution as r — 0o to X*(-), where

* _ + *
X* (1) = (W (t)/8 KB.) + w (I;/\ KB fort >0,

and W*(-) is the reflected Brownian motion as in Proposition 2.1.

PROOF. Since X' (-) = (1, Q" (-) + Z"(-)) and the mapping ®:M x M — R
defined by ®(vy, 12) = (1, vy 4+ vy) for any (v, v;) € M x M is continuous, the
result follows from Theorem 2.1 and the continuous mapping theorem. []

REMARK 2.1. In other words, X*(-) is a reflected Brownian motion with drift

0 . c24c? .. . cre —0 . c2+c?
i and variance P when it is above KB, and with drift B and variance P
¢ e

when it is below K ..

2.3. Outline of proof. The major step to prove our main result is to establish
the following state-space collapse result.

THEOREM 2.2. Assume (2.14)—(2.23). Fix T > 0. If (2.24) holds, then

sup d[(Q (1), Z" (1)), Ak W ()] =0  asr— oo.
t€l0,T]
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The state-space collapse result is appealing, since it rigorously shows that all
performance processes can be described as a simple, deterministic function of the
workload process. We now use Theorem 2.2 to prove the main result.

PROOF OF THEOREM 2.1.  We have the convergence of the workload pro-
cesses W’ (¢) in Proposition 2.1. Since the mapping Ak , : Ry — M x M is con-
tinuous, by the continuous mapping theorem

Ag W' ()= Ag W) asr— oo.

The result of the theorem follows immediately from the state-space collapse result
in Theorem 2.2 and the “convergence together lemma” (Theorem 4.1 in [4]). [

The proof of the state-space collapse is given in Section 5, but it requires ample
preparation. Our proof is analogous to the framework developed in Bramson [6] for
proving state-space collapse in multi-class networks with head-of-the-line service
disciplines. The framework was later adopted for the PS queue in Gromoll [12],
which the current paper closely follows. In Section 3, we establish several funda-
mental properties for the equilibrium behavior of the LPS fluid model introduced
in [29]. Section 4 establishes precompactness of a family of shifted fluid scaled
processes, which will be defined in that section. Briefly speaking, the proof of the
state-space collapse is built on the “richness” of the set of fluid limits, which are
obtained from the shifted fluid scaled processes. Each fluid limit is shown to be a
fluid model solution in Section 5.1.

3. Convergence to equilibrium states for fluid model. We propose a fluid
model, denoted by (K, X, v), to assist the study of the underlying stochastic
processes for the LPS queue. The parameters K, A and v are the limiting sharing
level defined in (2.19), the limiting arrival rate defined in (2.15), and the limiting
job size distribution defined (2.16), respectively. According to condition (2.15),
(2.16), (2.17) and (2.23), we have that the traffic intensity of the fluid model

3.1) p=rf=1.

Although v is required to satisfy (2.18) in Theorem 2.1, in this section only, we
allow the job size distribution to have atoms. The fluid analogue of the LPS queue
was first proposed and studied in [29], where general properties of the fluid model
were studied for all traffic intensities p € [0, 00). For the purpose of this paper,
we now recall the definition and some general properties for critically loaded fluid
model.

Given a measure-valued process (9(), Z(-)) € D([0, 00), M x M), for t > 0,
let

(3.2) O(t) = (1, 9@t)),
(3.3) Z(t) = (1, Z(1)),
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(3.4) X(t) =00+ Z@),
(3.5) B(t) =it — Q(1).

These quantities are the fluid analogues of Q(¢), Z(¢), B(¢) and X (¢) in the sto-
chastic model. Define the fluid cumulative service amount up to time ¢ by

_ t _
(3.6) 5() = fo b, (Z(0)) dr.
where
(3.7) s ={ 0 128

when p = 1. It worth noting that the function ¢, take a slightly different form
when p # 1, which is not the case in this paper. Interested readers are referred to
[29] for detailed discussion. And for 0 < s <, denote

(3.8) S@,r):fst(pﬁ(z(r))dr.

An element (&, u) € M x M is called a valid initial condition if
(3.9) E=(L& +(1,u)— K)y,
(3.10) (ILw)=(1,8)+ (1, u) ANK.

Roughly speaking, validity of an initial state means that the initial state is consis-
tent with the LPS policy; initial waiting jobs have the same job size distribution as
arriving jobs. Denote

(3.11) 7 =1{(£, W) e M x M: (£, 1) satisfies (3.9) and (3.10)}

the set of all valid initial conditions.
We now introduce the following fluid dynamic equations, which are analogous
to (2.5) and (2.6). For all Ay, = (y, 00), y >0,

(3.12) Q1) (Ay) =E£(A)) + (Q(1) — Q(0)v(Ay),
_ _ t _ _
(3.13) Z(1)(Ay) = (A, + 3(1)) +/O V(A + 8(s, 1)) dB(s),

where Q(-), Z(), X(+), B(-) and S(-) are defined in (3.2)—(3.8). They are subject
to the following constraints:

(3.14) B(-) is nondecreasing,
(3.15) () =(X(1) - K)",
(3.16) Z@t) = (X(t) AK).

Because (Q(-), Z(-)) € D([0,00), M x M), O(-), X(-), Z(-) and B(-) are right
continuous on [0, oo) and have left limits in (0, oo). Here and later, the integral
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fot g(s)dB(s) is interpreted as the Lebesgue—Stieltjes integral on the interval [0, ],
where by convention we set B(0™) = B(0). The above dynamic equations and
constraints define the fluid model (K, A, v).

DEFINITION 3.1.  (Q(-), Z(-)) € D([0, 00), M x M) is a solution to the fluid
model (K, A, v) with a valid initial condition (&, w) if it satisfies the fluid dynamic
equations (3.12) and (3.13), subject to the constraints (3.14)—(3.16).

Note that (2.17) and (2.17) imply that

(3.17) B < oo,
and (2.18) implies

(3.18) v({0} =0,
3.19) v is nonlattice.

It has been proved in [29] (cf. Theorem 3.1) that under the conditions (3.17) and
(3.18), there exists a unique fluid model solution (Q(-), Z (+)) for any valid initial
condition (&, i). Moreover, by Proposition 3.1 in [29], the fluid workload process
which is defined as W (¢) = ( X, Q(t) + Z(1)) satisfies the workload conservation
property, that is,

W)= ((x.E+u)+(p—1r)"  forallr > 0.
Since we restrict to the critically loaded case, that is, p = 1, we have
(3.20) W(t) = (x, &+ ) for all t > 0.

The main objective of this section is to show the following long-term behavior of
the critically loaded fluid model, which helps to establish the state-space collapse
in Section 5.

_ THEOREM 3.1. Assume (3.1) and (3.17)~(3.19). The unique solution (Q(),
Z()) to the fluid model (K, X\, v) with a valid initial state (&, ;1) such that w =
(x, &+ n) < oo satisfies

(Q(t), Z(t)) = Ak yw ast— oo.

Moreover, for fixed constants p, M > 0 the convergence is uniform for all fluid
solutions with initial conditions in the set

B2l Ih=AE W eI (GE+u) <M, (X" E+ ) < M),

Section 3.1 characterizes the equilibrium states for the fluid model. Section 3.2
presents the proof of convergence (the first half of Theorem 3.1), and Section 3.3
presents the proof of uniform convergence (the second half of Theorem 3.1).
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3.1. Equilibrium states.

DEFINITION 3.2. An element (&, 1) € .# is called an equilibrium state for
the fluid model (K, A, v) if the solution to the fluid model with initial condition
(&, n) satisfies

(O, Z(t)) = (€, u)  forall > 0.

The simple intuition here is that if the fluid model solution starts with an in-
variant state, it will stay at this state forever. By the restarting lemma, Lemma 4.2
in [29], a fluid model solution will remain in an equilibrium state once reach it.
Our first result is a characterization of an equilibrium state.

THEOREM 3.2. An element (¢, 1) € & is an equilibrium state if and only if
(3.22) &, n)=Ag  w for some w € [0, 00).

PROOF. Suppose (§, u) = Ak ,w for some w € [0, 00), we need show that

(w—KB)"  wAKB, )
V, UE

p Be
is the fluid model solution. If w = 0, then by weak stability (Theorem 3.2 in [29]),
Ak.v0 = (0, 0) is the fluid model solution. So let us now focus on the case where
w > 0. The fluid amount of jobs in buffer size and in service are

(O(), Z()) = Agyw = (

_ _ —KBe)T
Q(t)=<1,Q(t>>=%,
w A KB,

Z(1)=(1,2@) =
e
If Z(t) < K, then w < KB, which implies that Q(r) = 0; if Q(¢) > 0, then w >
K B, which implies that Z(t) = K. So condition (3.15) and (3.16) in Definition 3.1
are satisfied. Since Q(¢) and Z(r) remain to be a constant, (3.14) holds trivially.
This also implies that the fluid dynamic equation (3.12) is satisfied. It remains to
verify the fluid dynamic equation (3.13). The fluid accumulative service amount

Be

S@t) = I t
Z(0) w A KB

since Z(7) is a constant. The right-hand side of (3.13) becomes
ANK t
wARPe ﬁgve(Ay+ _ P t) +x/ U(Ay+ _Pe__ (t—s))ds,
Be w A KB, 0 w A KB,
WfliCh efquals %Ijﬁ"ve(Ay) = Z(t)(Ay), for all y > 0. So (3.13) is verified. Thus,
(Q(@), Z(+)) is the fluid model solution.
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Suppose that (&, 1) is an equilibrium state, we need to show that (£, u) takes the
form (3.22). If (&, n) = (0, 0), then trivially (§, u) = Ag,,0. Let us now assume
that (&, u) # (0, 0). Since (00, Z(-) = (&, w) is the fluid model solution, the
fluid dynamic equation (3.13) must be satisfied. That is,

u(a) = (4, + utﬁ) [ (4 + <tl,_/j>>ds’

t (1, ) [y+e/im) )
:;L(A + )+ / v(Ay)ds
YL ) B Jy ’

for all y, ¢ > 0. This yields

) = (A ) = o (e = ve (4, + ) ).

which implies that u = (1, i) v, due to the arbitrary of ¢ and y. Since (&, u) is a
valid state, & = (1, &)v. Let

w=(x,§+un)=(L§B+(1,upBe.

Again by validity of state (£, ), (1,&) = % and (1, ) = “’Aﬁ# So we
conclude that (§, u) = Ag yw. O

3.2. Convergence to equilibrium states. We now identify conditions under
which the fluid model solution starting at a valid initial state (&, u) will converge
to an equilibrium state.

If the initial condition (&£, u) = (0, 0), then by weak stability (Theorem 3.2 in
[29]), the fluid model solution will always be zero. So (0, 0) is an equilibrium state.
From now on, we focus on the case where the initial condition (&, ) # (0, 0). By
the fluid dynamic equation (3.12), Q) B ={x, Q(1)). It follows from the work-
load conservation property (3.20) that w = (x, & + u) = W) > (x, Q(t)) for all
t >0.So

(3.23) 0 = (Xt — K)* < % forall > 0.
Since W (r) = 0 if and only if Z(r) =0,
(3.24) Zt)=(X(t) AK)>0  forallt>0.

So the function S() as defined in (3.6) has an inverse on the interval [0, co), which
is denoted by 7 (-). By the inverse function theorem,

T'(v) = Z(T (v)) for all v > 0.

According to (3.13) in Definition 3.1, we have

_ ! - _
Z(t) = n(Az) +/O [1— F(S(s,1))]1dB(s).
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Perform the change of variables u = S(t) and v = S(s) to get
Z(T () = u(Ay) + )»/0 [1— F(u—v)]Z(T(v))dv

_ Au[l — F(u —v)1dQ(T (v)).

Note that the function Q(T(-)_) llas bounded_variation since it is the difference of
two nondecreasing function B(T (-)) and AT (-). According to the integration by
parts formula provided by Lemma A.1, we obtain

Z(F () = w(Ay) + 18 /0 " Z2(T(u— ) dF.(v) — [1 — FO)I0(T @)
(3.25) )
+ 1= F)10(0) +/O O(Fu —v)dF ().

where F, is the equilibrium distribution of F which can be written as F,(x) =
%f(f[l — F(y)]dy. It follows from (3.1) and (3.18) that p = 1 and F(0) =0, so
we obtain the following key relationship:

O(T ) + Z(T ) = £(A) + (A + [ O~ ) dF W)
(3.26) .
+/0 Z(T(u —v))dF,(v)

for all 0 < u < oo. To simplify notation, denote

he . (u) = E(Ay) + n(Ay),

(3.27)
x(u) =qu) +z(u),

where

(3.28) q) = O(T (u)),

(3.29) z(u) = Z(T (u)).

By (3.15) and (3.16), the above equation can be written as

x(u):hg,ﬂ(u)—k/ (x(u—v)—K)+dF(v)
(3.30) o
—I—/O (x(u —v) AK)dF,(v).

By Lemma A.1 in [29], for any valid initial condition (£, u), the above integral
equation has a unique solution which is a cadlag function. Our analysis on the
limiting behavior of fluid model solutions will be mainly based on (3.30).
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For a nonzero valid initial condition (¢, 1) and an € € (0, 1), define the e-
perturbation of it by

K— (1, m\* K — (1, n)
S S Rt 1+ -2
(6+ (s T ) ) w1+ T ) ne)u).
(€e, e) = if (1, u) < K,
& +eu, p, if (I, u) =K,§ =0,

(& +eE+mw,un), it& #0,

and the —e-perturbation of it by

& (A —e)p), if £ =0,
(x.&E+m\"
] —g 22> - M7
(& ) (< 8 <X’<§>fs)+ §>’
—&s M—g) = s
<(1 - 8)ﬁ1{1<e<x,s+m/<x,s>}
+ 1{lzs<x,s+u>/<x,s>})ﬂ), if & #0.

The simple idea behind this complicated looking construction is that (a) the per-
turbed state (&, ) is still a valid initial condition, (b) the workload of the per-
turbed state satisfies

(3.31) (X, 8 +me)=00+e){x,§+pn) forallee(=11),

and (c) the function h¢, ,,, which is defined based on (&, 1) in the same as (3.27)
satisfies

(332)  he, () <he,(u) <he ()  forallueRy ee(0,1).

The complication in the construction on the perturbation comes from the require-
ment (3.31), which will provide convenience in the proof of Lemmas 3.2 and 3.4.
Inequality (3.32) will be used in the proof of the following lemma. Let x¢(-) de-
note the solution to (3.30) with hg , replaced by hg, ,,,. We have the following
comparison.

LEMMA 3.1. Assume (3.17), (3.18) and (¢, u) # (0,0). Forall ¢ € (0, 1),
x 78w <x(u) <xf(u) forall u > 0.
PROOF. Let u™ = inf{u > 0:x(u) > x®(u)}. To prove x(u) < x%(u), it is

enough to show that u* = co. Note that x(0) = h¢ ,(0) < hg, 4, (0) = x°(0). By
right continuity of x(-) and x®(-), u* > 0. Now, suppose u* < oco. By (3.30) and
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(3.32) we have following bound estimation:

xf(u*) —x(u*)

(3.33) > /Ou [(x*w* —v) — K)" = (x(u* —v) — K)T]dF(v)

+ /O [(xf* —v) AK) — (x(u* —v) A K)]dF,(v).

Assumption (3.18) implies that (0) < 1. So there exists u’ € (0, u*) such that

’

/uu dF,(v) >0

—§
for all 0 < § < u’. By the definition of u*, we have that

k=xw* —u)—xw* —u")>0.
By right continuity of x(-) and x*(-), we can choose § small enough such that
xs(v)—x(v)zg forallu e [u* —u',u™ —u’ +§].

So by (3.33), we have

u/
W) —xw™) > %/ dF,(v) > 0.
u'—48

This contradicts the definition of #*. So we must have that u™ = co. The proof for
the other inequality is completely analogous. [

For the solution x () to (3.30) with initial condition (&, i), define

(3.34) x(00) = %(w —KB)" + ﬂl(w N KBe),

where w = (x, & + n). The quantity x(oco) can be interpreted as the fluid sys-
tem size corresponding to the equilibrium state with workload w. We now use the
above lemma and the key renewal theorem to show the following convergence. To
help with the proof, we introduce the renewal function

U)=) F™"(x),

n=0
associated with the distribution function F (see Section V.2 in [1] for detailed
discussion).

LEMMA 3.2. Assume (3.1) and (3.17)—(3.19). The solution x(-) to (3.30) with
initial condition (&, u) € Z and (x, & + ) < o0 satisfies

x(u) — x(0c0) as u — oo.
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PROOF. We first study the case where w = (x, & + u) > K. Convolve both
sides of (3.30) with, the renewal function U (-) of F(-), to get

x*U(u):hg,M*U(u)—i—(x—K)+*F*U(u)+(xAK)*Fe>r<U(u).

Since x = (x — K)™ + (x A K), by moving all terms containing (x — K)™ to the
left and all terms containing (x A K) to the right, we obtain

(x(u) —K)+>x<(1 —F)xU@)=he, *Uu) — (x AK)* (1= F,)*xU(u).
This gives

(x@)— K) " =he , xU@) — K1 — F,) «U(u)
(3.35)
FIK — (x AK) (1 — Fo) % U(u).

Both hg () and 1 — F,(-) are directly Riemann integrable since they are nonin-
creasing and integrable functions. By the key renewal theorem, we have the con-
vergence of the first two terms on the right-hand side of (3.35):

. w
ull)néohg,ﬂ *Uu)=—,

. KB,
ulgIgOK(I—Fe)*U(M): .

B

Note that % — K/_ﬁ? ¢ > () in this case, and the last term in (3.35) is always nonnega-
tive. So there exists ] > 0 such that

(x)—K)">0  forallu>u.

Equivalently, this means that K — (x(#) A K) =0 for all # > u;. So the last term
in (3.35) is nonnegative and can be bounded above by

fu Kd[(1—Fo)«U@)]=K[(1—=Fe)*«Uu) —(1—Fe)*«Uu —up],

which converges to 0 by the key renewal theorem. So in this case we have
limy— 00 X () = K + W}# — x(c0).

In the case where w < K., we convolve both sides of (3.30) with U,(-), the
renewal function of F,(-) to get

xx Ugu) =hg yx Ueu) + (x — K)V % Fx Uo(u) + (x AK) % F 5 Up(u).

Again, since x = (x — K)* + (x A K), by moving all terms containing (x — K)™
to the right and all terms containing (x A K) to the left, we obtain

(336)  (xW)AK)=hey*Usu) — (x —K)T % (1 = F) % Up(u).

By the key renewal theorem, the first term in the above converges:

Hm ey % Uy (i) = —
ul>nolo §ou ¥ e(u)__.

Be
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Note that ﬂﬂ — K < O in this case, and the last term in (3.36) is always nonpositive.
e
So there exists up > 0 such that

(xw)AK)<K  forallu > u.

Equivalently, this means that (x(x) — K)™ = 0 for all u > u,. The last term in

(3.36) is nonnegative and, according to the upper bound (3.23), can be bounded
above by

“ow w

f —dl(1 = F)«Uc()]=—Z[(1 = F) % Ue(u) — (1 = F) x Ue(u — uz)1,

u—uy ,3 ﬁ

which converges to 0 by the key renewal theorem. So in this case, we have
lim;_ 00 x (1) = % = x(00).

Now it only remains to study the case where w = Kg,. For any ¢ € (0, 1), let
(&c, Le) denote the e-perturbation of the initial condition (£, ¢), introduced before

Lemma 3.1. It follows from (3.31) that

we = (X, & + pe) = (1 +8)BK.
Following from the discussion of our first case:

K
lim x*(u) = K + LK
U— 00 13
By Lemma 3.1, x(u) < x®(u) for all u > 0. So for all & > 0 there exists “/1 such
that when u > u

x(u)§K+8'BI;K+8=K+('B;K+1)s.

Similarly, we have the —e-perturbation (§_,, u_,) for —e € (—1,0). It follows
from (3.31) that

W_eg =(X,6—¢+ 1) =(1—8)BK.
Following from the discussion of our first case,
lim x %(u) =K — ¢K.
u—>oo

By Lemma 3.1, x(#) > x~¢(u) for all u > 0. So for all & > 0 there exists ”/2 such
that when u > u’,

x(u)>K —e¢K —e=K — (K + 1)e.

Summarizing this case, we have lim;_, o x () = K = x(00). U
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LEMMA 3.3.  Assume (3.1) and (3.17)—~(3.19). Let (Q(-), Z(-)) be the solution
to the fluid model (K, 1., v) with initial condition (&, ) € .7 and (x,& + u) < oo.
Let w={x, ). We have as t — oo,

_ +
(3.37) d[Q(t), %u] 0,
- w A KB,
(3.38) sup ‘Z(t)(Ay) B Ay — 0.
ye(0,00) ,Be

PROOF. If w =0, the result holds trivially. Now assume that w # 0. Let

_ +
4(00) = (x(00) — K) " = %,
z(00) = x(c0) A K = %Kﬁe

where x(00) is defined in (3.34). Based on the fluid dynamic equation (3.12) and
the fact that v is a probability measure, we have

|Q(1)(A) — q(co)v(A)| = |[Q (1) — g(00)Iv(A)| < |Q(t) — g(c0)],
for all Borel set A. This implies that
A(1)(A) < q(00)(A)+|0(t) —q(00)| < g(00)v(AICO=4CIN) 4D (1) — g(c0),

where A* denote the k-enlargement as introduced in Section 1.1. Similarly, we
have

q(00)v(A) < O(1)(AI2O~4N) L [5(1) — g (o0)|.

By the change of variable u = S(t) [t = T (u)] and the definition of the Prohorov
metric,

d[Q(1), g(00)v] < |g () — g (o).

By Lemma 3.2, there exists u#; > 0 such that wher_1 u > u; we have |qg(u) —
q(00)| < e.So for all € > 0, there exists t; = Kuy > T (u1) such that

(3.39) d[O(1), g(co)v] <e  forallt > 1.

It remains to study the limiting behavior of Z(-). Perform the change of variable
u=S(t) (t =T (u)) to the fluid dynamic equation (3.13), we get

Z(Tw)(Ay) = u(Ay +u)+ /0 04y +u—v) AT @) — ).
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Due to the fact that p = 1, we have % = . Thus, z(00)ve(Ay) =4 [y v(Ay +u —

v)2(00) dv+z(00)ve(Ay +u). Since dT (v) = z(v) dv, we then have the following
bound estimation:

|Z(T (u))(Ay) — 2(00)ve(Ay)|

§;L(Ay+u)+‘/(;u V(Ay +u—v)dg(v)

(3.40) .
+ ‘A/o V(Ay +u —v)[z(c0) — z(v)]dv

+ 2(00)ve(Ay + u).

It is clear that the first and the last terms on the right-hand side of (3.40) vanishes as
u — 00. Recall that F is the distribution function corresponding to the measure v.
By integration by parts (see Lemma A.1), the second term on the right-hand side
of (3.40) can be written as

1= FOlg — 11 = FO+01g0 + [ g0 dFs+u—v)|
which is less than or equal to
I[1 = F()Igw) —[F(y+u)— F(y)lg(oo)| +|[1 — F(y +u)lq0)]
+ [N g = v - gedF e +v).

By convergence of x(-), for all ¢ > 0 there exists a #; such that |x(v) —x(c0)| < &
if v > uy. For all £ > 0, we can choose 1> > 0 such that 1 — F(uy) < ¢. When
u > uj + uy, the above inequality can be further bounded by

[1+q(o>+q<oo>]e+/0 g = v) — g(00) | dF (y + v)

+ [ la=) = a@)dF(y+v)

<[1+q0)+q(0)le +[Fu—ui+y)— F(yle
+ sup|q(v) — q(00)|[F (1) — F(u — uy)]

v>0

e

where the last inequality is due to (3.23). When u > u; + u», the third term in
(3.40) can be written as

')\ /(‘)“1 V(Ay +u —v)[z(00) — z(v)]dv + )»/u v(Ay +u —v)[z(00) — z(v)]dv|,
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which is bounded above by
u
A sup |z(v) —z(00)|[1 — F(u —uy)] —i—é‘)\./ [1 — F(v)]dv
0<v=<u; uj
<AKe+ ABe,

where the last inequality is due to the bound z(u) < K for all u > 0. So for all
e > 0thereexistsaty = K(uy +uz) > T (u; + up) such that

(3.41) sup |2(t)(Ay) —2(00)ve(Ay)| < & forall t > 1,.
v€(0,00) O
PROOF OF THEOREM 3.1, PART I.  Note that (y, Mﬁljﬁe ve) < KB, < 0. By

the workload conversing property, (x, Z(-)) < w < oo. According to Lemma C.1,
(3.38) in Lemma 3.3 implies that

- A KB,
d Z(t),uve —0 ast — oo.
Be

This and (3.37) implies the convergence result in Theorem 3.2. [

3.3. Uniform convergence to equilibrium states. The convergence in the pre-
vious subsection depends on the initial condition (&, ). We now show that the
convergence is uniform for all initial conditions in the set .#, A’,} defined in Theo-
rem 3.1.

To emphasize the dependency on the initial condition, we use Y (.# ]f,;) to denote
the set of solutions to equation (3.30) with input function A¢ ,, induced by initial
condition (&, ) € #F, and E(JAI,;) to denote the set of solutions to the fluid
model (K, A, v) with initial condition (&, u) € .7, A‘Z.

LEMMA 3.4. Assume (3.1) and (3.17)—(3.19). For each € > O there exists an
[* > 0 such that when u > I*,
sup  |x(u) —x(oc0)| < e.

x(ET(Fy)

PROOF. To prove this lemma, we need to adjust the proof of Lemma 3.2 with
the assistance of Lemma B.1.

Let y = {heu: (&, 1) € fA’;}. By the definition of the set f,{,} in Theo-
rem 3.1, %), is the set of nonincreasing functions satisfying condition (B.1) and
(B.2) in Lemma B.1. For any ¢ > 0, divide the set .# 151 into three parts,

gh=srusdug,
where
I ={E w e I (x.E+un) = KB.(1+¢)},
I ={E w e Iy (. E+n) < KB(1—e)},
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and #0 = I0\ (U 5)).

We first focus on the set .#;". By doing the same algebra as in the proof of
Lemma 3.2, we see that (3.35) holds for any (&€, ) € ﬂj’. By Lemma B.1 and the
key renewal theorem, there exists a ] such that

(x.§+u)|  KpBe
sup  |hg,x U(u) — ’ < g,
Ewestl B 4p
‘K(l —F)«Uu) — K% < IZZ%,

for all u > u7. So for the first two terms on the right-hand side of (3.35), we have

KBe(1+¢) _ K,Be KB.

B B 2P

forall (¢, n) € Z;F andu > u’}. Note that the last term in (3.35) is always nonnega-
tive. So when u > u7 we have (x(u) — K)* > 0 [orequivalently K — (x(u) AK) =
0], for all (&, u) € /j. So the last term on the right-hand side of (3.35) is nonneg-
ative and can be bounded above by

hey*xUu) — K(1—Fo)«U(u) > >0,

[ Kl - F s U@ =K1 = F)x U@ — (1 = F) s U= ),

1
which converges to 0 as u — oo by the key renewal theorem. So there exists a
u’ > 0 such that when u > u/, the absolute value of third term on the right-hand
side of (3.35) is bounded by Iéges. Let I{ = max(u}, u}). By (3.35) and summa-
rizing the above, we obtain

KpB.

sup  |x(u) — x(00)| < € forall u > [7.

(Esﬂ)eys+

Next, we consider the set ... By doing the same algebra as in the proof of
Lemma 3.2, we see that (3.36) holds for any (¢, 1) € ., . By Lemma B.1, there
exists a u3 such that

, K
sup |he o x Ue(u) — M < —¢
Ewe s Pe 2
for all u > u3. So we have
KB.(1 — K
he o Uty < 2P0 =8) Kok
Be 2

forall (¢, u) € #; and u > u3. Note that the last term in (3.36) is always nonpos-
itive. So when u > u3 we have x(u) < K [or equivalently, (x(u) — K)T =0] for
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all (¢, n) € . So by (3.23), the absolute value of the last term on the right-hand
side of (3.36) can be bounded by

f” %d[(l — F)x U (v)] = %[(1 — F) % Up(u) — (1 — F) % Upu — u3)],

_uz
which converges to 0 as u — oo by the key renewal theorem. So there exists a
u, > 0 such that when u > u}, the last term on the right-hand side of (3.36) is
bounded by %8. Let [5 = max(u, u3). By (3.36) and summarizing the above,
sup  |x(u) —x(c0)| < Ke forall u > I5.
E.mede

It only remains to deal with the set .#0. We can restrict & < 1/3, since we are

only interested in small ones. According to (3.31), for any (¢, u) € Jso, we have

hey, pse € I and g ,, 5, € #7 . Denote x*(-) and x () the solutions to (3.30)
corresponding to Ag,, i, and hg 5, ;0 ., respectively. By Lemma 3.1,

x” () <x) <xt () for all u > 0.

Note that in this case, the workload w < (1 + ¢)B.K <2B.K. By (3.34), we have
that

x 1 (00) < x(00) +max<l, i>3ew < x(00) +max<l, i>6,86K8,
- B Be - B Be
x~ (00) > x(00) — max(%, i)?ww > x(00) — max(%, %)6,331(8.

According to the above two cases, when u > [* = max (I}, [5),

x(u) < xT(00) + %’Bes < x(00) +max(é, é)@BgKg + Kpfee’

x(u) >x" (00) — Ke > x(o0) — max(é, ﬂi>6ﬂeK£ — Ke,

e

for all (&, n) € JEO. This means that

sup  |x(u) —x(00)| < Ce forall u > [*,
¢ wes?
_ 11 KB
where C = max(E, E)6ﬂel( + i + K. O

LEMMA 3.5. Assume (3.1) and (3.17)=(3.19). For all ¢ > 0 there exists an
L* > 0 such that when t > L*,

_ +
(3.42) sup d[@(r), Mt}] <e,
(OO, Z(Nea(Y) p
- w A KB,
(3.43) sup sup ‘Z(l)(Ay) — Tve(Ay) <e&.

(Q(),Z()eE(Fyy) YE(0.00)
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PROOF. The proof of this corollary is almost the same as the proof of Lem-
ma 3.3. Just note that by Lemma 3.4, the 71 in (3.39) and the #; in (3.41) are good
for all (¢, n) € .Z, /f,;. With L* = max(t1, 1), the result of this lemma immediately
follows. [

PROOF OF THEOREM 3.1, PART II. Now we use Lemma 3.5 to show the
uniform convergence result. Note that (y, %Ijﬁ“ve) < KB, < 0o. By the definition
of #};, for any (Q(-), Z(-)) € E(F})), (x, Z(-)) < M < 0o. According to Lem-
ma C.1, (3.43) in Lemma 3.5 implies that for all & > 0 there exists an L7} such that
whent > L7,

- ANK
sup d[Z(t), w—'Beve] <e.
(O().Z()EE(IL) Pe

The uniform convergence follows from the above and (3.42). [

4. Shifted fluid scaling and precompactness. The objective of this section
is to show the precompactness property, Theorem 4.1 at the end of this section, for
the sequence of shifted fluid scaled processes, which is defined in the following
section.

4.1. Shifted fluid scaling. Much of our understanding of the diffusion scaled
process will be derived from results about the shifted fluid scaled process, which
is defined by

4.1) Q"M (t) = lgr (rm +rt), Z5M (1) = lzr (rm +rt),
r r

for all m € N and ¢ > 0. To see the relationship between these two scalings, con-
sider the diffusion scaled process on the interval [0, 7'], which corresponds to the
interval [0, rZT] for the unscaled process. Fix a constant L > 1, the interval will
be covered by the |rT ] + 1 overlapping intervals

[rm,rm +rL], m=0,1,...,[rT].

For each ¢ € [0, T], there exists an m € {0, ..., [rT]} and s € [0, L] (which may
not be unique) such that 2t = rm + rs. Thus,

4.2) O(1)y=0"(s),  Z'(1)=2Z2"(s).

This will serve as a key relationship between fluid and diffusion scaled processes.
We are also interested in shifted fluid scaled versions of other processes, like
the workload and system size processes. Note that Q" (-), Z"(-), X" (-), W' (-) and
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S" (-, -) are actually functions of (Q"(-), Z"(-)), so the scaling for these quantities
is defined as the functions of the corresponding scaling for (Q'(-), Z"(-)), that is,

(4.3) Q""" (1) = (1, Q" (1)) = %Q’(rm +r1),

(4.4) ZMm () = (1, 2" (1)) = %Z’(rm +rt),

(4.5) X"ty = (1, Z""(t) + 27" (1)) = %X’ (rm+rt),
(4.6) W™ (1) = (x, @™ (1) + 2" (1) = }W’(rm +ro),

for all 0 <s <. We define the shifted fluid scaling for the arrival process as
4.7 E"™M(t) = %E’(rm +rt),

for all # > 0. By (2.3), the shifted fluid scaling for B"(-) is

(4.8) B"" (1) = E"™(1) — Q""" (1),

for all # > 0. To shorten the notation, for all 0 < s <t, denote

4.9)  E"(s,t)=E""(t)— E""(s),  B""(s,t)=B""(t) — B""(s).

A shifted fluid scaled version of the stochastic dynamic equations (2.5) and (2.6)
can be written as, for 0 <s <,

B ~ 1 rE™™(t)
Q™" (1)(A) = Q""" (s)(A) + - Z yr (A)
4.10) i=rErm(s)41
. rB (1)
—= > bu(A). ACI0,00),
d i=rBrm(s)+1
ZM(1)(A) = Z_r’m(s)(A + S (rm +rs,rm +rt))
| B o
(4.11) += > (A4St rm+rD)),

r _
i=rB""(s)+1
A C (0, 00).

Please note that Z""(¢)({0}) = 0 for all 7 > 0 according to our definition. The
dynamics of the system is determined by the above equations. Equation (4.10)
says that the status of the buffer at time 7 equals the status at time s plus what has
arrived to the buffer and minus what has left from the buffer during time interval
(s, t]. Those jobs who left buffer enter service; the service process has been taken
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care of by shifting the set A by the cumulative service amount S” (t;, rm + rt) that
the ith job receives. This corresponds to the second term on the right-hand side
of (4.11). This plus the status at time s shifted by accumulative service amount
S"(rm 4+ rs,rm + rt) is equal to the status of the server at time ¢, as indicated
in (4.11).

4.2. Preliminary estimates. We first establish some bounds which will be use-
ful for later discussion. The following lemma gives some bound on the arrival
processes.

LEMMA 4.1. Assume (2.14) and (2.15). Fix T > 0 and L > 1. For all ¢,
g’ > 0, there exists an ro such that whenever r > rq,

(4.12) IP”( max  sup |E"™(s,t) — A(t — )| > e’) <e.
m=rT] s 1e[0,L]
PROOF. Let 1’ =" and s = ™+ Note that max,<|,7) SUp;ep0.1] 2o <

T + 1 forall large r,and 0 < s,¢ < L is the same as |[t' —s’| < L/r. For any § > 0,
there exists an r(, such that L/r < § for all r > ro, so the left-hand side of (4.12)
can be bounded above by

> ¢ >

for all r > ré. By the assumptions (2.14) and (2.15) on the arrival process,

1 1
(4.13) IP”( sup “E"(r*t) — art’ — <—E’ r’s') — Ars/)
s/, 1[0, T+1],|s'—t'| <81 T r

{ %E (r2) — ar) converges in distribution to the Brownian motion E*(-). Since
a Brownian motion is almost surely continuous, we conclude that (4.13) converges
to zero as § — 0. Then the inequality (4.12) follows immediately. [

Here is a remark that will facilitate some arguments later on. The ¢’ and ¢ in
(4.12) can be replaced by eg(r), which is a function of r that vanishes at infinity.
Here is the proof. For each index r let

H, = {5 >0:(4.12) is true for ¢’ = ¢ = §}.

Clearly, H, is not empty since 2 € H,. Let eg(r) = inf H, for each r > 0. Assume
that eg(r) does not vanish at infinity. There exists a § > 0 and a subsequence
{ra};2., which increases to infinity such that

4.14) eg(rp) > 6 forall n > 0.

However, by Lemma 4.1, for ¢’ = ¢ = §/2 there exists an rs such that when r,, > r;,
(4.12) must hold. This contradicts (4.14). Based on this, we construct

(4.15) r={ max sup |Er’m(s,t)—)»(t—s)|fsE(r)}.
m=|rT] g re[0,L]
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According to Lemma 4.1, we have that
(4.16) lim P"(QF) =1.
r—>o0

Recall the Glivenko—Cantelli estimate in Lemma D.1. By the same argument
as in the above, for fixed constant M, L, there exists a function egc(-), which
vanishes at infinity, such that the probability inequality in Lemma D.1 holds with
¢ and &’ replaced by this function. In other words, if we denote

Qoc(My, Ly) = { max sup sup |(f, 7" (n, 1)) —I{f,v")]
—rMy<n<r2M; l€[0,L] feV
4.17)
< EGC(F)},
where 1" (n, 1) is defined in (D.1) and ¥ is defined in (D.5), then for any fixed
constant M1, L1,

(4.18) lim P"(QGc(M1, L)) =1.
r—00
Now, we use the above result and Proposition 2.1 to obtain a bound on the queue

length processes.

LEMMA 4.2. Assume (2.14)—(2.17), (2.20), (2.21) and (2.23). Fix T > 0 and
L > 1. For all n > 0, there exists a constant M > 0 such that

liminf]P’r< max sup Q""(r) < M) >1—n.

r—0o0 m=|rT|te[0,L]

PROOF. Since
the following inequality:

L’Trﬁ < T + 1 for all large enough r, it is enough to prove

liminfP" ( sup O () <M)>1—n.
migfP"(_sup )

Suppose this is not true, then there exists an n > 0 such that for any M,
liminfP"(  sup O’ (t)>M) > n.
r=ee <te[0,T+1] )
Denote the event in the above probability by €2}. By the stochastic dynamic equa-
tion (2.5), we have
1 1 E"(r1)
SOty =— 30 S (A).
i=B" (r2t)+1
Since v is a probability measure on Ry, there exists an a > 0 such that
v(a, o0) > 0. We have the following inequality from the dynamic equation (4.10):
1 1 a FLED
(4.19) W' () > a-Q ()@, 00) == Y. 8y(a,00).
r r r !
i=B"(r?t)+1
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For any r, on the event 2] there exists a #; € [0, T + 1] (random and depending
on r) such that

1

~Q"(r*t) > M.

,
By (4.15), on the event .,

sup  E"(r’t) <2xr*(T + 1),
tel[0,T+1]

for all large enough r. Let M| = max(M,2AT) and L1 = M. By (4.17) and (4.19),
on the event Qg (M1, L1) N Q2 N Q1

W’ (t1) > aMV' (a,00) — 1 > aMv(a, 00) — 2,
for all large . By (4.16) and (4.18), we have for each M > 0,

limianP”( sup W (t) > aMv(a, 00) — 2) > 1.
= te[0,T+1]

This contradicts the result in Proposition 2.1. [

The following lemma gives a bound on the (1 + p)th moment of the measure-
valued process, where p is the same as in conditions (2.17) and (2.21).

LEMMA 4.3. Assume (2.14)—(2.17), (2.19)—(2.21) and (2.23). Fix T > 0 and
L > 1. For each n > 0, there exists a constant M > 0 such that

hminﬂpf( max  sup (x'T7, Q""(t) + 2" (1)) §M) >1—1.

r—oo m=1rT]e[0,L1]
PROOF. By condition (2.21),
1 1
lim%)%f]P)r<<Xl+p’ _Qr(o) + _Zr(0)> < <X1+[)’5* +I’L*> + 1) =1.
- r r

Denote the event in the above by €. By Lemma 4.2, for any n > 0, there exists a
constant M’ > 0 such that

1
limianP’( max sup —-Q"(rm+rt) < M/) >1-n/2.

r—0o0 m<|rT] te[0,L1 ¥

Denote the event in the above by Q2 (M). Fix My = max(M', A(T +1))and L =
ML+ 1) +2M'. By Lemma D.1,

lim P"(QGc(My, Ly)) =1.
r—0o0
To prove the lemma, it suffices to show that there exists an M > 0 such that on the

event Qf N Q1 (M) N QG- (M1, L) N QY,

1 1
max  sup <X1+p, - rm+rt)+-Z"(rm + rt)> <M,
m<|rT] t€[0,L] r r
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for all large r. In the remainder of the proof, all random quantities of the rth system
is evaluated at a sample path in the event Q N Q] (M") N QG (M1, L1) N Q.

We first find a bound for max,,<|,7| sup,e[O,L](XH"’, %Q’ (rm +rt)). By the
dynamic equation (2.5), we have that forallm < |[rT | and ¢ € [0, L],

1 E"(rm+rt)
<X1+”,;Q’(rm+rt)>=<x“”’,— 2. 5ur>.

r B"(rm+rt) l
By (4.15) and the definition of Q' (M), we have

(4.20) max  sup E"(rm+rt) < a2 (T + 1) <r’M,
m=rT]se[0,L)

4.21) max sup Q' (rm+rt) <rM <rL;
m=1rT]tel0,L]

for all large enough r. So

1
max  sup <X1+”,—Q’(rm+rt)>§ sup (x"P, 7" (n, Ly)).
m=[rT]te[0,L] r —rM<n<r’M,

By (D.5) in the remark after Lemma D.1, the function x !*7 € #, which appears
in the definition of QG- (M1, L1). So by (4.17)
max sup (x' 7, Q" (1)) < Li(x' TP, v +1/2.
m=[rT|ef0,L]
It then follows from condition (2.17) and Theorem 25.12 in [3], we have
(x1 P vy > (x'*P v) as r — oo. Thus,

max sup (x' 7, Q")) < Li(x' P, v) +1,
m=1rT]se[0,1]

for all large r.

We now look for a bound for max,,<|,r| sup,e[O’L](XHp, %Z’(rm +rt)). It
follows from the dynamic equation (4.11) that for any m < [rT ], t € [0, L] and
Borel set A C R,

%Z’(rm +rt)(A)
_ %zr(rm + (AN (0, 00) + %zr(rm T P10

_ 2 0)(ANn 0. 00) + 50, rm + r1)
r

m—1 1 B (r(m—j))
+ Z - Z. 8yr (AN (0,00) + 8" (], rm +r1))
j=0 " i=B"(r(m—j—1))+1
1 B" (rm+rt)
+- Y (AN, 00 + S (t],rm +r1)).
d i=B" (rm)+1
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Given0 < j <m — 1, forthose i’s with B"(r(m — j— 1)) <i < B"(r(m — j)) we
have

T elr(m—j—1),r(m—j)].

Let’s first consider the case where Z” (s) > O for all s € [0, rm + rt]. In this case,
by (2.2), the cumulative service amount

. R
S (<!, H>S" -7, > 2 >
(), rm~+rt)> S (r(m—j),rm) > o 2ok
for all large r where the last inequality is due to (2.19). For those i’s such that
7/ larger than B” (rm), we use the trivial lower bound S (z/,rm +rt) > 0. Also
take the trivial lower bound that S” (0, rm + rt) > 0. Then we have the following
inequality on the (1 + p)th moment:

1
<X1+1’, ;Zr(rm + rt)>

< <x1+1’, }Z’(O)>

m—1 j N Hp B" (r(m—j))
_ 1 - Sur
* Z<(<X ZK) ) r > ”t>

j=0 i=B"(r(m—j—1))+1

(4.22)

1 B" (rm+rt) >

+<X1+p,— Z 5,)[( .

i=B"(rm)+1

Now, we consider the case where there exists an s € [0,rm + rt] such that
Z"(s) = 0. In this case, let mg = min{O < j < m :there existsans € [r(m — j —
1), r(m — j)] such that Z" (s) = 0}. Pick a point sg € [r(mo— j — 1), r(mo — j)]
with Z"(sg) = 0. Then we can replace time 0 in (4.22) with s9 and only consider
intervals [r(m — j — 1), r(m — j)] with j <mqo— 1. So we have

1
<X1+p, ;Zr(rm + rt)>

1
< <x1+”, ;Z’(So)>

mo—1 j N 1+p ] B (r(m—j))
I— 7_ 87'
(ge)) S )

i=B (r(m—j—1))+1

(4.23)

1 B" (rm+rt) >

+<X1+p,— Z 51,; .

P =B rm)+1
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It is clear that the upper bound in (4.23) is less than or equal to the upper bound
in (4.22). So we only need to focus on (4.22) to estimate an upper bound for the
(14 p)th moment. By (4.20) and (4.21), forallm < |rT],t € [0, L] and all large r,

—rM' < B'(rj) <X (T +1) <r’M,
0<B"(rj+rt)— B (rj)
<a(L+D4+2rM <rL, forall t € [0, L].

It then follows from (4.22) that
1
<xl+p’ ;Zr(rm + rt)>
1+ 1 r
<{(x P, =Z"(0)
r

m—1 J 1+p
+ sup Z<<<X - —) ) 1 (n, L1)>
—rM<n<r?M, j=0 2K

+  sup (X7 (n, Ly)).

—rMi<n<r2M

(4.24)

The first term on the right-hand side of the above is bounded by 1 + (x'*7,
&* + n*) by the definition of €. Again, due to (4.17), condition (2.17) and The-
orem 25.12 in [3], the third term on the right-hand side of the above is bounded
by

(4.25) Li{x"™P vy +1/2 < Li(x"7,v) + 1,

for all large r. It now only remains to deal with the second term on the right-hand
side of (4.24). Let

F'(x)=7"(n,L1)((x,00))  forall x > 0.

The summation in the second term on the right-hand side of (4.24) can be upper
bounded by

1+p Z/;/(M)( __> Fn () dx
- i/ (2K) 00 _
Zf’ / (x = P! () dx dy

(J=1/2K)

1+p/ / (x — )pFr(x)dxdy
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Applying Fubini’s theorem, the last bound in the above equals
1 o0 _
x —y)’F'(x)dydx = 4/ xTPE (x)dx
f/( WP @ dyd = s )
2+p
T (+p)?
Since the function x2t7 e 7, it again follows from (4.17), (2.17) and Theo-

rem 25.12 in [3] that the second term on the right-hand side of (4.24) is bounded
by

1+P

(x*TP, 7" (n, Ly)).

2 2
APy 1 2
+p) 1+ p)
for all large r. The proof of this lemma is completed by summing up all these
upper bounds. [J

Li(x**P,v) +1,

The following proposition summarizes the bound estimates in this section.

PROPOSITION 4.1. Assume (2.14)—(2.17), (2.19)—(2.21) and (2.23). For any
n > 0, there exists a constant M > 0 and an event Q'y (M) for each index r such
that

(4.26) hmmfIP’r(Q (M) >1—n,
and on the event w € Q' (M), we have

max sup Q""(t) <M,
m=1rT]ef0,L]

max sup W"M(t) <M,
m=|rT]te0,L]

max sup (TP, Q"™ (r) + 2" (1)) < M
m=|rT|se[0,L]

PROOF. The first and the third inequality follow from Lemmas 4.2 and 4.3.
The second inequality follows from Proposition 2.1. [

4.3. Compact containment. Recall that a set K C M is relatively compact if

supE(R ) < o0,

teK
and there exists a sequence of nested compact sets J,, C R such that | J, = R
and

hm sup&(J) =0
P geK

where J¢ denotes the complement of J,;; see [17], Theorem A7.5. We establish the
following relative compactness property using the bound estimates in Section 4.2.
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LEMMA 4.4. Assume (2.14)—(2.17), (2.19)—(2.21) and (2.23). Fix T > 0 and
L > 1. For each n > 0 there exist a constant M > 0 and a relatively compact set
K(M) C M such that for all o € Q'5(M) (which is introduced in Proposition 4.1)
andr e Ry,

Q" "(w, 1) e K(M) and Z"™(w,t) e K(M)
forallt €[0,T]andm < |rT].

PROOF. Let
K(M) = (& e M:£(Ry) < M and £((n, 00)) < M/n'*7}.

Clearly, K(M) is a relatively compact set for any constant M > 0. Note that
Q""(w, t)(Ry) is bounded by M forall m < [rT], ¢t €[0,T] and w € Q' (M).
By the Markov inequality, forany > 0, m < [rT ] and w € Qz(M),

(x'*P, Q™ (w, 1))
nl+p

which is bounded by —*- by the definition of Qp(M).

- ni+p
Note that Z"" (w, t)(R4) is bounded by K" /r by the policy constraint (2.8). By
condition (2.19), K" /r < K + 1 for all large r. The same argument of Q""" (w, 1)
applies for Z""(w,t). O

Q" (w, 1)((n,00)) <

’

4.4. Asymptotic regularity. A similar result as in this section was proved in
[29]. However, here we consider a much longer time horizon [0, |#T | 4+ L] instead
of interval [0, T'] in [29]. The proof of the following result use a combination of
ideas in [13] and [29].

LEMMA 4.5. Assume (2.14)—(2.23). Fix T > 0 and L > 1. For each €, > 0
there exists a k > 0 (depending on ¢ and n) such that

(4.27) liminfP"( max sup sup Z"" (@) (x,x +«k])<e)>1—n.
r—00 (mgLrTJ te[O,pL]xelél ) n

PROOF. To prove (4.27), it suffices to show

1imianP>’( sup  sup Z"0(0)([x, x +k]) < e) >1—1.
=00 tel0, [rT]+L] xeR 4

First, we have that for any ¢, n > 0, there exists a x such that

(4.28) lirrggﬂ?’( sup Z270(0)([x, x + k1) < 8/2) >1—1n/2.

XER+

The proof of this inequality, which is based on (2.22), is exactly the same as the
proof of (5.14) in [29], so we omit it for brevity.
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Now, we need to extend this result to the interval [0, |#T | + L]. Denote the
event in (4.28) by €2/. Let

(4.29) (M) =QNQENQ(M) N QAT 2M).
By (4.16), (4.18) and (4.26), there exists an M > 0 such that
PR v r
liminf P ($25(M)) = 1 — 1.
In the remainder of the proof, all random objects are evaluated at a fixed sample

path in Q5 (M).
Forany r > 0,t € [0, [T ] + L], we define the time

to=sup{{s <t:(1, Z"%s)) < e/4} U {0}}

to be the last time before ¢ that the fluid-scaled number of jobs in service is less
than /4. Let

( 4MK )
1 = max| fp,t — .
€
We have the following three cases for discussion.
If t; = 0, then by (4.28) for each x e R
Zr0) ([, x + 6]+ S (rty, r)) < /2.

If 11 = 19 > 0, then for each & € (0, #1) there exists an s € (t; — &, t1] such that
7"0(s)(R,) < ¢/4. Since we are only concerned with small & [which should be
small enough such that Z"0(s) < /4 < K" /r], 0"%(s) = 0 by the policy con-
straint (2.8). Note that (2.3) implies

(4.30) B0, 1) <E"%s, 1)+ Q")  foralls <t.

By (4.15), we have B™0(s, 1)) < A8+ /4 for all large r. For any Borel set A C R,
by the fluid scaled system dynamic equation (4.11),

Z"0(11)(A) = Z"%(11) (AN (0, 00)) + 2"2(21) ({0})
< Z"0)Ry) + B"V(s, 1) <e/4+ 18 +¢/4,

which can be made smalled than /2 by choosing § suitably small.

Ifty=¢— 2MTK > 0, then since the sharing limit is K", we have S” (rt1,rt) >
AMK 2M
cxr- > = forall large r. So

7.0 r ~r,0 M
ZR0a) ([x, x +x14+ 8" (rty, rt)) < 27 (tﬂ([T,oo)) <eg/2,

where the last inequality is due to the Markov’s inequality and the definition of
Q' (M). To summarize, we have

(4.31) Zr0(t) (Ix, x + &1+ S"(rt1, r1)) < &/2.
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By the fluid scaled stochastic dynamic equation (4.11),

203 ([x, x 4+ «1) = Z"9(e1) ([x, x + &1+ S (r11, r1))
(4.32) ]
| B

+- Y Syl x4 kl+ S (),
r i=rBrO(r))+1

for each x > 0. When x = 0, we have
20010, k1) = Z2"0(0)((0, k1) + 2" (1) (10}
= Z"0(t)((0, k1 + S (rt1, 1))
1 Bo
+- > S (0, K]+ 8w, ),
d i=rB"0(1))+1
< Z"9%)([0, k] + S (rt1, r1))

rB (1)
Yo Sy (10,k]+ 8" (wi, r1)).

r -
i=rB"0(t)+1

1
+ -

Since all we need is an upper bound estimate, we stick with (4.32) for analysis. By
the choice of 1, the first term on the right-hand side (4.32) is always upper bounded
by ¢/2. Let I denote the second term on the right-hand side of the proceeding
equation. Now it only remains to show that / < ¢/2.

Lett; <1, <--- <ty =1 be a partition of the interval [z, 7] such that |z; | —
tjil <éforall j=1,...,N — 1, where § is to be chosen below. Note that by the
definition of ¢{,

AMK
(4.33) N < .
o&
Write I as the summation
N-14 "O(ti4)
Z Z 8y ([x, x + K1+ 8" (zi, r1)).
j=1" = rB’O(tJ)—H

Recall that 7] is the time that the ith job starts service, so rt; <t/ <rt;y; for
those i € [rB"(t;) + 1,7 B"%(t;41)]. This implies that

S"(rtjg1,rt) < S"(tri,rt) < S (rtj, rt).
By the definition of #;, we have Z”O(s) > ¢/4 for all s € [#1, t]. This gives

P 4
S (rtj,rtj1y) < .
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So forany i € [rB”O(tj) + 1, rB”O(tj+1)], we have [x,x +«]+ 8" (z;,rt) € Cj,
where

45
Cj= [x + S’(rt_,-+1,rt),x +« + Sr(rlj+],rt) + ?]

Thus,
N-14 rB"O(tj11)
1<y - Y. sp(C.
J=1" i=rBro@;)+1

By (4.15), (4.30) and the definition of Q' (M), we have forall j =1,...,N —1
—rM <rB"0(t;) <r(uT 4+ L+ 14+ M) <r?22T,
B™Otj, tj11) <A+ 1+ M <2M,

where the last inequality in each of the above bound holds because we only care

about small § and large r. Choose &1 = 1(;31?/1210 By (4.17),

rB0(tj41) . _
=2 (G = (B — BROup)(Cp| < e,
i=rBr0(t))+1
for all large r. This implies that

N-—1
1< > [B"(tj41) — B"2(t)1V' (C)) + Ney.
j=1

Let gp = m. Since C;EZ is a close interval with length x + % +Kk&y,
by condition (2.18), we can choose «, § < 1 small enough such that

v(C?) < e,
where C;z is the &-enlargement of C;. By (2.16), we also have
V'(C)) < v(C5™) +rer <v(Cf?) + &2,

for all large enough r. Thus, we conclude that

N—1
I<2ep ) [B"tj11) — B (1))] + Ne

=1
<2&2[B"0(r) — B"O(11)] + N
A4MK
<2&| A +14+ M)+ Negq,
€

where the last inequality is again due to (4.29), (4.30) and (4.33). Finally, by the
choice of €1, &>, we have that I <g/2. [J
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4.5. Oscillation bound. Consider a cadlag function ¢(-) on a fixed interval
[0, L] taking values in a metric space (E, ). The modulus of continuity is defined
to be

wL(8(),8) = sup m[g(s), §()].

5,t€[0,L],|s—t]|<8

If the metric space is R, we just use the Euclidian norm; if the space is M or
M x M, we use the Prohorov metric d defined in Section 1. We have the following
bound on the oscillation of the shifted fluid scaled measure-valued processes.

LEMMA 4.6. Assume (2.14)—(2.23). Fix T > 0 and L > 1. For each €, > 0
there exists a 6 > 0 (depending on ¢ and n) such that

(4.34) 1ig£gf1pr( max. max(wy (9" (), 8), wL(Z""(.), 8)) < g) >1—7.

m<|r

The proof of this lemma, which builds on the asymptotic regularity in Lem-
ma 4.5, uses the exactly same argument as in the proof of Lemma 5.6 based on
Lemma 5.5 in [29]. We omit this proof for brevity.

Fix T > 0 and L > 0. For any sequence {§;}, consider the following set:

= = 1
(439 { max, max(wi(Q'(),8)), wL(Z"().5))) < 7}'

m<|.

Denote the sequence {3;} by S. To emphasize the dependency on S and j, denote
the above event by Q' (S, j). By Lemmas 4.5 and 4.6, for any > 0, there exists
an S such that

. . n/2 .
(4.36) hrgégfﬁ”’(ﬂﬁ(& N=1- 7 forj=1,2,....
This implies that for any finite number n € N, we have

n
liminf P (ﬂl QR(S, j)) >1-n/2.
]:

Let r(n) denote the smallest number such that
n
4.37) Pr(ﬂ Q%(S,j)) >1—n for all r > r(n).
j=1

For any n < n’, we have r (n) < r(n’) since ﬂ?;] QR(S, )2 ﬂ’}lzl QR(S, j). Let
n(r)=sup{{n € Zy :r(n) <r}uU{0}}.

[By this definition, we allow n(-) to be infinite. For example, when the function
r(-) has an upper bound. In fact, n(-) can be viewed as the “inverse” of r(-).] It is
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clear that n(-) is nondecreasing. Note that for any ng > O there exists ro = r(ng)
such that n(r) > ng for all » > rg. Thus, we have that
Jlim n(r) = oo

Now define

n(r)
(4.38) =(S) = (S, ).

j=1
Note that Q' (S) is not empty for all large enough r [since n(r) > 1 for all large
enough r], and in this case, P" (2% (S)) > 1 — . So we conclude that

(4.39) hmmfIP”(Q S)=1-—n.
Denote
(4.40) Q"M,S) = (M) n QL ?(S).

For any r, the rth system is defined on the probability space (2", P", F"). The
stochastic processes Q' () and Z”(-) are actually measurable functions on .
From now on, we explicitly write these processes down in the form of Q" (w, -)
and Z" (w, -) to indicate that they are evaluated on the sample path w € Q". We are
now ready to present the precompactness result.

THEOREM 4.1. Assume (2.14)—(2.23). Fix T > 0 and L > 1. For each n > 0,
the exists a constant M > 0 and an S such that such that

(4.41) liminfP" (Q" (M, 8)) = 1 —n.

Suppose {ry}nen is a sequence in R which goes to infinity. Any sequence of func-
tions {(an M (wp, ), 2 (wp, ))}neN with w, € Q' (M S) and m, < [r,T |

for each n € N has a subsequence {(Q" "™ (wy,, ), 2™ "™ (wp,, ) }ieN such
that

vL[(Q ™ (g, ), 2™ (g, ), (D), Z(N] =0 asi — o0,

for some process (Q(-), Z (+)) which is continuous, where vy, is the uniform metric
defined in (1.1).

PROOF. For a fixed n > 0, pick an M > 0 that satisfies (4.26) and construct an
S so that it satisfies (4.36). Define Q" (M, S) via (4.40). The probability inequality
(4.41) follows immediately from (4.26) and (4.39). The space M x M endowed
with the metric d (defined in Section 1.1) is complete. Lemma 4.4 verifies condi-
tion (a) in Theorem 3.6.3 of [11]. For any ¢ > 0 there exists a jo such that 1/j < ¢
for all j > jo. By (4.35) and (4.38), we have that when 6 < 6, and r > r(jo),
where § j, is specified in S and r(n) is defined in (4.37),

(4.42) max(wz (Q""(@", ), 8), wr (2" (0", ), 8)) <e,
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forany 0" € Q"(M, S) and m < |rT ]. This verifies condition (b) in Theorem 3.6.3
of [11]. So the sequence {(Q’"””" (@', -), Znmn (gl ‘D }nen is precompact in the
space D([0, T], M x M) endowed with the Skorohod J; topology. In other words,
there is a convergent subsequence. The limit of this subsequence is continuous by
the oscillation bound (4.42). So convergence in the Skorohod J;-topology is the
same as convergence in the uniform metric defined in Section 1.1. [J

5. State-space collapse. In this section, we establish the state-space collapse
(Theorem 2.2). The task is divided into the following steps: we first show that the
limits in Theorem 4.1, which called fluid limits, are fluid model solutions; the set
of fluid limits is “rich” in the sense that itself and the set of shifted fluid scaled
process mutually approximates each other (Lemmas 5.1 and 5.3); the proof of the
state-space collapse result is finally presented based on the richness of fluid limits
and the properties of fluid model solution (Theorems 3.1 and 3.2).

5.1. Fluid limits. Let 91 (M, S) denote the set of fluid limits of all convergent
subsequences of sequences in Theorem 4.1. It is then quite clear that we have the
following property.

LEMMA 5.1.  Assume (2.14)~(2.23). The set of fluid limits (M, S) is non-
empty. Pick an element (Q(-), Z(-)) € 1. (M, S), for any ¢ > 0 and ry € Ry, there
existsanr >ro,m < |rT| and w € Q" (M, S) such that

uL[(Q"™ (@, ), 2" (@, )), (Q(), Z(:N] <e.

Roughly speaking, this lemma says that any element in Z;,(M, S) can be ap-
proximated by a shifted fluid scaled process of the rth system evaluated at some
sample path in Q" (M, S) with arbitrarily large index r. This helps prove the fol-
lowing property of the fluid limits.

Fix a constant 0 < g < p, where p is the same one as in (2.17) and (2.21).
Recall the subset jqu of all valid initial conditions defined in (3.21).

_LEMMA 5.2.  Assume (2.14)—(2.23). Fix L > 0 and 0 < g < p. Any element
(Q(), Z()) € 2..(M,S) is a critically loaded fluid model solution with initial
condition belongs to f3qM.

PROOF. We first show that the initial condition (Q(O), zZ 0)) e /fM. By the
definition of the fluid limit, there exists a subsequence

(Q'™i (w7, 0), 2™ (w;, 0)) = ((0), Z2(0))  asi — o0,

where the above convergence is in the Prohorov metric. By Proposition 4.1 and the
LPS policy, we have

(1, Q"M (w;, 0) + Z"™Mi (w;, 0)) < M + K + 1,
(X7, Qrimi(w;, 0), 2™ (w;,0)) < M,
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for all large r;. This implies that for any 0 < g < p,
(x 19, QM (w;, 0) + 27 (w0, 0))
< (1, Q" (w;, 0) + 2" (7, 0)) + (x 7, Q1™ (w;, 0) + 27" (w7, 0))
<2M + K + 1.
By the corollary of Theorem 25.12 in [3], we have that for any 0 < g < p,
(x'T9, QM (i, 0) + 27 (@, 0)) = (T, QO) + 2(0)  asi — oo.

Since we can take M big enough such that M > K + 1, this implies that
(x4, Q(0) + Z(0)) <3M and (x, Q(0) + Z(0)) < 3M, which yields the result.

By Lemma 5.1, any fluid limit (Q(-), Z (-)) can be approximated by a shifted
fluid scaled process of the rth system evaluated at some sample path in Q" (M, S)
with arbitrarily large index r € R ; the state descriptor of the rth system satisfies
the stochastic dynamic equations (2.5) and (2.6). It then follows from the same
argument as in Lemmas 6.1 and 6.2 in [29] that each fluid limit satisfies the fluid
model equations (3.12) and (3.13) and constraints (3.14)—(3.16). In fact, [29] is
more general in the sense that the traffic intensity is allowed to be any positive
number instead of being 1 as required in this paper. [

5.2. Uniform approximation. Lemma 5.3 in the following is analogous to
Lemma4.1 in [6]. In contrast to Lemma 5.1 above, this lemma says that any shifted
fluid scaled process of the rth system evaluated at some sample path in Q" (M, S)
with index r large enough can be approximated by some element in Z; (M, S),
which has been proved to be a fluid model solution in Lemma 5.2. This result will
help prove the state-space collapse result for diffusion scaled processes.

LEMMA 5.3. Assume (2.14)—(2.23). For each ¢ > 0, there exists an rg €
Ry such that for any r > ro, m < |rT] and w € Q" (M,S), we can find a

(O(), 2()) € 1.(M, S) satisfying
uLl(Q(w, ), 2" (@, ), (O(), Z(-)] < &.

PROOF. Assume it is not true. Then there exists an ¢ > 0 such that for any
natural number i there existan r; > i, m; € [rT ] and w; € Q" (M, S) such that

v [(Q ™ (i, ), 27 (i, ), (O(), Z(D)] = &,
for all (O(-), Z(-)) € Z1.(M, S). However, by Theorem 4.1, the sequence
Q™ (w7, ), 20 (wiy NI

contains a convergent subsequence, the limit of which must be in Z; (M, S). This
is a contradiction. [
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5.3. Proof of state-space collapse. 'With all the preparation, we finally present
the proof of state-space collapse.

PROOF OF THEOREM 2.2. By (4.41), it suffices to show that for each ¢ > 0,
there exists an rq such that when r > rg,

(5.1) sup  sup d[(Q (@,1), Z" (0, 1)), Ag W (0, 1)] <.
we (M,S) t€[0,T]

In the following, we fix r > ro and w € Q"(M,S). By Lemma 5.2, any (Q("),
Z(-)) € P (M, S) is a critically loaded fluid model solution with initial condition
E, e f3qM. Denote

W) = (x, Q) + Z()).

It follows from the workload conservation property (3.20) that W(-) =(x,E+u).
By Theorem 3.1, there exists an L* > 0 such that when s > L*,

(5.2) d[(O(5), Z(5)), Ag yW(s)] < /3,
for all (O(-), Z(-)) € Z1.(M, S). Now, fix a constant L > L* + 1. Note that
LrT]
[0,r2T1 C[0,rL*1U | J [r(m + L*), r(m + L)].
m=0

By the definition of diffusion and shifted fluid scaling, to show (5.1) it suffices to
show

(53) max sup d[(Q""(w,s), 2" (w,s)), Ak W (w,5)] <,
m<|rT| se[L*,L]

(5.4) sup d[(Q"%(w,s), Z"%w, 5)), Ak 2 W (w, 5)] <e.
s€[0,L*]

We first prove (5.3). Fix an m < |rT]. By Lemma 5.3, for any &’ > 0, there
exists a (O(-), Z(-)) € Z1.(M, S) (depending on r, m and w) such that

(5.5 v (9" (@, ), 27" (@, )), (Q(), Z()] <&,

By the definition of Q" (M, S) and Proposition 4.1, following the same proof as in
Lemma 5.2, we have that for each fixed 0 < g < p,

(x'T,0(t) + Z(1)) < 3M,
(X', Q" (w, 1) + 2" (w, 1)) < 3M,

for all ¢ € [0, L]. It then follows from Lemma C.2 and by taking &’ small enough
that

T 7r,m €
(5.6) tes[l(l),pL]|W(t) —W'w, )] < 3max(1/B.1/8.)
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Note that for any real numbers wj, wy, by the definition of the lifting map Ak,
and the metric d, we have

d[AK,vwl» AK,vw2]

( [(wl — KBt (w2 — KB)" }
<max|d v, v,
B p
|:w1/\K,Be wy A KB, D
d - Ve | ).
Be Be

Itis clear that for any a, b > 0 and Borel set A C R, we have that av(A) < bv(A)+
b —a| < bv(AP=¢) + |b — a|, where A"~ is the |b — a|-enlargement of A.
Similarly, we have bv(A) < bv(AP=¢l) + |b — a|. So d[av, bv] < |b — al. This
implies that

d[(wl —KB)T (w2 — KB)T } ‘ (w1 — KB (w2 — Kﬂe)+’
v, v| < —
B B B B

1
< —|wy —wa|.
B
Following the same argument, we have
|:wl/\KIBe wy A KB, ] ‘wl/\Kﬁe wy A KB,
d Ve, Ve | < -
Be Be Be Be
Thus, we conclude that

1
< —Jw; —wz|.
e

1 1
(5.7 d[Ag ywi, Ag yw2] < max(E, ﬂ_)|wl — wy|.

e

So (5.3) follows from (5.2) and (5.5)—(5.7).
It now remains to show (5.4). By Lemma 5.3, for any ¢’ > 0, there exists a
(Q), Z(-)) € Z1.(M, S) (depending on r and w) such that

(5.8) v (w, ), Z"%w, ), (), Z(N]l < &'
By conditions (2.20) and (2.24), we have that
(Q(0), Z(0)) = Ak, W(0).

In~other~ words, the initial condition (Q(O), Z (0)) is an equilibrium state. Since
(Q(+), Z(+)) is a fluid model solution, by Theorem 3.2,

(O), Z(t)) = Ak ,W(t)  forallz > 0.

So (5.4) follows immediately from (5.6)—(5.8) and the above equation. [
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APPENDIX A: AN INTEGRATION BY PARTS FORMULA FOR
LEBESGUE-STIELTJES INTEGRAL

The following lemma is used in the derivation of (3.25) and in the proof of
Lemma 3.3. We do not require the continuity of distribution function F'.

LEMMA A.l1. Suppose that F is a probability distribution function with
F(0) =0, and g € D(]0, 00), R) has bounded variation on [0, b] for each b > 0.
Forany u > 0,

/ [1—Fu—v)ldg)=q@)—[1—F(u)lg) —/ q(u—v)dF(v).
[0,u] [0,u]

PROOF. Let u > 0 be fixed and let I = [0, u]. Define f(v) =1— F(u — v).
Then f is a left continuous function in on (—oo, u]. Clearly, both f and g are
functions with bounded variation on the interval /. Let S denote the set of points
in I where both f and g are discontinuous. According to Theorem 6.2.2 in [7],

[ rdg+ [qdr = rahia@h) - £09907) + ¥ Aw@
aes

(A.1)
=qu) —[1—Fwlq0)+ ) _ A(a),

aes

where
A@) =[f(@) = L(f@) + f@)](ga®) —g@))
+[g@@ — 3(q@) +q@))](f@") = f@).
Since f is continuous on the left and ¢ is continuous on the right at all a € S, then
A@) =[-3(f@h) — f@)]lg(@ — g @]
(A2) +[3(¢(@ —q@))If@h) — f@)]
=0.

Now the lemma follows from (A.1), (A.2) and

/quf:/[‘o?u]q(v)dF(u—v)=/[05u]q(u—v)dF(v). 0

APPENDIX B: A KEY RENEWAL THEOREM WITH UNIFORM
CONVERGENCE

The following result is similar as the key renewal theorem. But the convergence
is shown to be uniform on a set of functions .#” as specified below.
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LEMMA B.1. Assume that each h € ¢ is nonnegative and nonincreasing.
Assume that

(B.1) M1 = sup h(0) < oo,
hes?t
o
(B.2) lim sup h(y)dy =0.

X—)OOhE% x

Let U be the renewal function associated with a nonlattice inter-renewal distribu-
tion with finite mean . Then

(B.3) xll)ngo sup
hest

U*h(x)—l/ooh( )d ‘—0
8 Jo yyay =u.

PROOF. Conditions (B.1) and (B.2) imply that
o
M, = sup h(y)dy < oc.
hes# /0

Let § > 0 and € > 0 be arbitrary positive numbers in (0, 1). By (B.2), there exists
N = N (6, &) such that for each h € 7

o0
f h(y)dy < de.
NS

Furthermore, by the Blackwell theorem, there exists x* such that for each x > x*
andeachk=0,..., N,

%—88<U(x—(k+1)8)—U(x—k8)<%+88.

Letdy(x) =U((x —k8) —U(x — (k+ 1)5) for all k > 0. Here, we take the conven-
tion that U (x) = O for all x < 0. Define

o0
W (x) =) (k&) L gs<x<irnys)-
k=0
Clearly, h(x) < h®(x) for x > 0. So for x > x* and h € /¢, we have

Ush(x) <Uxh(x) =" h(k8)dy(1)
k=0

N 00
=Y hk&)de()+ Y h(k)di(t)

k=0 k=N+1

N 00
< Zh(k&)(% + sa> +U@®) Y, h(ks)
k=0

k=N+1
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< ((Sh(O) —i—/ h(y)dy) <— —i—s) + U(8)—/ h(y)dy
0 B 8 JNs
0 1
< (Sh(O) —I—/(; h(y) dy) <B + 8) +U()e
1 [ 1
< E/o h(y)dy + aMl(E +e) + Mae + U(De.
Define
o
R (6) =" h((k + 1)8) ks <(k+1)s)-
k=0
Clearly, h(x) > ﬁ‘s (x) for x > 0. So for x > x* and h € J7, we have

Ush(x)>Uxh )= h(tk+ D8)di(1)

k=0
N 00
=D h(tk+D8)de(®) + Y h((k+1)8)di (1)
k=0 k=N+1
N 8
> ;)h((k + 1)3)(3 - 83)

= (Z h(k8) —8h(0) — h(k8)> (f — 85)
k=0 'H

k=N+2

([ [ o)) -} -

> é/oooh(y)dy—Mze —58(% —s> —82M1<% —s>.
Thus,

1 o0
limsup sup |U x h(x) — —/ h(y)dy‘
X—>00 hes¥ IB 0

< 8M1<% +8) +2Msre + U(l)e—l—&s(% —8)

+82M1<% —8).

Because § > 0 and ¢ > 0 can be arbitrarily small, we have

1 o0
lim sup |U *xh(x) — E/ h(y)dy|=0.
0

X—)OOhe%
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APPENDIX C: SOME RESULTS ON THE PROHOROV METRIC

Lemma C.1 is applied in Section 3.3, and Lemma C.2 is applied in Section 5.3.
Since we could not find these results in the literature, we include them here for
completeness.

LEMMA C.1. Let p and 11 be finite Borel measures on [0, 00). Denote Ay =
(y,00) forall y > 0. Let M = max({x, u), {x, 41)). Forall0 <e < 1 if

(C.1 Suglu(Ay) —n1(Ay)] <e,
y=

then
di, 1] < (M +2)e'/.

PROOF. Let «, B be positive constants to be determined later. Note that
u((e™%, 00)) < Me”,
For any real number a, denote I, = (a,a + ¢P]. Condition (C.1) implies that

sup [ (lg) — p1(la)| < 2e.
aeR

For any Borel set A C [0, 00), there exist ay, ..., ay such that

N
AN[0, e~ | 1a
i=1
and I, N 1,; = S forall i # j, and I, N A # & for all i. These conditions imply
that

N<g* P

and
N
Ul c 47
i=1

where A°” is the &# -enlargement of the set defined in Section 1.1. So we have

w(A) < (AN, 677 + 1(AN (6%, 00))

N
< “(U Ial.> + Me*

i=1
N
<1 (U Iai) + N2e + Me*
i=1

< M](Agﬁ) + 2679 F 4 Mg,
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Now choose o = 8 = 1/3 to obtain
w(A) < g (AMH27) (M 4213,
Exchanging the position of u and w1 in the above argument, we have
ui(A) < w(AMHDE) (4 2)e!3,

This completes the proof. [

LEMMA C.2. Suppose (11 and |4 are finite Borel measures on R satisfying
(C.2) diur, nl<e <1,

and (x4, 1) < M, (x'*9, ) < M for some positive constants q and M, then
2M
HXJM)—(XJU|§8V2+”Zr8W2

PROOF. By Markov inequality, ui(Ay) < M and u(Ay) < M for all

xltq x1+q
x > 0. For any C > 0, we have the following inequality:

C
|<x,m>—<x,u>|sf0 1 (Ay) — (A dx
+/C m(Ax>dx+/C (Ay) dx

dx

© M
§C8+2/C R

1
=Ce+2M——/—7.
£ Ca

The result follows by letting C =¢~1/2. O

APPENDIX D: GLIVENKO-CANTELLI ESTIMATE

For any r, consider the sequence of i.i.d. random variables {v}}7°__ with
law v". In our setting, those v;’s with i > 1 correspond to the service require-
ment of the arriving jobs in the rth system; those with i < 0 correspond to the
service requirement of initial jobs waiting in the buffer. Forany n € Z and [ € R4,

define
1 n—+|rl]
(D.1) W) == 37 Sy

L a—

The objective of this section is to obtain the Glivenko—Cantelli estimate, Lem-
ma D.1 below, for n" (n, [). Very similar result was shown in Lemma 4.7 [13]. For
completeness, the proof which follows the one in [13] is provided here.
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To present the result, we introduce some notions from empirical process theory.
Our primary references are [13] and [25].

A collection C of subsets of R? shatters an n-point subset {x1, ..., x,} C R, if
the collection {C N {x1, ..., x,}:C € C} has cardinality 2". In this case, we say that
C picks out all subsets of {xq, ..., x,}. The Vapnik—éervanenkis index (VC-index)
of C is

Ve = min{n : C shatters no n-point subset},

where the minimum of the empty set equals infinity. The collection C is a Vapnik—
Cervonenkis class (VC-class) if it has finite VC-index. Let ¥ be a family of Borel
measurable functions f: Ry — R. We call ¥ a VC-class if the collection of sub-
graphs {{(x,y):y < f(x)}: f € ¥} is a VC-class of sets in R,

We call a family of functions ¥ a Borel measurable class if, for each n € N and
(e1,...,en) € {—1,1}", the map

n
(X140 %) = SUp Y e f(xi)
fevi=

is Borel measurable on R’} . The condition requires that, for all § > 0 and r € R,
the families 7 = {f —g: f.g € ¥, | f —gllvo <8} and V2 = ((f —)*: f.g €
¥’} are Borel measurable, where

£l 2= (LF17 v) 2

denotes the Ly (v")-norm.

We call a Borel measurable function f: R, — R an envelope function for ¥ if
any element in # is bounded by f. A VC-class with an envelop function satisfies a
very useful entropy bound. Let I" be the set of finitely discrete probability measures
y on R such that || f lly,2 > 0. For any Borel measurable function f:R, — R
satisfying || f ;2 < oo, let Br(e) ={g € ¥ :llg — fllr 2 <&} denote the Lo (V")-
ball in ¥/, centered at f with radius . For a family of functions #', N (e, ¥, La(y))
is the smallest number of balls B¢ (¢) needed to cover #". Then ¥ satisfies

oo —
(D2) | sup iog Nl F 2 . Loty de < oo
0 yerl
see Definition 2.1.5, (2.5.1) and Theorem 2.6.7 in [25].

LEMMA D.1. Let ¥ be a VC-class of Borel measurable functions such that
7/0%3 and Vg are Borel measurable classes for all r € Ry and § > 0. Assume there
exists an envelop function f of ¥ such that
(D.3) lim sup (f21 7. 5,v") =0.

N_)OOVER+
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Fix constants M1, L1 > 0. Forall , & > 0,

limsupIP”( max sup sup |(f, 71" (n, 1)) — L({f, V" (A))| > e/)
r—00 —rMi<n<r’M €[0,L,] fe¥

D.4)

<Eé.

REMARK D.1. To apply the lemma in this paper, we take
(D.5) Y ={lc:CeClu P, x2tr,

where C = {[y,00):y € Ry} U{(y,00):y € R;} and p is the same one as in
condition (2.17). It is very easy to see that ¥ is a VC-class. Note that both 7"
and 7, are subsets of functions of the form 1, ) (or 151, lja,b)s la,61)- SO
the supreme over these two families will be the same as supreme over all a, b
in subsets of R, which will be the same as over all a, b in subsets of Q. Borel
measurability is preserved when take supreme over a countable set. It is also clear
that

x<l1,
x>1,

- 1,
fx)= {x2+p’
is an envelop function. Condition (2.17) implies (D.3).

To better structure the proof, we present the following auxiliary lemma.

LEMMA D.2. Forn e€Z and k € N, define
n+k

1
(D.6) Ei=—F7 2, By —V).
\/]; i=n+1
Then for any g > 1,y > 2 and n € Z there exists My < oo and ko such that k > ko
implies

M
D.7) sup]P’r< sup (f, &, ) > y) <1
r fev v
The constant M, does not depend on y.

PROOF. Let us first fix n = 0 and look at 56’  Which will be denoted by & for

simplicity. The property (D.3) of the envelop function f and the uniform entropy
bound (D.2), together with the sets 7§ and 7 being Borel measurable, imply
that " is Donsker and pre-Gaussian uniformly in v", r € Ry. (See Theorem 2.8.3
in [25].)

Let [°° (') be the space of all probability measures on R equipped with norm
I+l =sup ey (f, ). ¥ being Donsker uniformly in v" means that & converges
weakly as n — oo in [*°(¥) to a tight, Borel measurable version of the Brownian
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bridge £” uniformly for all v". According to Chapter 1.12 in [25], this is equivalent
to
(D.8) sup [E"h(§;) —Eh(")| — 0.
heBL;
uniformly for all v", where BL is the set of functions % :1°°(?) — R which are

uniformly bounded by 1 and satisfy |h(z1) — h(z2)| < |lz1 — 22| . Pre-Gaussian
uniformly in v means that

(D.9) supE’[sup (f. g’)] < oo,
r fev
Define hy :[*°(7) — R by

+
hy() = (?lelg/(f, )—y+ 1) AL

Then it is clear that &, € BL{, and

supP’ (sup (£, &) > y) < supE' [hy (§))].
r fev r

By (D.8) and the above inequality, there exists kg € N such that k > kg implies
supP’ ((sup (f, &) > y) < supE' [hy (€] +y~*.
r f€’1/ r
Applying the definition of 4, and Markov inequality to obtain
sup (sup (f.&) > y) < supP’ (sup (£.£") > y = 1) +y™
r fev r fev
<y (2‘7 supIE’[ sup (f, é’)]q + 1).
r fev
Let M, be the last term in parentheses, which does not depend on y. For each
r € Ry, the Brownian bridge is separable and Gaussian with sup ;. (f, §") finite
almost surely. Thus, there exist a constant M such that for all r € R,
q q
E'[sup (£.€")]" < M[E sup (£.6")]",
fev fev
see Proposition A.2.4 in [25]. Conclude from (D.9) that M, < oc.
So far, we have shown that the result (D.7) is true for n = 0. Note that for any
n €Z,§,  isdefined on the shifted sequence vy, |, vy .5, .... By theii.d. property
of the sequence, if we fix k then & ; has the same distribution for all n € Z. So we
can conclude that (D.7) is true foralln € Z. 0O

PROOF OF LEMMA D.1. Note that
n+\rl]

=1 r r 1
(i (. D) = IV = = Yo Lf8y) = (fiv N+

i=n+1
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Since for each ¢ > 0, 1/r < ¢’ /2 for all large r, so the probability in (D.4) can be
bounded by

n+\rl] Y
(D.10) limsupP” max sup |— Z [(f. 8y VI > = ).
r—00 —rM)<n<r?M, le[O L] fev|T imnt1 2

Pick § > 0, when r is large enough (» > M1 /d) the interval [—r M, r2M;] will be
covered by intervals

[—r25,0],[0,r2<s],...,M%W_1) 5. Pﬂ 25]

When r is large enough (r2s > lrL1]), (D.10) can be further bounded by

k
limsupPr( max max _ sup [<fvfr-2ak>
r—00 1<j<[My/81-10<k, k'< rZ(Sfe”f/ r s

NG

8/
8| = 5 )
Since &, . has stationary increments, the previous term can be bounded above by

4 )
>— ).
2
By Ottaviani’s inequality (see Proposition A.1.1 in [25]) and by stationary incre-

ments of & L this can be bounded above by

[M1 /8T (SUp ey (f.8], 05,) > €'/ (4V/))
(D.11) lim sup .
r—>00 1 —maXgs<,25 P"(SUp pey (f &G 1) > &'r /(4V/K))

k
{ <fv gé,k)

] 5 [P (
lim sup 5 P"| max sup

r—00 0<k<r2s fev

Assume § is small enough so that \;_ > 2. By Lemma D.2, there exists M3 and
ko € N such that k > ko implies

suplP”(supUSOk 48[) (‘M) M.

Since | 28] — 00 as r — 00, the limit superior of the numerator in (D.11) can be
bounded above by [M/871(4+/8/¢')3 M3, which can be made arbitrarily small by
choosing § sufficiently small. By the same reason, those terms in the maximum of
the denominator with index k > kg are bounded above by (4+/8/¢’)> M3. For those
terms with index k < ko,

P (sup (7860 > ) < (sup (500 > )

sup (f, > < sup (f, >—,

rev UM T 4k rev 0T 4k

which converges to zero as r — oo. By choosing § small enough, (D.11) can be
made arbitrarily small for all large ». [J
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