
Statistical Science
2009, Vol. 24, No. 4, 503–516
DOI: 10.1214/09-STS314
© Institute of Mathematical Statistics, 2009

Robust Tests in Genome-Wide Scans
under Incomplete Linkage Disequilibrium
Gang Zheng, Jungnam Joo, Dmitri Zaykin, Colin Wu and Nancy Geller

Abstract. Under complete linkage disequilibrium (LD), robust tests often
have greater power than Pearson’s chi-square test and trend tests for the
analysis of case-control genetic association studies. Robust statistics have
been used in candidate-gene and genome-wide association studies (GWAS)
when the genetic model is unknown. We consider here a more general incom-
plete LD model, and examine the impact of penetrances at the marker locus
when the genetic models are defined at the disease locus. Robust statistics
are then reviewed and their efficiency and robustness are compared through
simulations in GWAS of 300,000 markers under the incomplete LD model.
Applications of several robust tests to the Wellcome Trust Case-Control Con-
sortium [Nature 447 (2007) 661–678] are presented.

Key words and phrases: Efficiency robustness, genetic models, genome-
wide association studies, linkage disequilibrium, ranking and selection, in-
complete LD model.

1. INTRODUCTION

Genome-wide association studies (GWAS) have
been used to detect true associations between 100,000
to 500,000 genetic markers (single-nucleotide poly-
morphisms—SNPs) and common or complex diseases
(e.g., Klein et al., 2005; Sladek et al., 2007; WTCCC,
2007). Currently, up to a million SNPs are used in
GWAS. A simple and initial analysis of GWAS is a
genome-wide scan, in which a statistical test is applied
to detect association one SNP at a time. Test statis-
tics and/or their p-values are obtained for all SNPs and
ranked in order of their statistical significance. After
all SNPs are ranked, a prespecified small proportion
of SNPs from the top-ranked SNPs (or SNPs with p-
values less than a prespecified genome-wide threshold
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level) is selected for further, more focused analyses, for
example, haplotype analysis, multi-marker analysis,
fine mapping, imputation and independent replication
studies (see Hoh and Ott, 2003; Marchini, Donnelly
and Cardon, 2005; Schaid et al., 2005). The genome-
wide scan has also been shown to be cost-effective in
two-stage designs for GWAS, in which additional sub-
jects are genotyped in the second stage for a small por-
tion of selected SNPs in the first stage (see Elston, Lin
and Zheng, 2007; Thomas et al., 2009). We focus on
robust tests for GWAS in the single stage designs.

Since only a small portion of top-ranked SNPs is
selected in genome-wide scans, it is important that
the probability of at least one SNP with true associ-
ation being selected is high, for example, greater than
80% (Zaykin and Zhivotovsky, 2005; Gail et al., 2008).
The probability that a SNP with true association is de-
tected, confirmed and replicated in later more focused
analyses is often smaller. Hence, one of the goals of
genome-wide scans is to rank the SNPs with true asso-
ciations as near to the top as possible. Zaykin and Zhiv-
otovsky (2005) showed that the factors that mainly af-
fect the rankings of true SNPs include the total number
of SNPs, the number of SNPs with true associations,
the genetic effects (genotype relative risks or odds ra-
tios), the sample size, power of the association test
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used, and linkage disequilibrium (LD) between SNPs
and the functional locus (the true unknown disease lo-
cus). Most of the above factors are determined by the
study design, except the power of the test for asso-
ciation. The common association tests include Pear-
son’s chi-squared test (Pearson’s test, for short), the
Cochran-Armitage trend tests (CATTs) and the allelic
test. Three CATTs are available depending on the un-
derlying genetic model (the mode of inheritance of the
disease locus). Common genetic models include re-
cessive, additive, multiplicative and dominant models.
Overdominant and underdominant models may also be
used, but they are less common. The allelic test has per-
formance similar to that of the CATT under the addi-
tive model when the Hardy–Weinberg equilibrium pro-
portions hold (Sasieni, 1997; Guedj, Nuel and Prum,
2008). Thus, the allelic test is not considered here.

Intuitively, the most powerful test should be used
in genome-wide scans. For common and complex dis-
eases, it is possible that there are multiple functional
loci with different genetic models, in particular, for
GWAS. The power of an association test depends on
the underlying genetic models of the functional loci,
which, however, are unknown. They could be any of
the four common genetic models or none of them. In
addition, imperfect LD between functional and marker
loci can modify the underlying genetic model, further
increasing uncertainty. In this case, there is no uni-
formly most powerful test for a genome-wide scan.
It is known that the most efficient CATT is available
when the genetic model is known (Sasieni, 1997; Frei-
dlin et al., 2002). When the genetic model is unknown,
using a single CATT is not robust across a family of
genetics models. Therefore, in this situation, more ro-
bust tests have been proposed for both candidate-gene
studies and genome-wide scans (Freidlin et al., 2002;
Sladek et al., 2007; Zheng and Ng, 2008; Gonzalez et
al., 2008; Joo et al., 2009). The performance of the ro-
bust test statistics has been studied under the perfect
LD model, that is, the SNP is the same as the functional
locus (see more discussion later). This is, however, a
strong assumption for GWAS. In particular, when one
of the models embedded into a robust test holds at the
functional locus, it remains unmodified at the marker
locus. Therefore, it is not surprising that robust tests
based on the maximum of test statistics over common
genetic models often provide greater power than Pear-
son’s test and CATTs. However, when LD is imper-
fect, the induced penetrance values at the marker are
weighted averages of the causal penetrances, where the
weights are functions of LD. Thus, the imperfect LD

will change certain models, such as the dominant or
the recessive models, so that the heterozygote pene-
trance will have an intermediate value between those
for the homozygotes. Therefore, it is important to in-
vestigate not only the exact form of such penetrance
modifications, but also its impact on the performance
of the robust tests for association.

In this article we consider a general LD model with
the standardized LD parameter, D′ (Lewontin, 1964),
and study the properties of the penetrances defined at
the marker locus given the genetic model defined at the
functional locus. In addition to reviewing some com-
mon robust tests for case-control association studies,
we also compare their performance under this general
model with a varying D′. Using robust tests when there
is imperfect LD has not been studied perviously. The
perfect LD case, where the marker and the disease loci
coincide, can be obtained as a special case at D′ = 1,
with an additional requirement of equality of allele fre-
quencies at the marker and the disease locus. This im-
plies a perfect correlation between the alleles at the two
loci. Under this general model, we also examine the
effectiveness and robustness of the genetic model se-
lection procedure (Zheng and Ng, 2008). Simulation
studies are conducted to compare the efficiency robust-
ness of various robust tests under this general model for
genome-wide scans of 300,000 SNPs. Applications of
robust tests are presented using real data from a GWAS
(WTCCC, 2007).

The rest of the article is organized as follows. In Sec-
tion 2 we introduce notation, the case-control data and
different genetic models. The Hardy–Weinberg dise-
quilibrium coefficient and its use to detect the under-
lying genetic model is given in Section 3. Various ro-
bust tests for candidate-gene analysis and GWAS will
be reviewed under the perfect LD model in Section 4.
Section 5 presents numerical results based on the simu-
lation studies. The performance of the model selection
procedure under the general LD model will be re-
ported. Comparison of several robust tests in analyz-
ing genome-wide data is also presented. Applications
to real data are given in Section 6. Discussion and con-
clusions are given in the final section.

2. GENETIC MODELS

2.1 Notation and Data

Consider a case-control association study with r

cases and s controls and a SNP with alleles A and B .
Denote the population frequencies of the alleles by
Pr(B) = p and Pr(A) = pc = 1 − p. The three geno-
types of the SNP are denoted by G0 = AA, G1 =
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AB , and G2 = BB , with the population frequencies
Pr(Gi) = gi for i = 0,1,2. When the Hardy–Weinberg
equilibrium (HWE) proportions hold in the population,
(g0, g1, g2) = (p2

c ,2ppc,p
2). The case-control data

for the SNP can be displayed in a 2 × 3 contingency
table with the rows corresponding to case or control
groups and the columns to the three genotypes. The
genotype counts for (G0,G1,G2) in cases and controls
are denoted by (r0, r1, r2) and (s0, s1, s2), respectively.
The genotype counts follow multinomial distributions:
(r0, r1, r2) ∼ Mul(r;p0,p1,p2) and (s0, s1, s2) ∼
Mul(s;q0, q1, q2), where pi = Pr(Gi |case) and qi =
Pr(Gi |control) for i = 0,1,2. Under the null hypothe-
sis of no association, H0 :pi = qi for all i.

Denote the penetrance of the SNP by fi = Pr(case|
Gi), and the disease prevalence by k = Pr(case). Then
pi = gifi/k and qi = gi(1 − fi)/(1 − k). Hence, the
null hypothesis becomes H0 :f0 = f1 = f2 = k. For
simplicity, we assume in this section there is only one
functional locus. Therefore, there is only one genetic
model.

2.2 Perfect LD Model

Under this model, the SNP is also the functional lo-
cus with equal allele frequencies. The penetrances fi ,
i = 0,1,2, defined earlier are also penetrances of the
functional locus. Genotype relative risks (GRRs) are
defined by λi = fi/f0 for i = 1,2, where f0 is the ref-
erence penetrance. Under the alternative hypothesis, al-
lele B is the risk allele if the probability of having the
disease increases with the number of B alleles in the
genotype. That is, f2 ≥ f1 ≥ f0 and f2 > f0. These
two constraints define a family of constrained genetic
models, which contains four commonly used genetic
models:

� = {(λ1, λ2) :λ2 ≥ λ1 and λ2 > 1}.(1)

We refer to � as the constrained space for genetic mod-
els when the risk allele is known. The null hypothesis
corresponds to H0 :λ1 = λ2 = 1. The genetic model is
recessive if λ1 = 1, additive if λ1 = (1 + λ2)/2, mul-
tiplicative if λ1 = λ

1/2
2 , and dominant if λ1 = λ2. Let

λ2 = λ for some λ ≥ 1. Then λ1 can be calculated us-
ing λ value under one of the four genetic models. The
first three letters of each model are used to indicate
the genetic model in the following, for example, REC
stands for the recessive model.

Note that � does not contain overdominant or un-
derdominant models, which occurs when λ1 ≥ λ2 ≥
1, λ1 > 1 and λ2 ≥ 1 ≥ λ1, λ2 > λ1, respectively.
These two models are less common compared to the
other four genetic models reviewed here.

2.3 Incomplete LD Model

Under this model, the SNP of interest is not the func-
tional locus. Suppose the functional locus also has two
alleles, denoted by a and b, with the population fre-
quencies Pr(b) = q and Pr(a) = qc = 1 − q . Assume
that the SNP with alleles A and B is associated with the
disease through LD with the functional locus with alle-
les a and b. Table 1 represents the joint probabilities of
the two loci, in which D = Pr(Aa)− Pr(A)Pr(a) mea-
sures LD between the SNP and the functional locus.
When D = 0, they are in linkage equilibrium. An as-
sociation between the SNP and a disease can be estab-
lished when |D| > 0 and when the two loci are linked.

There are two commonly used measures of the re-
lationship between the SNP and the functional locus:
D′ and the correlation between the alleles A and a.
Denote pAa = Pr(Aa), pAb = Pr(Ab), pBa = Pr(Ba),
and pBb = Pr(Bb). Then D = pAapBb −pAbpBa . The
measure D′ ∈ [−1,1] of Lewontin (1964) is defined as

D′ = D

min(qcp,pcq)
, if D > 0;

= D

min(qcpc,pq)
, if D ≤ 0.

When the SNP is identical to the functional locus (i.e.,
A ≡ a, B ≡ b and p ≡ q), pBb = p, pAa = pc, and
pAb = pBa = 0. Thus, D′ = 1. However, D′ = 1 can be
reached when the SNP is not identical to the functional
locus (e.g., when p �= q). The correlation between the
two alleles is defined as (Weir, 1996)

Corr(A,a) = pAapBb − pAbpBa√
ppcqqc

.

Note that the correlation reaches its maximum value
only when p = q . The LD model is complete if |D′| =
1 and perfect if |Corr(A,a)| = 1. In this article we
assume the two loci have the same allele frequencies.
Thus, D′ and the correlation are equivalent. That is, in

TABLE 1
Joint probabilities of the marker and functional locus under

incomplete LD model

Functional locus

Marker a b

A pcqc + D pcq − D pc

B pqc − D pq + D p

qc q 1
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this article the (im)perfect LD model is equivalent to
the (in)complete LD model.

In the simulations we specify D′, p and q . Then, D

can be calculated. Using Table 1, the four haplotype
frequencies pAa , pAb, pBa and pBb can be obtained
by replacing D in Table 1 by D′ min(qcp,pcq) when
D ≥ 0 (a similar term is used when D < 0).

The definition of a genetic model under the imper-
fect LD model differs from that under the perfect LD
model. Denote the genotypes at the functional locus by
G∗

0 = aa, G∗
1 = ab and G∗

2 = bb. The penetrance of
the functional locus is given by f ∗

i = Pr(case|G∗
i ) for

i = 0,1,2. Accordingly, define GRRs by λ∗
i = f ∗

i /f ∗
0

for i = 1,2. The penetrance of the SNP is the same as
before and still denoted by fi . Denote f = (f0, f1, f2)

t ,
f∗ = (f ∗

0 , f ∗
1 , f ∗

2 )t , where t is transpose and P∗ =
(Pr(G∗

i |Gj))3×3 and P = (Pr(Gi |G∗
j ))3×3 are 3 × 3

transition matrices. Then we have

f = P∗t f∗,(2)

f∗ = Pt f.(3)

Under the perfect LD model, the two transition ma-
trices are identity matrices P∗ = P = I. The con-
ditional probabilities in (2) can be obtained using
Pr(G∗

i |Gj) = Pr(G∗
i ,Gj )/

∑2
l=0 Pr(G∗

l ,Gj ) under the
Hardy–Weinberg proportions at both SNP and func-
tional locus, which are given in Table 2. Note that these
are functions of the four haplotype frequencies. The
conditional probabilities in (3) can be obtained simi-
larly, and can also be found in Nielsen and Weir (1999)
and Hanson et al. (2006), Table 3.

2.4 Properties of Genetic Models under the
Imperfect LD Model

We defined genetic models using penetrances (f0,

f1, f2) at the SNP of interest. Under the imperfect

LD model, the genetic model should be defined at the
functional locus using (f ∗

0 , f ∗
1 , f ∗

2 ). Thus, the REC,
ADD, MUL or DOM models correspond to λ∗

1 = 1,

λ∗
1 = (λ∗

2 + 1)/2, λ∗
1 = λ

∗1/2
2 , or λ∗

1 = λ∗
2, respectively.

A constrained family of possible genetic models at the
functional locus is given by

�∗ = {(λ∗
1, λ

∗
2) :λ∗

2 ≥ λ∗
1 and λ∗

2 > 1}.(4)

Note that � and �∗ are different under the imperfect
LD model, and they are linked by the two transition
matrices in (2) and (3). Under the imperfect LD model,
applying Table 2 to fi = ∑2

j=0 Pr(G∗
j |Gi)f

∗
j , we have

f0 = f ∗
0 (F 2

1 + 2F1F3λ
∗
1 + F 2

3 λ∗
2),(5)

f1 = f ∗
0 {F1F2 + (F1F4 + F2F3)λ

∗
1 + F3F4λ

∗
2},(6)

f2 = f ∗
0 (F 2

2 + 2F2F4λ
∗
1 + F 2

4 λ∗
2).(7)

The true disease model at the functional locus, defined
using (λ∗

1, λ
∗
2), is unknown. We study properties of the

penetrances (f0, f1, f2) or GRRs (λ1, λ2) defined at
the SNP given (λ∗

1, λ
∗
2).

THEOREM 2.1. Under the imperfect LD model
with |D′| < 1, if (λ∗

1, λ
∗
2) ∈ �∗ at the functional locus,

then (λ1, λ2) ∈ � at the marker locus. Moreover, for
(λ∗

1, λ
∗
2) ∈ �∗ − {(1,1)}, if λ∗

1 = 1 (or λ∗
1 = λ∗

2), then
λ1 > 1 (or λ2 > λ1).

PROOF. Using F2 − F1 = −D/(ppc) = −(F4 −
F3) and (5) to (7), we obtain

f1 − f0 = f ∗
0 D

ppc

{F1(λ
∗
1 − 1) + F3(λ

∗
2 − λ∗

1)},(8)

f2 − f1 = f ∗
0 D

ppc

{F2(λ
∗
1 − 1) + F4(λ

∗
2 − λ∗

1)}.(9)

TABLE 2
Conditional probabilities in the transition matrix (2)

Pr(G∗
i |Gj ) Formula

Pr(G∗
0|G0) = Pr(aa|AA) p2

Aa/(p2
Aa + 2pAapAb + p2

Ab) = F 2
1

Pr(G∗
0|G1) = Pr(aa|AB) pAapBa/(pAapBa + pAapBb + pAbpBa + pAbpBb) = F1F2

Pr(G∗
0|G2) = Pr(aa|BB) p2

Ba/(p2
Ba + 2pBapBb + p2

Bb) = F 2
2

Pr(G∗
1|G0) = Pr(ab|AA) 2pAapAb/(p2

Aa + 2pAapAb + p2
Ab) = 2F1F3

Pr(G∗
1|G1) = Pr(ab|AB) (pAapBb + pAbpBa)/(pAapBa + pAapBb + pAbpBa + pAbpBb) = F1F4 + F2F3

Pr(G∗
1|G2) = Pr(ab|BB) 2pBapBb/(p2

Ba + 2pBapBb + p2
Bb) = 2F2F4

Pr(G∗
2|G0) = Pr(bb|AA) p2

Ab/(p2
Ab + 2pAapAb + p2

Ab) = F 2
3

Pr(G∗
2|G1) = Pr(bb|AB) pAbpBb/(pAapBa + pAapBb + pAbpBa + pAbpBb) = F3F4

Pr(G∗
2|G2) = Pr(bb|BB) p2

Bb/(p2
Ba + 2pBapBb + p2

Bb) = F 2
4

F1 = (pcqc + D)/pc , F2 = (pqc − D)/p, F3 = (pcq − D)/pc , F4 = (pq + D)/p
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It follows that f2 ≥ f1 ≥ f0 and f2 > f0 when f ∗
2 ≥

f ∗
1 ≥ f ∗

0 and f ∗
2 > f ∗

0 . The proof of the second claim
is trivial using the above two expressions and that, from
Table 1, all Fi , i = 1,2,3,4, are positive. �

Theorem 2.1 shows that when the GRRs are con-
strained in �∗ at the functional locus, they are also
constrained to a subset of � at the SNP when |D′| < 1.
In addition, when the true disease model is either REC
or DOM at the functional locus, it is no longer REC or
DOM at the SNP, respectively. They are “closer” to the
ADD/MUL models. The implication of this finding is
that one will not see a pure DOM or REC model at the
marker locus if the constrained model space �∗ is con-
sidered at the functional locus. It also provides a ratio-
nale for the genetic model selection approach (Zheng
and Ng, 2008) in that an ADD/MUL is always chosen
unless there is strong evidence to indicate the REC or
DOM models.

Even though the REC (or DOM) model at the func-
tional locus is no longer retained at the SNP when
|D′| < 1, the ADD (or MUL) model is retained. Di-
viding (8) and (9) by f0, we obtain

2λ1 − 1 − λ2 = f ∗
0 D2

f0p2p2
c

(2λ∗
1 − 1 − λ∗

2).(10)

Using (5) to (7) to expand λ2 − λ2
1 = (f2f0 − f 2

1 )/f 2
0

and (F2F3 − F1F4)
2 = D2/(p2p2

c ), we obtain

λ2 − λ2
1 = f ∗2

0 D2

f 2
0 p2p2

c

(λ∗
2 − λ∗2

1 ).(11)

The above two equations lead directly to the following
result.

THEOREM 2.2. Under the imperfect LD model
with |D′| < 1, when the genetic model is ADD (λ∗

1 =
(1+λ∗

2)/2) or MUL (λ∗
2 = λ∗2

1 ) at the functional locus,
the same model is retained at the marker locus.

Figure 1 displays the mapping of genetic models
from �∗ to � under the imperfect LD model. If we
still define a genetic model at the marker locus un-
der the imperfect LD model, then, using (3) and a ta-
ble similar to Table 2, the REC or DOM models at
the marker locus would correspond to the underdom-
inant or overdominant models at the functional locus,
respectively.

3. THE HARDY–WEINBERG DISEQUILIBRIUM
COEFFICIENT AND GENETIC MODEL SELECTION

The Hardy–Weinberg disequilibrium (HWD) coeffi-
cient in cases or between cases and controls has been
used to detect association (Nielsen, Ehm and Weir,
1998; Zaykin and Nielsen, 2000; Song and Elston,
2006). In addition, it can also be used to detect the
underlying genetic model at the marker locus (Wittke-
Thompson, Pluzhnikov and Cox, 2005; Zheng and Ng,
2008). In this section we first review the HWD coeffi-
cient and how it can be used to detect the genetic model
at the SNP of interest. Then we study whether it can
still be used to detect the genetic model which is de-
fined at the functional locus under the imperfect LD
model.

Using the notation in Section 1, the HWD coeffi-
cient at the SNP with alleles A and B is given by

FIG. 1. Plots of the GRR spaces �∗ and λ under the inperfect LD model.
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(Weir, 1996)

� = Pr(AA) − {Pr(AA) + Pr(AB)/2}2

= g2 − (g2 + g1/2)2.

In cases and controls, it is denoted by �1 and �0, re-
spectively, and given by

�1 = p2 − (p2 + p1/2)2 and

�0 = q2 − (q2 + q1/2)2.

Substituting pi = gifi/k and qi = gi(1 − fi)/(1 − k)

under the Hardy–Weinberg proportions (� = 0), one
has (Wittke-Thompson, Pluzhnikov and Cox, 2005;
Zheng and Ng, 2008)

�1 = f 2
0 p2p2

c

k2 (λ2 − λ2
1),(12)

�0 = f 2
0 p2p2

c

(1 − k)2 (2λ1 − 1 − λ2 − f0λ
2
1 + f0λ2).(13)

Using the signs of (�1,�0), Zheng and Ng (2008) di-
vided � in (1) into four mutually exclusive regions R1
to R4. The signs in the four regions are (�1,�0) =
(+,−) in R1, (−,−) in R2, (−,−) in R3, and (−,+)

in R4. The REC model belongs to R1 and the DOM
model belongs to R4. The region R2 is bounded by the
ADD and MUL models (see Figure 1 of Zheng and
Ng, 2008). Therefore, under the REC model (defined
at the SNP with λ1 = 1), �1 > 0 and �0 < 0, and un-
der the DOM model, �1 < 0 and �0 > 0. Zheng and
Ng (2008) used ∂� = �1 −�0 as a genetic model indi-
cator. The REC model implies that ∂� > 0, while the
DOM model implies ∂� < 0. A normalized test sta-
tistic based on ∂̂� = �̂1 − �̂0, where p̂i = ri/r and
q̂i = si/s, is given

ZHWDTT = (rs/n)1/2∂̂�

{1 − n2/n − n1/(2n)}{n2/n + n1/(2n)}
∼ N(0,1)

under H0 and referred to as the HWD trend test
(HWDTT) (Song and Elston, 2006). It is used to select
a genetic model (Zheng and Ng, 2008). Given that B is
the risk allele, the ADD (or MUL) model is chosen un-
less there is strong evidence to indicate a REC model
or a DOM model. When ZHWDTT > 1.645, the REC
model is selected; when ZHWDTT < −1.645, the DOM
model is selected.

Under the imperfect LD model, using (11) and (10),
(12) and (13) can be written as

�1 = f ∗2
0 D2

k2 (λ∗
2 − λ∗2

1 ),

�0 = f0f
∗
0 D2

(1 − k)2 (2λ∗
1 − 1 − λ∗

2 − f ∗
0 λ∗2

1 + f ∗
0 λ∗

2).

Comparing the above (�1,�0) with (12) and (13), we
see that the signs of (�1,�0) do not change when the
genetic model is defined at the functional locus. Hence,
the model selection procedure of Zheng and Ng (2008)
can still be used.

4. ROBUST TESTS

4.1 Pearson’s Test and CATTs

Given the case-control data for a single SNP, (r0, r1,

r2) and (s0, s1, s2), denote ni = ri + si for i = 0,1,2
and n = n0 + n1 + n2. Pearson’s test can be written as

Tχ2 =
2∑

i=0

(ri − nir/n)2/(nir/n)

+
2∑

i=0

(si − nis/n)2/(nis/n),

which asymptotically follows a chi-squared distribu-
tion with 2 degrees of freedom (df) under H0. The
CATT with a score x ∈ [0,1] is given by

Zx = n1/2

(
n

2∑
j=0

xj rj − r

2∑
j=0

xjnj

)
/

[rs{n(n1 + 4n2) − (n1 + 2n2)
2}]1/2,

where (x0, x1, x2) = (0, x,1). Under H0, Zx asymptot-
ically follows the standard normal distribution N(0,1)

for a given x. Optimal scores for REC, ADD/MUL and
DOM models are x = 0,1/2 and 1.

When the genetic model is unknown, Z1/2 is often
used. There is a trade-off between Tχ2 and Zx with
x = 1/2. Pearson’s test is more robust but less pow-
erful, in particular, under the ADD or DOM models,
while the trend test is more powerful under the ADD or
DOM models but less robust when the score x is mis-
specified. Pearson’s test is identical to the trend test Z2

x

with x = (r1/n1 − r0/n0)/(s1/n1 − s0/n0) (Yamada
and Okada, 2009; Zheng, Joo and Yang, 2009). In prac-
tice, however, x is prespecified. Thus, this condition is
rarely satisfied.

4.2 MAX

To avoid the trade-off between Pearson’s test and
the CATT, one approach is to consider maximum tests.
A typical maximum test is given by (Freidlin et al.,
2002; Sladek et al., 2007)

MAX3 = max{|Z0|, |Z1/2|, |Z1|}.
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Other versions of maximum tests are also used, for ex-
ample, MAX = supx∈[0,1] |Zx | (Davies, 1977, 1987),
the maximum of three likelihood ratio tests under var-
ious genetic models (González et al., 2008), and for a
quantitative trait (Lettre, Lange and Hirschhorn, 2007).

Computational aspects of maximum tests have been
discussed by Conneely and Boehnke (2007) and Li
et al. (2008a). The empirical distribution of MAX3
can be obtained from simulation using the joint mul-
tivariate normal distribution of the CATTs considering
asymptotic null correlations among them (Freidlin et
al., 2002) or from a parametric bootstrap procedure by
generating data using (r0, r1, r2) ∼ Mul(r; p̂0, p̂1, p̂2)

and (s0, s1, s2) ∼ Mul(s; p̂0, p̂1, p̂2), where p̂i = ni/n.
A simpler algorithm to find the asymptotic and empir-
ical null distributions of MAX3 is recently proposed
(Zang, Fung and Zheng, 2010). The asymptotic null
distribution of MAX3 is a function of the minor al-
lele frequency (MAF) of the SNP. In a genome-wide
scan to rank a large number of SNPs, Li et al. (2008b)
demonstrated that ranking can be done easily by the
values of MAX3 rather than by their p-values. Hence,
there is no need to calculate the p-values of MAX3,
even though the p-values of MAX3 are more compa-
rable across SNPs.

4.3 MIN2

An alternative approach used by WTCCC (2007) uti-
lizes both Pearson’s test and the CATT Z1/2. WTCCC
(2007) proposed to use the minimum of the p-values
of Tχ2 and Z1/2 to scan all the SNPs. SNPs with the
minimum p-value less than a threshold level were re-
tained for further analyses. Joo et al. (2009) denoted
the minimum of the two p-values by

MIN2 = min{pT
χ2 ,pZ1/2}

and obtained its asymptotic null distribution and its p-
value, denoted by pMIN2. The key formula to find the
distribution and p-value for MIN2 is the joint distri-
bution of Pearson’s test and Z1/2 under H0, which is
given by (Joo et al., 2009)

Pr(Z2
1/2 < t1, Tχ2 < t2)

= 1 − 1

2
e−t1/2 − 1/2e−t2/2

+ 1

2π

∫ t2

t1

e−v/2 arcsin
(

2t1

v
− 1

)
dv,

when t1 < t2, and Pr(Z2
1/2 < t1, Tχ2 < t2) = 1 −

exp(−t2/2) when t1 > t2. Unlike MAX3, the asymp-
totic null distribution of MIN2 does not depend on

the MAFs of SNPs. Hence, MIN2 itself can be used
to rank all SNPs, which results in the same ranks as
when the p-value of MIN2 is used. Joo et al. (2009)
demonstrated that pMIN2 > MIN2, because Z2

1/2 and
Tχ2 are correlated under the alternative hypothesis.
Thus, MIN2 itself cannot be used as the p-value.

4.4 The Genetic Model Selection (GMS) Procedure

The GMS procedure is an adaptive approach. It con-
tains two phases. In phase 1 the underlying genetic
model is detected using the value and sign of ZHWDTT
(Song and Elston, 2006; see also Section 3). Once the
model is selected (REC, ADD/MUL or DOM), in the
second phase, the CATT optimal for the selected model
is applied to test for association. For example, if the
REC model is selected using the HWDTT, Z0 would
be used in phase 2 to test for association. Since the
analyses in the two phases are correlated, Zheng and
Ng (2008) derived the asymptotic null correlation for
the GMS. This correlation is incorporated in the distri-
bution of the test statistics to control for the Type I er-
ror. Like MIN2, computing the p-value of the GMS re-
quires integrations. Like MAX3, the GMS can be used
to rank SNPs (Zheng et al., 2009). Using test statistics
to directly rank SNPs is easier than using p-values of
the GMS. Since the GMS depends on which allele is
the risk allele or whether the minor allele is the risk al-
lele, for each SNP, we first determine the risk allele (B
is risk allele if Z1/2 > 0). If the risk allele is B , then the
above GMS can be applied. Otherwise, we can switch
the two alleles and apply the above GMS.

4.5 Other Tests

Balding (2006) provided an excellent review of sta-
tistical methods for the analysis of association studies.
Two other robust two-phase tests are also available that
we do not include here. One feature of these methods
is that the test statistics in two phases are asymptoti-
cally independent under H0 (Zheng, Song and Elston,
2007, Zheng et al., 2008). In this case, the second phase
can be used as a “self-replication,” an idea proposed
in van Steen et al. (2005). Alternatively, the signifi-
cance level α can be decomposed to (α1, α2) such that
α1α2 = α, where α1 is used for the phase 1 analysis
and α2 for the phase 2 analysis. The null hypothesis is
rejected when analyses in both phases are significant at
their corresponding levels. Choices of α1 and α2 with
α1α = α in GWAS were discussed in Zheng, Song and
Elston (2007), Zheng et al. (2008). Another robust test
is the constrained likelihood ratio test (LRT) (Wang
and Sheffield, 2005). It is similar to the LRT except



510 G. ZHENG ET AL.

that the alternative space is restricted to � − {(1,1)}.
The performance of the constrained LRT is similar to
that of MAX3 described above. Thus, we only consider
MAX3 here.

4.6 Why Robust Tests?

One of the reasons that we use robust tests in GWAS
is that there might be multiple functional loci for a
given disease. The modes of inheritance or genetic
models may differ from one functional locus to the
other. Another reason for using robust tests is the dis-
tortion of the actual genetic model at the marker locus
due to incomplete LD, which further amplifies uncer-
tainty about the model. Thus, robust tests are generally
preferred. We use efficiency robustness to measure ro-
bustness (Gastwirth, 1985). A test T1 is said to have
greater efficiency robustness than a test T2 if the worst
asymptotic relative efficiency of T1 to the asymptoti-
cally optimal test across all genetic models is higher
than the worst asymptotic relative efficiency of T2. The
CATT Z1/2 optimal for the ADD model is most robust
among all trend tests when the genetic models are con-
strained in �. Pearson’s test is also robust because it
does not require the genetic models to be constrained
or the alternative hypothesis to be ordered. When re-
stricting to �, tests more robust than Z1/2 are available.
MAX3 and GMS are two examples. They both have
greater efficiency robustness than Pearson’s test and
Z1/2 (Freidlin et al., 2002; Zheng and Ng, 2008). On
the other hand, combining information of both Pear-
son’s test and Z1/2, MIN2 is also more efficiency ro-
bust than either Pearson’s test or Z1/2. Three robust
tests, MAX3, GMS and MIN2, appear to have com-
parable efficiency robustness in candidate-gene studies
(Joo et al., 2009).

In genome-wide scans it is desirable to locate the
SNPs representing true association as near the top as
possible, where all SNPs compete for the top ranks.
Under the complete LD model, Zheng et al. (2009)
conducted simulation studies comparing the three ro-
bust methods in ranking 300,000 SNPs, among which
there were 6 functional loci with different genetic mod-
els, MAFs and GRRs (from 1.25 to 1.5). The results
showed that the GMS slightly outperforms MIN2 and
MAX3 when the top 5000 SNPs were selected. The cri-
teria used for comparison included the probability that
the top 5000 SNPs contained at least one SNP with
true association, as well as the minimum and average
ranks of SNPs with true associations among the top
5000 SNPs. We will conduct similar simulation studies
in Section 5 under the inperfect LD model. The reason

that we choose the top 5000 SNPs rather than a smaller
number, say, the top 100, is that the SNPs with true as-
sociation are not always ranked near the top, especially
for a small GRR between 1.2 and 1.5 and small sample
sizes (Zaykin and Zhivotovsky, 2005). If we examine
the top 100 list with 250 cases and 250 controls (the
sample sizes that we used in our simulation studies),
the probability that the list of the top 100 SNPs con-
tains a true association is less than 0.50.

5. SIMULATION STUDIES

5.1 The GMS Procedure under the Imperfect LD
Model

We first conducted simulation studies to estimate the
distribution of genetic models selected by the GMS.
We chose disease prevalence k = 0.1 and GRR λ∗

2 = 2
at the functional locus. Then λ∗

1 was obtained using
λ∗

2 and a given genetic model at the functional locus.
We considered 0.1, 0.3 and 0.5 for the equal MAFs
at a SNP (p) and a functional locus (q). This allows
us to compare the frequencies of the different mod-
els selected when D′ = 1.0, 0.8 and 0.6. With equal
allele frequencies p = q , Corr(A,a) = D′. In each
of 10,000 replicates, 250 cases and 250 controls were
simulated from multinomial distributions in which the
penetrances at a SNP were calculated using (5) to (7).
When the GMS did not select REC or DOM, the ADD
or MUL models are used and denoted here by A/M.
Results are reported in Table 3.

When the true model is REC or DOM at the func-
tional locus, the frequencies that the model selected
by the GMS at the marker locus is REC or DOM de-
creases dramatically when D′ becomes small. For ex-
ample, when p = q = 0.3, the frequency of selecting
REC at the marker locus is about 67.5% when the true
model at the functional locus is REC, and D′ = 1. This
frequency declines to 18.6% when D′ = 0.6. These
frequencies, however, are not sensitive when the true
model at the functional locus is either ADD or MUL.
The findings are consistent with Theorems 2.1 and 2.2.
Given the genetic model space �∗ at the functional lo-
cus, the genetic model space at the marker locus � is
shifted toward the center of the space �∗ correspond-
ing to the ADD/MUL models.

Table 4 reported the GRRs at the marker locus given
those at the functional locus. Note that when the true
model is ADD (λ∗

1 = (1 + λ∗
2)/2) or MUL (λ∗2

1 = λ∗
2),

the GRRs at the marker locus follow the same models.
However, λi are smaller than λ∗

i . Similar patterns are
observed when the true model is REC or DOM, except
that λ1 is slightly greater than λ∗

1 under the REC model.
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TABLE 3
Distributions of genetic models selected by the GMS using the HWDTT (%): Disease prevalence k = 0.1, the GRR at the functional locus

λ∗
2 = 2 with 250 cases and 250 controls and 10,000 replicates

D′/selected models (A/M = ADD/MUL)

1.0 0.8 0.6
MAF
p = q

True
model REC A/M DOM REC A/M DOM REC A/M DOM

0.1 REC 23.3 76.3 0.4 14.6 84.4 1.0 3.0 90.6 6.4
ADD 2.6 88.9 8.5 2.4 90.2 7.4 2.9 90.8 6.3
MUL 3.4 90.3 6.3 3.7 91.1 5.2 3.8 90.8 5.4
DOM 0.1 60.1 39.8 0.3 76.1 23.6 1.0 84.8 14.2

0.3 REC 67.5 32.5 0.0 39.4 60.4 0.2 18.6 80.6 0.8
ADD 2.2 88.9 8.9 3.1 89.3 7.6 3.7 89.6 6.7
MUL 4.8 90.7 4.5 5.0 90.4 4.6 5.2 90.1 4.7
DOM 0.0 32.8 67.2 0.1 61.4 38.5 0.7 80.2 19.1

0.5 REC 66.0 34.0 0.0 36.8 63.1 0.2 18.3 80.9 0.8
ADD 2.6 89.0 8.4 3.3 89.6 7.1 3.7 90.8 5.5
MUL 5.4 89.9 4.7 5.0 90.1 4.9 5.2 89.9 4.9
DOM 0.0 36.2 63.8 0.1 63.9 36.0 0.8 81.2 18.0

5.2 Comparison of Robust Tests in GWAS under
the Imperfect LD Model

In Table 3 when the true model is REC or DOM at
the functional locus, the GMS could not select REC
or DOM at the marker locus. This, however, does not
mean that the GMS cannot improve power or chances
of true discoveries when |Corr(A,a)| < 1. On the con-
trary, owing to the shrinkage of the genetic model space
and that the GMS only selects a model at the marker lo-
cus, it can be viewed as selecting an appropriately in-
duced model at the marker locus. Our next simulation
will examine the performance of robust tests under the
imperfect LD model. The simulation procedure follows
the one used in Zheng et al. (2009). We simulated geno-
type counts for each of 300,000 SNPs, among which 6
SNPs have true associations and D′ = 0.8 with MAF
of 0.2 at the functional loci. When D′ = 1, the number

TABLE 4
GRRs (λ1, λ2) at a SNP given GRR λ∗

2 = 2 at the functional locus:
p = q = 0.3. When D′ = 1, λ∗

i = λi for i = 1,2

D′/(λ1,λ2)

True
model 1.0 0.8 0.6

REC (1.00, 2.00) (1.05, 1.73) (1.07, 1.50)
ADD (1.50, 2.00) (1.38, 1.75) (1.27, 1.54)
MUL (1.41, 2.00) (1.22, 1.48) (1.24, 1.53)
DOM (2.00, 2.00) (1.67, 1.77) (1.43, 1.57)

of functional loci is also 6. However, when D′ = 0.8,
we assume the number of functional loci equals the
number of different genetic models in the simulation.
Zheng et al. (2009) considered the perfect LD model
that corresponds to |D′| = 1 or |Corr(A,a)| = 1. Their
results are repeated here for comparison. The MAFs of
6 true SNPs from the genetic models listed in the titles
of Tables 5 and 6 were 0.1821, 0.2943, 0.1078, 0.4459,
0.1620 and 0.1825. These are also given in Zheng et
al. (2009) and in Li et al. (2008b). MAFs for the rest of
the null SNPs were simulated from a uniform distribu-
tion U(0.1,0.5). The GRRs for the functional loci were
all 1.25 (or 1.50). We applied five robust tests (Z1/2,
Pearson’s test Tχ2 , GMS, MIN2 and MAX3) to rank all
SNPs and the top 5000 SNPs were selected from each
of 200 replicates. The criteria to compare the perfor-
mance of robust tests include the probability (prob %)
of at least one true SNP being selected among the top
5000 SNPs, the average number of true SNPs among
the top, and the mean of the minimum ranks of the true
SNPs among the top. The results are presented in Ta-
ble 5 (2 REC, 1 ADD, 1 MUL and 2 DOM SNPs) and
Table 6 (1 REC, 2 ADD, 2 MUL and 1 DOM SNPs).

First, when D′ = 1 (Zheng et al., 2009), the GMS
outperforms other tests under all three criteria, while
Pearson’s test had the worst performance. When D′ =
0.8, however, the GMS and Z1/2 had similar perfor-
mances, which together outperform other tests using
the three criteria. This finding is consistent to our re-
sults in Theorems 2.1 and 2.2 about the genetic models
under the imperfect LD model.
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TABLE 5
Genome-wide scans of 300,000 SNPs containing 6 true SNPs (2 REC, 1 ADD, 1 MUL and 2 DOM). Only the top 5000 SNPs are selected.

The results are based on 200 replicates: MAF q = 0.2 at the functional locus when D′ = 0.8. Samples sizes are r = s = 1000 for GRR=1.25
and r = s = 500 for GRR=1.5

D′ = 1.0 D′ = 0.8

GRR
λ2

Robust
tests Prob

Ave. no. of
true SNPs

Mean of
min ranks Prob

Ave. no. of
true SNPs

Mean of
min ranks

1.25 Z1/2 92.0 1.79 971 58.5 1.29 1625
GMS 94.5 1.90 838 56.0 1.29 1488

MAX3 90.5 1.80 909 48.0 1.28 1435
MIN2 89.5 1.79 934 51.0 1.25 1550
Tχ2 86.5 1.69 960 46.5 1.22 1680

1.50 Z1/2 99.5 2.71 186 83.0 1.49 1041
GMS 100.0 2.99 178 85.0 1.54 1111

MAX3 99.5 2.83 205 80.0 1.48 1183
MIN2 100.0 2.78 234 80.0 1.50 1113
Tχ2 100.0 2.71 286 75.0 1.46 1244

6. APPLICATIONS TO WTCCC DATA

We apply the five robust tests to a genome-wide
scan using more than 300,000 SNPs after quality con-
trol. The study was originally conducted by WTCCC
(2007) for seven diseases (type 1 diabetes—T1D,
type 2 diabetes—T2D, coronary heart disease—CHD,
hypertension—HT, bipolar disorder—BD, rheumatoid
arthritis—RA and Crohn’s disease—CD). About 2000
cases were used for each disease and 3000 controls
were shared for the seven diseases. WTCCC (2007)
used MIN2 to test for association after the quality con-
trol. They obtained two tables presenting SNPs with

strong associations with MIN2 < 5 × 10−7 (Table 3
of WTCCC, 2007) and SNPs with moderate associa-
tions with 5 × 10−7 ≤ MIN2 < 5 × 10−5 (Table 4 of
WTCCC, 2007). We reanalyze these data by ranking
all SNPs after our quality control. The goal of this ap-
plication is to demonstrate the efficiency robustness of
different test statistics, not to find SNPs with associa-
tions that were not reported in WTCCC (2007).

In our application, for each of the seven diseases,
we rank all SNPs after quality control (398,092 SNPs)
using the five robust tests and report the ranks of the
SNPs that were reported to have strong associations in

TABLE 6
Genome-wide scans of 300,000 SNPs containing 6 true SNPs (1 REC, 2 ADD, 2 MUL and 1 DOM). Only the top 5000 SNPs are selected.
The results are based on 200 replicates: MAF q = 0.2 at the functional locus and D′ = 0.8. Samples sizes are r = s = 1000 for GRR=1.25

and r = s = 500 for GRR=1.5

D′ = 1.0 D′ = 0.8

GRR
λ2

Robust
tests Prob

Ave. no. of
true SNPs

Mean of
min ranks Prob

Ave. no. of
true SNPs

Mean of
min ranks

1.25 Z1/2 88.0 1.72 897 49.5 1.31 1564
GMS 87.0 1.79 797 53.5 1.27 1630

MAX3 82.5 1.64 846 47.0 1.24 1702
MIN2 86.0 1.66 932 48.5 1.25 1899
Tχ2 83.0 1.50 1030 41.5 1.20 1847

1.50 Z1/2 99.0 2.46 349 76.5 1.48 1083
GMS 99.5 2.61 355 76.0 1.47 1005

MAX3 98.0 2.34 379 73.0 1.40 1103
MIN2 99.5 2.35 434 74.0 1.38 1105
Tχ2 97.0 2.21 485 66.5 1.31 1179



ROBUST GENOME-WIDE SCANS 513

TABLE 7
Ranks of SNPs with strong association of seven diseases in WTCCC (2007), Table 3

Disease SNP ID chrom Z1/2 Tχ2 GMS MAX3 MIN2

BD rs420259 16 269 22 19 20 23

CAD rs1333049 9 9 25 24 24 25

CD rs11805303 1 14 28 23 24 24
rs10210302 2 6 15 15 16 15
rs9858542 3 102 58 58 61 75
rs17234657 5 11 25 19 20 21
rs1000113 5 72 92 78 82 84
rs10761659 10 89 115 100 107 101
rs10883365 10 50 65 59 62 61
rs17221417 16 25 37 35 37 38
rs2542151 18 69 84 77 80 81

RA rs6679677 1 50 72 71 69 70
rs6457617 6 5 13 8 8 13

T1D rs6679677 1 129 137 133 136 135
rs9272346 6 3 6 5 5 5
rs11171739 12 339 361 342 357 354
rs17696736 12 233 245 238 243 242
rs12708716 16 521 534 517 534 530

T2D rs9465871 6 31 41 49 44 45
rs4506565 10 10 17 17 17 16
rs9939609 16 24 38 36 36 37

WTCCC (2007), Table 3. Note that we do not know
D′ in reality, nor do we know the number of func-
tional loci and their modes of inheritance. Our results
are reported in Table 7. The results show that SNPs
with strong associations are all ranked on the top 5000
SNPs. The CATT is least robust among the five robust
tests as shown by the rank 269 for BD, while the ranks
by the other methods are less than 25. The GMS tends
to have smaller ranks than MAX3, and MIN2 tends
to have ranks between the CATT and Pearson’s test,
which often have higher ranks than the GMS.

We also studied the ranks of SNPs with moderate as-
sociations reported in WTCCC (2007), Table 4. The
detailed results are not shown here, but summarized
below. Similar patterns are also observed, although,
for several SNPs, the CATT has large ranks. For ex-
ample, for BD, the CATT has rank 147,769 for SNP
rs6458307 on chromosome 6, while the ranks of other
tests for this SNP are less than 150. For T2D, the CATT
has rank 197,064 for SNP rs358806 on chromosome 3,
while the other tests have ranks less than 100. All ranks
of SNPs with either strong or moderate associations are
less than 5000, and only one SNP (rs17166496 for T1D
on chromosome 5) is ranked more than 5000 by MAX3

and the GMS. The actual ranks for this SNP are 5521
for the GMS and 6063 for MAX3, 652 for Pearson’s
test, 724 for MIN2, but 245,454 for the CATT. The un-
derlying genetic model for this SNP could be outside
of the constrained genetic model that we considered
here, for example, overdominant or underdominant for
which it is known that Pearson’s test is robust (Zheng,
Joo and Yang, 2009; Joo et al., 2009). In addition, we
found that for those SNPs with small ranks based on
Pearson’s test, a large rank using the CATT is always
accompanied by a large value of the HWDTT. This is
due to the orthogonal decomposition of Pearson’s test
to the HWDTT and Z2

1/2 (Zheng et al., 2008). It is also
interesting to note that, even if a SNP has a rank smaller
than those SNPs listed in Table 7, it does not mean the
SNP has a true association with a disease. That is, in
GWAS, a SNP with smaller p-value does not neces-
sarily mean it has stronger association. In fact, many
of these SNPs with smaller ranks have not been con-
firmed to have true associations (WTCCC, 2007). This
is because a very small number of SNPs (<100 SNPs)
are associated with a disease in GWAS compared to
the number of null SNPs (more than 300,000 SNPs).
Therefore, the probability that test statistics of some
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null SNPs are greater than those of all the associated
SNPs is high (Zaykin and Zhivotovsky, 2005).

7. DISCUSSION

We studied some robust tests for case-control genetic
association studies. This approach stems from the clas-
sical robust procedures studied in the 1970s which fo-
cused on the estimation of the location parameter of a
symmetric distribution. For a given family of underly-
ing distributions (or, here, genetic models), an estimate
with a high (low) minimum correlation, say, >0.80
(<0.50) with the optimal procedure, indicates a greater
(smaller) efficiency robustness. In early work, the un-
derlying distribution was assumed to range from the
normal distribution to the Cauchy distribution (Tukey,
1965 and Andrews et al., 1965). For this family of t-
distributions, the robust estimate of the location para-
meter was considered, because within the family of dis-
tributions considered, it had minimum correlation with
the optimal procedure of about 0.60 (Gastwirth, 1966).
In case-control genetic association studies, when the
true genetic model is unknown and ranges from the
REC to the DOM models, the minimum correlation of
any two CATTs is about 0.30 (Freidlin et al., 2002).
This indicates that using a single CATT for association
is not robust, and tests that are robust across a family
of plausible genetic models are preferred.

Previous studies of robustness properties of test sta-
tistics for the analysis of case-control genetic associa-
tion studies have been focused on the perfect (or com-
plete) LD model, that is, the genetic marker (SNP) is
also the functional locus. In this article we studied ge-
netic models under a general imperfect (or incomplete)
LD model with linkage disequilibrium between linked
marker locus and functional locus. The perfect LD
model is a special case. Under the imperfect LD model,
we found that a genetic model defined by the genotype
relative risks at the functional locus usually no longer
remains the same genetic model at the marker locus,
except for the additive or multiplicative models. The
genetic model space at the marker locus is a subset of
that at the functional locus, resulting in smaller geno-
type relative risks at the marker than at the functional
locus. The power to detect a true association is reduced
when the linkage disequilibrium decreases, while the
model uncertainty increases, complicating the choice
of a single association statistic. Robust tests are shown
to perform optimally in this situation.

We also review some common efficiency robust tests
for case-control genetic associations and their usage in

genome-wide scans. In genome-wide scans, all SNPs
are ranked by a test statistic or its p-value (if the p-
value is readily obtained) and the top-ranked SNPs
are selected for further analyses. Alternatively, as in
WTCCC (2007), some genome-wide threshold levels
can be also used to select SNPs. Multiple testing is an
important issue in GWAS not only because one tests
300,000 up to a million SNPs, but also because mul-
tiple tests are available for each SNP (and there is
no uniform most powerful test in GWAS). Correcting
for multiple testing remains challenging in the analy-
sis of GWAS (Roeder and Wasserman, 2009), and the
need for independent replication studies (Kraft, Zeg-
gini and Ioannidis, 2009) and proper meta-analysis
(Pfeiffer, Gail and Pee, 2009) cannot be overempha-
sized.
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