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Abstract. The standard paradigm for the analysis of genome-wide associa-
tion studies involves carrying out association tests at both typed and imputed
SNPs. These methods will not be optimal for detecting the signal of associa-
tion at SNPs that are not currently known or in regions where allelic hetero-
geneity occurs. We propose a novel association test, complementary to the
SNP-based approaches, that attempts to extract further signals of association
by explicitly modeling and estimating both unknown SNPs and allelic hetero-
geneity at a locus. At each site we estimate the genealogy of the case-control
sample by taking advantage of the HapMap haplotypes across the genome.
Allelic heterogeneity is modeled by allowing more than one mutation on the
branches of the genealogy. Our use of Bayesian methods allows us to assess
directly the evidence for a causative SNP not well correlated with known
SNPs and for allelic heterogeneity at each locus. Using simulated data and
real data from the WTCCC project, we show that our method (i) produces
a significant boost in signal and accurately identifies the form of the allelic
heterogeneity in regions where it is known to exist, (ii) can suggest new sig-
nals that are not found by testing typed or imputed SNPs and (iii) can provide
more accurate estimates of effect sizes in regions of association.
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1. INTRODUCTION

Over the last two years genome-wide association
studies have been successful in uncovering novel dis-
ease causing variants [2, 3, 7, 21, 28–30]. All of these
studies have proceeded by testing for associations at
SNPs assayed by a commercial genotyping chip and
many have also used genotype imputation methods
[13] to test untyped SNPs, especially when combining
studies that used different genotyping chips to carry out
larger meta-analysis studies.

It is possible that signals of association will be
missed by these methods and there are several ways
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in which this could happen. First, the true causal vari-
ant, which may be a SNP but could also be an Indel
or Copy Number Variant (CNV), may not be on the
chip or on the typed reference panel and may not be
in sufficient Linkage Disequilibrium (LD) with a sin-
gle typed or imputed SNP for a signal to be detected.
If this is the case the variant may be well identified by
considering a local haplotype in the region, thus the as-
sociation may be detected if such effects are tested for
association. Second, it may be the case that the causal
model of association in the region involves more than
one SNP. One way to describe this model would be to
say that there is allelic heterogeneity in the association
signal. If the SNPs are in LD then the various haplo-
types that consist of the causal SNPs may have distinct
relative risks. If this is the case then the model might
also be described as a haplotype effect model.

In this paper we investigate a method that is com-
plementary to SNP-based association tests that allows
for these more complex disease models. To go beyond
testing typed or imputed genetic variants we need to
construct a model for genetic variation that has not
been directly observed. We achieve this by model-
ing the genealogy of the sample of chromosomes at
each point along the genome and then estimating geno-
types, in the case-control samples, at SNPs derived by
placing mutations on the individual branches of the
tree. The genotypes that are derived from the local ge-
nealogies can then be associated with the phenotype
under study, which we test using Bayesian methods
that naturally account for the inherent uncertainty in
the location of the disease mutation on the genealogy.
Some previous approaches that have used genealogi-
cal trees, have either been applicable only to haplo-
type data with no missing data [4, 27] or computation-
ally prohibitive and thus restricted to small samples
[10, 33]. The method that we present here is applica-
ble to genotype data with missing data and is compu-
tationally feasible to analyze thousands of individuals
across the whole genome (it requires approximately the
same amount of computational resources as imputation
[13]). A novel feature of our method is that we can take
advantage of the HapMap haplotypes to build the ge-
nealogical trees at each putative risk locus.

We provide an informal description of the method
first and full technical details of the method are given in
the Methods section. Our approach proceeds in several
stages:

(i) We use a panel of known haplotype variation,
such as HapMap [6], and an estimate of the fine-scale

recombination rate (such as that available from the
HapMap website), to construct an approximation to the
genealogy of the sample of haplotypes in the panel, at
each point on a grid of positions across the genome.

(ii) For each such tree, we then, in turn, consider
putative mutations on each of its branches. Once the
branch for a mutation is chosen, this will fix the al-
leles carried by chromosomes at each of the tips of
the tree. Assuming such a SNP exists in the popula-
tion, we use a population genetics model to predict the
likely genotypes at this SNP in each case and control
individual (we call these the study individuals). This is
perhaps simplest to conceptualize under the simplify-
ing assumption that we had haploid data on the study
individuals. The population genetics model allows us
to place each haploid study chromosome (probabilis-
tically) on the tips of the genealogical tree: each tip
contains a single panel haplotype, and the study hap-
lotype will tend to be placed on the tips corresponding
to panel haplotypes that are locally similar to it. For
diploid study data there is an additional level that, in
effect, averages over likely local phasings of the data.
The result, for each study individual, is a probability
distribution over the possible genotypes at the putative
SNP.

(iii) The next step takes the predicted genotypes
with their uncertainties and looks for evidence of as-
sociation with disease status. (Note the need to handle
appropriately the uncertainty over the predicted geno-
types.) We do this here in a Bayesian framework. For a
particular genomic location and putative SNP, the evi-
dence for association is naturally measured by a Bayes
factor [13] (BF) that compares a model of associa-
tion with a null model of no association. The uncer-
tainty over the possible branch carrying the mutation is
handled by averaging over the Bayes factors for each
branch, to give a single BF summarizing the evidence
for the presence of a causative mutation at that posi-
tion.

(iv) To allow for possible allelic heterogeneity, we
can extend the analyses above by putting two (or more)
putative mutations on the genealogical tree and pre-
dicting genotypes for the pair of SNPs in study in-
dividuals, before fitting disease models with multiple
causative mutations. We would then average over pairs
of positions for the mutation in calculating a BF for the
strength of evidence for a 2-mutation disease model at
that position, compared to the null hypothesis, and by
comparing the 2-mutation BF with the single mutation
BF, one can assess the relative evidence for allelic het-
erogeneity, for example.
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(v) At genomic positions where there is a signal of
association, we can combine the estimated tree with
the most likely mutation pattern to characterize graphi-
cally the signal of association, and identify which local
haplotypes show evidence of differential disease risk
between cases and controls.

We have applied our method to data from the Well-
come Trust Case Control Consortium (WTCCC) [28]
to assess its performance and illustrate its novel fea-
tures. Specifically, we have applied it to several risk
loci that are known to exhibit allelic heterogeneity
(e.g., the NOD2 region for Crohn’s disease) and show
that our method provides a boost in signal over testing
both typed and imputed SNPs. In addition we show that
the method can accurately identify the branches on the
genealogy that correspond to the true causal variants.
Further we have applied the method across the genome
for all seven diseases studied by WTCCC and have
compared its performance to testing both typed and
imputed SNPs. Our method is able to identify (subse-
quently validated) associations not picked up by tested
typed or imputed SNPs and results in a much richer
characterization of the associated signal in several re-
gions. We show that no one method is optimal in de-
tecting association but that the new method presented
here clearly have a role to play in detecting and char-
acterizing associations in genome-wide scans. Our use
of Bayesian methods allows the Bayes factors at both
typed and imputed SNPs to be naturally combined with
the Bayes factors produced by our method.

We also carried out some simulation studies that
highlight additional features of our approach. First, we
examine how well our method does at uncovering al-
lelic heterogeneity where it exists. We show that this
can be quite a hard problem but our method does have
good power to uncover the action of more than one
causal variant. Second, we consider the problem of es-
timating the effect size of a causal variant in an associ-
ated region in the specific case where the causal variant
is not well tagged by a typed SNP. We show that our
method is able to provide a more accurate estimate of
the effect size in this case.

The next section describes the details of our meth-
ods and this is followed by a section on the analysis of
the WTCCC data and simulation studies. We conclude
with a discussion of the results and the likely applica-
tions of our method.

2. METHODS

We use Hi = {H1, . . . ,HN } to denote a set of N

known haplotypes, where Hi = (Hi1, . . . ,HiL) is a

single haplotype, Hij ∈ {0,1} and L is the number of
SNP loci. For all the analysis in this paper we have
set H to be the 120 CEU haplotypes estimated as part
of the HapMap project [6]. We let G = {G1, . . . ,GK}
denote the genotype data for the K individuals in
a new study, where Gi = (Gi1, . . . ,GiL) and Gij ∈
{0,1,2,missing}. It is likely that many of the geno-
types will be missing since genome-wide SNP chips
do not contain every SNP in the HapMap panel. We
use �i ∈ {0 = Control,1 = Case} to denote the binary
phenotype of the ith individual. Let X = {X1, . . . ,XM}
be a grid of physical positions for carrying out associ-
ation tests; for our analysis, we use a grid spacing of
5 kb on every chromosome.

Step 1. A genealogical tree, T , is constructed at
every position in X using the set of known haplo-
types. The trees are built using the coalescent model
with recombination and approximate the posterior
modal tree given the haplotypes. To do this it is use-
ful to be able consider P(T |H) under the coales-
cent. Using the Bayes Formula we can rewrite this
as: P(H |T )P (T )/P (H). Although it is simple to cal-
culate these values under the coalescent with simple
mutation models it is not known how to simulate di-
rectly from this distribution, or how to produce trees
that maximize this expression [26].

To make this task simpler it is helpful to factorize
this expression into the individual events that make up
the tree (coalescence, recombination or mutation). It is
useful to note that trees augmented with mutation track
the haplotypes backward in time, and these haplotypes
change after each event. Note that P(T ) = ∏

i P (Ei)

where i indexes the events backwards in time and Ei is
the ith event. Also P(T |H) = ∏

i P (Ei |Hi), where Hi

denotes the haplotypes as changed by the first i events.
Then, note that P(Ei |Hi) = P(Hi |Ei)P (Ei)/P (Hi).

It is not known how to calculate P(Hi) directly.
However, as the coalescent is Markov backward in time
P(Hi |Ei) (the probability of the haplotypes Hi given
that the next event backwards in time is Ei) is equal to
P(Hi+1) (the probability of the haplotypes as changed
by the event Ei). So to calculate P(Ei |Hi) it is only
necessary to calculate (P (Hi+1)/P (Hi))P (Ei). For
all types of event (coalescence, recombination or mu-
tation) the quotients P(Hi+1)/P (Hi) simplify to give
terms of the form P(Hn+1|H1, . . . ,Hn). These terms
still cannot be calculated efficiently under the coales-
cent, however they are amenable to approximation us-
ing Hidden Markov Models [5, 11].
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Once these values can be approximated it is possible
to generate a tree that approximates the modal posterior
tree as follows:

1. Initialize: Decide on mutation model, recombina-
tion rates, and initialize the haplotypes, H0, as the
set of known haplotypes input to the method.

2. Recursion (steps 2 through 6): Enumerate all possi-
ble events that may be the next event backwards in
time.

3. For each of these events approximate P(Ei |Hi),
the posterior probability of each event, as described
above.

4. Choose the event with the highest posterior proba-
bility.

5. Generate haplotypes Hi+1 by applying the chosen
event to haplotypes Hi .

6. Stop: When each locus has reached its common an-
cestor the process terminates.

We used the recombination rates estimated from the
HapMap [6], and an infinite sites mutation model for
this analysis. This step needs only be performed once
for each set of reference haplotypes. For example, we
have calculated and stored a set of trees for the CEU
HapMap haplotypes across the genome at a grid of po-
sitions with a 5 kb spacing between positions. Trees
produced by this method (called TREESIM) may be
useful for other population genetics inferences.

Step 2. Given the genealogical tree at a given posi-
tion, Xm, estimated in step 1 our method works by av-
eraging over locations of the disease causing mutations
on branches, b, of the tree. Each mutation defines a hy-
pothetical disease SNP that can be added into the panel
of haplotypes. For each individual we use a model to
calculate the expected allele count for this disease mu-
tation at the position Xm. We use Hmb to denote the set
of haplotypes, H , augmented with the disease SNP at
the position Xm created by a mutation on branch b and
Gmb

i to denote the genotype vector for study individ-
ual i augmented with the (unknown) genotype for the
branch b disease SNP at position Xm. We use a model
similar to that used in IMPUTE [13] that relates each
individual’s genotype vector to the set of known hap-
lotypes, P(Gmb

i |Hmb), as a Hidden Markov Model in
which the hidden states are a sequence of pairs of the
N known haplotypes in the set H . That is,

P(Gmb
i |Hmb) = ∑

Z
(1)
i ,Z

(2)
i

P
(
Gmb

i |Z(1)
i ,Z

(2)
i ,Hmb)

· P (
Z

(1)
i ,Z

(2)
i |Hmb)

,

where Z
(1)
i = {Z(1)

i1 , . . . ,Z
(1)
id , . . . ,Z

(1)
i(L+1)} and Z

(2)
i =

{Z(2)
i1 , . . . ,Z

(2)
id , . . . ,Z

(2)
i(L+1)} are the two sequences of

hidden states at the L + 1 sites, Z
(j)
il ∈ {Z(2)

i1 , . . . ,

Z
(2)
id , . . . ,Z

(2)
i(L+1)}, and d is the position of the dis-

ease SNP in the augmented sets Hmb and Gmb
i . These

hidden states can be thought of as the pair of haplo-
types in the set H that are being copied to form the
genotype vector Gmb

i . The term P(Z
(1)
i ,Z

(2)
i |Hmb) de-

fines our prior probability on how sequences of hid-
den states change along the sequence and P(Gmb

i |Z(1)
i ,

Z
(2)
i ,Hmb) models how the observed genotypes will

be close to but not exactly the same as the haplotypes
being copied.

The expected genotype at the disease SNP can be
defined as

emb
i = E(Gmb

im )

=
N∑

k1=1

N∑
k2=1

(
I (Hmb

k1m
= 1) + I (Hmb

k2m
= 1)

)

· pim(k1, k2),

where I is the indicator function and

pim(k1, k2)

= P
({

Z
(1)
im ,Z

(2)
im

} = {k1, k2}|Gmb
i ,Hmb)

∝ P
(
Gmb

i |{Z(1)
im ,Z

(2)
im

} = {k1, k2},Hmb)

= ∑
Z

(1)
i ,Z

(2)
i :

{Z(1)
im ,Z

(2)
im }={k1,k2}

P
(
Gmb

i |Z(1)
i ,Z

(2)
i ,Hmb)

· P (
Z

(1)
i ,Z

(2)
i |Hmb)

.

This step involves a calculation that is practically
identical to that used in the method IMPUTE, which
has been used in several genome-wide analyses to date,
and illustrates that the method is practical for this type
of analysis.

Step 3. The final step involves evaluating whether
there is evidence of association at each position by
calculating a BF between a model of association M1
and a model of no association M0. The simplest way
of modeling association at the disease SNP created
by placing a mutation on branch b at position Xm

is to create a 2 × 2 table of expected allele counts

0 1

Controls n00 = nU − n01 n01 = ∑
i:�i=0 emb

i

Cases n10 = nA − n11 n11 = ∑
i:�i=1 emb

i
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where nU and nA are the numbers of unaffected (con-
trol) and affected (case) haplotypes respectively.

From this table we can calculate a Bayes factor as
BFmb = P(Data|M1)

P (Data|M0)
, where

P(Data|M1)

=
∫

P(�|emb, θ1;M1)P (θ1|M1) dθ1

=
∫

pn11(1 − p)n01
�(a + c)

�(a)�(c)
pa−1(1 − p)c−1 dp

·
∫

qn10(1 − q)n00
�(a + c)

�(a)�(c)
qa−1(1 − q)c−1 dq

= �(n11 + a)�(n01 + c)

�(n0 + a + c)

· �(n10 + a)�(n00 + c)

�(n1 + a + c)

·
[

�(a + c)

�(a)�(c)

]2

,

where p and q are penetrance parameters of the alle-
les 1 and 0 respectively, and

P(Data|M0)

=
∫

P(�|emb, θ0;M0)P (θ0|M0) dθ0

=
∫

rnA(1 − r)nU
�(a + c)

�(a)�(c)
ra−1(1 − r)c−1 dr

= �(nA + a)�(nU + c)

�(nA + nU + a + c)

�(a + c)

�(a)�(c)
,

where r is a penetrance parameter unconditional on al-
lele. These calculations utilize a Binomial likelihood
for the expected allele counts and a Beta(a, c) prior
on the parameters of the model. For the analysis of
the WTCCC data in this paper we used a Beta(20,30)

prior the parameters p,q and r in the models. This
prior is centered on the proportion of cases and con-
trols in the sample and leads to a distribution on the
relative risk (p/q) with mean 1.0 and standard devi-
ation of 0.49. Supplementary Figure 3 illustrates the
prior on the relative risk.

The additive model of association we have used is
the simplest option and was chosen initially for com-
putational convenience. One criticism of this model
is that it implicitly makes an assumption of Hardy–
Weinberg Equilibrium (HWE) at the SNP in both cases
and controls and is more susceptible to the effects of
population structure [22]. To ameliorate these concerns
we have also developed a facility to output estimated

(or imputed) genotypes, in the case-control samples,
at SNPs derived by placing mutations on the individ-
ual branches of the tree. These SNP genotypes can be
fed directly into our software SNPTEST thus allowing
a range of more sophisticated models to be applied to
the data, such as standard additive, dominant, recessive
and general tests of association and tests that condition
on covariates and testing of other more refined phe-
notypes. This facility is used in one of our simulation
studies where we investigate the performance of our
method in estimating effect sizes in associated regions.

A Bayes factor for the position Xm can be obtained
by averaging the Bayes factors for each branch, b,
weighted by the prior, P(b), on each branch that was
estimated in step 1:

BFm = ∑
b∈B

BFmbP (b).

We take P(b), the prior probability of a mutation
occurring on a branch b, to be proportional to the
expected length of b under the coalescent, that is,∑n

i=m
2.0

i(i−1)
, where m and n are the number of distinct

branches when b was first formed and just before m

coalesced respectively. Our prior favors mutations that
occur on long branches.

An analogous set of calculations can be carried out
by assuming that there exist two (or more) distinct dis-
ease mutations on branches of the tree at each posi-
tion. The prior probability of mutations on more than
one branch is simply the product of the probabilities of
mutation occurring on each individual branch.

2.1 Posterior Probability of the Number
of Mutations

Let BF1 and BF2 be the Bayes factor under the
1-mutation model (M1) and 2-mutation model (M2) re-
spectively, then the Bayes factor, BF, comparing the
2-mutation model to the 1-mutation model is given by

BF = P(D|M2)

P (D|M1)
= P(D|M2)/P (D|M0)

P (D|M1)/P (D|M0)
= BF2

BF1
,

where D is data and M0 is the null model. If we assume
a prior odds for two mutations vs. one mutation of 1 : 1
then the posterior odds is simply BF, the ratio of BF2
and BF1.

3. RESULTS

3.1 Application to NOD2 Locus

To illustrate the utility of our method on an estab-
lished disease locus exhibiting allelic heterogeneity we
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applied our approach to the NOD2 locus [9, 19] for
Crohn’s disease on chromosome 16. We applied our
approach to this region using a set of trees built us-
ing the CEU HapMap haplotypes at 5 kb intervals
throughout the region. We used, after filtering, 1748
case and 2938 control individuals genotyped as part of
the WTCCC study.

The results produced by our method are shown in
Figure 1, which compares the signals of association at
SNPs on the Affymetrix chip, imputed SNPs and two
versions of our method that allow one and two muta-
tions on the tree at each position respectively. All the
methods show a substantial signal at the locus but the
signal for our new methods are higher and broader.

FIG. 1. The top left panel of the plot shows the log10 Bayes factor for the 1-mutation model (red) and 2-mutation model (green) within the
NOD2 region of the Crohn’s Disease analysis. The recombination map (red line) and the cumulative recombination map (purple line) are
shown below this. The bottom left panel shows the 120 CEU HapMap haplotypes across the region. Each row of this panel is a haplotype and
each column is a SNP. The haplotypes are colored to indicate the three haplotypes that occur at the 2 coding SNPs rs2066844 and rs2066845
(red = CC, purple = TG, cyan = CG). The dashed vertical blue and brown lines indicate the position of the largest log10 Bayes factor for
the 2-mutation model (the focal position) and the two coding SNPs respectively. The bottom right panel shows the estimated genealogical
tree at the focal position. The x-axis of the plot was chosen to provide a clear view of all the branches in the tree. The branches associated
with the best 1-mutation and 2-mutation models that make the largest contributions to the Bayes factors are shown with blue and red/green
dots respectively. The top right panel shows the tables of expected allele counts for the 1-mutation and 2-mutation models together with a
summary of the Bayes factors that occur at the focal position. The columns of the tables are color matched to the mutations on the tree in the
bottom right panel.
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The signals are also much smoother across the region
than the signals from the typed and imputed SNPs.
The log10 Bayes factors allowing for one and two mu-
tations peak at 11.44 and 13.33 respectively (larger val-
ues of the Bayes factor indicate stronger evidence for
association). These compare favorably with the log10
Bayes factors at the best Affymetrix SNP (12.00) and
the best imputed SNP (11.42); so the new method pro-
vides a stronger signal than comparable current ap-
proaches.

Next we can assess the relative evidence for the
2-mutation model compared with the 1-mutation model
simply by dividing the relative Bayes factors, or equiv-
alently through the difference of the log10 Bayes fac-
tors. Here the latter is 1.89, indicating that the data
is about 101.89 = 78 times more likely under the
2-mutation model than the 1-mutation model. If the
1- and 2-mutation models were thought equally likely
a priori this would imply a posterior probability of
0.987 for two mutations versus one mutation indicating
substantial evidence of allelic heterogeneity.

There are three known coding SNPs in this region [9,
19]. Two of these SNPs (rs2066845 and rs2066844) are
in the HapMap panel. Figure 1 shows that the three dis-
tinct haplotypes induced by these two SNPs correspond
well to those identified by the best fitting 2-mutation
model. For example, one of the two best mutations
(red) precisely identifies the CEU haplotypes that carry
the rare rs2066845 mutation while the other mutation
(green) is only one branch away from precisely iden-
tifying the haplotypes that carry the more common
rs2066844 mutation. In other words, our analyses of
the WTCCC data using the new method go very close
to recovering the known pattern of disease susceptibil-
ity, based on much more extensive genotyping. Rela-
tive risk estimates of red and green mutations on the
tree, relative to a lack of either of these mutations, are
2.15 and 1.56 respectively.

3.2 Application to the WTCCC Data

We have applied this method to all seven genome-
wide association studies carried out as part of the
WTCCC study [28]. Doing this allows us to compare
the performance of the new method to those methods
that are currently routinely used to analyze genome-
wide association studies, that is, analysis of genotyped
SNPs on the chip and of imputed SNPs.

Table 1 lists the regions that exhibited a log10 Bayes
factor greater than 4 for either the 1-mutation or the
2-mutation model. Just as with p-values, there is no

correct threshold for Bayes factors for “declaring” as-
sociation. Several arguments suggest that the threshold
on which we focus here is quite a stringent one. Empiri-
cally, many SNPs with lower single-SNP Bayes factors
in the WTCCC data are now known to correspond to
real effects, and most or all SNPs meeting this thresh-
old have been replicated. On a theoretical level, this is
the required threshold in order for the posterior odds
of association at a site to be greater than 1 when using
a prior odds of association of 1/10,000. This prior is
motivated by the argument that there are on the order
of 1,000,000 “independent” regions of the genome and
an expectation of 100 of these being involved in the
disease. Most of the regions in this table were identi-
fied by the SNP and imputation analysis of the main
WTCCC study but there are some notable differences.

There are three regions for the Crohn’s disease
analysis for which the posterior probability for two
mutations is very close to 1.0. The first of these is
the NOD2 region described above. The second is the
IL23R locus on chromosome 1, which is another estab-
lished disease locus for Crohn’s disease with extensive
known allelic heterogeneity [3]. A plot showing the re-
sults of our method in this region is given in Figure 2.
The log10 Bayes factors, at the IL23R locus, are 12.96
and 17.99 for the 1-mutation and 2-mutation models
respectively, which compare favorably with the best
Affymetrix SNP (10.07) and the best imputed SNP
(15.82). The difference between the 2-mutation and
1-mutation Bayes factors implies a posterior probabil-
ity of 1.00 for two mutations versus one mutation, indi-
cating overwhelming evidence of allelic heterogeneity.

The original paper [3] identified two SNPs in func-
tional regions of the IL23R gene. The first SNP
(rs11209026) is the nonsynonymous SNP (c.1142G>

A, p.Arg381Gln) identified as the strongest signal in
the original study. The second SNP (rs10889677) is in
the 3′ UTR of the IL23R gene and the only other as-
sociated nonintronic SNP found in the original study.
When we look at these two SNPs in the CEU HapMap
panel we identify three distinct haplotypes colored
green, purple and blue in Figure 2. These haplotypes
are almost precisely those that are delineated by the
two mutations that make the largest contribution to the
2-mutation Bayes factor. One of the mutations on the
tree (colored red) identifies all the CEU HapMap hap-
lotypes that carry the A allele at rs11209026 and the
second mutation (colored green) identifies all but one
of the haplotypes that carry the A allele at rs10889677.
Relative risk estimates of red and green mutations on
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TABLE 1
Regions that exhibited a log10 Bayes factor greater than 4 for either the 1-mutation or the 2-mutation model in the analysis of the seven

WTCCC diseases. Log10 Bayes factors for 1-mutation and 2-mutation models are given together with the posterior probability of the
2-mutation model relative to the 1-mutation model. Log10 Bayes factors and p-values are also given for

the best Affymetrix SNP and best imputed SNP in the regions

1-mutation 2-mutation Prob. Affy. IMPUTE Affy. IMPUTE
Disease Chr. Region (Mb) Log10 BF Log10 BF 2 mut. Log10 BF Log10 BF p-value p-value

CAD 9 21.98–22.11 11.04 11.01 0.48 11.66 11.58 1.79e−14 1.48e−14
CD 1 67.25–67.47 12.96 17.99 1.00 10.07 15.82 6.45e−13 7.93e−18
CD 2 233.93–233.99 10.38 10.29 0.45 11.11 11.55 7.10e−14 2.79e−14
CD 5 40.33–40.65 10.45 14.68 1.00 10.41 10.93 2.13e−13 1.32e−13
CD 5 131.65–131.83 5.82 6.13 0.67 4.54 7.18 5.40e−07 3.04e−10
CD 5 150.16–150.3 4.94 4.89 0.47 5.43 5.51 4.26e−08 3.15e−08
CD 6 31.36–31.39 4.61 4.69 0.55 1.96 6.52 0.000254 5.63e−08
CD 6 31.99–32.52 4 4.75 0.85 1.4 3.33 0.00106 7.13e−07
CD 10 101.27–101.29 5.32 5.4 0.55 5.91 6.05 1.41e−08 1.03e−08
CD 16 49.16–49.44 11.44 13.33 0.99 12 11.42 5.78e−15 7.20e−17
CD 18 12.77–12.87 5.56 5.52 0.48 5.42 5.53 4.56e−08 1.72e−09
RA 1 113.59–114.26 20.73 20.81 0.55 22.36 11.87 4.90e−26 3.92e−18
RA 6 29.66–33.77 102.92 124.67 1.00 74.84 91.19 3.44e−76 1.98e−106
T1D 1 113.59–114.23 20.76 20.7 0.47 23.07 13.21 1.17e−26 1.98e−18
T1D 4 123.59–123.88 4.59 4.58 0.49 4.42 5.63 5.00e−07 2.24e−07
T1D 6 25.98–33.93 290.18 >300 1.00 306.95 202.71 1.02e−287 2.28e−204
T1D 10 6.13–6.15 4.35 4.85 0.76 3.31 4.58 7.97e−06 3.19e−07
T1D 12 54.66–54.78 7.65 7.72 0.54 8.89 8.02 1.14e−11 2.30e−11
T1D 12 109.83–111.48 10.98 10.98 0.50 12.53 12.74 2.17e−15 2.06e−16
T1D 15 58.57–58.58 3.2 4.06 0.88 1.08 1.98 0.00242 4.46e−05
T1D 16 10.97–11.12 5.2 5.24 0.52 5.76 6.27 2.22e−08 8.50e−09
T2D 6 20.79–20.81 4.04 4.15 0.56 4.15 4.35 1.02e−06 1.01e−07
T2D 9 22.12 5.61 5.71 0.56 1.53 2.90 0.000706 2.22e−05
T2D 10 114.72–114.81 9.73 9.89 0.59 10.14 11.09 5.68e−13 6.08e−14
T2D 16 52.36–52.38 5.01 5.11 0.56 5.89 5.74 1.44e−08 2.07e−08

the tree, relative to a lack of either of these mutations,
are 0.39 and 1.29 respectively.

Another signal for Crohn’s disease is located within
an approximately 250 kb region on chromosome 5,
flanked by recombination hotspots. Numerous SNPs
within this region have been identified and replicated
[1, 12] (p-values down to 10−12 in combined analysis).
The LD structure delineates this region into five LD
blocks and the strongest associations (single SNP and
haplotype) were found in a central 122 kb block. How-
ever, multivariate haplotype analysis conditional on the
effect of the central block showed that the two flanking
LD blocks remain significantly associated [12], which
suggests that multiple variants in the region may ac-
count for the observed effects on Crohn’s disease.

Single SNP analysis in the WTCCC dataset re-
veals strong associations at both Affymetrix and im-
puted SNPs (maximum log10 Bayes factors 10.41
and 10.92, respectively). Figure 3 illustrates the re-
sults of our analysis. The 2-mutation model provides

a large boost in signal (maximum log10 Bayes factor
14.68) and compared to the 1-mutation model (max-
imum log10 Bayes factor 10.45) strongly support al-
lelic heterogeneity at this locus (posterior probability
of 2-mutation model vs. 1-mutation model is 1.0). Fur-
ther, the two mutations that make the largest contri-
bution to the 2-mutation Bayes factor, appear to de-
lineate the HapMap haplotypes in three groups with
distinct LD pattern approximately 100 kb either side
of the position of the maximum Bayes factor under the
2-mutation model, at 40,430,000 (NCBI Build 35 co-
ordinates), which we call the focal position. Relative
risk estimates of red and green mutations on the tree,
relative to a lack of either of these mutations, are 1.80
and 1.29 respectively.

In addition to the signals identified by the tested
typed and imputed SNPs in the main WTCCC analy-
sis, we find two other signals: one for Type 2 Diabetes
(T2D) on chromosome 9 and one for Type 1 Diabetes
(T1D) on chromosome 15.
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FIG. 2. The top left panel of the plot shows the log10 Bayes factor for the 1-mutation model (red) and 2-mutation model (green) within
the IL23R region of the Crohn’s disease analysis. The recombination map (red line) and the cumulative recombination map (purple line) are
shown below this. The bottom left panel shows the 120 CEU HapMap haplotypes across the region. Each row of this panel is a haplotype
and each column is a SNP. The panel haplotypes are colored to indicate the three haplotypes that occur at the 2 coding SNPs rs11209026
and rs10889677 (blue = AC, purple = GC, green = GA). The dashed vertical blue and brown lines indicate the position of the largest log10
Bayes factor for the 2-mutation model (the focal position) and the two coding SNPs, respectively. The bottom right panel shows the estimated
genealogical tree at the focal position. The x-axis of the plot was chosen to provide a clear view of all the branches in the tree. The branches
associated with the best 1-mutation and 2-mutation models that make the largest contributions to the Bayes factors are shown with blue and
red/green dots respectively. The top right panel shows the tables of expected allele counts for the 1-mutation and 2-mutation models together
with a summary of the Bayes factors that occur at the focal position. The columns of the tables are color matched to the mutations on the tree
in the bottom right panel.

The Type 2 Diabetes signal on chromosome 9 re-
sides within a 9 kb region flanked by recombination
hot spots. This locus was identified and confirmed by
three independent T2D genome-wide association stud-
ies [23, 24, 31], which reported rs10811661 with the
strongest signal of association. The p-values at this
SNP were 7.6 × 10−4 in the WTCCC study [31],

5.4 × 10−4 in the DGI study [24] and 2.2 × 10−3 in
the FUSION study [23]. A meta-analysis of the pooled
samples from all three studies [31], which comprised
of 14,586 cases and 17,968 controls, yielded a p-value
of 7.8×10−15. A haplotype analysis of this region also
identified a significant signal in this region and the ex-
istence of a high-risk haplotype carrying the T alleles
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FIG. 3. The top left panel of the plot shows the log10 Bayes factor for the 1-mutation model (red) and 2-mutation model (green) within a
chromosome 5 region of the Crohn’s disease analysis. The recombination map (red line) and the cumulative recombination map (purple line)
are shown below this. The bottom left panel shows the 120 CEU HapMap haplotypes across the region. Each row of this panel is a haplotype
and each column is a SNP. The panel haplotypes are colored red and beige to represent the two-allele types at each SNP. The dashed vertical
blue line indicates the position of the largest log10 Bayes factor for the 2-mutation model (the focal position). The bottom right panel shows
the estimated genealogical tree at the focal position. The x-axis of the plot was chosen to provide a clear view of all the branches in the tree.
The branches associated with the best 1-mutation and 2-mutation models that make the largest contributions to the Bayes factors are shown
with blue and red/green dots respectively. The top right panel shows the tables of expected allele counts for the 1-mutation and 2-mutation
models together with a summary of the Bayes factors that occur at the focal position. The columns of the tables are color matched to the
mutations on the tree in the bottom right panel.

at SNPs rs10811661 and rs10757283 (see Supplemen-
tary Material of ref. [11]).

Single SNP analyses of the WTCCC data revealed
a moderate signal at rs10811611 of log10 Bayes fac-
tor 1.53, which is the strongest within the 9 kb re-
gion flanking the recombination hotspots (stronger sig-
nals are located approximately 100 kb away but are
likely to be related to another signal associated with

rs564398). Figure 4 summarizes our results in this re-
gion. The maximum log10 Bayes factors peak at 5.61
and 5.71 for the 1-mutation and 2-mutation models.
These signals represent a significant boost in power to
detect this locus. The 2-mutation model provides a bet-
ter fit than the 1-mutation model suggesting evidence
of allelic heterogeneity in the region. Relative risk es-
timates of red and green mutations on the tree, relative
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FIG. 4. The top left panel of the plot shows the log10 Bayes factor for the 1-mutation model (red) and 2-mutation model (green) within
a chromosome 9 region of the Type 2 Diabetes disease analysis. The recombination map (red line) and the cumulative recombination map
(purple line) are shown below this. The bottom left panel shows the 120 CEU HapMap haplotypes across the region. Each row of this
panel is a haplotype and each column is a SNP. The panel haplotypes are colored red and beige to represent the two allele types at each
SNP. The dashed vertical blue line indicates the position of the largest log10 Bayes factor for the 2-mutation model (the focal position).
The bottom right panel shows the estimated genealogical tree at the focal position. The x-axis of the plot was chosen to provide a clear view
of all the branches in the tree. The branches associated with the best 1-mutation and 2-mutation models that make the largest contributions to
the Bayes factors are shown with blue and red/green dots respectively. The top right panel shows the tables of expected allele counts for the
1-mutation and 2-mutation models together with a summary of the Bayes factors that occur at the focal position. The columns of the tables
are color matched to the mutations on the tree in the bottom right panel.

to a lack of either of these mutations, are 1.30 and 0.90
respectively.

One of the mutations on the tree (colored red) ex-
actly identifies all but one of the HapMap haplo-
types that contain the high risk TT haplotype at SNPs
rs10811661 and rs10757283. The other mutation on
the tree (colored green) identifies a protective CT hap-

lotype at the SNPs rs10811661 and rs10757283 that
was not mentioned in the original analysis.

A possible novel signal is located at chromosome
15q22.2 for T1D (Figure 5), where no previous associ-
ations have been identified. Single SNP tests only de-
tected a very weak signal in this region (log10 Bayes
factor peak at 1.08 and 1.98 at Affymetrix and im-
puted SNPs respectively). The maximum log10 Bayes
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FIG. 5. The top left panel of the plot shows the log10 Bayes factor for the 1-mutation model (red) and 2-mutation model (green) within a
chromosome 15 region of the Type 1 Diabetes disease analysis. The recombination map (red line) and the cumulative recombination map
(purple line) are shown below this. The bottom left panel shows the 120 CEU HapMap haplotypes across the region. Each row of this
panel is a haplotype and each column is a SNP. The panel haplotypes are colored red and beige to represent the two allele types at each
SNP. The dashed vertical blue line indicates the position of the largest log10 Bayes factor for the 2-mutation model (the focal position).
The bottom right panel shows the estimated genealogical tree at the focal position. The x-axis of the plot was chosen to provide a clear view
of all the branches in the tree. The branches associated with the best 1-mutation and 2-mutation models that make the largest contributions to
the Bayes factors are shown with blue and red/green dots respectively. The top right panel shows the tables of expected allele counts for the
1-mutation and 2-mutation models together with a summary of the Bayes factors that occur at the focal position. The columns of the tables
are color matched to the mutations on the tree in the bottom right panel.

factor from the 2-mutation model (4.06) is stronger
than the 1-mutation model (3.20), which provides some
suggestion that multiple causal variants are involved.
The focal position of our signal is located in the RORA
gene, which encodes ROR, an evolutionarily related
transcription factor and belongs to the steroid hormone
receptor super family. RORA has been linked to im-
munomodulatory activities [15], which might make

RORA a candidate gene for autoimmune diseases such
as T1D.

We also looked at the WTCCC data in detail at the
relatively large number of established disease genes for
Crohn’s disease [1] (30 loci) and Type 2 Diabetes [32]
(18 loci). Not all of these loci were found to be highly
significant in the WTCCC study. We compared tests
at (i) SNPs on the Affymetrix 500k chip, (ii) imputed
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FIG. 6. Comparison of the performance of four different methods in the WTCCC data at the 30 established associated loci for Crohn’s
disease. The plot shows the maximum log10 Bayes factor for imputed SNPs (black) and the 1-mutation (red) and 2-mutation (green) versions
of our new method (on the y-axis), plotted against the maximum log10 Bayes factor at Affymetrix SNPs (on the x-axis), in each region.

SNPs, and the (iii) 1-mutation and (iv) 2-mutation ver-
sions of our new method. The results for the Crohn’s
Disease and Type 2 Diabetes regions are shown in Fig-
ures 6 and 7 respectively. The results show that no one
method uniformly produces the largest signal across all
of the regions. Out of all the 48 regions together, the
four methods produced the largest signal in 12, 30, 1
and 5 regions respectively. These results show that in
13% of the regions of known association the methods
described in this paper lead to an increase in signal over
and above that of testing directly typed and imputed
SNPs (although in some cases the increase in signal
is small). The results also reinforce our previous find-
ings [13] that imputation can provide a nontrivial boost
in power over testing only those SNPs that have been
genotyped directly.

3.3 Power to Detect Allelic Heterogeneity

The real examples shown above illustrate that when
allelic heterogeneity exists in a region of association
our method can accurately characterize the underly-
ing risk variants and lead to a boost in signal. We

have also used simulation to assess the power of our
method to distinguish the signal of allelic heterogene-
ity when it exists. To do this we extended our program
HAPGEN [25] to simulate SNP genotype datasets, in
2000 cases and 2000 controls, under a model of al-
lelic heterogeneity with two linked causal SNPs. HAP-
GEN conditions on a reference panel of haplotypes
and their local recombination rates to create genotype
datasets that naturally inherit the patterns of LD found
in the reference panel. Datasets were generated by us-
ing the 120 CEU parental HapMap haplotypes in five
ENCODE regions (ENr123, ENr213, ENr232, ENr321
and ENm013) as reference panels; each dataset is ap-
proximately 500 kb in length with a SNP density of
approximately two SNPs per kb. For the set of haplo-
types required by step 1 of our method we produced
pseudo-HapMap panels by thinning the ENCODE data
to match the SNP density and MAF distribution of
the phase II HapMap data, with the added restriction
that this panel contain the SNPs on the Affymetrix
500k chip. Each dataset was simulated at all SNPs in
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FIG. 7. Comparison of the performance of four different methods in the WTCCC data at the 18 established associated loci for Type 2
Diabetes. The plot shows the maximum log10 Bayes factor for imputed SNPs (black) and the 1-mutation (red) and 2-mutation (green)
versions of our new method (on the y-axis), plotted against the maximum log10 Bayes factor at Affymetrix SNPs (on the x-axis), in each
region.

the ENCODE regions but only genotype data at the
SNPs on the Affymetrix 500k chip were presented to
the method in step 2.

To simulate instances of allelic heterogeneity we se-
lected pairs of SNPs within 15 kb of each other, and
satisfying the condition of either Model A or Model
B (described below), as the causal SNPs for a dataset.
We exhaustively searched for all suitable pairs in the
five ENCODE marker sets and for each pair generated
a single dataset, comprised of 2000 case and 2000 con-
trol individuals. The minor allele was set to be the dele-
terious allele at both SNPs and phenotypes were sim-
ulated according to the marginal relative risks given to
each disease allele.

For each simulated dataset we compared the max-
imum 1-mutation and 2-mutation Bayes factors. Ta-
bles 2 and 3 show the results of this comparison for
two disease models that we simulated: Model A, one
rare causal SNP with risk allele frequency less than 2%
and one common causal SNP with risk allele frequency

between 5% and 20%, and Model B, two causal SNPs
with a risk allele frequency between 5% and 20%.

The tables show the proportion of times that the
2-mutation signal is larger than that for the 1-mutation
model. We also show results for just those simulated
datasets where there is an appreciable signal of asso-
ciation (log10 Bayes factor > 3). In general, these re-
sults show that our method has good power to detect
allelic heterogeneity when the effect sizes at the sus-
ceptibility loci are similar to those found in our analy-
sis of the WTCCC data. For example, when the relative
risks are 2.5 and 1.3 at the rare and common SNPs for
Model A our method has 70% power to detect a larger
signal for the 2-mutation model. If we consider only
those simulations in which the signal is appreciably
large (log10 Bayes factor > 3) then this power rises to
83%. Similarly for Model B, when the relative risks are
1.5 and 1.3 at the susceptibility SNPs our method has
67% power to detect a larger signal for the 2-mutation
model and this power rises to 69% when conditioning
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TABLE 2
Results of simulations of allelic heterogeneity at two linked causal SNPs using Model A: one rare with risk allele frequency less than 2%
and one common with risk allele frequency between 5% and 20%. Relative risks at the two simulated loci are shown in the first two rows.
The maximum 1-mutation and 2-mutation log10 Bayes factors are denoted by S1 and S2 respectively. The third row shows the proportion

of simulated datasets where S2 was greater than S1. The fourth row shows the proportion of simulated datasets that had S2 > 3. The
fifth row shows the proportion of simulated datasets where S2 was greater than S1 conditional upon S2 > 3. The final row shows

the expected difference between S2 and S1 conditional upon S2 > 3

RRA (rare causal SNP) 1.0 1.0 1.5 2.0 2.5
RRB (common causal SNP) 1.0 1.3 1.3 1.3 1.3
Pr(S2 > S1) 0.07 0.33 0.45 0.61 0.70
Pr(S2 > 3) 0.00 0.13 0.18 0.37 0.57
Pr(S2 > S1|S2 > 3) — 0.52 0.69 0.81 0.83
Mean(S2 − S1|S2 > 3) — 0.07 0.20 0.59 0.73

only on large signals. As effect sizes become smaller
there is less power to detect an effect and it also be-
comes more difficult to distinguish between one and
two mutations. When there is no effect at either locus,
that is, under the “null hypothesis” of no association,
we obtain a false positive rate of close to zero when
conditioning upon appreciable signals.

3.4 Estimating Effect Sizes in Associated Regions

In associated regions it is standard practice to report
the effect size of the risk allele at the associated SNP
and it is usual that this takes the form of the estimated
Relative Risk (RR) or Odds Ratio (OR) of the allele to-
gether with a 95% confidence interval. Such estimates
are useful for approximating the magnitude and preci-
sion of the association in the study population, quan-
tifying the amount of heritability explained by the lo-
cus and predicting individual disease risk. As we have
seen above, testing for association at typed and im-
puted SNPs can be successful in detecting associated
regions but this is not always the case and our method
is sometimes able to detect a larger signal, effectively

by more accurately characterizing the true causal vari-
ant. It follows that in these cases our method may also
be able to accurately estimate the effect size of the true
causal variant. To investigate this idea we carried out a
simulation study using the ENCODE region ENm013
from the CEU HapMap haplotypes and the thinned
pseudo-HapMap panel that we created for our simu-
lation study in the previous section. We searched for
all SNPs in the ENCODE region that had an R2 with
any SNP in the pseudo-HapMap panel of at most 0.2
and used these SNPs as the causal SNPs in our sim-
ulations. These SNPs will be not be in high LD with
any of the SNPs on the Affymetrix 500k chip and are
unlikely to be imputed well. For each causal SNP we
then simulated a case-control study in the region using
HAPGEN. Each causal SNP was used four times with
simulated relative risks of 1.25, 1.5, 2.0 and 2.5. Only
genotype data at the SNPs on the Affymetrix 500k chip
were simulated. We then analyzed the data in two dif-
ferent ways to obtain an approximate posterior distrib-
ution on the effect size.

TABLE 3
Results of simulations of allelic heterogeneity at two linked causal SNPs using Model B: both causal SNPs with a risk allele frequency
between 5% and 20%. Relative risks at the 2 simulated loci are shown in the first two rows. The maximum 1-mutation and 2-mutation

log10 Bayes factors are denoted by S1 and S2 respectively. The third row shows the proportion of simulated datasets where S2 was
greater than S1. The fourth row shows the proportion of simulated datasets that had S2 > 3. The fifth row shows the proportion

of simulated datasets where S2 was greater than S1 conditional upon S2 > 3. The final row shows the expected difference
between S2 and S1 conditional upon S2 > 3

RRA 1.0 1.0 1.1 1.3 1.5
RRB 1.0 1.3 1.3 1.3 1.3
Pr(S2 > S1) 0.05 0.32 0.38 0.55 0.67
Pr(S2 > 3) 0.00 0.21 0.33 0.56 0.81
Pr(S2 > S1|S2 > 3) — 0.44 0.47 0.56 0.69
Mean(S2 − S1|S2 > 3) — 0.04 0.04 0.17 0.41
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Firstly, we considered the estimated effect size at the
most associated Affymetrix SNP in the region. We used
a logistic regression model and fitted an additive model
on the log odds scale implemented by SNPTEST to
calculate the mode of the posterior distribution of ad-
ditive effect parameter, β̂ . The OR estimate is subse-
quently calculated as eβ̂ . The prior on the effect size
was that used in the WTCCC study [28].

We then obtained an analogous estimate and stan-
dard errors from our method GENECLUSTER in the
following way. We first identified the locus Xm, where
the maximal 1-mutation Bayes factor occurred. For
each branch, b, on the genealogical tree constructed
at this position we placed a mutation on the branch
and calculated the posterior probability that the ith
individual carried 0, 1 or 2 copies of the mutation,
P(Gmb

i |Hmb). We then took these genotype distribu-
tions at all individuals and used SNPTEST to carry out
a test of association at the SNP implied by the muta-
tion on the branch using the same additive logistic re-
gression model as above. This resulted in a posterior
estimate of βb and its standard error σ 2

b . The poste-
rior distribution can be calculated by summing over the
branches of the tree, that is,

P(β|Data) = ∑
b

P (β, b|Data)

= ∑
b

P (β|b,Data)P (b|Data)

∝ ∑
b

P (β|b,Data)P (Data|b)P (b)

∝ ∑
b

P (β|b,Data)BFbP (b),

where BFb is the Bayes factor associated with branch
b and P(b) is the prior probability on branch b car-
rying a causal mutation. If we assume that the poste-
rior distribution of the additive genetic effect parame-
ter conditional on a given branch, P(β|b,Data), can be
approximated using a Normal distribution N(β̂b, σ̂

2
b )

then the overall estimate will be a mixture of Normal
distributions with each branch weighted by its associ-
ated Bayes factor and its prior. From this model we can
obtain a new estimate of the effect size as

β̂∗ = 1

K

∑
b

β̂bBFbP (b),

where K = ∑
b BFbP (b). The OR estimate is subse-

quently calculated as eβ̂∗
.

We compared these two estimates of the effect size
to the true estimate of the effect size, which we cal-
culated by fitting the same logistic regression model
to the simulated data at the true causal SNP. Figure 8
shows the distribution of the difference between the es-
timated effect size minus the true effect size for both
methods. In constructing this plot we only considered
simulations that showed a maximal log10 Bayes factor
for the 1-mutation GENECLUSTER model above 4.
The plot shows that GENECLUSTER outperforms the
use of the best Affymetrix SNP when estimating the ef-
fect size. The mean square error for the OR estimate is
1.037 for the best Affymetrix SNP estimate and 0.524
for the GENECLUSTER method.

4. DISCUSSION

The standard paradigm for the analysis of genome-
wide association studies involves testing both typed
and imputed SNPs and then attempting to replicate in-
teresting signals in new datasets. In this paper, we have
proposed a complementary method that attempts to ex-
tract further signals of association first by explicitly
considering as-yet-unknown SNPs in the region, and
second by modeling and estimating allelic heterogene-
ity at a locus. Allelic heterogeneity has been predicted
to play a significant role in the genetic etiology of com-
plex diseases [20] and clear examples in real human
data already exist (Figures 1–3). Our method works by
locally approximating the genealogy of the haplotypes
in the sampled individuals and then averaging over the
different branches of the genealogy as potential sites of
casual mutations using a Bayesian approach.

A key feature of our approach is the use of a ge-
nealogical tree to represent the relationship between
the haplotypes of the sample and to effectively con-
strain the space of possible causal variants considered.
The genealogical tree, built in step 1 using fine-scale
haplotype data at each position, greatly aids interpreta-
tion of the signal. As illustrated in Figures 1–5, we are
able to accurately estimate the best single branch, and
pair of branches on the tree, that make the largest con-
tribution to the signal of association. Since the tree is
built using only the set of HapMap haplotypes we are
able to graphically link the tree to the haplotypes them-
selves, which acts to highlight the haplotypic back-
grounds that harbor the estimated causal mutations.
Our analyses in this paper are based on a set of ge-
nealogical trees built at 5 kb intervals and testing for
association at those locations. The 5 kb interval size
was chosen based on the SNP densities of our data in
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FIG. 8. Comparison of methods for estimating the effect size. Both plots show the distribution of the difference between the estimated and
true odds ratio. The left hand plot shows the results when using the best chip SNP to estimate odds ratio. The right-hand plot shows the
results when using GENECLUSTER.

the HapMap reference panel, which is approximately
one SNP per kb, and in the study sample, which is ap-
proximately one SNP per 6 kb. Using an excessively
small interval size compared to the SNP densities in
the reference panel and study sample will likely yield
highly a set of correlated trees (in step 1), clusterings
of the study sample genotypes (in step 2) and hence
signals for association (in step 3). However, some brief
analyses indicate that 5 kb could be a conservative es-
timate and a higher density, for example, one tree per
1 kb, can increase power and lead to a finer resolution
for the location of the putative disease locus (results not
shown). There is little disadvantage in testing at more
locations, apart from the linear increase in the com-
putation burden, and since modern association study
data are typed at an increasingly dense set of SNPs, we
recommend implementing GENECLUSTER using as
dense a set of trees as computation resources allow.

For the analysis in this paper our method was applied
using one estimated genealogy at each position on a

grid of positions across the genome. By using a sin-
gle tree at each position it is straightforward to visual-
ize which branches, or combination of branches, drive
the signal of association. The disadvantage is that the
uncertainty in the genealogy is ignored. Our method
is currently being extended to allow multiple trees at
each position in order to capture the uncertainty in the
genealogy but it is not clear whether this will lead to
a significant boost in performance and we have left
this for future work. However, we feel encouraged by
the performance of our current method in its ability to
accurately identify known allelic heterogeneity and to
boost signals of association in real data and simulated
data (see Supplementary Material).

The second step of our method involves locally clus-
tering the genotype data to the tips of the estimated ge-
nealogy. A key feature of our model is that we are not
constrained to choose a “window” of SNPs, as required
by many haplotype clustering methods [16–18], and in-
stead we are able to use hundreds of flanking SNPs
around the focal locus to both build the genealogical
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trees and cluster the genotype data to the tips of the
tree. Our method also naturally handles missing data
and takes haplotype uncertainty into account and thus
avoids relying on a point estimate of haplotypes [27]
as this has been shown to produce nonoptimal results
[14]. We encourage the use of the most accurate re-
combination map possible but experience using similar
HMM models for imputation suggests that the mod-
els are reasonably robust to varying the recombination
rates. The mutation rates in our models are fixed and
constant across SNPs. It could be argued that estimat-
ing them in a SNP-by-SNP fashion might help down
weight the influence of SNPs with high genotyping er-
ror rates, but this would add considerably to the com-
putational expense of the method and since genotyping
error rates are low we do not think this would make a
noticeable improvement to our method.

The third step in our method involves placing one or
more mutations on the estimated genealogy and evalu-
ating the evidence of association between those muta-
tions and the phenotype data of those genotypes clus-
tered to the tips of the tree. We set our prior probability
of a mutation occurring on a given branch to be pro-
portional to the expected branch length, which is based
on the assumption that mutations are more likely to oc-
cur on longer branches and every mutation has an equal
prior probability of being causal. This means that our
prior probability on rare mutations being causal will be
small since they tend to occur on shorter branches. We
can also adjust our prior to favor mutations that occur
on the shorter branches to boost our power to detect
rare variants. However, our ability to detect rare causal
variants will also be limited by the characterization of
rare variants in the HapMap reference panel (as dis-
cussed below).

Thus far we have only considered placing at most
two mutations on a single genealogy but our approach
can be easily extended to placing further mutations.
However, there is a considerable increase in computa-
tion burden with placing more mutations due to the in-
crease in the set of possible combinations of branches
carrying a mutation. For example, the complexities of
the 3-mutation and the 4-mutation models increase by
approximately 79 and 4600 times, respectively, com-
pared to the 2-mutation model. It is therefore feasi-
ble to implement the 3-mutation model for analyses of
small regions, for example for fine-mapping, but not
genome-wide. A possible compromise would be to em-
ploy a Markov chain Monte Carlo approach to integrate
over the space of branches carrying a mutation.

A key approximation that we make, which is worthy
of some discussion, is to construct the genealogical tree
using only the reference sample of HapMap haplotypes
and then probabilistically cluster the study individuals
under the tips of the tree at each locus. In doing this we
effectively construct a genealogical tree for the whole
sample. In contrast, the MARGARITA method [14] at-
tempts to construct the full genealogy of the sample but
only in the study individuals and using a rather heuris-
tic method for implicitly phasing the genotype data. In
doing so this method ignores the information available
from the HapMap haplotypes in a given region.

The advantages of using the HapMap data are that
the haplotypes are accurately phased and consist of a
higher SNP density than commercially available geno-
typing chips. Both of these properties aid the recon-
struction of the genealogical tree. In addition there are
computational advantages in being able to produce a
set of genealogies across the genome just once and then
storing the trees for all future use. A limiting feature of
the HapMap haplotypes is the relatively small size of
the sample, that is, there are only 120 CEU haplotypes.
In many regions of the genome the HapMap haplotypes
will provide a good representation of the common set
of haplotypes likely to be found in the population but
there will clearly be regions where this is not true.
Also, the HapMap will not provide a comprehensive
characterization of the rare haplotype structure present
in the population. It is clear that there are instances in
which our method of building genealogies will not be
perfect but the application to seven genome-wide scans
of the WTCCC has clearly shown that the method is
able to detect and accurately characterize real associa-
tions where they occur. This is likely due to the fact that
it is common variants that show association at these
loci and our method is able to accurately characterize
the relevant common haplotype structure.

We have carried out a small amount of comparison
between GENECLUSTER and MARGARITA on se-
lected loci. At the chromosome 9 locus for Type 2
Diabetes discussed above and shown in Figure 4 we
found that MARGARITA was not able to uncover a
significant association (permutation p-value 0.2498),
whereas significant signals at other loci examined in
this paper were found. A more comprehensive compar-
ison of these methods is complicated by the fact that
MARGARITA produces results in terms of p-values
whereas GENECLUSTER’s inference is Bayesian.

At loci where there is an especially large genetic ef-
fect the true underlying genealogy of the study sam-
ple may differ quite a lot to that of the genealogy of
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the sample of HapMap haplotypes. In this scenario the
case haplotypes will be strongly clustered under the
branch of the tree that contains the disease susceptibil-
ity mutation whereas control haplotypes will tend to be
biased away from clustering under this branch. Thus
in this case using the HapMap haplotypes to build a
genealogy may not be optimal. As the effect size gets
smaller, however, this bias is reduced and we do not
see this as a serious concern for analysis of genome-
wide association studies where effect sizes are typi-
cally small.

A more complete method would involve the con-
struction of the genealogical tree at each position us-
ing all the data. This is complicated by the fact that the
study individuals consist of unphased genotype data,
whereas the HapMap haplotypes are phased, and con-
sist of missing data at many SNPs that are in HapMap
but not on the genotyping chip. One can envisage an
iterative scheme in which phasing and imputation of
missing alleles in the study individuals and building of
genealogical trees are carried out, but this would likely
be computationally prohibitive, unless other simplify-
ing assumptions are made. Strictly speaking it would
also be necessary to build the genealogical tree and fit
a disease model at the same time and this would add a
further layer of complexity.

We expect that the performance of our method will
show a similar pattern of variation to that of imputation
when applied in other populations [8] since the under-
lying models are quite similar. Applying the method to
admixed individuals or to studies involving individuals
from different populations is not something we have
considered here and we would encourage caution in di-
rectly applying the method in such situations. This may
be an interesting avenue for future research.

We see two possible ways in which our method could
be used. First, and foremost, we see it as a complemen-
tary method to testing typed and imputed SNPs across
the genome. The method is designed to pick up sig-
nals that have a more complex structure than ones sin-
gle SNP models can accommodate. Our results on the
WTCCC datasets above show that the method is able
to boost signal in regions where this occurs. For ex-
ample, in the 48 established regions of association for
Crohn’s disease and Type 2 Diabetes our new meth-
ods produced the largest signal in 13% of the regions.
A distinction between our approach and the SNP-based
approaches is that we jointly assess the data at all
SNPs compatible with the genealogy for evidence of
association. Therefore, at each location, GENECLUS-
TER assesses the evidence for association at any SNP,

whereas SNP-based approaches perform a single test
at each SNP for association. This means that in regions
with a SNP (typed or imputed) that is either causal,
or in strong LD with a causal SNP, GENECLUSTER
is likely to produce a lower Bayes factor than a direct
test at that SNP, and we expect that this is the case for
most of the regions in our comparison since they were
identified using SNP-based approaches. However, our
results also show that there is an appreciable number
of regions in the genome where GENECLUSTER out-
performs SNP-based approaches, namely regions with
a causal variant that is not well tagged by the data, or
with multiple causal variants. The Supplementary Ma-
terial details a further simulation study that we have
carried out to show that our method is well powered to
detect signals of association compared to simpler tag-
based approaches.

Our use of a Bayesian framework allows the results
of a GENECLUSTER analysis to be naturally com-
bined together with the analysis of imputed and typed
SNPs. The Bayes factors from each approach can be
combined together into one set across the genome,
and interesting signals can be identified by applying
a Bayes factor threshold that is determined by the prior
probability of an association. This prior probability
represents the proportion of the genome that we expect
to be associated with the disease, which remains fixed
and independent of the number of tests carried out.
This means that our method can be naturally and eas-
ily accommodated into the analysis without recourse to
Frequentist multiple testing procedures. In our analy-
sis, we have assumed 1/10,000th of the genome is
truly associated [28]. Determining a threshold for the
Bayes factor involves the use of decision theory and
the specification of a loss function. When focusing on
identifying a set of SNPs for follow-up replication, we
might penalize a false nondiscovery more than a false
discovery. When making a final decision on a SNP af-
ter replication data has been collected, we might pe-
nalize a false discovery more than a false nondiscov-
ery. To illustrate our method and compare methods we
have used a 0/1 loss function that gives equal weight
to false discoveries and false nondiscovery and rep-
resents the middle ground between these two scenar-
ios. This results in a common threshold of 4 for the
log10 Bayes factors at typed SNPs, imputed SNPs and
GENECLUSTER. We do not expect the comparison
between methods to be influenced by this choice.

Our method could be used in a more focused fash-
ion, in fine-mapping experiments, to investigate the
form of the association in regions already identified
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by single SNP methods and to produce better esti-
mates of effect sizes. For example, if the application
of the 1-mutation version of the method leads to a
clear boost in signal over typed and imputed SNPs
then this may indicate the presence of an undiscovered
causal SNP. Further application of the 2-mutation ver-
sion may subsequently indicate a much stronger signal
implying allelic heterogeneity within the region, such
as at the NOD2, IL23R and 5p13 associated regions for
Crohn’s disease (Figures 1–3), and lead to the accu-
rate identification of the haplotype backgrounds with
elevated disease risk. This can aid selection of individ-
uals for resequencing in fine-mapping studies (data not
shown) and lead to better prediction of disease risk in
un-phenotyped individuals. A clear advantage of using
Bayesian methods in our approach is that it allows us
to directly estimate the probability of two mutations
versus one mutation.

As noted above, we use a model averaging approach
in which we are interested in whether a location is
associated with the disease. Another option would
be not to carry out this model averaging and to test
each branch of the tree with its own Bayes factor. It
would be interesting to compare these two approaches
in more detail and will be relatively straightforward
since GENECLUSTER can output probabilistic geno-
type calls associated with placing a mutation on each
branch of the tree. In the new approach, we will ob-
tain a sample of Bayes factors rather than a single
Bayes factor at each location as before. Therefore, it is
likely that we will obtain larger Bayes factors in associ-
ated regions but the smoothness of the signal we noted
above will likely disappear. Nevertheless, in the con-
text of fine-mapping signals, to characterize the under-
lying form of an association and estimate effect sizes,
it clearly makes sense to consider each branch of the
tree in its own right as we have done.

4.1 The WTCCC Data

We used the same set of filtered WTCCC data used
by the main study [28]. All regions of potential associa-
tion had genotypes at flanking SNPs checked by exam-
ining the intensity cluster plots. SNPs with borderline
quality cluster plots were removed and the analysis was
re-run to assess the impact on the results.

Software Implementation

Our software, called GENECLUSTER, will be made
publicly available at the time of publication from the
website http://www.stats.ox.ac.uk/~marchini/software/
gwas/gwas.html.

This incorporates the TREESIM method for sam-
pling marginal genealogical trees at a given site con-
ditional upon a set of haplotypes.

Our other software packages, HAPGEN, IMPUTE
and SNPTEST, are also available from this website.

Supplementary Material

Supplementary material to this paper is available
from http://www.stats.ox.ac.uk/~marchini/papers/GC_
SOM.pdf.
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