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Comment
José M. Bernardo

The authors provide an authoritative lecture guide of
Theory of Probability, where they clearly state that the
more useful material today is that contained in Chap-
ters 3 and 5, which respectively deal with estimation,
and hypothesis testing. We argue that, from a contem-
porary viewpoint, the impact of Jeffreys proposals on
those two problems is rather different, and we describe
what we perceive to be the state of the question nowa-
days, suggesting that Jeffreys’s dramatically different
treatment is not necessary, and that a joint objective
approach to those two problems is indeed possible.

1. INTRODUCTION

As the authors point out, Theory of Probability is an
indispensable, if often difficult to navigate, Bayesian
foundational text. Their authoritative lecture guide is
therefore very welcome. As should be clear from their
review, the main useful material today is contained in
Chapters 3 and 5 which, respectively, deal with esti-
mation, in the sense of deriving an objective posterior
distribution for the quantity of interest, and hypothesis
testing, presented as a derivation of an objective pos-
terior probability for the hypothesis under considera-
tion. I believe that, from a contemporary viewpoint, the
impact of Jeffreys proposals on those two problems is
rather different, as I now briefly try to describe.

2. ESTIMATION

One-parameter Jeffreys estimation prior (Jeffreys
rule). Following his own pioneering work (Jeffreys,
1946), the book introduces in Section 3.10 what it
is now considered the main meaning of the confus-
ing denomination “Jeffreys prior.” Thus, to obtain an
objective posterior density for the parameter α of a
probability model f (x|α), he proposes the formal
use in Bayes theorem of the (often improper) prior
π(α) ∝ |I (α)|1/2, where I (α) is Fisher information
function. As the authors point out, Jeffreys’s motiva-
tion is rather obscure: he describes I (α) as a second
order approximation to two functional distances, and
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notes that |I (α)|1/2 happens to be invariant under one-
to-one transformations. No trace of its more intuitive
interpretation in terms of the prior which assigns equal
probabilities to equally distinguishable subregions of
the parameter space (Lindley, 1961). Also, even in its
third (1961) edition, the book only gives a cursory
reference to the independent, essentially simultane-
ous, derivation of the same “rule” produced by Perks
(1947) in a much underrated paper. That said, Jeffreys
(or Jeffreys–Perks) rule is today the objective prior of
choice for regular problems with one continuous para-
meter, and has been justified in this simple case from
many different viewpoints, including coverage prop-
erties (Welch and Peers, 1963), minimum bias (Harti-
gan, 1965), data translation (Box and Tiao, 1973) and
information-theoretical arguments (Bernardo, 1979;
Berger, Bernardo and Sun, 2009). In one-parameter
problems, Jeffreys left without solution non-regular
models (e.g., those where the sampling space depends
on the parameter) and models with a discrete parameter
(although he suggested a very interesting hierarchical
argument to deal with the particular example of the
hypergeometric distribution).

Many-parameter Jeffreys estimation prior (multipa-
rameter Jeffreys rule). The arguments used to propose
his rule for one continuous parameter regular models
extend to the corresponding multiparameter case, lead-
ing to π(α) ∝ |I (α)|1/2, where I (α) is now Fisher in-
formation matrix. As the authors point out in their re-
view, Jeffreys immediately realized, however, that his
multivariate rule does not generally produce sensible
answers and suggested ad hoc alternatives in virtually
all the multiparameter examples he analyzed, leading
to a plethora of “Jeffreys priors” in the sense that they
were proposed by him, although they do not follow
from his general rule. Moreover, as all Bayesians in
his time, Jeffreys was working under the assumption
that a unique objective prior would be appropriate for
all inference problems within a multiparameter model.
Stein (1959) paradox already suggested that this could
not possibly be true, but it was the discovery of the
marginalization paradoxes (Dawid, Stone and Zidek,
1973) what definitely established this as a fact, while
the reference priors (Bernardo, 1979) provided the first
solution to the problem thus created.
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Proper posteriors. Scholars have been often sur-
prised at the fact that, when applicable, Jeffreys rule
priors (ever in their multiparameter version) typically
produce proper posteriors for all data sets, a condition
one should certainly require for any proposal of an ob-
jective prior to be permissible. I wonder if the authors
have an explanation for this remarkable fact (shared
by reference priors). Curiously, as noted by the au-
thors, Jeffreys uses in his analysis of the Poisson model
the prior π(α) ∝ 1/α on an scale invariant argument,
only to mention later that it is the Jeffreys-rule prior,
π(α) ∝ 1/

√
α, the one leading to a proper posterior for

all possible data sets.

3. HYPOTHESIS TESTING

Jeffreys hypothesis testing priors. In Chapter 5, Jef-
freys focuses on precise hypothesis testing and, as the
present review indicates, does not produce a solution
with the level of acceptance and generality of his one-
parameter rule for estimation. Jeffreys intends to ob-
tain a posterior probability for a precise null hypothesis
and, to do this, he is forced to use a mixed prior which
puts a lump of probability p = Pr(H0) on the null, say
H0 ≡ {θ = θ0}, and distributes the rest with a proper
prior p(θ) (he mostly chooses p = 1/2). This has a
very upsetting consequence, usually known as Lind-
ley’s paradox (Lindley, 1957): for any fixed prior prob-
ability p independent of the sample sixe n, the proce-
dure will wrongly accept H0 whenever the likelihood is
concentrated around a true parameter value which lies
O(n−1/2) from H0. I find it difficult to accept a pro-
cedure which is known to produce the wrong answer
under specific, but not controllable, circumstances; see
Robert (1993) for a relatively recent review of this fas-
cinating issue. Besides this, I believe, serious prob-
lem, Jeffreys suggestion of a Cauchy density for the
required proper prior is rather ad hoc and does not gen-
eralize to more complicated problems. There have been
many attempts to define priors intended to obtain ob-
jective posterior probabilities for precise nulls. To the
best of my knowledge, none of those has emerged as a
clearly acceptable general solution.

Hypothesis testing with conventional reference pri-
ors. To test whether or not a precise hypothesis H0 is
compatible with observed data, it is not necessary to
try to obtain a posterior probability for H0, and hence
it it not necessary to use a totally different type of ob-
jective prior than that used for estimation. As force-
fully argued by Jaynes (1980), all that is required is
to obtain the posterior distribution of a quantity which

measures the discrepancy between the true model and
the null model. A very attractive candidate is the in-
trinsic discrepancy. The intrinsic discrepancy between
two probability distributions p1 and p2 for x is defined
as

δ{p1,p2} = min[κ{p1|p2}, κ{p2|p1}],
where κ{pj |pi} = ∫

Xi
pi(x) log[pi(x)/pj (x)]dx, the

Kullback–Leibler (KL) divergence of pj from pi . This
inherits all the very nice properties of the KL diver-
gence (non-negative, invariant, additive) but is also
symmetric and it is defined even if the supports of the
two distributions are strictly nested. For instance, in the
canonical example of testing whether a random sample
x = {x1, . . . , xn} from a normal N(x|μ,σ) is or is not
compatible with the mean value μ0, one obtains

δ{μ0, (μ,σ )} = δ{N(x|μ0, σ ),N(x|μ,σ)}

= 1

2

(
μ − μ0

σ/
√

n

)2

.

If σ is known, the objective posterior distribution of
δ{μ0, (μ,σ )} with the usual objective prior π(μ) = 1
gives all required information about whether or not the
null H0 ≡ {μ = μ0} should be accepted, including the
size of the plausible departures. If a formal decision is
required, δ{μ0, (μ,σ )} may be used as a loss function
(it is an intrinsic loss in the sense of Robert, 1996).
In this case, one simply computes its expected value,
which is the intrinsic test statistic

d(μ0|x) = 1

2
(1 + z2), z = x̄ − μ0

σ/
√

n
,

and rejects the null if this is too large (say larger than
log[100] since this would imply that the data are ex-
pected to be over 100 times more likely under the true
model than under the null model). See Bernardo and
Rueda (2002) and Bernardo (2005) for the general de-
finition when there are nuisance parameters, and for
many specific examples. One could certainly use other
continuous loss functions but the point is, Bayesian
testing of precise nulls do not necessarily require the
use of mixed priors as those suggested by Jeffreys for
this problems, and this has the nontrivial merit of being
able to use for both estimation and hypothesis testing
problems a single, unified theory for the derivation of
objective “reference” priors.
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