
Statistical Science
2009, Vol. 24, No. 3, 294–302
DOI: 10.1214/09-STS277REJ
Main article DOI: 10.1214/09-STS277
© Institute of Mathematical Statistics, 2009

Rejoinder: Likelihood Inference for Models
with Unobservables Another View
Youngjo Lee and John A. Nelder

1. INTRODUCTION

First we should like to thank the editor for allowing
us to respond to interesting discussions from the dis-
cussants, Molenberghs, Kenward and Verbeke (MKV),
Louis and Meng, for the effort they have put into their
replies, and for the many important points that they
have raised.

We view statistics as comprising relationships be-
tween models and data, where a statistical model is
a formal mathematical formula which in some sense
represents the patterns in the data. It represents a tool
underlying the process of “making sense of figures.”
There are two processes linking models and data. The
first, which we term the forward process, can be written
as

model −→ data.

This stands for, “given a model, what would the data
that it generates look like?” We call this process sta-
tistical modelling and it forms the basis of probability
theory. The second process, which we term the back-
ward process, can be written as

model ←− data.

This stands for, “given data, and a (guessed) model
what can we say about the parameters in that model?”
We call this process statistical inference, and it is dis-
played in Efron’s (1998) triangular diagram for 21st-
century statistical research, involving the three schools,
Fisherian, Bayesian and Frequentist. The process of in-
ference involves two procedures, namely model fitting
and model checking. In the first we find values for the
parameters in the model that fit the data best, and in
the second we use probability theory to check whether
the fit and, therefore, the assumed model is acceptable,

Youngjo Lee is a Professor, Department of Statistics, Seoul
National University, Seoul, Korea (e-mail:
youngjo@snu.ac.kr). John A. Nelder is a Visiting Professor,
Department of Mathematics, Imperial College, London,
SW7 2AZ, UK (e-mail: j.nelder@imperial.ac.uk).

by looking at the distribution of a suitable badness-of-
fit statistic. Model checking could lead to a new model
involving the two processes.

Among the discussants, MKV seem to suggest that
data contain information only about the parameters in
the marginal likelihood, but not about the unobserv-
ables (random effects) in the h-likelihood. Louis and
Meng say that extended likelihood such as h-likelihood
does indeed carry information about the unobservables,
but that nevertheless the Bayesian approach is best
suited for such inferences. We hope to show how the
ideas can be combined together in the h-likelihood
framework to give a new type of statistical inference.
We shall try to make clear the inferential status of our
framework.

The Bayesian framework is a well-defined mathe-
matical structure about which theorems can be proved.
However, it requires a statement of subjective prior be-
lief about the unknown parameters which we are un-
able to provide. Of course many attempts have been
made to define “objective” priors, but we believe them
not to have been successful. As Barnard (1995) used
to stress, in scientific inference the aim is to look for
objective conclusions that scientists can agree upon.
Senn (2008) puts it more strongly when he writes,
“In fact the gloomy conclusion to which I am drawn
on reading de Finetti (1974) is that ultimately the
Bayesian theory is destructive of any form of pub-
lic statistics.” An alternative description is that we are
looking across data sets for significant sameness, struc-
tures that remain unchanged when external conditions
vary, a view which has been strongly propagated by
Ehrenberg (1975). Another problem of using priors on
parameters is that however many data are collected,
no information is added regarding the parameters in
the prior. In contrast to the many possible priors in
Bayesian framework, in our system there is only one
corresponding prior likelihood (Pawitan, 2001) for pa-
rameters, namely L(θ) = 1, and as data grow informa-
tion is accumulated on all parameters in the model.
Model checking is a vital part of inference and we re-
gard accumulated information as necessary for model
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checking to be effective. Science is an entirely open-
ended procedure, and there can be no possibility of
assigning probabilities to all the models we have not
thought of yet.

Louis says that our paper is, “more of an opinion
piece than a scientific comparison of approaches.” In
fact, we see no fault in presenting an opinion piece;
indeed, the title itself should prepare the reader for
what follows. We have indeed carried out extensive
simulations with a wide variety of data comparing our
estimates with those of other methods, and so far h-
likelihood estimates have been often uniformly better
in terms of mean-square error. Some of these compar-
isons may be found in Lee, Nelder and Pawitan (2006).
We think our solution to mending the plug-in empiri-
cal Bayesian (Carlin and Louis, 1996) method is more
straightforward than that of Louis which requires yet
another level of priors. We have used the Laplace ap-
proximation when explicit expression for integration is
not available. It seems to work well in problems in-
volving unobservables, except for a few extreme cases
where second-order Laplace approximations are re-
quired. We support the view that, “the art of applied
mathematics is to know when to approximate.”

Louis seems to regard our paper as over-promotion
of h-likelihood, but maybe that is because we are
highly enthusiastic about h-likelihood. In the paper we
do in fact make scientific comparisons as opposed to
the typical Baysian, who rarely makes comparisons
with other approaches. As we shall discuss in Sec-
tion 4, with a Bayesian model, the h-likelihood is
equivalent to the Bayes posterior so there is no dis-
agreement in the case of a Bayesian model (see Bjørn-
stad, 1996 for more discussion). We try to give a uni-
fied framework for statistical methods developed by the
three schools, but in our approach we regard a fixed
parameter as simply unknown so that it differs from ef-
forts of unification from the Bayesian side (Box, 1980;
Little, 2006).

We shall now respond to the discussants by topic in-
stead of responding to individual contributions.

2. LP, MODEL CHECKING AND MODEL CHOICE

The likelihood principle (Birnbaum, 1962) provides
a very good reason for using likelihood for inferences,
but it does not show how this should be done. We have
shown over the last 15 years how to do so. One draw-
back of LP and likelihood methods in general is that
they do not tell us what to do when the model in use is
not right. Suppose that we have a random-effect model.

If the model is right the standard sandwich standard
error estimators can be made from the marginal like-
lihood. However, we can have another sandwich esti-
mator from the h-likelihood which is useful when the
homogeneity assumption on the variance of random ef-
fects is violated (Lee, 2002). H-likelihood also shows
how to reduce the bias of the ML estimators in frailty
models with nonparametric baseline hazards (Ha, Noh
and Lee, 2010).

MKV claim that inferences about unobservables
cannot be made because they are not identifiable. This
is not so. Unobservables can change their status to fixed
unknowns once the sample has been observed, as we
shall discuss in Section 6.2. Thus in principle unob-
servables can be estimated and model assumptions can
be checked after the data have been collected. How-
ever, unobservables occur in various forms, for exam-
ple, as a random effect or as a missing datum. One
cannot extract any information about the latter from
observed data while this can be done about the former.
Thus for the latter, model checking based on observed
data is not possible.

However, model checking is very important. We
have shown that the distributional assumptions on the
random effect can be checked, and have developed var-
ious model-checking procedures and criteria for model
selection. Suppose we have two different random-
effect models,

yi = xiβ + Wiw + ei and yi = xiβ + Uiu + ei,

which lead to the same marginal model. The two mod-
els could have different numbers of random effects.
For each model the assumptions about the random
effects can be checked by the model-checking pro-
cedures given in Lee, Nelder and Pawitan (2006). If
the assumed model is correct we can give estimates
for each random component. However, the individual
random-effect estimators of the two models cannot be
matched. Nevertheless, Lee and Nelder (2006) show
that the two models, if equivalent, give the same in-
ferences for equivalent quantities, for example, that
Wiŵ = Uiû, giving the same predictions for the data,
ŷi (w) = xiβ̂ + Wiŵ = ŷi(u) = xiβ̂ + Uiû. Now sup-
pose that they lead to the same marginal model for
y, but give different predictions for the data, ŷi(w) �=
ŷi (u). Then a model choice can be made from the de-
viances

D(w) = ∑{yi − ŷi (w)}2

and

D(u) = ∑{yi − ŷi (u)}2,
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where D(w) �= D(u). These deviances are constructed
from the conditional likelihood fθ (y|v) (see Lee and
Nelder, 1996 and Lee, Nelder and Pawitan, 2006,
Chapter 6.5). We, like Bayesians (Spigelhalter et al.,
2002) use the so-called deviance information criterion
(DIC) based on its degrees of freedom (see Ha, Lee
and MacKenzie, 2007 and Vaida and Blanchard, 2005
for more discussion). MKV seem to regard two models
as equivalent if they lead to the same marginal model.
How can the two models with different predictions be
equivalent? Consider a one-way random model (M1)
leading to a marginal multivariate model with compos-
ite symmetric covariance structure (M2). They cannot
be the same model because they give different predic-
tors. The former (M1) exploits the covariance structure
to give a better prediction. Regardless of how the data
are generated, if the covariance structure is compos-
ite a symmetric one-way random model gives a better
prediction than that based on the common mean of the
marginal model (M2). The random-effect model is in
fact an advancement on the marginal model because it
shows how to predict. Various time series models and
spatial models have been proposed in this respect.

Suppose that the unobservables v are missing data
ymis. Let ŷi(R) and ŷi (NR) be the predicted values
of the missing data under missing at random (MAR)
and missing not at random (MNAR), respectively. The
deviances are then

D(R) = ∑{yi − ŷi(R)}2

and

D(NR) = ∑{yi − ŷi(NR)}2.

Now suppose that the two missing mechanisms, MAR
and MNAR, give the same predictions for the observed
data while giving different predictions for the missing
data. Then we have

D(R) = A + ∑{ymis,i − ŷmis,i(R)}2

and

D(NR) = A + ∑{ymis,i − ŷmis,i(NR)}2,

where A = ∑{yobs,i − ŷobs,i(R)}2 = ∑{yobs,i −
ŷobs,i(NR)}2. In this case we cannot make a model
choice based upon the deviance because both ymis,i
and their predictors are based upon the model assump-
tions for the missing data. Even though ŷmis,i(R) �=
ŷmis,i(NR) we cannot observe ymis,i to evaluate them.
In this case, given only the observed data, sensitivity
analysis can be used to show how inferences about

ŷmis,i(R) and ŷmis,i(NR) vary as the model for the un-
observables changes. However, we may never be able
to draw any conclusions from the analysis because we
do not have the data ymis,i to check our thinking. We
are also unable to say that we have checked for all the
possible ways about which our thoughts may be wrong.

We agree that care is necessary, as MKV say, but
something can still be done about inferences for ran-
dom effects of the observed data.

3. NONPARAMETRIC, SEMI-PARAMETRIC
MODELS AND GEE

It is not always easy to check all the assumptions
of a given model. For example, with binary data it is
hard to check the distributional assumption about the
random effects. In semi-parametric frailty models with
nonparametric baseline hazards we can relax the spec-
ification of probability models on certain parts of the
model. However, this differs from the lack of a proba-
bility basis, such as is shown in some GEEs. In a given
semi-/nonparametric model, there are many classes of
submodels which belong to the model. It is not correct
that estimating equations such as the quasi-likelihood
estimating equations (father of GEE) satisfy only the
first two moment (or minimal) conditions; Lee and
Nelder (1999) showed that they satisfy all the higher
cumulant conditions of a GLM family if it exists for
the given mean and variance relationships. We have
demonstrated that the estimating equations implicitly
impose assumptions about the higher cumulants, so
that a choice can be made depending upon the robust-
ness of model misspecifications. We are not against the
use of GEE when it has a proper model basis. How-
ever, its claimed advantage of less sensitivity to model
assumptions results from not comparing like with like.

In HGLMs, the distribution of random effects can be
relaxed to give nonparametric ML estimators (Laird,
1978). Parameter estimates from binary GLMMs can
be sensitive to the distributional assumptions of the
random effects. A solution to this is to allow heavy-
tailed distributions for the random effects, to give a
robust analysis (Noh, Pawitan and Lee, 2005). Thus
various parts of the model assumptions in HGLMs
can be relaxed to produce new nonparametric or semi-
parametric models. Ha, Noh and Lee (2010) show that
in semi-parametric frailty models h-likelihood extends
the partial likelihood of Cox (1975) to produce new ef-
ficient estimating equations.
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4. APHLS VERSUS MARGINAL POSTERIORS

Louis and Meng both say that our adjusted profile
h-likelihood (APHL) in Section 3.2 is a Laplace ap-
proximation to their marginal posterior. This is not true
because it can also eliminate fixed unknowns. Consider
the h-likelihood,

h = h(θ, v) = logfθ (y|v) + logfθ (v) = logfθ(y, v)

= logfθ(y) + logfθ (v|y).

Bayesian models are composed of two objects, namely
the data and unobservables; θ is not fixed unknown, but
unobservable. Thus their model is

B = h + logπ(θ),

where h = logf (y|v, θ)+ logf (v|θ). Thus the Bayes-
ian framework eliminates θ by integration, even with
the use of the improper prior π(θ) = 1.

Suppose that all θ are indeed unobservables with a
known distribution π(θ). Then the extended LP says
that B carries all the information about unobservables
(θ, v). In such a case the Bayesian approach gives
suitable statistical inferences, and the Bayesian and h-
likelihood inferences are equivalent.

But, suppose that θ represents fixed unknown para-
meters, rather than unobservables. As Meng says there
is no truly noninformative prior, at least for continu-
ous parameters. This means that for inferences about
parameters, use of the Fisherian likelihood would be
suitable. To eliminate nuisance parameters we could
use profiling, conditioning or pivoting methods, as de-
veloped by Fisherian and frequentist schools. Fisher
(1934) shows that

logfθ (θ̂ |A) ∝ m(θ) − m(θ̂),

where m(θ) = logfθ (y), θ̂ is the ML estimator and A

is an ancillary statistic. A wonderful generalization of
Fisher’s work (Barndorff-Nielsen, 1983) gives the so-
called magical formula,

logfθ (θ̂ |A) ∝ m(θ) − m(θ̂) + 1
2D(m,θ),

where D(m,θ) is defined in Section 3.2 of the main
paper.

Let θ = (ξ, τ ) with ξ being the nuisance parameters
and τ being the parameters of interest. Suppose that ξ

and τ are orthogonal parameters. Because the ML es-
timator is asymptotically sufficient, using the magical
formula, we can eliminate the nuisance parameter ξ

from the marginal likelihood,

logfθ (y|ξ̂ ,A) = pξ (m; τ),

where pξ (m; τ) is defined in Section 3.2 of the main
paper, giving the Cox-Reid (1987) adjusted profile
likelihood. This formula happens to be the same as
the Laplace approximation, integrating out ξ. But it
is actually using the Fisherian method of condition-
ing out the fixed parameters. This adjustment improves
the profiling method (Lee, Nelder and Pawitan, 2006).
We note that the elimination of parameters and un-
observables can be carried out in a uniform formula
(APHL) which eliminates unobservables by integra-
tion (as with the Bayesian approach) and parameters by
conditioning or (adjusted) profiling. Thus our APHL is
quite different from the Bayesian marginal posterior.
We believe that the prior on fixed parameters is infor-
mative if the APHL and marginal posteriors differ. In
our framework we use profiling, modified (or adjusted)
profiling, or pivoting, as developed by the likelihood
school, to eliminate nuisance fixed parameters while
we use integrating-out techniques, as developed in the
Bayesian school, to eliminate unobservables. Our tech-
nique, among other things, extends REML from nor-
mal models to the GLM class.

5. HOW TO USE THE H-LIKELIHOOD

Clearly Meng understands how to form the h-
likelihood for inferences. Most complaints are caused
by misunderstandings about how to use the likelihood
for statistical inference.

5.1 Neyman–Scott Problems and Nuisance
Parameters

When the number of nuisance parameters increases
with the sample size, the ML estimators, jointly max-
imizing nuisance and parameters of interest together,
can give seriously biased estimates (Neyman and
Scott, 1948). Similarly joint maximizations of the h-
likelihood provide seriously biased estimates, as Lit-
tle and Rubin (1983) have shown. However, if we
maximize an appropriate APHL we can avoid such
problems (Lee, Nelder and Pawitan, 2006, Chapter 4).
When the number of nuisance parameters increases
with the sample size, the profile likelihood is often not
satisfactory, and APHLs have been developed for such
cases. Yun, Lee and Kenward (2007) showed that Lit-
tle and Rubin’s (1983) complaints can be resolved by
using appropriate APHLs.

Lee, Nelder and Pawitan (2006) highlight the main
philosophical difference between completed-data like-
lihood for the EM method and the h-likelihood. In the
former missing data are treated as unobserved data,
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while in the latter they are nuisance parameters so that
the technique developed for parameter handling can be
used for the efficient imputation of missing data (Kim,
Lee and Oh, 2006). We have found that the h-likelihood
may give very good imputation even up to 95 percent
missingness while the EM method suffers from a slow
convergence and distorted results with over 30 percent
missingness (Lee and Meng, 2005). We believe that our
methods will lead to great improvements in the han-
dling of missing data.

5.2 Invariance for Parameter Estimation and
Cauchy-Type Distributions

MKV complain that the likelihood method gives
point estimates with undefined variance. Suppose that y

follows an exponential distribution with the log-
likelihood m = − logλ − y/λ. The ML estimate for λ

is λ̂ = y. Here the observed Fisher information is
I (λ̂) = (−1/λ̂2 + 2y/λ̂3) = 1/λ̂2 which gives the cor-
rect variance estimator for λ̂. However, the ML esti-
mate of 1/λ is 1/y whose moment does not exist so
that its variance estimator from the likelihood theory
could be seemingly meaningless. The ML estimators
are invariant with respect to any transformation. When
the sample sized is fixed, ML estimators may have
scales where their moments do not exist. Let θ = δ/ϕ

in equation (20) of the MKV discussion. Then yk is the
ML estimator for θk with a finite variance, for exam-
ple, when 0 ≤ k < 1/2. The concept of variance may
not be a useful measure of uncertainty in the ML esti-
mator once the data are given. Whole likelihood curves
or some feature of it such as the curvature would be
useful (Pawitan, 2001); see more discussion below.

5.3 Invariance for the Estimation of Unobservables
and Exponential Model

Meng points out that consistency theory may not be
applicable to estimators for unobservables. It has been
one of the aims of the development of h-likelihood pro-
cedure to overcome such difficulties. In our framework
we use the marginal ML estimators for fixed parame-
ters whose invariance is well established. To maintain
such invariance for unobservables we fix the scale of
unobservables in defining the h-likelihood and use the
mode for inferences. The sample mean cannot main-
tain the invariance with respect to transformation of
unobservables while the mode does. Because we are
using the mode to derive point estimates for unobserv-
ables, its scale is important in defining the h-likelihood
if we are to have good inferential properties. We appre-
ciate that Meng gives a good theoretical contribution

in deciding that scale. Another advantage of the mode
estimator over the sample mean is that it also allows
one to do model selection (Lee and Oh, 2010) instead
of model average. Recently, Ma and Jorgensen (2007)
have argued against the use of mode estimates for ran-
dom effects and proposed the use of the orthodox best
linear unbiased predictor (OBLUP) method. However,
Lee and Ha (2010) show that the h-likelihood mode
estimation gives both statistically better precision and
maintains the stated level of coverage probability better
than the OBLUP method.

Consider the exponential model of Meng in Sec-
tion 7 of his contribution for predicting a future ob-
servation u = yn+1. In Section 7.2 he uses the right
h-likelihood h(λ, v;y) with v = logu, giving λ̂ = ȳn.

Note that

û(λ) = E(u|y) = λ,

which is the so-called best predictor, giving û =
û(λ̂) = λ̂. Now compute the following information
matrix as in (4.3):

I (λ̂, û) = I (λ,u)|
λ=λ̂,u=û

=

⎛
⎜⎜⎝

n + 1

λ̂2
− 1

λ̂2

− 1

λ̂2

1

λ̂2

⎞
⎟⎟⎠ .

Note that varλ(u|y) = varλ(u) =E(û(λ) − u)2 = λ2.

Thus

(−∂2h/∂u2|
λ=λ̂,u=û

)−1 =
(

1

λ̂2

)−1

= λ̂2

gives the correct estimate of varλ(u|y). From

I (λ̂, û)−1 =

⎛
⎜⎜⎝

λ̂2

n

λ̂2

n

λ̂2

n

(1 + n)λ̂2

n

⎞
⎟⎟⎠ ,

we get the correct estimate of

varλ(u − û)2 = varλ(yn+1 − ȳn)
2 = (1 + n)λ2

n
.

This also gives the first-order approximation to

CMSE(u) = E
{(

û(λ̂) − u
)(

û(λ̂) − u
)′|y}

= varλ(u − û|y)2 = λ2 + (ȳn − λ)2.

The delta-method for v̂ = log û gives what Meng has
for the variance of v̂ but does not provide correct esti-
mates for either varλ(v − v̂)2 or varλ(v − v̂|y)2.

We have shown that there exists some analogy be-
tween inferences for the fixed parameters and for un-
observables. However, there also exist differences be-
tween them. For a fixed constant, let say λ = 3, we
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have g(λ) = g(3) for any function g(·). Such an in-
variance is meaningful for an estimator of an unknown
constant and can be achievable by consistency of ML
estimators for fixed unknowns. Suppose that we are es-
timating E(u|y) of unobservable u. Then, in general

E(g(u)|y) �= g{E(u|y)},
with equality holding only if g() is a linear function.
Lee and Nelder (2005) showed that maintaining in-
variance of inferences from the extended likelihood for
trivial re-expressions of the underlying unobservables
leads to the definition of the h-likelihood. Once the data
are observed we treat the unobservables such as ran-
dom effects as fixed unknowns as discussed in the next
Section so that we maintain g(û) = ĝ(u) for any func-
tion g(·). However, the interpretation of the maximum
h-likelihood estimator as ̂E(u|y) holds only on a par-
ticular scale u.

5.4 Invariance for Parameterization and ML
Estimation

In Bayarri’s example, yk is the ML estimator of τ

for τ = θk. Here the consistency of θ̂ k fails, so that
the unbiasedness of θ̂ k and exact variance estima-
tor of θ̂ k would be meaningful properties to achieve.

Note that E(θ̂ k) becomes θk , and ̂var(θ̂ k) = I (θ̂ k)−1 =
(−∂2m/∂τ 2|τ=τ̂ )

−1 = 2k2θ̂2k becomes var(θ̂ k) as k

approaches zero. Thus these desirable properties can
be achievable on a particular scale of θ . The existence
of such a scale is important for inferences about fixed
unknowns. For example, if there exists an exact confi-
dence interval for a particular scale of a fixed parameter
[let’s say (τ̂ −L, τ̂ +U)], then it allows exact intervals
for all parameterizations of τ ((g(τ̂ − L),g(τ̂ + U))

for any function g(·). A plot of the whole likelihood
curve is useful to find a proper scale of intervals for
unobservables too (Lee and Ha, 2010).

6. IS THE H-LIKELIHOOD INTERVAL FOR
UNOBSERVABLES A CREDIBLE OR FIDUCIAL OR

CONFIDENCE INTERVAL?

Suppose that we have a model for the three objects
(y, θ, v) where y and v are random variables (RVs)
and θ is a fixed unknown parameter. The statistical
model fθ (v)fθ (y|v) describes how the RVs y and v

are generated.
Once the data are observed as yo, where the sub-

script o stands for “observed,” yo are fixed knowns, no
longer RVs. In the Bayesian framework all unknowns

are considered as random without allowing fixed un-
knowns. Bayesians assume a prior for θ, making them
random variables (RVs) so that the marginal posteriors
π(θ1|yo), π(v1|yo), . . . etc. can be obtained by inte-
grating out the rest of unknowns, regardless of whether
these are fixed unknowns or unobservables. We find it
mysterious how the fixed unknown parameters θ can
change their status to RVs, leading to a prior probabil-
ity π(θ) that generates θ .

6.1 Intervals for Parameters

Based on the likelihood Lyo(θ) = fθ (yo), frequen-
tists can derive confidence intervals for θ (random in-
terval for fixed unknown), and this has become a stan-
dard procedure. However, their argument is based on
repeated sampling from the same population (RSSP)
to which Fisher objected strongly. According to Fisher,
when a scientist seriously “repeats” an experiment he
always has in mind at least the possibility that the pop-
ulation of the previous experiment may turn out not
to be the same population from which he is currently
sampling. If he really knew the population of the new
experiment was exactly the same as before he would
think of himself either as enlarging his original exper-
iment or wasting his time. So Fisher believed that the
repeated sampling from different populations (RSDP)
was crucial in making intervals for unknowns. The
Bayesian credible interval, based upon π(v1|yo), meets
this goal because inferences are confined to the exper-
iment of the observed data yo. Fisher tried to make
an interval for θ , the so-called fiducial interval, under
RSDP. But this RSDP assumption is too strong a re-
quirement for his fiducial interval to be applicable in
general (Barnard, 1995) while the confidence interval
can be made in various contexts.

6.2 Intervals for Unobservables

The EB interval based on f (v1|yo, θ̂) has different
treatments for fixed unknowns θ and unobservables v.

However, it cannot account for the information loss
caused by estimating θ, leading to very liberal inter-
vals. The Bayesian credible interval based on π(v1|yo),

while improving the EB interval a lot, can still exhibit
strange behavior as shown in Figure 4 of the main pa-
per. Louis has suggested some other priors to try. How-
ever, we object to putting priors for fixed unknowns
and recommend using likelihood methods for infer-
ences about them.

The observed data can be obtained as follows: From
the statistical model fθ (v) the unobservables are re-
alized (generated) as vr where the subscript r stands
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for “realized.” Note the use of the term “realized” in-
stead of “observed” to emphasize that they are fixed but
still unknown. Then, the observed data yo are obtained
from the model fθ (y|vr). Now suppose that we want to
make an interval for the fixed unknowns vr given yo.

For linear mixed models, Henderson (1975) shows
that the standard error estimate from the Hessian ma-
trix I (β, v) in (4.3) of the main paper gives an estimate
of the unconditional MSE

E
{(

v̂(θ̂ ) − v
)(

v̂(θ̂ ) − v
)′}

.

In 1996, we showed that this holds more generally in
HGLMs. This means that our proposed interval can be
viewed as a confidence interval (random interval for
fixed unknown) for RSSP whose probability statement
is for unobserved future data. Simulation results in Sec-
tion 4.3 are from RSSP. The proposed 95 percent inter-
val may not always cover vr , but among 100 intervals,
95 of them are expected to cover the realized value.

It was Booth and Hobert (1998) who showed that
I (β, v) can also give an estimate of CMSE(v) =
E{(v̂(θ̂ ) − v)(v̂(θ̂ ) − v)′|y0} for GLMMs with inde-
pendent random effects. This result can be extended
to nonnormal random-effect models (Lee and Ha,
2010) and the correlated random-effect models in Sec-
tion 4.3.1 (Lee, Jang and Lee, 2010). Given the ob-
served data, we can therefore make an interval (fixed
interval for fixed unknown) whose probability state-
ment is for all possible future realizations of v. Fisher’s
aim of making intervals for RSDP may be generally
achievable for realized values of unobservables.

Louis says that we cannot account for the infor-
mation loss caused by estimating the dispersion para-
meters while Bayesian marginalization can do so. In
HGLMs dispersion parameters are orthogonal to the
rest of parameters so that we do not actually need to
account for the information loss caused by estimat-
ing them. In general, exactly the same method, that
is, I (θ, v), is used to account for estimating all the
parameters. The resulting interval is also identical to
Kass and Steffey’s (1989) approximate Bayesian cred-
ible interval (fixed interval for random unknown) with
π(θ) = 1 (Lee, Jang and Lee, 2010).

The probability statement of Bayesian interval based
on π(v1|yo) is different from the previous two in-
tervals for fixed unknown. Probability statement of
Bayesian credible interval is for RV, that is, the 95 per-
cent Bayesian interval contains the unobservable with
95 percent probability given the data. Such a proba-
bility statement may not be relevant to the realized

values of unobservables, but it is meaningful for in-
ferences about unrealized unobservables, for example,
inferences about future unobserved observations. Our
proposed interval also allows such a statement for fu-
ture observations without requiring priors on θ .

Our interval for unobservables could be a fiducial
(fixed interval for fixed unknown), frequentist (random
interval for fixed unknown) or Bayesian interval (fixed
interval for random unknown), so allowing three differ-
ent interpretations. Similarly, the APHL can be inter-
preted either as an approximate conditional likelihood
eliminating nuisance fixed parameters by the magical
formula or as an approximate marginal posterior using
the Laplace approximation with π(θ) = 1.

Louis says for nonstandard problems where the pur-
pose of analysis is to find the shape of the distribution
for the unobservables (π(v1|yo)), Bayesians can offer
a better algorithm using the MCMC method. For such
problems we agree that MCMC-type methods are use-
ful, but the question is whether we can do this without
a subjective prior. Can we find a solution on which all
three schools can agree? Why not consider MCMC ap-
plied to h-likelihood?

6.3 Asymptotic versus Finite Sample Properties of
ML Estimators

Justification of ML inferences has relied heavily on
asymptotic theory. On the other hand, Bayesian infer-
ences are exact in finite samples, but require the B-
club fee, priors for fixed unknowns. However, agreed
or agreeable priors may hardly exist. We have illus-
trated that an exact finite-sample solution for the ML
method is possible by finding a proper scale, but that
search for an exact scale cannot be an easy task. How-
ever, a practically satisfactory scale can be often found
without much difficulty and simulation results in Sec-
tion 4.3 of the main paper show that likelihood infer-
ence using such an approximate scale can give a bet-
ter finite-sampling property than putting unjustifiable
priors for fixed unknowns. Therefore, there is a way
of deriving finite-sample likelihood inferences without
paying the B-club fee.

7. THREE IN ONE

Likelihood inferences are for models with two ob-
jects, namely, the data and fixed unknowns (para-
meters), while the probability-based inferences of
Bayesians are for models with data and random un-
knowns (unobservables). Statistical models of recent
interest often have both parameters and unobservables.
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So it seems beneficial to combine the inference meth-
ods developed by the three schools. We are glad that
Meng found pivoting to be easy and useful for elimi-
nating θ for his Bayesian inferences. Frequentists use
probability statements to evaluate the performance of
statistical methods. They use unobservables (unob-
served future data obtained by RSSP) to invoke proba-
bility statements. By allowing all three objects in statis-
tical models and inferences, we hope to accommodate
the advantages of all three schools in a unified frame-
work.

In discussing Lee and Nelder (1996), Smith won-
dered whether it was time to bring the “two cultures”
together. In Bayes’s original paper (Bayes, 1763) an
example is given of balls rolled on a table; this seems
to us to be naturally expressible as a two-stage like-
lihood problem, leading to the question, “Was Bayes
a Bayesian in the modern sense?” We are very aware
that the model class we consider, though having a wide
scope, is as yet incomplete, and also that there are as-
pects of the theory, in particular on the choice of scale
for unobservables in the definition of the h-likelihood
and on the choice of scale for exact finite-sample like-
lihood inferences, which are as yet incomplete. We are,
however, particularly excited by the contribution from
Meng which seeks to connect our procedures to other
generally accepted statistical ideas. We hope that the
time has indeed come to bring the three cultures to-
gether!
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