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Likelihood Inference for Models with
Unobservables: Another View
Youngjo Lee and John A. Nelder

Abstract. There have been controversies among statisticians on (i) what to
model and (ii) how to make inferences from models with unobservables. One
such controversy concerns the difference between estimation methods for the
marginal means not necessarily having a probabilistic basis and statistical
models having unobservables with a probabilistic basis. Another concerns
likelihood-based inference for statistical models with unobservables. This
needs an extended-likelihood framework, and we show how one such exten-
sion, hierarchical likelihood, allows this to be done. Modeling of unobserv-
ables leads to rich classes of new probabilistic models from which likelihood-
type inferences can be made naturally with hierarchical likelihood.

Key words and phrases: Hierarchical generalized linear model, unobserv-
ables, random effects, likelihood, extended likelihood, hierarchical likeli-
hood.

1. INTRODUCTION

Fisher introduced the concept of likelihood in 1921
for inferences from statistical models involving two
kinds of objects, namely observed random variables
(data) and unknown fixed parameters. Pearson (1920)
points out a limitation of Fisher likelihood for the
prediction of unobserved future observations. Fisher’s
likelihood cannot be used to make inferences about
unobservables. There has been an effort to extend like-
lihood inferences to models with unobservables by
eliminating them via integration. However, with a few
exceptions such as the copula (Joe, 1997), marginal
distributions for counts and proportions are not avail-
able in explicit forms, and this restricts the scope of the
classical likelihood approach.

In longitudinal studies, generalized estimating equa-
tions (GEEs) are widely used. They give an estima-
tion method for regression coefficients constructed di-
rectly to describe marginal means with the covariance
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structure regarded as contributing nuisance parame-
ters only. However, GEEs cannot (generally) be in-
tegrated to obtain a likelihood function (McCullagh
and Nelder, 1989) and therefore may not have a prob-
abilistic or likelihood basis. These estimation meth-
ods for marginal (or population-average) means are
often contrasted with conditional (or subject-specific)
models which include the modeling of unobservables.
Jansen et al. (2006) review the use of GEE methods
and conditional models for analysis of missing data and
discuss the choice between them. However, we believe
that such a choice is inappropriate because the choice
of an estimation method for a particular parameteri-
zation (marginal parameter) should not pre-empt the
process of model selection. Recently, Lee and Nelder
(2004) have shown that alleged differences in the be-
havior of parameters between GEE methods and con-
ditional models are based on a failure to compare like
with like. We dislike the use of estimation methods
without a probabilistic basis because, for example, in-
ferences for joint and conditional probabilities are not
possible.

Recently, broad classes of new probabilistic mod-
els with unobserved random variables (unobservables)
have been proposed, such as generalized linear models
(GLMs) with random effects (Lee and Nelder, 1996),
latent processes (Skrondal and Rabe–Hesketh, 2007),
models for missing data (Little and Rubin, 2002), pre-
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diction (Bjørnstad, 1990) and for potential outcomes in
causality (Rubin, 2006), etc. In the statistical literature
unobservables appear with various names such as ran-
dom effects, latent processes, factor, missing data, un-
observed future observations, potential outcomes, and
so on. Random effects in the mean model have been
proposed to account for within-subject correlation in
longitudinal studies (Diggle, Liang and Zeger, 1996)
(for smooth spatial data, see Besag and Higdon, 1999;
for spline-type function fitting, see Eilers and Marx,
1996; and for factor analysis, see Bartholomew, 1987,
etc.) while random effects in the dispersion model (Lee
and Nelder, 2006a) can account for heteroskedastic-
ity, giving heavy-tailed distributions that allow robust
modeling (Noh and Lee, 2007a).

Modeling of unobservables is the key to these new
models. However, because of difficulties in making
likelihood inferences about unobservables, some au-
thors use the Fisher likelihood for inferences about
fixed unknown parameters while for inferences about
unobservables they use the empirical Bayesian (EB)
approach or the full Bayesian (FB) inference. Recently,
Zhao et al. (2006) have used an FB approach with
which they claim to have an advantage over the fre-
quentist version (EB) in that it is computationally sim-
pler to obtain variance estimates of the random-effect
estimates. (Note that the word “prediction” has often
been used to denote the estimation of random effects.
However, we believe that it is clearer to use prediction
when we estimate future observations (unobservables)
and estimation for the estimation of random effects in
the data already observed.) Discussing the controversy
between Fisher and Neyman, Rubin (2005) maintains
that models with unobservables arose most naturally in
causal inference within an FB framework. From Lind-
ley and Smith (1972) onwards, FB has become dom-
inant for the analysis of models with unobservables.
The availability of Markov-Chain Monte Carlo, which
implements FB procedures, has made FB inferences
popular.

By contrast we believe that modeling of unobserv-
ables is natural within an extended likelihood frame-
work. Recently, for general inferences from models
involving unobservables, Lee and Nelder (1996) pro-
pose the use of the hierarchical (or h-)likelihood. The
h-likelihood plays a key role in the synthesis of the
likelihood inferential tools needed for a broad class
of new models having unobservables. The h-likelihood
approach takes into account the uncertainty in the es-
timation of random effects, so that inferences about

unobservables are possible without resorting to an EB
framework.

In the next section we review some models with un-
observables and discuss related modeling issues. We
review the h-likelihood procedure for the estimation of
random effects and compare them with the Bayesian
approach in Section 3; likelihood inferences from such
models are demonstrated with examples in Section 4,
followed by conclusions in Section 5.

2. HOW TO MODEL UNOBSERVABLES

Multivariate distributions for non-Gaussian models
can be produced by probabilistic modeling of unob-
servables without requiring explicit multivariate gen-
eralizations of non-Gaussian distributions. Using hier-
archical likelihood, inferences from these new classes
can be made.

2.1 HGLMs: Random Effects in the Mean

HGLMs allow a synthesis of GLMs, random-effect
models and structured-dispersion models. Consider a
GLM with random effects where the response y fol-
lows the GLM, conditioning on random effects v,

μ = E(y|v) and var(y|v) = φV (μ)(2.1)

with a linear predictor,

η = Xβ + Zv,(2.2)

where η = g(μ) for some monotonic function g(·).
When v are normal the models are called generalized
linear mixed models (GLMMs). The use of other dis-
tributions for the random effects enriches the class of
models. Lee and Nelder (1996) introduce HGLMs in
which the distribution of the random components is ex-
tended to an arbitrary conjugate distribution of a GLM
family with an appropriate link, not necessarily that of
the conjugate pair. Above we suppress the indices to
mean that our discussion covers various models having
single or multiple random effects with nested, crossed,
combined structures, etc. We write indices if necessary.

To allow various patterned associations among ran-
dom effects Lee and Nelder (2001b) propose adding
an additional feature to HGLMs as follows: Let v = Lr

with r being random effects with a diagonal covariance
matrix var(r) = � to give

var(v) = � = L�Lt .

The last equation can be a spectral decomposition with
an orthogonal matrix L or a Choleski decomposition
with upper or lower triangular matrix L. Zhao et al.
(2006) note that the full generality of the GLMM re-
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quires using general design matrices for both fixed
and random components. With fixed L, not depending
upon unknown parameters, we have models for longi-
tudinal studies, intrinsic autoregressive models, various
spline models, etc. With parameter-dependent L we
have random-slope models, autoregressive models, an-
tedependence models, Markov-random-field models,
and so on (Lee and Nelder, 2001b). These models are
also able to handle a great range of complications in
regression-type analysis, for instance, within-subject
correlation in longitudinal data, scatterplot smooth-
ing, generalized additive models, Kriging, function es-
timation and non-parametric regression models such
as generalized additive models and varying-coefficient
models (Zhao et al., 2006).

Example 1: Consider the model from item-response
theory (IRT) such that

Pr(yij = 1|vij ) = exp(vij − βj )

1 + exp(vij − βj )
,

where βj is the intrinsic difficulty of the j th item,
and vij is the ith subject’s ability for the j th item. If
vij = vi with vi ∼ N(0, λ) it becomes a one-parameter
IRT model (Rasch, 1960). An appealing feature of this
model is that items and subjects (examinees) can be
placed on a common scale. Differences in both diffi-
culty between items and ability of subjects is assumed
to remain the same. In this model, for a given item, the
probability of a correct response increases monotoni-
cally with ability as in Figure 1.

If vij = riαj with ri ∼ N(0, λ) and αj fixed un-
known, we have a two-parameter IRT model. Let vi =

(vi1, . . . , vik)
t and Li = (α1, . . . , αk)

t , giving

var(vi) = �i = Li�Lt
i,

where � = λ is a one-by-one matrix. This model al-
lows for correlations among items for each subject.
In this model αj is called the discriminant parameter
and β∗

j = βj/αj the difficulty parameter (Skrondal and
Rabe-Hesketh, 2007). This two-parameter IRT model
may lack the monotonicity property in that one item
can be easier than another for one subject, while be-
ing more difficult for another; this is described by the
item-subject interaction riαj . This example shows how
a particular modeling of the (singular) covariance ma-
trix �i can give an interesting interpretation of the pa-
rameters.

Example 2: When vt = ρvt−1 + rt with var(rt ) =
λ we have autoregressive random effects of order 1.
When ρ = 1 we have the random-walk model which
gives a singular precision matrix. This random-walk
model for temporal correlation has been extended to
spatially-correlated models via intrinsic autoregressive
models with a singular fixed-precision matrix (Be-
sag and Kooperberg, 1995). Splines can be viewed
as smoothing via random effects which also have a
singular fixed-precision matrix (Green and Silverman,
1994).

Example 3: Skrondal and Rabe-Hesketh (2004)
propose generalized linear latent and mixed models
(GLLAMMs) as a means of unifying factor mod-
els, linear structural-relations models and covariate
measurement-error models. They point out that
GLLAMMs consist of two building blocks, a response

FIG. 1. Curves of Pr(yij = 1|vi) with respect to v (left) in a one-parameter IRT model and r (right) in a two-parameter IRT model.
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model and a structural model. For the response model,
they use the HGLM shown in equation (2.2). For the
structural model, the random effect itself satisfies a re-
gression model of the form

v = Bv + 
w + r,

where B is a matrix of structural parameters relating
the latent dependent variables to each other, 
 is a ma-
trix of structural parameters relating the latent depen-
dent variable to the latent explanatory variables and r

is a vector of disturbances. From this we have

v = (I − B)−1
w + (I − B)−1r.

Thus, the GLLAMMs can be represented as an HGLM
with two random components,

η = g(μ) = Xβ + Zv = Xβ + ZL1w + ZL2r,

where L1 = (I − B)−1
 and L2 = (I − B)−1. In
GLLAMMs the parametrization using B , 
, var(w)

and var(r) gives a useful interpretation.
Another class of widely used models with unobserv-

ables is nonlinear mixed-effect models in population
pharmacokinetics and pharmacodynamics, models for
missing data and models for potential outcomes.

2.2 Random-Effect Models for the Dispersion

Lee and Nelder (2006a) introduce double HGLMs
(DHGLMs) which allow random effects for the disper-
sion. This gives a systematic way of generating heavy-
tailed distributions for various types of data such as
counts, proportions, and so on. Random effects in the
mean affect the first two cumulants of the distribution
of responses while those in the dispersion affect the
third and fourth cumulants, so that by allowing ran-
dom effects in both mean and dispersion we can gen-
erate models with various patterns in the first four cu-
mulants. Castillo and Lee (2008) show that DHGLMs
provide a general treatment of Levy-process models in
financial modeling while Noh and Lee (2007a) show
that this new class allows robust modeling of GLM
classes with bounded influence. Yun and Lee (2006)
show how to model abrupt changes in the behavior of
schizophrenics. Glidden and Liang (2002) show that
sensitivity of estimators for β from HGLMs become
more serious when the data form a selected sample.
However, Noh et al. (2005) show that by using a heavy-
tailed distribution for the random effects, such a sensi-
tivity in the estimators can be avoided.

2.3 Probabilistic and Nonprobabilistic Methods

Without introducing random effects the GEE can be
used to obtain maximum likelihood (ML) estimators
when responses are normal. Estimates of regression
coefficients from GEEs have been claimed to be con-
sistent under various model misspecifications. It is of-
ten called the population-averaged model (Zeger et al.,
1988) or the marginal model (Jansen et al., 2006) for
a particular parameterization [regression coefficients
for marginal means E(y)]. For correlated non-normal
responses, given a GEE U(βs) = ∂q/∂βs = 0 (let us
say), the mixed derivatives may not be the same (Mc-
Cullagh and Nelder, 1989, page 337), that is,

∂2q/∂βs∂βr = ∂U(βs)/∂βr �= ∂U(βr)/∂βs

= ∂2q/∂βr∂βs;
if so there is no probabilistic model leading to the GEE
U(βs) = 0. Without such a basis the claim of consis-
tency is meaningless (for more discussion see Crowder,
1995 and Chaganty and Joe, 2006).

It is of interest to study the class of marginal models,
allowing estimating equations. Various marginal mod-
els have been proposed by Molenberghs and Lesaffre
(1994), Molenberghs et al. (2007) and Heagerty and
Zeger (2000). Heagerty and Zeger (2000) claimed that
the parameter estimates from their marginal models
were less sensitive to the misspecification of the distri-
bution of random effects. Lee and Nelder (2004) show
that if one compares like with like the differences be-
tween the results from the two models are not great. All
that we can say is that certain parameterizations are less
sensitive under certain probabilistic models so that it
could be recommended to use such a parameterization
if it also met scientific requirements. For further con-
troversies on parameterizations see Lindsey and Lam-
bert (1998).

GEE is an estimating method, not a model. Thus we
do not believe that a useful comparison can be made
between a probabilistic model such as a HGLM and an
estimating method such as GEE. We see the analysis
of data as consisting of three main activities: the first
two are model fitting and model checking which aim
to find parsimonious well-fitting models, and together
comprise model selection; the third is model predic-
tion, where parameter estimates from selected models
are used to predict quantities of interest and their un-
certainties. In our view, inferences about margins and
individual subjects’ responses and a choice of an esti-
mation method such as the GEE, ML, etc., both belong
to the prediction phase of the analysis.
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In this paper we shall not consider GEE further be-
cause the method does not allow inferences about un-
observables.

3. EXTENDED LIKELIHOOD VERSUS BAYESIAN
APPROACHES

Besides the observed data and fixed unknown para-
meters in Fisher likelihood, an additional type of ob-
ject, namely unobservable random variables v, is often
of interest in making statistical inferences.

Example 4: Suppose that we have the number of
epileptic seizures in an individual for five weeks, y =
(3,2,5,0,4). Suppose that these counts are i.i.d. from
a Poisson distribution with mean θ. Now we want to
have a predictive probability function for the seizure
counts for the next week v. Here, θ̂ = (3 + 2 + 5 + 0 +
4)/5 = 2.8, so that the plug-in technique gives the pre-
dictive distribution for the seizure count v of the next
week

f
θ̂
(v = i|y) = f

θ̂
(v = i) = exp(−2.8)2.8i/ i!.

Pearson (1920) points out the limitation of Fisher like-
lihood using the plug-in method because it cannot ac-
count for uncertainty in estimating θ.

Example 5: Suppose that the data Y are collected
from the statistical model fθ (Y ; θ). Suppose also that
some of the intended observations in Y are unob-
servable because they are missing. We write Y =
(yobs, ymis) for yobs the observed and ymis for the miss-
ing components. Let r be missing data indicators such
that

ri =
{

1, if Yi is missing,
0, if Yi is observed.

This leads to a probability function

fθ (Y, r; θ) ≡ fθ (Y )fθ (r|Y).

Here y = (yobs, r) are the observed data, and ymis are
the unobservables.

From these models, likelihood inferences can be
made using the h-likelihood defined by

h = h(θ, v) = logfθ (y|v) + logfθ (v)
(3.1)

= logfθ (y, v) = m + logfθ (v|y)

where m is the marginal log-likelihood m = logfθ (y)

with fθ (y) = ∫
fθ (y|v)fθ (v) dv. This is the (log)

h-likelihood which plays the same role as the log-
likelihood m in Fisher’s likelihood inference for mod-
els without unobservables. In forming the h-likelihood
the choice of the scale for v is important (Lee et al.,

2006) because the mode and its curvature are used for
inferences as we shall discuss.

Throughout this paper we use fθ (·) to denote prob-
ability functions of random variables with fixed pa-
rameters θ ; the arguments within the brackets can be
either conditional or unconditional. Thus fθ (y|v) and
fθ (v|y) have different functional forms though we use
the same fθ (·) to mean probability functions with pa-
rameters θ .

3.1 Bayesian Inferences

If we assume a prior π(θ) on parameters θ , Bayesian
inferences can be made. The posterior is

π(θ, v|y) ∝ π(y|v, θ)π(v|θ)π(θ),

where π(y|v, θ) = fθ(y|v) and π(v|θ) = fθ (v). Here
θ is also unobservable and is eliminated by integration.
Let θ−i = (θ1, . . . , θi−1, θi+1, . . . , θp)T . For Bayesian
inferences the following various marginal or condi-
tional posteriors have been used:

π(θ |y) =
∫

π(θ, v|y)dv,

π(θi |y) =
∫

π(θ, v|y)dv dθ−i ,

π(vi |y) =
∫

π(θ, v|y)dv−i dθ,

π(vi |y, θ) =
∫

π(v|y, θ) dv−i .

In this paper full Bayesian (FB) inference is assumed
to use the marginal posteriors π(θi |y) and π(vi |y)

while empirical Bayesian (EB) inference (Morris,
1983) uses the conditional posteriors π(vi |y, θ̂) where
θ̂ are the ML estimators maximizing the likelihood
fθ (y) = π(θ |y) = ∫

π(θ, v|y)dv under the uniform
prior π(θ) = 1.

3.2 Adjusted Profile H-likelihoods and Likelihood
Inference

The likelihood principle of Birnbaum (1962) states
that Fisher’s marginal likelihood fθ (y) carries all the
(relevant experimental) information in the data about
the fixed parameters θ so that fθ (y) should be used
for inferences about θ (see also Berger and Wolpert,
1984). For estimating fixed parameters θ we follow the
likelihood principle by using the ML estimator from
fθ (y). We view the marginal likelihood as an adjusted
profile likelihood eliminating nuisance unobservables
v from the h-likelihood. However, the computation
of ML estimators can be a complex task because
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of intractable integration. For example, in the Sala-
mander data (McCullagh and Nelder, 1989) marginal-
likelihood inference, based upon numerical integration
using Gauss–Hermite quadrature, is not feasible since
a 120-dimensional integral is required.

Let

� = �(θ) = logfθ (y) = log
∫

exphdv

be the (log-) marginal likelihood. Let l = l(α,ψ) be a
likelihood, either a marginal likelihood � or an hierar-
chical likelihood h, with nuisance parameters α. Lee
and Nelder (2001a) introduce a function, pα(l;ψ), de-
fined by

pα(l;ψ)
(3.2)

=
[
l − 1

2
log det{D(l,α)/(2π)}

]∣∣∣∣
α=α̃

,

where D(l,α) = −∂2l/∂α2 and α̃ solves ∂l/∂α =
0. These p(·) functions define adjusted profile h-
likelihoods (APHLs). If π(θ) = 1 the Bayesian pos-
terior is identical to the h-likelihood, π(θ, v|y) =
fθ (y, v). Thus APHLs can have a Bayesian interpreta-
tion; for example pv−i ,θ (h;vi) is the Laplace approx-
imation to the marginal posterior π(vi |y), eliminat-
ing (v−i , θ) by integration. When π(θ) = 1, it is not
a probability if the domain is the whole real line or
the positive real line. However, as long as the marginal
posterior is proper (finite), π(vi |y) would be consid-
ered as a valid posterior (Berger, 1985).

APHLs also allow a likelihood interpretation. Here
pv(h; θ) is the Laplace approximation to the marginal
likelihood � obtained by integrating over unobserv-
ables v (Lee and Nelder, 2001a); its maximum gives
approximate (marginal) ML estimators for β. In like-
lihood inferences fixed parameters are eliminated by
conditioning (if available) or profiling (in general).
Now suppose that the parameters in a model can be
divided into location parameters β and dispersion pa-
rameters σ 2. Note that pβ(�;σ 2) is an adjusted pro-
file likelihood that approximates the conditional log-
likelihood obtained by conditioning on the marginal
ML estimator β̃ to eliminate the fixed unknown para-
meter β (Cox and Reid, 1987). A well-known exact
example of this is the use of restricted likelihood in
linear mixed models. Furthermore, pθ(h;v) is Davi-
son’s (1986) predictive likelihood for v, eliminating
nuisance fixed parameters θ . The APHL pv−i ,θ (h;vi)

eliminates v−i by integration and θ by conditioning

on θ̂ . When orthogonality does not hold between pa-
rameters we use a profile likelihood to eliminate nui-
sance parameters. To simplify the notation we some-
times suppress arguments; for example we use pv(h)

instead of pv{h(v,β,σ 2);β,σ 2} = pv(h;β,σ 2) if this
does not lead to ambiguity.

Lee and Nelder (1996, 2001a, 2006a) propose max-
imizing the h-likelihood h for the estimation of v, the
marginal likelihood � for the ML estimators for β and
the restricted likelihood pβ(�) for the dispersion pa-
rameters σ 2. Thus our position is consistent with the
likelihood principle by using the marginal likelihood
for inferences about θ . However, when � is numeri-
cally hard to obtain, we propose to use adjusted profile
h-likelihoods (APHLs) pv(h) and pβ,v(h) as approxi-
mations to � and pβ(�); pβ,v(h) approximates the re-
stricted log-likelihood. Second-order Laplace approxi-
mations may sometimes be useful to improve accuracy.

Many numerical studies on h-likelihood have shown
that this development gives practically satisfactory
estimates of parameters in many models where the
ML estimators are hard to compute. For binary data
Noh and Lee (2007b) show numerically that the h-
likelihood estimator for θ has less bias and mean
square error than various other methods developed by
Schall (1991), Breslow and Clayton (1993), Drum and
McCullagh (1993), Shun and McCullagh (1995), Lin
and Breslow (1996) and Shun (1997): see also the sim-
ulation studies of frailty models (Ha and Lee, 2005)
and of mixed linear models with censoring (Ha et al.,
2002). In the salamander data, among other methods
considered, the MCEM of Vaida and Meng (2004)
gives the closest estimates to the h-likelihood estima-
tors.

Little and Rubin (2002) provide an extensive re-
view of the analysis of missing data and claim that h-
likelihood methods are inappropriate for the estimation
of θ in missing-value settings such as that in Exam-
ple 5. They appear to wrongly equate h-likelihood esti-
mation to a joint maximization of mean and dispersion
parameters. Yun et al. (2007) show, in contrast to this
assertion, that when applied appropriately h-likelihood
methods are both valid and efficient in such settings.
In non-linear mixed-effect models the h-likelihood can
also improve on existing methods (Noh and Lee, 2008).

3.3 APHLs versus Marginal Posteriors

In the Bayesian approach, simulation techniques
such as MCMC are often used to compute the marginal
posteriors. Consider the Epil example of the Open-
BUGS manual, volume 1 (Thomas et al., 2006). The
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FIG. 2. The marginal posteriors (· · ·) versus APHLs (−).

data come from a clinical trial of 59 epileptic patients.
Each patient i is randomized to a new drug (Ti = 1)

or a placebo (Ti = 0). The observations for each pa-
tient yi1, . . . , yi4 are the number of seizures during the
2 weeks before each of four visits. The covariates are
age (Ai), the baseline seizure counts (Bi) and an indi-
cator variable for the fourth clinic visit (V 4). Consider
the HGLM,

ηij = β0 + βB log(Bi/4) + βT Ti

+ βT ×BTi × log(Bi/4) + βAAi

+ βV V 4 + vi + wij,

using centered covariates with vi � N(0, σ 2
v ) and

wij � N(0, σ 2
w). In discussing the paper by Rue et

al. (2009) on Bayesian inferences based on priors
σ−2

v , σ−2
w � gamma(0.001,0.001), Lee shows Fig-

ure 2 (of this paper) for the marginal posteriors,
π(v1|y), π(βT |y) and π(σ 2

v |y), from OpenBUGS
(Thomas et al., 2006) and the corresponding APHLs,
pv−1,w,θ (h;v1), pv,w(h;βT , θ̂(βT )) and pv,w,β(h;σ 2

v ,

σ̂ 2
w(σ 2

v )) where θ̂ (α) are the ML estimators of remain-
ing β and the REML estimators for the dispersion pa-
rameters at βT = α and σ̂ 2

w(α) is the REML estima-
tors of σ 2

w at σ 2
v = α. Figure 2 shows almost identical

plots for both random and fixed effects. However, the
plots for the dispersion components are different be-
cause the inverse-gamma prior of Rue et al. (2009) is
informative. This leads to biases when dispersion pa-
rameters are not random but are fixed unknowns, as
in disease mappings (Jang et al., 2007). Thus without
MCMC samplings similar information could be ob-
tained from the extended likelihood unless the assumed
prior is informative. Thus, likelihood inferences can be
made without the necessity of inventing priors for pa-
rameters.

4. LIKELIHOOD INFERENCE FOR
UNOBSERVABLES

The extended likelihood principle of Bjørnstad
(1996) shows that extended likelihood, of which h-
likelihood is a special case, carries all the information
in the data about the unobserved quantities v and θ.

Bedrick and Hill (1999) study the use of extended like-
lihood as a summary function for unobservables. In
this paper we discuss its use as an estimating tool.

Consider the prediction problem in Example 4 where
the plug-in technique f

θ̂
(v = i) = f

θ̂
(v = i|y) =

π(v = i|y, θ̂) can be viewed as the EB. With Jeffreys’
prior, π(θ) ∝ θ−1/2, the resulting marginal posterior
π(v|y) gives a predictive probability with higher prob-
abilities for larger y. Pawitan (2001) considers the h-
likelihood, proportional to

fθ (3,2,5,0,4, v) = exp(−6θ)θ3+2+5+0+4+v

/(3!2!5!0!4!v!).
Here θ̂ (v) = (3 + 2 + 5 + 0 + 4 + v)/6. Then the nor-
malized profile likelihood f

θ̂(v)
(3,2,5,0,4, v) gives

the predictive distribution of Mathiasen (1979) almost
identical to Pearson’s but without assuming a prior on θ

(Figure 3) (for more discussion, see Bjørnstad, 1990).
This example shows that standard methods for likeli-
hood inferences can be used for the prediction prob-
lem. In the next section we illustrate how to use stan-
dard likelihood methods to overcome a drawback of
EB method.

4.1 EB Versus H-likelihood Methods

Because the Fisher likelihood fθ (y) in (3.1) does not
involve v, the other component (the conditional poste-
rior) fθ (v|y) = π(v|y, θ) seems to carry all the infor-
mation in the data about the unobservables. Thus an in-
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FIG. 3. Predictive density of the number of seizure counts: Plug-in method (�), Bayesian method (◦) and h-likelihood method (+).

ference would be based solely upon the estimated pos-
terior,

f
θ̂
(v|y) = π(v|y, θ̂),

where θ̂ are usually the ML estimators (Carlin and
Louis, 2000). Using f

θ̂
(v|y) to make inferences about

v is naive, and Bjørnstad (1990) shows how badly it
performs in measuring the true uncertainty in estimat-
ing v. Note that maximization of the h-likelihood (3.1)
yields EB-mode estimators for v without computing
fθ (v|y). However, the Hessian matrix based upon the
estimated posterior f

θ̂
(v|y) gives a naive variance es-

timate for the prediction v̂ because it does not prop-
erly account for the uncertainty caused by estimating
θ . Note that the marginal posterior variance is

var(vi |y) = Eθ |y[var(vi |y, θ)]
(4.1)

+ varθ |y[E(vi |y, θ)].
Carlin and Gelfand (1990) note that the naive EB vari-
ance estimate only approximates the first term in the
equation above. Laird and Louis (1987) and Carlin and
Gelfand (1990) propose to use the bootstrap method to
estimate the second term. In this paper the FB method
uses the marginal posterior π(vi |y).

Up to now most studies on h-likelihood methods
have been about the efficiencies of parameter esti-
mates. Here we discuss how to compute the variance
of estimated random effects. We see that inferences
about random effects cannot be made by using only

fθ (v|y) as the EB method does. Because fθ (v|y) in-
volves the fixed parameters θ we should use the whole
h-likelihood to reflect the uncertainty in estimating θ;
it is the other component fθ (y) which carries the infor-
mation about this. By using the h-likelihood, complete
likelihood inferences can be made not only for θ but
also for v and their combinations.

Given θ let v̂(θ) be a random-effect estimator solv-
ing ∂h/∂v = 0. As a variance of random-effect esti-
mators Booth and Hobert (1998) recommend using the
conditional mean square error (CMSE) defined by

CMSE(v) = E
{(

v̂(θ̂ ) − v
)(

v̂(θ̂ ) − v
)′|y}

(4.2)
= varθ (v|y) + D(θ),

where varθ (v|y) = E{(v̂(θ) − v)(v̂(θ) − v)′|y} and
D(θ) = E{(v̂(θ̂ ) − v̂(θ))(v̂(θ̂ ) − v̂(θ))′|y} is the in-
flation of the CMSE caused by estimating θ. The
EB estimator, the inverse of the Hessian matrix from
logfθ(v|y), gives an estimator for the first term
varθ (v|y) in (4.2). Thus it could give severe underes-
timation if D(θ) is large. Lee and Nelder (1996) note
that in HGLMs (2.2), the location parameters (v,β)
and dispersion parameters σ 2 =(φ,�) are orthogonal
so that we need consider only the variance inflation
caused by estimating β. The Hessian matrix of β and
v is given by

I (β, v) = −
(

∂2h/∂β∂β ′ ∂2h/∂β∂v′
∂2h/∂v∂β ′ ∂2h/∂v∂v′

)
.(4.3)
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Here the EB variance estimator is given by −(∂2h/

∂v∂v′)−1|
θ=θ̂

. Lee and Ha (2010) show that in gen-
eral the inverse of the Hessian matrix (4.3) gives an
approximation to the CMSE (4.2). Before we discuss
the general use of this method we investigate a simple
example which shows issues related to this problem.

4.2 Bayarri’s Example

Bayarri et al. (1988) try to show by an example that
likelihood inference is not possible for general models
with unobservables. Suppose that there is a single fixed
parameter θ , a single unobservable random quantity u

and a single observable quantity y. An unobserved ran-
dom variable u has a probability function

fθ (u) = θ exp(−θu) for u > 0, θ > 0,

and an observable random variable y has conditional
probability function

fθ (y|u) = f (y|u) = u exp(−uy) for y > 0, u > 0,

free of θ . Besides f (y|u), they considered the follow-
ing two additional possibilities for an extended likeli-
hood for models with these three kinds of objects:

fθ (y) = θ

(θ + y)2 ,

fθ (y, u) = uθ exp{−u(θ + y)}.
The marginal log-likelihood m = logfθ (y) gives the
ML estimator for θ but is totally uninformative about
the unknown value of u. The conditional likelihood
f (y|u) is uninformative about θ and loses the relation-
ship between u and θ reflected in fθ (u). Finally, the ex-
tended likelihood fθ (y,u) yields, if maximized jointly
with respect to θ and u, the useless estimators θ̂ = ∞
and û = 0. Bayarri et al. (1988) therefore conclude that
none is useful as a likelihood for complete inferences,
so that Bayes is the only method for inferences from
general models.

The h-(log)-likelihood is given by

h = logfθ (y, v) = logfθ (y,u) + log |du/dv|
≡ 2v + log θ − u(θ + y),

where v = logu with v being the canonical scale in
which the joint maximization of h with respect to θ

and u gives the ML estimator of θ (Lee et al., 2006a).
Suppose that the marginal likelihood is hard to ob-
tain. The Laplace approximation is proportional to m =
logfθ (y) and gives the ML estimator θ̂ = y and its
variance estimator

̂var(θ̂) = −{∂2m/∂θ2|
θ=θ̂

}−1 = 2y2.

Given θ, the estimating equation ∂h/∂u = 0 gives the
best estimator of u (Robinson, 1991),

û(θ) = E(u|y) = 2

θ + y
,

from which we have

û(θ̂ ) = 2

θ̂ + y
= 1

y
.

Furthermore, we have

I (θ, û(θ)) = −
(

∂2h/∂θ2 ∂2h/∂θ∂u

∂2h/∂u∂θ ∂2h/∂u2

)

=
(

1/θ2 1
1 (y + θ)2/2

)
.

Note here that

varθ (u|y) = E
{(

û(θ) − u
)2|y} = 2/(y + θ)2

so that EB gives ̂varθ (u|y) = 1/(2y2). Here D(θ) =
E[{1/y − 2/(θ + y)}2|y} = (y − θ)2/{y(y + θ)}2 =
(θ̂ − θ)2/{y(y + θ)}2, so that, following Booth and
Hobert (1998), if we estimate (θ̂ − θ)2 by var(θ̂ ) we
have D̂(θ) = 2y2/4y4 = 1/(2y2). Thus the estima-
tor for the CMSE is 1/y2, which can be obtained
from the corresponding element in the Hessian ma-
trix I (θ̂ , û(θ̂ )). An alternative justification is that the h-
likelihood variance estimator is estimating the uncon-

ditional mean-square error because ̂E{(û(θ̂ ) − u)2} =
1/y2 from E{(û(θ̂ ) − u)2} = 1/θ2 (Lee et al., 2006,
page 116).

With this small example we illustrate how the h-
likelihood gives complete likelihood inferences, giving
the ML inference for θ and improved EB inference by
accounting for the uncertainty caused by estimating θ.

4.3 H-likelihood Inferences About v

The example shows that between extended like-
lihoods fθ (y,u) and fθ (y, v) the mode of the h-
likelihood fθ (y, v) gives a meaningful estimator for v,
while that of fθ (y,u) gives a meaningless one. Given
that extended likelihoods should serve as the basis for
statistical inferences of a general nature, we want to
find a particular scale whose mode gives meaningful
inferences about unobservables. Under the canonical
scale the example shows that the mode gives the best
estimator of u E(u|y). However, the canonical scale
does not exist in general. In HGLMs Lee and Nelder
(2005) show that maintaining invariance of inference
from extended likelihood for trivial re-expressions of
the underlying model leads to a unique definition of
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the h-likelihood; we call this the weak canonical scale
in which v appears in the linear predictor.

In Section 3.3 we show that APHLs are often simi-
lar to marginal posteriors. Given (marginal) posteriors,
a Bayesian would use a decision-theoretic approach
to choose estimators while we use the mode of the
h-likelihood (an extended likelihood on a particular
scale) or its APHLs. Thus the choice of the scale in
defining the h-likelihood is important to guarantee the
meaningfulness of the mode estimation. Lee and Ha
(2010) show that the standard error estimators from the
Hessian matrix ( 4.3) give the first-order approximation
to (4.1) with π(θ) = 1 (Kass and Steffey, 1989) and to
the CMSE (Booth and Hobert, 1998). Let w = k(u)

for some monotone function k(·). Ha and Lee (2006)
show conditions when the approximation becomes bet-
ter. One such condition is that w|y follows the normal
distribution. In GLMMs when v is normal we may ex-
pect v|y to be approximately normal. If normal the
Laplace approximation is exact; we expect that pro-
posed h-likelihood method works well. Figure 2 shows
how to check the normality of the conditional distribu-
tion by using the APHL.

4.3.1 Analysis of the BC infant mortality data. For
disease mapping, Leroux et al. (1999) and MacNab
et al. (2004) consider the conditional autoregressive
(CAR) model for the relative risk vi which satisfies
v ∼ N(0,�) where � = σ 2D−1, D = λQ+ (1 −λ)I,

σ 2 is a dispersion parameter reflecting the overall het-
erogeneity of the underlying risks, and λ is a dispersion
parameter for the spatial autocorrelation, λ ∈ [0,1].

The neighborhood matrix Q has the j th diagonal el-
ement equal to the number of neighbors of the corre-
sponding local region while the off-diagonal elements
in each row are equal to −1 if the corresponding re-
gions are neighbors and 0 otherwise.

The data consist of the number of infant deaths and
aggregated mid-year estimates of the population sizes
of infants for 79 local health areas. Population size
ni varies from 123 to 52856. For these data Lee et
al. (2007) compare inferences from the h-likelihood
with the full Bayes (FB) analysis. For the FB ap-
proach, they set priors βi ∼ N(0,1/0.00001) and
σ−2 ∼ gamma(0.0001,0.0001). Initial values are set
as σ 2 = 1, βi = 0 and vi = 0, and they obtain a pos-
terior sample of 10,000, setting thinning at 10 using
WinBUGS (MacNab et al., 2004). The coverage prob-
ability is calculated by 95% Wald confidence intervals
based upon asymptotic normality for the relative risks
(v) using EB and h-likelihood, and in the FB method
by equal-tail 95% credible intervals, the interval be-
tween the 2.5th and 97.5th percentiles of the posterior
distribution as given by WinBUGS. For the FB method
we use 10,000 iterations after a burn-in of 2000.

Lee et al. (2007) did a simulation study, assuming ni

and neighborhood structures identical to those in the
BC infant mortality; the data were generated based on
(1.1) and (3.1) with β = −4.920, σ 2 = 2 and λ = 0.62.
Using a graph similar to Figure 4, they showed that
the EB coverage probability decreases dramatically as
the population size ni increases, but that both the h-
likelihood and FB methods improve the EB method

FIG. 4. Coverage probabilities of the EB (left) , FB and h-likelihood (right) methods with respect to population size in the infant mortality
data.
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substantially by accounting for the uncertainty in esti-
mating fixed parameters. However, the coverage prob-
ability of FB also decreases as ni increases while the
h-likelihood maintains the stated level of confidence.
When ni becomes larger the priors for the dispersion
parameters in the FB may cause problems in frequen-
tist coverage probability. The h-likelihood procedure
maintains the frequentist coverage probabilities bet-
ter in this problem. The h-likelihood method is supe-
rior to Ainsworth and Dean’s (2006) penalized quasi-
likelihood (Lee et al., 2007) for spatial GLMMs and
Ma and Jorgensen’s (2007) orthodox BLUP method
(Lee and Ha, 2010) for nonnormal Tweedie models.

4.4 Inferences and Model Identifiability

The joint model for fθ(y, v) leads to a marginal
model fθ (y) for the observed data. We regard fθ (y, v)

as the fundamental model from which the marginal
model can be made. However, different models for un-
observables in fθ (y, v) can lead to the same marginal
model fθ (y) so that care is necessary in making in-
ferences about unobservables. Some model assump-
tions can be checked from the data while some cannot.
This could be an advantage of objective inference with
the likelihood, where uncheckable model assumptions
cannot be identifiable. In Bayesian analysis, priors can
give information on unidentifiable model assumptions
so that it is hard to know whether the information is
coming entirely from the uncheckable priors.

In the modeling of incomplete data we may as-
sume the missing data to be “missing not at random”
(MNAR) or “assume random missingness” (MAR).
Here assumptions for the missing mechanism cannot
be checked by using observed data [Rubin (2006)].
Molenberghs et al. (2007) further show that an empiri-
cal distinction between MAR and MNAR is not possi-
ble because each MNAR model fits to a set of observed
data can be reproduced exactly by its counterpart. Such
a pair of models will produce identical estimates for
the observed data but give different estimates for the
unobservables (missing data). Assumptions about un-
observables (missing data) are not checkable without
additional information. Unless we have a side-study to
determine whether the observation process depends on
what would be observed, all we have is a model-based
assessment. As a referee has pointed out, it will contain
some unverifiable assumptions.

In HGLMs model assumptions for unobservables
are often verifiable, that is, checkable, by using the
data because the unobservables are latent variables for

observed data. Consider the one-way random-effect
model,

yij = β + vi + eij ,

where vi � N(0, λ) and eij � N(0, φ), with vi and eij

uncorrelated. With more than one observation in each
group the within-group error components vi and eij are
separately estimable, providing variance-component
estimates for the dispersion parameters. Here model
parameters φ and λ connect the observed data and un-
observables. Lee and Nelder (2006b) show that if there
are different random-effect models giving the same in-
duced marginal model for the observed data, then the
h-likelihood inferences give equivalent inferences for
equivalent pairs of objects, including unobservables.
This model leads to a marginal model, namely the fol-
lowing compound-symmetric model:

Yi ∼ N(1β,λJni
+ φIni

).

A compound-symmetry model with negative correla-
tion λ < 0 is perfectly natural in a variety of settings
(Nelder, 1954) which can be tested by the marginal
likelihood (or APHL). Such a model can be covered
by HGLMs if we allow a negative variance, but then
many unanswered questions arise, such as estimability
of random effects, etc.; these require further research.

Wilk and Kempthorne (1957) and Cox (1958) study
the randomization theory of the Latin square, paying
particular attention to the effects on the interpretation
of the conventional analysis of variance (ANOVA) of
the absence of unit-treatment additivity, a point first
raised by Neyman (1935). Consider a model for the
Latin-square design,

yij (k) = μ + ri + cj + τk

(4.4)
+ (rc)ij + (rt)ik + (ct)jk + eij (k).

Suppose that the main effects are regarded as fixed.
When the interactions (rc)ij , (rt)ik, (ct)jk are fixed a
test for the main effect is irrelevant because it makes
no sense to postulate that either of the two main ef-
fects is null when their interaction is not assumed zero
(Nelder, 1994). However, if the interactions are re-
garded as random the associated main effects can tested
without any difficulty from the ANOVA table. Permu-
tation from a finite population is a way of generating
distributions for random effects. Wilk and Kempthorne
(1957) put constraints

∑
i (rc)ij = ∑

j (rc)ij = · · · =∑
k(ct)jk = 0. Nelder (1994) points out that such con-

straints make no sense either with fixed or random
effects. With fixed effects the choice of constraints
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to give the least-square equations a solution is essen-
tially arbitrary. However, with random effects sym-
metric constraints on estimates of the parameters of
the form

∑̂
i (rc)ij = ∑

j (̂rc)ij = · · · = ∑
k (̂ct)jk = 0

arise naturally (Lee and Nelder, 1996, 2005). How-
ever, here only fractions of combinations are used to
make the combined error component vij (k) = (rc)ij +
(rt)ik + (ct)jk + eij (k) to form a sum of independent
errors. Thus model (4.4) gives an identical marginal
model to the conventional model for Latin squares with
main effects only

yij (k) = μ + ri + cj + τk + e∗
ij (k).(4.5)

From Lee and Nelder (2006b) the two models lead to
identical inferences about both fixed parameters and
random effects, giving ê∗

ij (k) = v̂ij (k). Thus in (4.4)
individual error components cannot be separated by
the observed data. If a method can identify individual
components then it must be based upon uncheckable
model assumptions such as priors. Consider the follow-
ing model:

yij (k) = μ + ri + cj + τij (k) + eij (k),(4.6)

where τij (k) = τk +(rt)ik +(ct)jk and (rt)ik and (ct)jk

are random with zero means. This model assumes unit-
treatment interaction and can be interpreted to have the
average treatment effects such that

E
(
τij (k)

) = τk.

Then we can test that the average treatment effects are
the same (Lee and Nelder, 2002). Thus with unobserv-
ables there are different methods of interpretation: we
may consider (rt)ik and (ct)jk to be either error com-
ponents or random treatment-unit interactions. These
give equivalent inferences for equivalent quantities.

4.5 Discussion

There have been many alleged examples similar to
that of Bayarri et al. (1988) and Little and Rubin
[(2002), Chapter 6.3], purporting to show that an ex-
tension of the Fisher likelihood to three kinds of objects
is not possible. Lee and Nelder (2005) refute those of
Bayarri et al. and Yun et al. (2007) those of Little and
Rubin. These complaints are, we believe, resolved by
the h-likelihood framework. Zhao et al. (2006) claim
that the Bayesian analysis is computationally simpler
for obtaining variance estimators for the random-effect
estimates compared with its frequentist counterpart;
however with the extended likelihood framework this
may not be so, at least in the analysis of the disease-
mapping areas in Section 4.3.1.

The h-likelihood (3.1) gives a new definition of con-
jugate families (Lee and Nelder, 2001a), showing that

the likelihood for a conjugate family for logfθ (v) takes
the form of a GLM. It is the sum of component like-
lihoods, logfθ (v) and logfθ(y|v), both representable
as GLM likelihoods. This means that an extended class
of models can be decomposed into component GLMs
(Lee and Nelder, 2001a, 2006a) and that these ex-
tended models can be fitted as an interconnected set
of component GLMs. This greatly facilitates the de-
velopment of model-checking techniques for the whole
class (Lee and Nelder, 2001a). A single algorithm, it-
erative weighted least squares, can be used throughout
all this extended class of models and requires neither
prior distributions of parameters nor multi-dimensional
quadrature. The h-likelihood plays a key role in the
synthesis of the computational algorithms needed for
this extended class of models.

This formulation means that a great variety of mod-
els can be fitted by a single algorithm and compared
using extensions of standard GLM procedures. Thus
we can change the link function, allow various types
of term in the linear predictor and use model-selection
methods for adding or deleting terms. Furthermore,
various model assumptions can be checked by apply-
ing GLM model-checking procedures to the appropri-
ate component GLMs. This establishes, we believe, al-
gorithmic wiseness in the sense of Efron (2003).

5. CONCLUSION

We have shown that a broad class of new models
with wide applications can be generated by the prob-
abilistic modeling of unobservables. There has been
an attempt using the GEE method to make inferences
from general non-normal multivariate models without
modeling unobservables. It pre-empts model selection
by claiming to make inferences about population av-
erages or marginal means. We do not disagree with
the need to make marginal predictions after choosing
a model but believe that such a need does not require,
and indeed should not use, prediction methods at the
model-selection stage. We dislike the pre-emption of
the model selection stage by a particular prediction
method. Furthermore, these population, marginal and
subject-specific averages are parameterizations in the
probabilistic model. When a prediction method lacks a
probabilistic model basis it is not possible to connect
these parameters and compare them.

We do not object to the use of Fisher’s likelihood
for inferences about fixed parameters. The Fisher like-
lihood framework has advantages such as generality
of application, statistical and computational efficiency,
etc., and we agree with its use. However, it cannot
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deal with inferences from models having unobserv-
ables because there is always a problem of inference
about those unobservables. H-likelihood gives a pow-
erful and practical framework for statistical inference
of general model class with unobservables, maintain-
ing the advantages of the original likelihood framework
for fixed parameters. We believe that more new classes
of models will be developed and that the h-likelihood
will become widely used for inference from them.

The h-likelihood uses the mode and its curvature for
inferences about unobservables. Thus, in defining the
h-likelihood the scale of unobservables must be care-
fully chosen to make a valid inferences. The (weak)
canonical scale in HGLMs leads to an invariance of
a certain extended likelihood. However, in general
the validity of such a scale has not been established.
The conditional normality in Section 4.3 would be a
promising condition to determine the scale, which can
be checked by plotting the APHL. Further studies are
required on the scale in defining the h-likelihood under
general situations beyond DHGLMs. For fixed parame-
ter estimation we use the marginal likelihood. But it is
often hard to compute, so that we have proposed using
the Laplace approximation. However, this approxima-
tion gives nonnegligible biases in binary data. We have
found that the second-order approximation is effective
in eliminating such biases. However, it becomes very
hard to implement as the number of random compo-
nents increases. So it would be of interest to find an
approximation which can be implemented under gen-
eral situations.
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