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1. Introduction

Likelihood maximization, least squares and empirical contrast minimization re-
quire to choose some model, that is, a set from which an estimator will be
returned. Let us call statistical algorithm any function that returns an esti-
mator from data—for instance, likelihood maximization on some given model.
Then, model selection can be seen as a particular (statistical) algorithm selection
problem.

Cross-validation (CV) is a popular strategy for algorithm selection. The main
idea behind CV is to split data, once or several times, for estimating the risk
of each algorithm: Part of data (the training sample) is used for training each
algorithm, and the remaining part (the validation sample) is used for estimating
the risk of the algorithm. Then, CV selects the algorithm with the smallest
estimated risk.

Compared to the resubstitution error, CV avoids overfitting because the
training sample is independent from the validation sample (at least when data
are i.i.d.). The popularity of CV mostly comes from the “universality” of the
data splitting heuristics. Nevertheless, some CV procedures have been proved
to fail for some model selection problems, depending on the goal of model selec-
tion, estimation or identification (see Section 2). Furthermore, many theoretical
questions about CV remain widely open.

The aim of the present survey is to provide a clear picture of what is known
about CV from both theoretical and empirical points of view: What is CV
doing? When does CV work for model selection, keeping in mind that model
selection can target different goals? Which CV procedure should be used for a
given model selection problem?

The paper is organized as follows. First, the rest of Section 1 presents the
statistical framework. Although non exhaustive, the setting has been chosen
general enough for sketching the complexity of CV for model selection. The
model selection problem is introduced in Section 2. A brief overview of some
model selection procedures is given in Section 3; these are important for better
understanding CV. The most classical CV procedures are defined in Section 4.
Section 5 details the main properties of CV estimators of the risk for a fixed
model; they are the keystone of any analysis of the model selection behaviour
of CV. Then, the general performances of CV for model selection are described,
when the goal is either estimation (Section 6) or identification (Section 7). Spe-
cific properties or modifications of CV in several frameworks are discussed in
Section 8. Finally, Section 9 focuses on the algorithmic complexity of CV proce-
dures, and Section 10 concludes the survey by tackling several practical questions
about CV.
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1.1. Statistical framework

Throughout the paper, ξ1, . . . , ξn ∈ Ξ denote some random variables with com-
mon distribution P (the observations). Except in Section 8.1, the ξis are assumed
to be independent. The purpose of statistical inference is to estimate from the
data (ξi )1≤i≤n some target feature s of the unknown distribution P , such as
the density of P w.r.t. some measure µ , or the regression function. Let S denote
the set of possible values for s . The quality of t ∈ S , as an approximation to s ,
is measured by its loss L ( t) , where L : S 7→ R is called the loss function; the
loss is assumed to be minimal for t = s . Several loss functions can be chosen
for a given statistical problem. Many of them are defined by

L ( t ) = LP ( t ) := Eξ∼P [γ ( t; ξ ) ] , (1)

where γ : S×Ξ 7→ [0,∞) is called a contrast function. For t ∈ S , Eξ∼P [γ ( t; ξ ) ]
measures the average discrepancy between t and a new observation ξ with dis-
tribution P . Several frameworks such as transductive learning do not fit defi-
nition (1); nevertheless, as detailed in Section 1.2, definition (1) includes most
classical statistical frameworks. Given a loss function LP ( · ) , two useful quan-
tities are the excess loss

ℓ (s, t ) := LP ( t )− LP (s ) ≥ 0

and the risk of an estimator ŝ (ξ1, . . . , ξn) of the target s

Eξ1,...,ξn∼P [ℓ (s, ŝ (ξ1, . . . , ξn ) ) ] .

1.2. Statistical problems

The following examples illustrate how general the framework of Section 1.1 is.

Density estimation aims at estimating the density s of P with respect to
some given measure µ on Ξ . Then, S is the set of densities on Ξ with respect
to µ . For instance, taking γ(t;x) = − ln(t(x)) in (1), the loss is minimal when
t = s and the excess loss

ℓ (s, t ) = Eξ∼P

[
ln

(
s(ξ)

t(ξ)

)]
=

∫
s ln

( s

t

)
dµ

is the Kullback-Leibler divergence between distributions tµ and sµ .

Prediction aims at predicting a quantity of interest Y ∈ Y given an ex-
planatory variable X ∈ X and a sample (X1, Y1), . . . , (Xn, Yn) . In other words,
Ξ = X × Y , S is the set of measurable mappings X 7→ Y and the contrast
γ(t; (x, y)) measures the discrepancy between y and its predicted value t(x) .
Two classical prediction frameworks are regression and classification, which are
detailed below.
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Regression corresponds to continuous Y , that is Y ⊂ R (or Rk for multivari-
ate regression), the feature space X being typically a subset of Rℓ . Let s denote
the regression function, that is s(x) = E(X,Y )∼P [Y | X = x ] , so that

∀i ∈ {1, . . . , n} , Yi = s(Xi) + εi with E [εi | Xi ] = 0 .

A popular contrast in regression is the least-squares contrast γ ( t; (x, y) ) =
(t(x)− y)2 , which is minimal over S for t = s , and the excess loss is

ℓ (s, t ) = E(X,Y )∼P

[
(s(X)− t(X) )2

]
.

Note that the excess loss of t is the square of the L2(P ) distance between t and
s , so that prediction and estimation here are equivalent goals.

Classification corresponds to finite Y (at least discrete). In particular, when
Y = {0, 1} , the prediction problem is called binary (supervised) classification.
With the 0-1 contrast function γ(t; (x, y)) = 1t(x) 6=y , the minimizer of the loss
is the so-called Bayes classifier s defined by

∀x ∈ X , s(x) = 1η(x)≥1/2 ,

where η denotes the regression function η(x) = P(X,Y )∼P (Y = 1 | X = x) .
Note that classification with convex losses—such as the hinge, exponential

and logit losses—can also be put into the framework of Section 1.1. Many ref-
erences on classification theory, including model selection, can be found in the
survey by Boucheron et al. (2005).

1.3. Statistical algorithms and estimators

In this survey, a statistical algorithm A is any measurable mapping A :⋃
n∈N

Ξn 7→ S . Given a sample Dn = (ξi )1≤i≤n ∈ Ξn , the output of A ,

A(Dn) = ŝA(Dn) ∈ S , is an estimator of s . The quality of A is then mea-
sured by LP

(
ŝA(Dn)

)
, which should be as small as possible.

Minimum contrast estimators refer to a classical family of statistical algo-
rithms. Given some subset S of S called a model, a minimum contrast estimator
over S is any ŝ(Dn) ∈ S that minimizes over S the empirical contrast

t 7→ LPn
( t ) =

1

n

n∑

i=1

γ ( t; ξi ) where Pn =
1

n

n∑

i=1

δξi ,

and δx denotes the Dirac measure at point x.
The corresponding minimum contrast algorithm, associated with the model

S, is the mapping Dn 7→ ŝ(Dn) . The idea is that the empirical contrast LPn
( t )

has an expectation LP ( t ) which is minimal for t = s . Minimizing LPn
( t ) over

a set S of candidate values for s hopefully leads to a good estimator of s . Let
us now give three popular examples of minimum contrast estimators:
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• Maximum likelihood estimators: take γ(t;x) = − ln(t(x)) in the density
estimation setting. A classical choice for S is the set of piecewise constant
functions on the regular partition of Ξ = [0, 1] with K intervals.

• Least-squares estimators: take γ(t; (x, y)) = (t(x) − y)2 in the regression
setting. For instance, S can be the set of piecewise constant functions on
some fixed partition of X (leading to regressograms), or a vector space
spanned by the first vectors of Fourier basis. Note that regularized least-
squares algorithms such as the Lasso, ridge regression and spline smooth-
ing are also least-squares estimators; S is some ball—with a radius de-
pending on data and on the regularization parameter—for the L1 (resp.
L2) norm in some high-dimensional space. Hence, tuning the regulariza-
tion parameter for the Lasso or SVM, for instance, amounts to perform
model selection from a collection of increasing balls.

• Empirical risk minimizers: Following Vapnik (1982), this terminology ap-
plies to any contrast function γ and model S in the prediction setting.
When γ is the 0-1 contrast, popular choices for S lead to linear classi-
fiers, partitioning rules, and neural networks. Boosting and Support Vec-
tor Machines classifiers are also empirical contrast minimizers over some
data-dependent model S , with different “convex” contrasts γ .

Let us finally mention that many other estimators can be considered with CV.
Classical ones are local averaging estimators such as k-Nearest Neighbours and
Nadaraya-Watson kernel estimators, which are not minimum contrast estima-
tors. The following mainly focuses on minimum contrast estimators for length
reasons.

2. Model selection

Usually, several statistical algorithms can be used for solving a given statistical
problem. Let ( ŝλ )λ∈Λ denote such a family of candidate statistical algorithms.
The algorithm selection problem aims at choosing from data one of these algo-
rithms, that is, choosing some λ̂(Dn) ∈ Λ . Then, the final estimator of s is given
by ŝλ̂(Dn)

(Dn) . The main difficulty is that the same data are used for training

the algorithms, that is computing ( ŝλ(Dn) )λ∈Λ , and for choosing λ̂(Dn).

2.1. The model selection paradigm

Following Section 1.3, let us focus on the model selection problem, where the
output of each candidate algorithm is a minimum contrast estimator and the
choice of an algorithm amounts to choose a model. Let (Sm )m∈Mn

be a family
of models, that is, Sm ⊂ S . Let γ be a fixed contrast function, and for every
m ∈ Mn , let ŝm(Dn) be a minimum contrast estimator over Sm . The problem
is to choose m̂(Dn) ∈ Mn from data only.
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The choice of a model Sm has to be done carefully. When Sm is “too small”,
any t ∈ Sm is a poor approximation to s , so that

ℓ (s, ŝm(Dn) ) ≥ inf
t∈Sm

{ℓ (s, t)} := ℓ (s, Sm )

is large for most s ∈ S . The lower bound ℓ (s, Sm ) is called the approximation
error, or bias of model Sm . Thinking of nested models, the bias is a nonincreas-
ing function of Sm .

Conversely, when Sm is “too large”, ℓ (s, Sm ) is small, but ŝm(Dn) is likely
to overfit: This results from the estimation error. Think for instance of Sm as
the set of all continuous functions on X = [0, 1] in the regression framework.
If Sm is a vector space of dimension Dm , it can be proved in several classical
frameworks that,

E [ℓ (s, ŝm(Dn) ) ] ≈ ℓ (s, Sm )+αnDm = Approx. error+Estimation error (2)

where αn > 0 does not depend on m . For instance, αn = 1/(2n) in density
estimation using the log-likelihood contrast, and αn = σ2/n in regression using
the least-squares contrast and assuming var (Y | X ) = σ2 does not depend
on X . More generally according to (2), a good model choice reaches the best
trade-off between the approximation error ℓ (s, Sm ) and the estimation error
αnDm , which is often called the bias-variance trade-off (αnDm is often called
“variance”). By extension, the estimation error, can be defined by

E [ℓ (s, ŝm(Dn) ) ]− ℓ (s, Sm ) = E [LP ( ŝm(Dn) ) ]− inf
t∈Sm

LP ( t ) .

The interested reader can find a much deeper insight into model selection in the
Saint-Flour lecture notes by Massart (2007).

Before giving examples of classical model selection procedures, let us distin-
guish the two main different goals that model selection can target: estimation
and identification.

2.2. Model selection for estimation

The goal of model selection is estimation when ŝm̂(Dn)(Dn) is used for estimating
s , and the goal is to minimize its loss. In particular, s is not required to belong
to

⋃
m∈Mn

Sm . For instance, AIC and Mallows’ Cp are built for estimation (see
Section 3.1).

The quality of a model selection procedure Dn 7→ m̂(Dn) for estimation is
measured by the excess loss of ŝm̂(Dn)(Dn) . Hence, the best possible choice is
the so-called oracle model Sm⋆ where

m⋆ = m⋆(Dn) ∈ arg min
m∈Mn

{ ℓ (s, ŝm(Dn) )} . (3)

Since m⋆(Dn) depends on the unknown distribution P of data, one can only
hope to select m̂(Dn) such that ŝ m̂(Dn) is almost as close to s as ŝm⋆(Dn) .
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Depending on the framework, the optimality of a model selection procedure
for estimation is assessed in at least two different ways.

First, in the asymptotic framework, a model selection procedure is called
efficient (or asymptotically optimal) when

ℓ
(
s, ŝm̂(Dn)(Dn)

)

infm∈Mn
{ ℓ (s, ŝm(Dn) )}

a.s.−−−−→
n→∞

1 .

Sometimes, a weaker result is proved, the convergence holding only in probabil-
ity.

Second, in the non-asymptotic framework, a model selection procedure sat-
isfies an oracle inequality with constant Cn ≥ 1 and remainder term Rn ≥ 0
when

ℓ
(
s, ŝm̂(Dn)(Dn)

)
≤ Cn inf

m∈Mn

{ ℓ (s, ŝm(Dn) )}+Rn (4)

holds either in expectation or with large probability (that is, a probability larger
than 1 − C′/n2 , for a constant C′ > 0). If (4) holds on a large probability
event with Cn tending to 1 when n tends to infinity and Rn ≪ ℓ (s, ŝm⋆(Dn) ) ,
then the model selection procedure m̂ is efficient. Note that the oracle is often
defined as argminm∈Mn

{E [ℓ (s, ŝm(Dn) ) ]} , leading to a weaker form of oracle
inequality

E
[
ℓ
(
s, ŝm̂(Dn)(Dn)

)]
≤ Cn inf

m∈Mn

{E [ℓ (s, ŝm(Dn) ) ]}+ Rn .

Model selection procedures designed for estimation are often used for building
minimax adaptive estimators provided the collection (Sm )m∈Mn

is well-chosen
(Barron et al., 1999). This notion is closely related to efficiency.

2.3. Model selection for identification

Model selection can also aim at identifying the “true model” Sm0 , defined as
the smallest model among (Sm )m∈Mn

to which s belongs. In particular, s ∈⋃
m∈Mn

Sm is assumed in this setting. A typical example of model selection
procedure built for identification is BIC (see Section 3.2.2).

The quality of a model selection procedure designed for identification is mea-
sured by its probability of recovering the true model Sm0 . Then, a model selec-
tion procedure is called (model) consistent when

P (m̂(Dn) = m0 ) −−−−→
n→∞

1 .

Note that identification can naturally be extended to the general algorithm
selection problem, the “true model” being replaced by the statistical algorithm
whose risk converges at the fastest rate (see Yang, 2007).
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2.4. Estimation vs. identification

When a true model exists, model consistency is clearly a stronger property than
efficiency defined in Section 2.2. However, in many frameworks, no true model
does exist so that efficiency is the only well-defined property.

Could a model selection procedure be model consistent when s ∈ ⋃
m∈Mn

Sm

(like BIC) and efficient when s /∈
⋃

m∈Mn
Sm (like AIC)? This problem is of-

ten called the AIC-BIC dilemma. Some strengths of AIC (efficiency) and BIC
(model consistency) can sometimes be shared (see the introduction of Yang
(2005), and van Erven et al. (2008)). However, Yang (2005) proved in the re-
gression framework that no model selection procedure can be simultaneously
model consistent (like BIC) and adaptive in the minimax sense (like AIC).

2.5. Model selection vs. model averaging

When the goal is estimation (Section 2.2), model selection can suffer some trou-
bles due to instability in the choice of the algorithm (Yang, 2001): Any pertur-
bation of original data entails the selection of a completely different algorithm.
Model averaging, also called aggregation (Nemirovski, 2000), enables to rem-
edy this deficiency by combining the outputs of several algorithms rather than
selecting one of them. Note that the purpose of aggregation cannot be identifi-
cation.

Oracle inequalities with leading constant Cn = 1 have been derived for in-
stance for aggregation with exponential weights (Lecué, 2006). In some specific
frameworks, Lecué (2007) has even shown the suboptimality of model selection
with respect to aggregation. See also Hoeting et al. (1999) on Bayesian model
averaging.

3. Overview of some model selection procedures

Let us sketch the properties of several model selection procedures, which will
help understanding how CV works. Like CV, all procedures in this section select

m̂(Dn) ∈ arg min
m∈Mn

{crit(m;Dn)} , (5)

where crit(m;Dn) = crit(m) ∈ R is some data-dependent criterion.
A particular case of (5) is penalization. It consists in choosing the model

minimizing the sum of the empirical contrast and some measure of complexity
of the model (called penalty):

m̂(Dn) ∈ arg min
m∈Mn

{LPn
( ŝm(Dn) ) + pen(m;Dn)} . (6)

Following a classification made by Shao (1997) in the linear regression frame-
work, we first focus on procedures of the form (5) such that

crit(m;Dn) ≈ Approx. error + κn Estim. error (7)

for some κn ≥ 1 .
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3.1. The unbiased risk estimation principle (κn ≈ 1)

The unbiased risk estimation principle—also called Mallows’ or Akaike’s
heuristics—states that crit(m;Dn) in (5) should unbiasedly estimate
E[LP ( ŝm(Dn) )] , that is, should satisfy (7) with κn ≈ 1 (up to a term in-
dependent of m). Let us explain why this strategy can perform well when the
goal of model selection is estimation. By (5), for every m ∈ Mn ,

ℓ (s, ŝm̂(Dn) )+crit(m̂)−LP ( ŝm̂(Dn) ) ≤ ℓ (s, ŝm(Dn) )+crit(m)−LP ( ŝm(Dn) ) .
(8)

If E [ crit(m;Dn)− LP ( ŝm(Dn) ) ] = 0 for every m ∈ Mn , then concentration
inequalities are likely to prove that ε−n , ε

+
n > 0 exist such that

∀m ∈ Mn , ε+n ≥ crit(m)− LP ( ŝm(Dn) )

ℓ (s, ŝm(Dn) )
≥ −ε−n > −1

with high probability, at least when Card(Mn) ≤ Cnα for some C,α ≥ 0 .
Then, (8) implies an oracle inequality like (4) with Cn = (1 + ε+n )/(1 − ε−n ) .
If ε+n , ε

−
n → 0 when n → ∞ , the procedure defined by (5) is efficient. Let us

remark that ε+n , ε
−
n mostly depend on the variance of crit(m) − LP ( ŝm(Dn) ) ,

which is therefore important for precisely understanding the performance of m̂ .

Examples of such model selection procedures are FPE (Final Predic-
tion Error, Akaike, 1970), several cross-validation procedures including the
Leave-one-out (see Section 4), and GCV (Generalized Cross-Validation,
Craven and Wahba, 1979, see Section 4.3.3). With the penalization approach
(6), the unbiased risk estimation principle is that E [pen(m) ] should be close to
the expectation of the “ideal penalty”

penid(m) := LP ( ŝm(Dn) )− LPn
( ŝm(Dn) ) .

The main instances of penalization procedures following this principle are: AIC
(Akaike’s Information Criterion, Akaike, 1973), with the log-likelihood contrast;
Cp and CL (Mallows, 1973), and several refined versions of Cp (e.g., by Baraud,
2002), with the least-squares contrast; covariance penalties (Efron, 2004), with a
general contrast. AIC, Cp and related procedures have been proved to be efficient
or to satisfy oracle inequalities in several frameworks, provided Card(Mn) ≤
Cnα for some constants C,α ≥ 0 (see Birgé and Massart, 2007, and references
therein).

The main drawback of penalties such as AIC or Cp is their asymptotic na-
ture (for AIC) or their dependence on some assumptions on the distribution of
data: Cp assumes the variance of Y does not depend on X . Otherwise, it has
a suboptimal performance (Arlot, 2008a). In addition to CV, resampling-based
penalties have been proposed to overcome this problem (Efron, 1983; Arlot,
2009); see Section 10.4 on this question.
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3.2. Biased estimation of the risk (κn > 1)

Several model selection procedures do not follow the unbiased risk estimation
principle. In Sections 3.2.1 and 3.2.2, we review procedures that nevertheless
satisfy (7) with lim infn→∞ κn > 1 . From the penalization point of view, such
procedures are overpenalizing.

Examples of such procedures are FPEα (Bhansali and Downham, 1977) and
the closely related GICλ (Generalized Information Criterion, Nishii, 1984; Shao,
1997) with α, λ > 2 (the unbiased risk estimation principle suggests taking
α = λ = 2), and some CV procedures, such as Leave-p -out with p/n ≥ C > 0
(see Sections 4.3.1 and 5.1).

3.2.1. Estimation

When the goal is estimation, there are two main reasons for using “biased”
model selection procedures.

First, experimental evidence show that having 1 < κn = O(1)—that is,
overpenalizing—often yields better performance when the signal-to-noise ratio
is small (see for instance Arlot, 2007, Chapter 11).

Second, unbiased risk estimation fails when the number of models Card(Mn)
grows faster than any power of n , as in complete variable selection with p
variables if p ≫ ln(n) . From the penalization point of view, Birgé and Massart
(2007) proved that the minimal amount of penalization required so that an
oracle inequality holds is much larger than penid(m) when Card(Mn) = eλn ,
λ > 0 : κn must at least be of order ln(n) . In addition to FPEα and GICλ

with suitably chosen α, λ , procedures taking the size of Mn into account were
proposed in several papers (for instance, Barron et al., 1999; Baraud, 2002;
Birgé and Massart, 2001; Sauvé, 2009).

3.2.2. Identification (κn → +∞)

Some specific model selection procedures are used for identification, like BIC
(Bayesian Information Criterion, Schwarz, 1978).

Shao (1997) showed that several procedures consistently identify the true
model in the linear regression framework, as long as they satisfy (7) with
κn → ∞ when n → +∞ . Instances of such procedures are GICλn

with
λn → +∞ , FPEαn

with αn → +∞ (Shibata, 1984), and several CV procedures
such as Leave-p -out with p = pn ∼ n . BIC is also part of this picture, since
it coincides with GICln(n) . In another paper, Shao (1996) proved that mn -out-
of-n bootstrap penalization is also model consistent as long as mn ≪ n , which
precisely means that κn → +∞ (Arlot, 2009).

Most MDL-based procedures can also be put into the category of model se-
lection procedures built for identification (see Grünwald, 2007). Let us finally
mention the Lasso (Tibshirani, 1996) and other ℓ1 penalization procedures (see
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for instance Hesterberg et al., 2008) for an appropriate choice of the regulariza-
tion parameter. They are a computationally efficient way of identifying the true
model in the context of variable selection with p variables, p ≫ n .

3.2.3. Other approaches

Structural risk minimization was introduced by Vapnik and Chervonenkis
(1974) in the context of statistical learning (see also Vapnik, 1982, 1998).
Roughly, the idea is to penalize the empirical contrast with a penalty—often
distribution-free—(over)-estimating

penid,g(m) := sup
t∈Sm

{LP ( t )− LPn
( t )} ≥ penid(m) ,

for instance using the Vapnik-Chervonenkis dimension, (global) Rademacher
complexities (Koltchinskii, 2001; Bartlett et al., 2002) or global bootstrap penal-
ties (Fromont, 2007). The recent localization approach leads to smaller upper
bounds on penid,g (for references, see the survey by Boucheron et al., 2005).

Ad hoc penalization consists in using features of the problem for building a
penalty. For instance, the penalty can be proportional to some particular norm
of ŝm , when it is known this norm should be small. This strategy is similar
to regularized learning algorithms such as the Lasso, kernel ridge regression or
spline smoothing. More generally, any penalty can be used, as long as pen(m)
is large enough to avoid overfitting, and the best choice for the final user is not
the oracle m⋆ , but more like

arg min
m∈Mn

{ℓ (s, Sm ) + pen(m)} .

Note finally that completely different approaches exist for model selection,
such as the Minimum Description Length (MDL, Rissanen, 1983), and the
Bayesian approaches (Raftery, 1995). Interested readers will find more details
on model selection procedures in the books by Burnham and Anderson (2002)
or by Massart (2007) for instance.

3.3. Where are cross-validation procedures in this picture?

The family of CV procedures, which will be described and deeply investigated
in the next sections, contains procedures in the categories of Sections 3.1, 3.2.1
and 3.2.2: they all satisfy (7) with different values of κn . Therefore, studying
the bias of CV as an estimator of the risk (as we do in Section 5.1) is crucial to
deduce the model selection performances of CV, which are detailed in Sections 6
and 7.



S. Arlot and A. Celisse/Cross-validation procedures for model selection 52

4. Cross-validation procedures

The purpose of this section is to describe the rationale behind CV and to define
the different CV procedures. Since all CV procedures are of the form (5), defining
a CV procedure amounts to specify the corresponding CV estimator of the risk
of A(Dn) = ŝA(Dn) .

4.1. Cross-validation philosophy

As noticed in the early 30s by Larson (1931), training an algorithm and evaluat-
ing its statistical performance on the same data yields an overoptimistic result.
CV was raised to fix this issue, starting from the remark that testing the output
of the algorithm on new data would yield a good estimate of its performance
(Mosteller and Tukey, 1968; Stone, 1974; Geisser, 1975).

In most real applications, only a limited amount of data is available, which
leads to the idea of splitting the data: Part of data (the training sample) is used
for training the algorithm, and the remaining data (the validation sample) are
used for evaluating the performance of the algorithm. The validation sample
can play the role of “new data” as long as data are i.i.d..

A single data split yields a validation estimate of the risk, and averaging over
several splits yields a cross-validation estimate. Various splitting strategies lead
to various CV estimates of the risk as explained in Sections 4.2 and 4.3.

The major interest of CV lies in the universality of the data splitting
heuristics. It only assumes that data are identically distributed, and training
and validation samples are independent, which can even be relaxed (see Sec-
tion 8.1). Therefore, CV can be applied to (almost) any algorithm in (almost)
any framework, such as regression (Stone, 1974; Geisser, 1975), density esti-
mation (Rudemo, 1982; Stone, 1984), and classification (Devroye and Wagner,
1979; Bartlett et al., 2002) among many others. This universality is not shared
by most other model selection procedures (see Section 3), which often are specific
of a framework and can be completely misleading in another one. For instance,
Cp (Mallows, 1973) is specific of least-squares regression.

4.2. From validation to cross-validation

In this section, the hold-out (or validation) estimator of the risk is defined,
leading to a general definition of CV.

4.2.1. Hold-out

Hold-out (Devroye and Wagner, 1979) or (simple) validation relies on a single
split of data. Formally, let I(t) be a non-empty proper subset of {1, . . . , n} , that
is, such that both I(t) and its complement I(v) =

(
I(t)

)c
= {1, . . . , n} \I(t) are
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non-empty. The hold-out estimator of the risk of A(Dn) , with training set I(t) ,
is given by

L̂HO
(
A;Dn; I

(t)
)
:=

1

nv

∑

i∈D
(v)
n

γ
(
A(D(t)

n ); ξi

)
, (9)

where D
(t)
n := (ξi)i∈I(t) is the training sample, of size nt = Card(I(t)) , D

(v)
n :=

(ξi)i∈I(v) is the validation sample, of size nv = n − nt , and I(v) is called the
validation set.

4.2.2. General definition of cross-validation

A general description of the CV strategy has been given by Geisser (1975): In
brief, CV consists in averaging several hold-out estimators of the risk corre-

sponding to different data splits. Let B ≥ 1 be an integer and I
(t)
1 , . . . , I

(t)
B a

sequence of non-empty proper subsets of {1, . . . , n} . The CV estimator of the

risk of A(Dn) , with training sets (I
(t)
j )1≤j≤B , is defined by

L̂CV

(
A;Dn;

(
I
(t)
j

)
1≤j≤B

)
:=

1

B

B∑

j=1

L̂HO
(
A;Dn; I

(t)
j

)
. (10)

All usual CV estimators of the risk are of the form (10). Each one is uniquely

determined by (I
(t)
j )1≤j≤B , that is, the choice of the splitting scheme.

Note that in model selection for identification, an alternative definition of
CV was proposed by Yang (2006, 2007), called CV with voting (CV-v). When
two algorithms A1 and A2 are compared, A1 is selected by CV-v if and only if

L̂HO(A1;Dn; I
(t)
j ) < L̂HO(A2;Dn; I

(t)
j ) for a majority of the splits j = 1, . . . , B .

By contrast, CV procedures of the form (10) can be called “CV with averaging”
(CV-a), since the estimates of the risk are averaged before their comparison.

4.3. Classical examples

Most classical CV estimators split the data with a fixed size nt of the training set,

that is, Card(I
(t)
j ) ≈ nt for every j . The question of choosing I(t) —in particular

its cardinality nt —is discussed in the rest of this survey. In this subsection, two
main categories of splitting schemes are distinguished, given nt : exhaustive data
splitting, that is considering all training sets of size nt , and partial data splitting.

4.3.1. Exhaustive data splitting

Leave-one-out (LOO, Stone, 1974; Allen, 1974; Geisser, 1975) is the most
classical exhaustive CV procedure. It corresponds to the choice nt = n−1 : Each
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data point is successively “left out” from the sample and used for validation.

Formally, LOO is defined by (10) with B = n and I
(t)
j = { j }c for j = 1, . . . , n :

L̂LOO (A;Dn ) =
1

n

n∑

j=1

γ
(
A
(
D(−j)

n

)
; ξj

)
(11)

where D
(−j)
n = (ξi )i6=j . The name LOO can be traced back to papers by

Picard and Cook (1984) and by Breiman and Spector (1992); LOO has several
other names in the literature, such as delete-one CV (Li, 1987), ordinary CV
(Stone, 1974; Burman, 1989), or simply CV (Efron, 1983; Li, 1987).

Leave-p-out (LPO, Shao, 1993) with p ∈ {1, . . . , n− 1} is the exhaustive
CV with nt = n − p : Every possible subset of p data is successively “left out”
of the sample and used for validation. Therefore, LPO is defined by (10) with

B =
(
n
p

)
, and (I

(t)
j )1≤j≤B are all subsets of {1, . . . , n} of size n − p . LPO is

also called delete-p CV or delete-p multifold CV (Zhang, 1993). Note that LPO
with p = 1 is LOO.

4.3.2. Partial data splitting

Considering
(
n
p

)
training sets can be computationally intractable, even when p

is small. Partial data splitting schemes have been proposed as alternatives.

V-fold CV (VFCV) with V ∈ {1, . . . , n} was introduced by Geisser (1975) as
an alternative to the computationally expensive LOO (see also Breiman et al.,
1984, for instance). VFCV relies on a preliminary partitioning of data into V
subsamples of approximately equal cardinality n/V . Each subsample succes-
sively plays the role of validation sample. Formally, let A1, . . . , AV be some
partition of {1, . . . , n} with ∀j , Card (Aj ) ≈ n/V . Then, the VFCV estimator

of the risk of A(Dn) is given by (10) with B = V and I
(t)
j = Ac

j for j = 1, . . . , B :

L̂VF
(
A;Dn; (Aj )1≤j≤V

)
=

1

V

V∑

j=1


 1

Card(Aj)

∑

i∈Aj

γ
(
ŝ
(
D(−Aj)

n

)
; ξi

)

 (12)

where D
(−Aj)
n = (ξi )i∈Ac

j
. The computational cost of VFCV is only V times

that of training A with n − n/V points; it is much less than LOO or LPO if
V ≪ n . Note that VFCV with V = n is LOO.

Balanced Incomplete CV (BICV, Shao, 1993) can be seen as an alternative
to VFCV when the training sample size nt is small. Indeed, BICV is defined
by (10) with training sets (Ac )A∈T , where T is a balanced incomplete block
design (BIBD, John, 1971), that is, a collection of B > 0 subsets of {1, . . . , n}
of size nv = n− nt such that:
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1. Card {A ∈ T s.t. k ∈ A} does not depend on k ∈ {1, . . . , n} .
2. Card {A ∈ T s.t. k, ℓ ∈ A} does not depend on k 6= ℓ ∈ {1, . . . , n} .
The idea of BICV is to give to each data point (and each pair of data points)

the same role in the training and validation tasks. Note that VFCV relies on a
similar idea, since the set of training sample indices used by VFCV satisfies the
first property and almost satisfies the second one.

Repeated learning-testing (RLT) was introduced by Breiman et al. (1984)
and further studied by Burman (1989) and Zhang (1993). The RLT estimator of

the risk of A is defined by (10) with any B > 0 , and any sequence (I
(t)
j )1≤j≤B

of different subsets of {1, . . . , n} , chosen randomly, without replacement, and
independently of data. RLT can be seen as an approximation to LPO with
p = n− nt , with which it coincides when B =

(
n
p

)
.

Monte-Carlo CV (MCCV, Picard and Cook, 1984) is very close to RLT.
Unlike RLT, MCCV allows the same split to be chosen several times.

4.3.3. Other cross-validation-like risk estimators

Several procedures have been designed to fix possible drawbacks of CV.

Bias-corrected versions of VFCV and RLT have been proposed by Burman
(1989, 1990). A closely related penalization procedure, called V -fold penaliza-
tion, has been defined by Arlot (2008b); see Section 5.1.2 for details.

Generalized CV (GCV, Craven and Wahba, 1979) was introduced in least-
squares regression, as a rotation-invariant version of LOO, for estimating the
risk of a linear estimator ŝ(Dn) = MY , where Y = (Yi)1≤i≤n ∈ R

n , and M is
an n× n matrix independent from Y :

critGCV(M,Y) :=
n−1 ‖Y −MY‖2

(1− n−1 tr(M) )
2 , where ∀t ∈ R

n, ‖t‖2 =
n∑

i=1

t2i .

GCV is actually closer to CL (i.e., Cp generalized to linear estimators; Mallows,
1973) than to CV, since GCV can be seen as an approximation to CL with a
particular estimator of variance (Efron, 1986). The efficiency of GCV has been
proved in various frameworks (Li, 1985, 1987; Cao and Golubev, 2006).

Analytic Approximation. APCV is an analytic approximation to LPO with
p ∼ n , used by Shao (1993) for selecting among linear models.

LOO bootstrap and .632 bootstrap. The bootstrap is often used for sta-
bilizing an algorithm, replacing A(Dn) by the average of A(D⋆

n) over several
bootstrap resamples D⋆

n . This idea was applied by Efron (1983) to the LOO
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estimator of the risk, leading to LOO bootstrap. Noticing the bias of LOO boot-
strap, Efron (1983) proposed a heuristic argument leading to the .632 boot-
strap estimator, later modified into .632+ bootstrap by Efron and Tibshirani
(1997). However, these procedures have nearly no theoretical justification and
only empirical studies have supported the good behaviour of .632+ bootstrap
(Efron and Tibshirani, 1997; Molinaro et al., 2005).

4.4. Historical remarks

Simple validation was the first CV-like procedure. It was introduced in the
psychology area (Larson, 1931) from the need for a reliable alternative to the
resubstitution error, as illustrated by Anderson et al. (1972). It was used by
Herzberg (1969) for assessing the quality of predictors. The problem of choosing
the training set was first considered by Stone (1974), where “controllable” and
“uncontrollable” data splits are distinguished.

A primitive LOO procedure was used by Hills (1966) and Lachenbruch and
Mickey (1968) for evaluating the error rate of a prediction rule, and a primitive
formulation of LOO was proposed by Mosteller and Tukey (1968). Nevertheless,
LOO was actually introduced independently by Stone (1974), by Allen (1974),
and by Geisser (1975). The relation between LOO and jackknife (Quenouille,
1949), which both rely on the idea of removing one observation from the sample,
has been discussed by Stone (1974) for instance.

Hold-out and CV were originally used only for estimating the risk of an
algorithm. The idea of using CV for model selection arose in the discussion of
a paper by Efron and Morris (1973) and in a paper by Geisser (1974). LOO, as
a model selection procedure, was first studied by Stone (1974) who proposed to
use LOO again for estimating the risk of the selected model.

5. Statistical properties of cross-validation estimators of the risk

As noticed in Section 3, understanding the behaviour of CV for model
selection—which is the purpose of this survey—requires to analyze the per-
formances of CV as an estimator of the risk of a single algorithm, at least in
terms of bias and variance.

5.1. Bias

Analyzing the bias of CV enables to minimize or to correct this bias (following
Section 3.1); alternatively, when some bias is needed (see Section 3.2), such an
analysis allows to tune the bias of CV as desired.
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5.1.1. Theoretical assessment of bias

The independence of training and validation samples implies that for every
algorithm A and any I(t) ⊂ {1, . . . , n} with cardinality nt ,

E

[
L̂HO

(
A;Dn; I

(t)
)]

= E

[
γ
(
A
(
D(t)

n

)
; ξ

)]
= E [LP (A (Dnt

) ) ] .

Therefore, if Card(I
(t)
j ) = nt for j = 1, . . . , B , the expectation of the CV esti-

mator of the risk only depends on nt :

E

[
L̂CV

(
A;Dn;

(
I
(t)
j

)
1≤j≤B

)]
= E [LP (A (Dnt

) ) ] . (13)

According to (13), the bias of the CV estimator of the risk ofA(Dn) is the differ-
ence between the risks ofA respectively trained with nt and with n observations.
Since nt < n , the bias of CV is usually nonnegative and tends to decrease when
nt increases. This holds true when the risk of A(Dn) is a decreasing function
of n , that is, when A is a smart rule. Note however that a classical algorithm
such as 1-nearest-neighbour in classification is not smart (Devroye et al., 1996,
Section 6.8).

More precisely, (13) has led to several results on the bias of CV, which can be
split into three main categories: asymptotic results (A is fixed and the sample
size n tends to infinity), non-asymptotic results (where A is allowed to make
use of a number of parameters growing with n), and empirical results. They are
organized below by statistical framework.

Regression. The general behaviour of the bias of CV (positive, decreasing
with nt) is confirmed by several papers. For LPO, non-asymptotic expressions
of the bias were proved by Celisse (2008b) for projection and kernel estimators,
and by Arlot and Celisse (2009) for regressograms when the design is fixed. For
VFCV and RLT, an asymptotic expansion of the bias was yielded by Burman
(1989) for least squares in linear regression, and extended to spline smoothing
(Burman, 1990). Note that Efron (1986) proved non-asymptotic analytic expres-
sions of the expectations of the LOO and GCV estimators in regression with
binary data (see also Efron, 1983).

Density estimation shows a similar picture. Non-asymptotic expressions
for the bias of LPO estimators for kernel and projection estimators with the
quadratic risk were proved by Celisse and Robin (2008) and by Celisse (2008a).
Asymptotic expansions of the bias of the LOO estimator for histograms and ker-
nel estimators were previously derived by Rudemo (1982); see Bowman (1984)
for simulations. Hall (1987) provided similar results with the log-likelihood con-
trast for kernel estimators; he related the performance of LOO to the interaction
between the kernel and the tails of the target density s .
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Classification. For discriminating between two populations with shifted dis-
tributions, Davison and Hall (1992) compared the asymptotical bias of LOO
and bootstrap. LOO is less biased when the shift size is n−1/2 : As n tends to
infinity, the bias of LOO stays of order n−1 , whereas that of bootstrap worsens
to the order n−1/2 . On synthetic and real data, Molinaro et al. (2005) compared
the bias of LOO, VFCV and .632+ bootstrap: The bias decreases with nt , and
is generally minimal for LOO. Nevertheless, the 10-fold CV bias is nearly min-
imal uniformly over their experiments. Furthermore, .632+ bootstrap exhibits
the smallest bias for moderate sample sizes and small signal-to-noise ratios, but
a much larger bias otherwise.

CV-calibrated algorithms. When a family of algorithms (Aλ )λ∈Λ is given,

and λ̂ is chosen by minimizing L̂CV(Aλ;Dn) over λ , L̂CV(Aλ̂;Dn) is bi-
ased for estimating the risk of Aλ̂(Dn) (see Stone (1974) for the LOO, and
Jonathan et al. (2000) for VFCV). This bias is of different nature compared to

the previous frameworks. Indeed, L̂CV(Aλ̂, Dn) is biased for the same reason
as the empirical contrast LPn

( ŝ (Dn) ) suffers some optimism as an estimator
of the loss of ŝ (Dn) . Estimating the risk of Aλ̂(Dn) with CV can be done by
considering the full algorithm A′ : Dn 7→ Aλ̂(Dn)

(Dn) , and then computing

L̂CV (A′;Dn ) . This procedure is called “double cross” by Stone (1974).

5.1.2. Bias correction

An alternative to choosing the CV estimator with the smallest bias is to correct
this bias. Burman (1989, 1990) proposed a corrected VFCV estimator

L̂corrVF(A;Dn) = L̂VF (A;Dn ) + LPn
(A(Dn) )−

1

V

V∑

j=1

LPn

(
A
(
D(−Aj)

n

))
.

A similar correction holds for RLT. Both estimators have been proved to be
asymptotically unbiased for least squares in linear regression.

When the Ajs have the same size n/V , the corrected VFCV criterion is equal
to the sum of the empirical contrast and the V -fold penalty (Arlot, 2008b),
defined by

penVF(A;Dn) =
V − 1

V

V∑

j=1

[
LPn

(
A(D(−Aj)

n )
)
− L

P
(−Aj )
n

(
A(D(−Aj)

n )
)]

.

The V -fold penalized criterion was proved by Arlot (2008b) to be (almost)
unbiased in the non-asymptotic framework for regressograms.

5.2. Variance

With training sets of the same size nt , CV estimators have the same bias, but

still behave differently. Their variance var(L̂CV(A;Dn; (I
(t)
j )1≤j≤B)) captures

most of the information to explain these differences.
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5.2.1. Variability factors

Assume that Card(I
(t)
j ) = nt for every j . The variance of CV results from the

combination of several factors, in particular (nt, nv) and B .

Influence of (nt, nv) . Let us consider the hold-out estimator of the risk.
Following Nadeau and Bengio (2003),

var
[
L̂HO

(
A;Dn; I

(t)
)]

= E

[
var

(
L
P

(v)
n

(
A(D(t)

n )
) ∣∣∣ D(t)

n

)]
+ var [LP (A(Dnt

) ) ]

=
1

nv
E

[
var

(
γ ( ŝ , ξ ) | ŝ = A(D(t)

n )
)]

+ var [LP (A(Dnt
) ) ] . (14)

Assuming nt is fixed, the first term is proportional to 1/nv . Therefore, more data

for validation decreases the variance of L̂HO , because it yields a better estimator

of LP (A(D
(t)
n )) . Both terms show that the variance of L̂HO also depends on the

distribution of LP (A(D
(t)
n )) around its expectation; in particular, it strongly

depends on the stability of A .

Stability and variance. When A is unstable, L̂LOO (A ) has often been
pointed out as a variable estimator (Section 7.10, Hastie et al., 2009; Breiman,
1996). Conversely, Molinaro et al. (2005) noticed, from a simulation experiment,
that this trend disappears when A is stable. The relation between the stabil-
ity of A and the variance of L̂CV (A ) was stressed by Devroye and Wagner

(1979) in classification, through upper bounds on the variance of L̂LOO (A ) ;
see also Bousquet and Elisseff (2002) for extended results in the regression set-
ting. Note that various techniques have been proposed for reducing the variance
of L̂LOO (A ) , see Section 4.3.3.

Partial splitting and variance. When (nt, nv) is fixed, the variance of CV
tends to be larger for partial data splitting methods. Choosing B <

(
n
nt

)
subsets

(I
(t)
j )1≤j≤B of {1, . . . , n} , usually randomly, induces an additional variability

compared to L̂LPO with nt = n − p . The variability due to the choice of the
data splits is maximal for hold-out, and minimal (null) for exhaustive splitting
schemes like LOO (if nt = n − 1) and LPO (with p = n − nt). With MCCV,

this variability decreases like B−1 since the I
(t)
j are chosen independently. The

dependence on B is different for other CV estimators, such as RLT or VFCV,

because the I
(t)
j s are not independent.

Note that the dependence of var(L̂VF(A)) on V is more complex to evaluate,
since B , nt , and nv simultaneously vary with V . Nevertheless, a non-asymptotic
theoretical quantification of this additional variability of VFCV has been ob-
tained by Celisse and Robin (2008) in the density estimation framework (see
also empirical considerations by Jonathan et al., 2000).
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5.2.2. Theoretical assessment of variance

Precisely understanding how var(L̂CV(A)) depends on the splitting scheme is
complex in general, since nt + nv = n , and the number of splits B is generally
linked with nt (for instance, for LPO and VFCV). Furthermore, the variance of
CV strongly depends on the framework and on the stability of A . Therefore,
radically different results have been obtained in different frameworks, in partic-
ular on the value of V for which the VFCV estimator has a minimal variance
(Burman, 1989; Hastie et al., 2009, Section 7.10). Despite these difficulties, the
variance of several CV estimators has been assessed in various frameworks, as
detailed below.

Regression. In a simple linear regression setting with homoscedastic data,
Burman (1989) proved an asymptotic expansion of the variance of VFCV

var
(
L̂VF(A)

)
=

2σ2

n
+

4σ4

n2

[
4 +

4

V − 1
+

2

(V − 1)2
+

1

(V − 1)3

]
+ o

(
n−2

)
.

Asymptotically, the variance decreases with V , implying that LOO asymptot-
ically has the minimal variance among VFCV estimators. Similar results have
been derived for RLT as well.

Non-asymptotic closed-form formulas of the variance of the LPO estimator
have been proved by Celisse (2008b) in regression, for projection and kernel es-
timators. On the variance of RLT in the regression setting, see Girard (1998) for
Nadaraya-Watson estimators, as well as Nadeau and Bengio (2003) for several
learning algorithms.

Another argument for the small variance of LOO in regression was pro-
vided by Davies et al. (2005), with the log-likelihood contrast: assuming a well-
specified parametric model is available, the LOO estimator of the risk is the
minimum variance unbiased estimator of its expectation.

Density estimation. Closed-form formulas of the variance of the LPO risk
estimator have been proved by Celisse and Robin (2008) and by Celisse (2008a).

In particular, the dependence of the variance of L̂LPO on p has been explicitly
quantified for histograms and kernel estimators.

Classification. For discriminating between two populations with shifted dis-
tributions, Davison and Hall (1992) showed that the gap between asymp-
totic variances of LOO and bootstrap becomes larger when data are noisier.
Nadeau and Bengio (2003) made non-asymptotic computations and simulation
experiments with several learning algorithms. Hastie et al. (2009) empirically
showed that VFCV has a minimal variance for some 2 < V < n , whereas LOO
usually has a large variance. Simulation experiments by Molinaro et al. (2005)
suggest this fact mostly depends on the stability of the considered algorithm.
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5.2.3. Variance estimation

There is no universal—valid under all distributions—unbiased estimator of the
variance of RLT (Nadeau and Bengio, 2003) and VFCV (Bengio and Grand-
valet, 2004). In particular, Bengio and Grandvalet (2004) recommend the use
of variance estimators taking into account the correlation structure between test
errors.

Despite these negative results, (biased) estimators of the variance of L̂CV in
regression and classification have been proposed and assessed by Nadeau and
Bengio (2003), Bengio and Grandvalet (2004), and Markatou et al. (2005). In
the density estimation framework, Celisse and Robin (2008) proposed an esti-
mator of the variance of the LPO risk estimator based on closed-form formulas
(see also Celisse (2008a) for extended results to projection estimators).

6. Cross-validation for efficient model selection

This section tackles the properties of CV procedures for model selection when
the goal is estimation (see Section 2.2).

6.1. Risk estimation and model selection

As shown in Section 3, the model selection performances of CV mostly depend
on two factors. The first one is the bias of CV as an estimator of the risk;
in particular, when the collection of models is not too large, minimizing an
unbiased estimator of the risk leads to an efficient model selection procedure.
The second factor, usually less important—at least asymptotically—, is the
variance of CV as an estimator of the risk. One could conclude that the best CV
procedure for estimation is the one with the smallest bias and variance (at least
asymptotically), for instance, LOO in the least-squares regression framework
(Burman, 1989).

Nevertheless, the best CV estimator of the risk is not necessarily the best
model selection procedure. According to Breiman and Spector (1992) the best
risk estimator is LOO, whereas 10-fold CV is more accurate for model selection.
Such a difference mostly comes from three reasons. First, the asymptotic frame-
work (A fixed, n → ∞) may not apply to models close to the oracle. Second, as
explained in Section 3.2, estimating the risk of each model with some bias can
compensate the effect of a large variance, for instance when the signal-to-noise
ratio of data is small. Third, what really matters in model selection is that

sign (crit(m1)− crit(m2) ) = sign (LP ( ŝm1(Dn) )− LP ( ŝm2(Dn) ) )

with the largest probability, for all m1,m2 “close to” m⋆(Dn) .
Therefore, specific studies are required to evaluate the performances of CV

procedures in terms of model selection efficiency.
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6.2. The big picture

In several frameworks such as least-squares regression on linear models, the
estimation error depends on the sample size only through a factor n−1 . Then,
Section 5.1 shows that CV satisfies (7) with κn = n/nt . Thus, according to
Section 3, the efficiency of CV mostly depends on the asymptotics of nt/n :

• When nt ∼ n , CV is asymptotically equivalent to Mallows’ Cp , hence
asymptotically optimal.

• When nt ∼ λn with λ ∈ (0, 1) , CV is asymptotically equivalent to GICκ

with κ = 1 + λ−1 , which is defined as Cp with a penalty multiplied by
κ/2 . Such CV procedures are overpenalizing by a factor (1+λ)/(2λ) > 1 .

The above results have been proved in linear regression by Shao (1997) for LPO
(see also Li (1987) for LOO, and Zhang (1993) for RLT when B ≫ n2 .

In a general statistical framework, the model selection performance of
several CV-based procedures applied to minimum contrast estimation algo-
rithms was studied in a series of papers (van der Laan and Dudoit, 2003;
van der Laan et al., 2004, 2006; van der Vaart et al., 2006). An oracle-type in-
equality is proved, showing that up to a multiplying factor Cn → 1 , the risk
of the algorithm selected by CV is smaller than the risk of the oracle with nt

observations m⋆(Dnt
) . In most frameworks, this implies the asymptotic opti-

mality of CV as long as nt/n = O (1) . When nt ∼ λn with λ ∈ (0, 1) , this
generalizes Shao’s results.

6.3. Results in various frameworks

This section gathers results about model selection performances of CV when
the goal is estimation, including the problem of bandwidth choice for kernel
estimators.

Regression. First, Section 6.2 suggests the suboptimality of CV when nt

is not asymptotically equivalent to n , which has been settled with regresso-
grams by Arlot (2008b) for VFCV when V = O(1) . Note however that the
best V for VFCV is not always the largest one (see Breiman and Spector, 1992;
Herzberg and Tsukanov, 1986). Breiman (1996) proposed to explain this phe-
nomenon by relating the stability of the candidate algorithms to the model
selection performance of LOO in various regression frameworks.

Second, the “universality” of CV has been confirmed by showing that it nat-
urally adapts to heteroscedasticity of data when selecting among regressograms
(Arlot, 2008b). Despite its suboptimality, VFCV with V = O(1) satisfies an
oracle inequality with constant C > 1 . V -fold penalization (which often coin-
cides with corrected VFCV, see Section 5.1.2) satisfies an oracle inequality with
Cn → 1 as n → +∞ , both when V = O(1) (Arlot, 2008b) and when V = n
(Arlot, 2009). Note that n-fold penalization is very close to LOO, suggesting
that LOO is also asymptotically optimal with heteroscedastic data. Simulation
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experiments in the context of change-point detection confirmed that CV adapts
to heteroscedasticity, unlike usual model selection procedures in the same frame-
work (Arlot and Celisse, 2009).

The performances of CV have also been assessed for other kinds of statistical
algorithms in regression. For choosing the number of knots in spline smooth-
ing, corrected versions of VFCV and RLT are asymptotically optimal provided
n/(Bnv) = O(1) (Burman, 1990). Härdle et al. (1988) and Girard (1998) com-
pared several CV methods to GCV for choosing the bandwidth of kernel estima-
tors; GCV and related criteria are computationally more efficient than MCCV
or RLT, for a similar statistical performance.

Finally, note that asymptotic results about CV in regression have been proved
by Györfi et al. (2002). An oracle inequality, with constant C > 1 , has been
derived by Wegkamp (2003) for hold-out with least squares.

Density estimation. CV performs as in regression for selecting among
least-squares density estimators (van der Laan et al., 2004). In particular, non-
asymptotic oracle inequalities with constant C > 1 have been proved by Celisse
(2008a,b) for the LPO when p/n ∈ [a, b] , for some 0 < a < b < 1 .

The performance of CV for selecting the bandwidth of kernel density es-
timators has been studied in several papers. With the least-squares contrast,
the efficiency of LOO was proved by Hall (1983) and generalized to the multi-
variate framework by Stone (1984). An oracle inequality, asymptotically lead-
ing to efficiency, was proved by Dalelane (2005). With the Kullback-Leibler
divergence, CV can suffer from troubles in performing model selection (see also
Schuster and Gregory, 1981; Chow et al., 1987). The influence of the tails of the
target s was studied by Hall (1987), who gave conditions under which CV is
efficient and the chosen bandwidth is optimal at first-order.

Classification. In binary classification with piecewise constant classifiers,
Kearns et al. (1997) proved an oracle inequality for hold-out. Empirical experi-
ments show that hold-out yields (almost) always the best performance compared
to deterministic penalties (Kearns et al., 1997), but is less accurate than ran-
dom penalties, such as Rademacher complexity or maximal discrepancy, due to
large variability (Bartlett et al., 2002).

Nevertheless, hold-out still enjoys adaptivity properties: It was proved to
adapt to the margin condition by Blanchard and Massart (2006), a property
nearly unachievable with usual model selection procedures (see also Massart,
2007, Section 8.5).

The performance of LOO in binary classification was related to the stability
of the candidate algorithms by Kearns and Ron (1999); they proved oracle-
type inequalities, called “sanity-check bounds”, which describe the worst-case
performance of LOO (see also Bousquet and Elisseff, 2002).

For comparisons of CV and bootstrap-based CV in classification, see papers
by Efron (1986) and by Efron and Tibshirani (1997).
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7. Cross-validation for identification

This section tackles the properties of CV when the goal is identification, as
defined in Section 2.3.

7.1. General conditions towards model consistency

The use of CV for identification may seem strange, since the pioneering LOO
procedure is closely related to unbiased risk estimation, which is only efficient
when the goal is estimation. Furthermore, estimation and identification are
somehow contradictory goals, see Section 2.4.

This intuition was confirmed, for instance, by Shao (1993), who proved that
several CV methods are inconsistent for variable selection in linear regression:
LOO, LPO, and BICV when lim infn→∞(nt/n) > 0 . These CV methods asymp-
totically select all the true variables, but the probability that they select too
many variables does not tend to zero. More generally, Shao (1997) proved that
CV procedures asymptotically behave like GICλn

with λn = 1 + n/nt , which
leads to inconsistency if n/nt = O(1) .

With ordered variable selection in linear regression, Zhang (1993) com-
puted the asymptotic value of P (m̂(Dn) = m0 ) , and numerically compared
several CV procedures in a specific example. For LPO with p/n → λ ∈ (0, 1)
as n tends to +∞ , P (m̂(Dn) = m0 ) increases with λ . However for VFCV,
P (m̂(Dn) = m0 ) increases with V and is therefore maximal for the LOO, which
is the worst case of LPO: The variability induced by the V splits seems more
important here than the bias of VFCV. Besides, P (m̂(Dn) = m0 ) is almost
constant between V = 10 and V = n , so that taking V > 10 is not advised for
computational reasons.

As in Section 6.2, let us assume that CV satisfies (7) with κn = n/nt , as
in several frameworks. Then, the results of Section 3.2.2 suggest that model
consistency can be obtained for CV if nt ≪ n . This was theoretically confirmed
by Shao (1993, 1997) for the variable selection problem in linear regression: RLT,
BICV (defined in Section 4.3.2), and LPO with p = pn ∼ n and n− pn → +∞
lead to model consistency.

Therefore, when the goal is to identify the true model, a larger proportion of
data should be put in the validation set. This phenomenon is somewhat related
to the cross-validation paradox (Yang, 2006).

7.2. Refined analysis for the algorithm selection problem

Let us consider the algorithm selection problem: Identifying the true model is
then replaced by identifying the algorithm with the fastest convergence rate.
Yang (2006, 2007) considered this problem for two (or more generally any finite
number of) candidate algorithms. Note that Stone (1977) also considered a few
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specific examples of this problem, and showed that LOO can be inconsistent for
choosing the best among two “good” estimators.

The conclusion of Yang’s papers is that the sufficient condition on nt for the
model consistency of CV strongly depends on the convergence rates (rn,i )i=1,2
of the two candidate algorithms. Intuitively, consistency holds as long as the

uncertainty of each estimate of the risk (roughly proportional to n
−1/2
v ) is negli-

gible relative to the risk gap |rnt,1 − rnt,2| . This condition holds either when at
least one of the algorithms converges at a non-parametric rate, or when nt ≪ n ,
which artificially widens the risk gap. For instance, in the regression framework,
if the risk of ŝi is measured by E ‖ŝi − s‖2 , Yang (2007) proved that hold-out,
VFCV, RLT, and LPO with voting (CV-v, see Section 4.2.2) are consistent in
selection if

nv, nt → +∞ and
√
nv max

i=1,2
rnt,i → +∞ , (15)

under some conditions on ‖ŝi − s‖p for p = 2, 4,∞ (see also Yang (2006) for
similar results in classification).

The sufficient condition (15) can be simplified depending on maxi rn,i . On the
one hand, if maxi rn,i ∝ n−1/2 , then (15) holds when nv ≫ nt → ∞ . Therefore,
the cross-validation paradox holds for comparing algorithms converging at the
parametric rate (model selection when a true model exists being only a particu-
lar case). Note that possibly stronger conditions can be required in classification
where algorithms can converge at fast rates, between n−1 and n−1/2 .

On the other hand, (15) is implied by nt/nv = O(1) , when maxi rn,i ≫
n−1/2 . It even allows nt ∼ n (under some conditions). Therefore, non-parametric
algorithms can be compared by more usual CV procedures (nt > n/2), even if
LOO is still excluded by conditions (15).

Empirical results in the same direction were proved by Dietterich (1998)
and by Alpaydin (1999), leading to the advice that V = 2 is the best choice
when VFCV is used for comparing two learning procedures; note however that
nt = n − n/V ≥ n/2 for VFCV, so that (15) does not hold for any V if
maxi rn,i = O(n−1/2) . See also the results by Nadeau and Bengio (2003) about
CV considered as a testing procedure comparing two candidate algorithms.

Note that according to simulation experiments, CV with averaging (that is,
CV as usual) and CV with voting are equivalent at first but not at second order,
so that they can differ when n is small (Yang, 2007).

8. Specificities of some frameworks

This section tackles frameworks where modifying CV can be necessary, in par-
ticular because the main assumptions of the CV heuristics are not satisfied.

8.1. Time series and dependent observations

When data are dependent, all previous analyses break down since the valida-
tion and training samples are no longer independent. Therefore, CV must be
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modified. We refer to the review by Opsomer et al. (2001) on model selection
in non-parametric regression with dependent data.

Let us consider the statistical framework of Section 1 with ξ1, . . . , ξn iden-
tically distributed but not independent. When data are positively correlated,
Hart and Wehrly (1986) proved that CV overfits for choosing the bandwidth of
a kernel estimator in regression (see also Chu and Marron, 1991; Opsomer et al.,
2001).

The main approach used in the literature for solving this issue is to choose I(t)

and I(v) such that mini∈I(t), j∈I(v) |i− j| > h > 0 , where h controls the distance
from which observations ξi and ξj are independent. For instance, LOO can be
changed into taking I(v) = {J } and I(t) = {1, . . . , J − h− 1, J + h+ 1, . . . , n} ,
where J is uniformly chosen in {1, . . . , n} . This method is called “modified CV”
by Chu and Marron (1991) in the context of bandwidth selection. For short
range dependences, ξi is almost independent from ξj when |i− j| > h is large
enough, so that (ξj )j∈I(t) is almost independent from (ξj )j∈I(v) .

Several asymptotic optimality results have been proved on modified CV, for
instance by Hart and Vieu (1990) for bandwidth choice in kernel density estima-
tion, when data are α-mixing and h = hn → ∞ “not too fast”. Note that mod-
ified CV also enjoys some asymptotic optimality results with long-range depen-
dences, as proved by Hall et al. (1995). Alternatives to modified CV have been
proposed in various frameworks by Burman et al. (1994), by Burman and Nolan
(1992), by Chu and Marron (1991) and by Hart (1994). Nevertheless, CV with-
out modification was proved to be asymptotically optimal when ξ1, . . . , ξn is a
stationary Markov process in a specific framework (Burman and Nolan, 1992).

8.2. Large number of models

The unbiased risk estimation principle (see Section 3.1) is known to fail when
the number of models grows exponentially with n (Birgé and Massart, 2007).
Therefore, the analysis of Section 6 is no longer valid, and nt must be carefully
chosen for avoiding overfitting (see Celisse, 2008b, Chapter 6).

For least-squares regression with homoscedastic data, Wegkamp (2003) pro-
posed to add a penalty term to the hold-out estimator to penalize for the num-
ber of models. The resulting procedure satisfies an oracle inequality with leading
constant C > 1 .

Another general approach was proposed by Arlot and Celisse (2009) in the
context of multiple change-point detection. The idea is to perform model se-
lection in two steps: First, gather the models (Sm )m∈Mn

into meta-models

(S̃D)D∈Dn
, where Dn denotes a set of indices such that Card(Dn) grows at

most polynomially with n . Inside each meta-model S̃D =
⋃

m∈Mn(D) Sm , ŝD is
chosen from data by optimizing a given criterion, for instance the empirical con-
trast LPn

( t ) . Second, CV is used for choosing among ( ŝD )D∈Dn
. Simulation

experiments show this simple trick automatically takes into account the cardi-
nality of Mn , even when data are heteroscedastic, unlike other model selection
procedures built for exponential collections of models.
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8.3. Robustness to outliers

In presence of outliers in regression, Leung (2005) studied how CV must be
modified to get both asymptotic efficiency and a consistent bandwidth estimator
(see also Leung et al., 1993). Two changes are possible to achieve robustness:
choosing a robust regressor, or a robust loss function. In presence of outliers,
CV with a non-robust loss function has been shown to fail by Härdle (1984).

Leung (2005) described a CV procedure based on robust losses like L1 and
Huber’s (Huber, 1964) ones. The same strategy remains applicable to other
setups like linear models (Ronchetti et al., 1997).

8.4. Density estimation

Hall et al. (1992) defined the “smoothed CV”, which consists in pre-smoothing
the data before using CV, an idea related to the smoothed bootstrap. Under
various smoothness conditions on the density, this procedure yields excellent
asymptotic model selection performances.

When the goal is to estimate the density at one point (and not globally),
Hall and Schucany (1989) proposed a local version of CV and proved its asymp-
totic optimality.

9. Closed-form formulas and fast computation

Resampling strategies, like CV, are known to be time consuming. The naive
implementation of CV with B data splits has a computational complexity of B
times that of training each algorithmA . This can be prohibitive, even for rather
small B (say, B = 10), depending on the problem. Nevertheless, closed-form
formulas for CV estimators of the risk can be obtained in several frameworks,
which greatly decreases the computational cost of CV.

In density estimation, closed-form formulas have been originally derived by
Rudemo (1982) and by Bowman (1984) for the LOO risk estimator of histograms
and kernel estimators. These results have been extended by Celisse and Robin
(2008) to the LPO risk with the quadratic loss. Similar results are available for
projection estimators as settled by Celisse (2008a).

For least squares in linear regression, Zhang (1993) proved a closed-form
formula for the LOO estimator of the risk. See Wahba (1975, 1977) and
Craven and Wahba (1979) for similar results in the spline smoothing context.
These papers led to the definition of GCV (Section 4.3.3) and related procedures,
which are often used because of their small computational cost, as emphasized
by Girard (1998).

Closed-form formulas for the LPO estimator are also given by Celisse (2008b)
in regression for kernel and projection estimators.

When no closed-form formula can be proved, some efficient algorithms avoid

recomputing L̂HO(A;Dn; I
(t)
j ) from scratch for each data split I

(t)
j . Such algo-

rithms rely on updating formulas like the ones by Ripley (1996) for LOO in
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linear and quadratic discriminant analysis. Note that very similar formulas are
also available for LOO and the k-nearest neighbours algorithm in classification
(Daudin and Mary-Huard, 2008).

When CV is used for selecting among regressograms, an important property
of the CV estimators of the risk (computed thanks to a closed-form formula
or not) is their “additivity”: For a regressogram associated with a partition
(Iλ)λ∈Λm

of X , any CV estimator defined by (10) is a sum over λ ∈ Λm of
terms which only depend on observations (Xi, Yi) such that Xi ∈ Iλ . Therefore,
dynamic programming (Bellman and Dreyfus, 1962) can be used for minimizing

L̂CV over the set of all partitions of X with a given number of pieces, a strategy
successfully applied by Arlot and Celisse (2009) for change-point detection.

10. Conclusion: which cross-validation method for which problem?

This conclusion collects a few guidelines to help CV users interpreting the results
of CV, and appropriately using CV in each specific setting.

10.1. The big picture

Drawing a general conclusion on CV is nearly an impossible task because of
the variety of frameworks. Nevertheless, we can still point out the three main
criteria to take into account for choosing a CV procedure for a particular model
selection problem:

• Bias: CV roughly estimates the risk of an algorithm trained with a sample
size nt < n (see Section 5.1). Usually, this implies that CV overestimates
the estimation error compared to the approximation error in decomposi-
tion (2) with sample size n .
When the goal is estimation and the signal-to-noise ratio (SNR) is large,
the smallest bias usually is the best, which is obtained by taking nt ∼ n .
Otherwise, CV can be asymptotically suboptimal.
Nevertheless, when the goal is estimation and the SNR is small, keeping
a small upward bias for the estimation error often improves the perfor-
mance, which is obtained by taking nt ∼ κn with κ ∈ (0, 1) (Section 6).
When the goal is identification, a large bias is often needed, which is ob-
tained by taking nt ≪ n . Larger values of nt can also lead to model
consistency (see Section 7).

• Variance: Model selection performances of CV usually are optimal when
var(L̂CV) is as small as possible. This variance usually decreases when
the number B of splits increases, with a fixed training sample size nt .
When B is fixed, the variance of CV also depends on nt : Usually, CV is
more variable when nt is closer to n . However, when B is linked with nt

(as for VFCV or LPO), the variance of CV must be quantified precisely,
which has been done in few frameworks. The only general conclusion on
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this point is that the CV method with minimal variance seems strongly
framework-dependent (see Section 5.2 for details).

• Computational complexity: Closed-form formulas or analytic approxima-
tions are available in several frameworks (see Section 9). Otherwise, the
computational complexity of CV is roughly proportional to the number
of data splits: 1 for hold-out, V for VFCV, B for RLT or MCCV, n for
LOO, and

(
n
p

)
for LPO.

The optimal trade-off between these three factors can be different for each prob-
lem, depending on the computational complexity of each algorithm, on speci-
ficities of the framework, and on the final user’s trade-off between statistical
performance and computational cost. Therefore, no “optimal CV method” can
be pointed out before having taken into account the final user’s preferences.

Nevertheless, in density estimation, closed-form expressions of the LPO es-
timator have been derived by Celisse and Robin (2008) with histograms and
kernel estimators, and by Celisse (2008a) for projection estimators. These ex-
pressions allow to perform LPO without additional computational cost, which
reduces the aforementioned trade-off to balancing bias and variance. In partic-
ular, Celisse and Robin (2008) proposed to choose p for LPO by minimizing a
criterion defined as the sum of a squared bias and a variance terms (see also
Politis et al., 1999, Chapter 9).

10.2. How should the splits be chosen?

For hold-out, VFCV, and RLT, an important question is to choose a particular
sequence of data splits.

First, should this step be random and independent from Dn , or take into
account some features of the problem? It is often recommended to take into
account the structure of data when choosing the splits. If data are stratified,
the proportions of the different strata should (approximately) be the same in
the sample and in each training and validation sample. Besides, the training

samples should be chosen so that ŝm(D
(t)
n ) is well defined for every training

set. With regressograms, this led Arlot (2008b) and Arlot and Celisse (2009) to
choose carefully the splitting scheme. In supervised classification, practitioners
usually choose the splits so that the proportion of each class in every validation
sample is the same as in the sample (which should be done carefully since it
strongly breaks the CV heuristics). Nevertheless, Breiman and Spector (1992)
compared several splitting strategies by simulations in regression. No significant
improvement was reported from taking into account stratification of data.

Another question related to the choice of (I
(t)
j )1≤j≤B is whether the I

(t)
j s

should be independent (like MCCV), slighly dependent (like RLT), or strongly
dependent (like VFCV). It seems intuitive that giving similar roles to all data
points in the B “training and validation tasks” should yield more reliable re-
sults. This intuition may explain why VFCV is much more used than RLT or
MCCV. Similarly, Shao (1993) proposed a CV method called BICV, where every
point and pair of points appear in the same number of splits, see Section 4.3.2.
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Nevertheless, most recent theoretical results on the various CV procedures are
not accurate enough to distinguish which splitting strategy is the best: This
remains a widely open theoretical question.

Note finally that the additional variability due to the choice of a sequence of
data splits was quantified empirically by Jonathan et al. (2000) and theoretically
by Celisse and Robin (2008) for VFCV.

10.3. V-fold cross-validation

VFCV is certainly the most popular CV procedure, in particular because of
its mild computational cost. Nevertheless, the question of choosing V remains
widely open, even if indications can be given towards an appropriate choice.

A specific feature of VFCV—as well as exhaustive strategies—is that choos-
ing V uniquely determines the size of the training set nt = n(V − 1)/V and the
number of splits B = V , hence the computational cost. Contradictory phenom-
ena then occur.

On the one hand, the bias of VFCV decreases with V since nt = n(1− 1/V )
observations are used in the training set. On the other hand, the variance of
VFCV decreases with V for small values of V , whereas the LOO (V = n) is
known to suffer from a high variance in several frameworks such as classification
or density estimation. Note however that the variance of VFCV is minimal for
V = n in some frameworks like linear regression (see Section 5.2). Moreover,
estimating the variance of VFCV is a difficult task in general (Section 5.2.3).

When the goal of model selection is estimation, it is often reported that the
optimal V is between 5 and 10 , because the statistical performance does not
increase a lot for larger values of V , and averaging over less than 10 splits
remains computationally feasible (Hastie et al., 2009, Section 7.10). Even if this
claim is true for many problems, this survey concludes that better statistical
performance can sometimes be obtained with other values of V , for instance
depending on the SNR value.

When the SNR is large, the asymptotic comparison of CV procedures in Sec-
tion 6.2 can be trusted: LOO performs (nearly) unbiased risk estimation hence
is asymptotically optimal, whereas VFCV with V = O(1) is suboptimal. Con-
versely, when the SNR is small, overpenalization can improve the performance.
Therefore, VFCV with V < n can select an algorithm with a smaller risk than
LOO does (see simulation experiments by Arlot, 2008b). Furthermore, other
CV procedures like RLT can be interesting alternatives to VFCV, since they
allow to choose the bias (through nt) independently from B , which mainly gov-
erns the variance. Another possible alternative is V -fold penalization, which is
related to corrected VFCV (see Section 4.3.3).

When the goal of model selection is identification, the main drawback of
VFCV is that nt ≪ n is often required formodel consistency (Section 7), whereas



S. Arlot and A. Celisse/Cross-validation procedures for model selection 71

VFCV does not allow nt < n/2 . Depending on the frameworks, different (em-
pirical) recommandations for choosing V can be found. In ordered variable se-
lection, the largest V seems to be the better, V = 10 providing results close
to the optimal ones (Zhang, 1993). However, Dietterich (1998) and Alpaydin
(1999) recommend V = 2 for choosing the best among two learning procedures.

10.4. Cross-validation or penalized criteria?

A natural question is whether penalized criteria—in particular the most clas-
sical ones, such as AIC and Cp —should be preferred to CV for a given model
selection problem. The strongest argument for CV is its quasi-universality: Pro-
vided data are i.i.d., CV yields good model selection performances in (almost)
any framework. Nevertheless, universality has a price: Compared to procedures
designed to be optimal in a specific framework (like AIC), the model selection
performances of CV can be less accurate, while its computational cost is higher.
In least-squares regression (with Card(Mn) not growing too fast with n), Cp

often outperforms CV when data are homoscedastic. Otherwise, Cp is no longer
efficient and can strongly overfit (Arlot, 2008a). Therefore, when homoscedas-
ticity is questionable, CV should be preferred to Cp . More generally, because of
its versatility, CV should be prefered to any model selection procedure relying
on assumptions which are likely to be wrong.

Conversely, penalization procedures may seem more convenient than CV,
because they allow to choose more easily the value of κn in (7), which is crucial
for optimizing model selection performances (see Section 3). Then, resampling-
based penalties (Efron, 1983; Arlot, 2009)—in particular V -fold penalties (Arlot,
2008b)—are natural alternatives to CV. The resampling heuristics on which
they rely is almost as universal as the CV heuristics. The main drawback of
resampling-based penalties, compared to CV, may only be that fewer theoretical
studies exist about their model selection performances.

10.5. Future research

Perhaps the most important direction for future research would be to provide,
in each specific framework, precise quantitative measures of the variance of CV
estimators with respect to nt , the number B of splits, and the way splits are
chosen. Up to now, only a few precise results have been obtained in this direction,
for some specific CV methods in linear regression or density estimation (see
Section 5.2). Proving similar results in other frameworks and for more general
CV methods would greatly help to choose a CV method for any given model
selection problem.

More generally, most theoretical results are not precise enough to make real
distinction between hold-out and CV procedures having the same training sam-
ple size nt : They are all equivalent at first order. However, second order terms
do matter for realistic values of n , which shows the dramatic need for theory to
take into account the variance of CV when comparing CV procedures such as
VFCV and RLT with nt = n(V − 1)/V but B 6= V .
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345. MR1178041

Burman, P., Chow, E., and Nolan, D. (1994). A cross-validatory method
for dependent data. Biometrika, 81(2):351–358. MR1294896

Burman, P. and Nolan, D. (1992). Data-dependent estimation of prediction
functions. J. Time Ser. Anal., 13(3):189–207. MR1168164

Burnham, K. P. and Anderson, D. R. (2002). Model selection and mul-
timodel inference. Springer-Verlag, New York, second edition. A practical
information-theoretic approach. MR1919620

Cao, Y. and Golubev, Y. (2006). On oracle inequalities related to smoothing
splines. Math. Methods Statist., 15(4):398–414. MR2301659

Celisse, A. (2008a). Model selection in density estimation via cross-validation.
Technical report, arXiv:0811.0802.

Celisse, A. (2008b). Model Selection Via Cross-Validation in Density Es-
timation, Regression and Change-Points Detection. PhD thesis, University
Paris-Sud 11, http://tel.archives-ouvertes.fr/tel-00346320/en/.

Celisse, A. and Robin, S. (2008). Nonparametric density estimation by ex-
act leave-p-out cross-validation. Computational Statistics and Data Analysis,
52(5):2350–2368. MR2411944

Chow, Y. S., Geman, S., and Wu, L. D. (1987). Consistent cross-validated
density estimation. Ann. Statist., 11:25–38. MR0684860

Chu, C.-K. and Marron, J. S. (1991). Comparison of two bandwidth selec-
tors with dependent errors. Ann. Statist., 19(4):1906–1918. MR1135155

http://www.ams.org/mathscinet-getitem?mr=2329460
http://www.ams.org/mathscinet-getitem?mr=2182250
http://www.ams.org/mathscinet-getitem?mr=1929416
http://www.ams.org/mathscinet-getitem?mr=0767163
http://www.ams.org/mathscinet-getitem?mr=1425957
http://www.ams.org/mathscinet-getitem?mr=0726392
http://www.ams.org/mathscinet-getitem?mr=1040644
http://www.ams.org/mathscinet-getitem?mr=1178041
http://www.ams.org/mathscinet-getitem?mr=1294896
http://www.ams.org/mathscinet-getitem?mr=1168164
http://www.ams.org/mathscinet-getitem?mr=1919620
http://www.ams.org/mathscinet-getitem?mr=2301659
http://arxiv.org/abs/0811.0802
http://tel.archives-ouvertes.fr/tel-00346320/en/
http://www.ams.org/mathscinet-getitem?mr=2411944
http://www.ams.org/mathscinet-getitem?mr=0684860
http://www.ams.org/mathscinet-getitem?mr=1135155


S. Arlot and A. Celisse/Cross-validation procedures for model selection 74

Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline func-
tions. Estimating the correct degree of smoothing by the method of general-
ized cross-validation. Numer. Math., 31(4):377–403. MR0516581

Dalelane, C. (2005). Exact oracle inequality for sharp adaptive kernel density
estimator. Technical report, arXiv.

Daudin, J.-J. and Mary-Huard, T. (2008). Estimation of the conditional
risk in classification: The swapping method. Comput. Stat. Data Anal.,
52(6):3220–3232. MR2424787

Davies, S. L., Neath, A. A., and Cavanaugh, J. E. (2005). Cross validation
model selection criteria for linear regression based on the Kullback-Leibler
discrepancy. Stat. Methodol., 2(4):249–266. MR2205599

Davison, A. C. and Hall, P. (1992). On the bias and variability of boot-
strap and cross-validation estimates of error rate in discrimination problems.
Biometrika, 79(2):279–284. MR1185130

Devroye, L., Györfi, L., and Lugosi, G. (1996). A probabilistic theory of
pattern recognition, volume 31 of Applications of Mathematics (New York).
Springer-Verlag, New York. MR1383093

Devroye, L. and Wagner, T. J. (1979). Distribution-Free performance
Bounds for Potential Function Rules. IEEE Transaction in Information The-
ory, 25(5):601–604. MR0545015

Dietterich, T. G. (1998). Approximate statistical tests for comparing super-
vised classification learning algorithms. Neur. Comp., 10(7):1895–1924.

Efron, B. (1983). Estimating the error rate of a prediction rule: improvement
on cross-validation. J. Amer. Statist. Assoc., 78(382):316–331. MR0711106

Efron, B. (1986). How biased is the apparent error rate of a prediction rule?
J. Amer. Statist. Assoc., 81(394):461–470. MR0845884

Efron, B. (2004). The estimation of prediction error: covariance penalties and
cross-validation. J. Amer. Statist. Assoc., 99(467):619–642. With comments
and a rejoinder by the author. MR2090899

Efron, B. and Morris, C. (1973). Combining possibly related estimation
problems (with discussion). J. R. Statist. Soc. B, 35:379. MR0381112

Efron, B. and Tibshirani, R. (1997). Improvements on cross-validation:
the .632+ bootstrap method. J. Amer. Statist. Assoc., 92(438):548–560.
MR1467848

Fromont, M. (2007). Model selection by bootstrap penalization for classifica-
tion. Mach. Learn., 66(2–3):165–207.

Geisser, S. (1974). A predictive approach to the random effect model.
Biometrika, 61(1):101–107. MR0418322

Geisser, S. (1975). The predictive sample reuse method with applications. J.
Amer. Statist. Assoc., 70:320–328.

Girard, D. A. (1998). Asymptotic comparison of (partial) cross-validation,
GCV and randomized GCV in nonparametric regression. Ann. Statist.,
26(1):315–334. MR1608164

Grünwald, P. D. (2007). The Minimum Description Length Principle. MIT
Press, Cambridge, MA, USA.

http://www.ams.org/mathscinet-getitem?mr=0516581
http://www.ams.org/mathscinet-getitem?mr=2424787
http://www.ams.org/mathscinet-getitem?mr=2205599
http://www.ams.org/mathscinet-getitem?mr=1185130
http://www.ams.org/mathscinet-getitem?mr=1383093
http://www.ams.org/mathscinet-getitem?mr=0545015
http://www.ams.org/mathscinet-getitem?mr=0711106
http://www.ams.org/mathscinet-getitem?mr=0845884
http://www.ams.org/mathscinet-getitem?mr=2090899
http://www.ams.org/mathscinet-getitem?mr=0381112
http://www.ams.org/mathscinet-getitem?mr=1467848
http://www.ams.org/mathscinet-getitem?mr=0418322
http://www.ams.org/mathscinet-getitem?mr=1608164


S. Arlot and A. Celisse/Cross-validation procedures for model selection 75

Györfi, L., Kohler, M., Krzyżak, A., and Walk, H. (2002). A
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