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Abstract: In a mathematical approach to hypothesis tests, we start with
a clearly defined set of hypotheses and choose the test with the best prop-
erties for those hypotheses. In practice, we often start with less precise
hypotheses. For example, often a researcher wants to know which of two
groups generally has the larger responses, and either a t-test or a Wilcoxon-
Mann-Whitney (WMW) test could be acceptable. Although both t-tests
and WMW tests are usually associated with quite different hypotheses, the
decision rule and p-value from either test could be associated with many
different sets of assumptions, which we call perspectives. It is useful to have
many of the different perspectives to which a decision rule may be applied
collected in one place, since each perspective allows a different interpreta-
tion of the associated p-value. Here we collect many such perspectives for
the two-sample t-test, the WMW test and other related tests. We discuss
validity and consistency under each perspective and discuss recommenda-
tions between the tests in light of these many different perspectives. Finally,
we briefly discuss a decision rule for testing genetic neutrality where knowl-
edge of the many perspectives is vital to the proper interpretation of the
decision rule.

Keywords and phrases: Behrens-Fisher problem, interval censored data,
nonparametric Behrens-Fisher problem, Tajima’s D, t-test, Wilcoxon rank
sum test.

Received July 2009.

Contents

QU = W N =

Introduction
Assumptions in scientific research
Terminology and properties for hypothesis tests and decision rules
Multiple perspective decision rules
MPDRs for two-sample tests of central tendency
5.1 Wilcoxon-Mann-Whitney and related decision rules
5.1.1 Valid perspectives for the WMW decision rule . . . . . .

5.1.2  An invalid perspective and some modified decision rules

*This paper was accepted by Peter J. Bickel, the Associate Editor for the IMS.

NeRNeR )RV V)


http://www.i-journals.org/ss
http://dx.doi.org/10.1214/09-SS051
mailto:mfay@niaid.nih.gov
mailto:proscham@niaid.nih.gov

M.P. Fay and M.A. Proschan/Multiple interpretations of decision rules 2

5.2 Decision rules for two-sample difference in means (t-tests) . . .. 14
5.2.1 Some valid t-tests . . . . ... ... L 14

5.2.2  An invalid perspective . . . . . .. ... 16

5.3 Comparing assumptions and decision rules . . . . . . . . .. ... 17
5.3.1 Relationships between assumptions . . . . . . . ... ... 17

5.3.2 Validity and consistency . . . . . . . ... ... ... 18

5.3.3 Power and small sample sizes . . . . .. ... ... .... 19

5.3.4 Relative efficiency of WMW wvs. t-test . . . ... ... .. 19

5.3.5 Robustness . . .. ... ... 22

5.3.6  Recommendations on choosing decision rules . . . . . .. 25

6 Other examples and uses of MPDRs . . . . .. ... ... ....... 26
6.1 Comparing decision rules: Tests for interval censored data . . . . 26
6.2 Interpreting rejection: Genetic tests of neutrality . . . . .. ... 27

7 Discussion . . . . .. ..o e 29
A Nonparametric Behrens-Fisher decision rule of Brunner and Munzel . 30
B Counterexample to uniform control of error rate for the t-test . . . . . 30
C Sufficient conditions for uniform control for the t-test . . . . . . . . .. 31
D Justifications for Table 1. . . . . . ... . ... oL 35
D.1 Validity . . . ... 35
D.2 Comsistency . . . . . . . . .. 36
References . . . . . . . . . . 36

1. Introduction

In this paper we explore assumptions for statistical hypothesis tests and how
several sets of assumptions may relate to the interpretation of a single decision
rule (DR). Often statistical hypothesis tests are developed under one set of
assumptions, then subsequently the DR is shown to remain valid after relaxing
those original assumptions. In other situations the later conditions that the DR
is studied under are not a relaxing of original assumptions, but an exploration of
an entirely different pair of probability models which neither completely contain
the original probability models nor are contained within them. In either case,
both the original interpretations of the DR and the later interpretations are
always available to the user each time the DR is applied, and the major point
of this paper is that it may make sense to package a single DR with several sets
of assumptions.

We use the term ‘hypothesis test’ to denote a DR coupled with a set of
assumptions that delineate the null and alternative hypotheses. Some DRs will
be approximately valid for several sets of assumptions, and we can package these
assumptions together with the DR as a multiple perspective DR (MPDR), where
each perspective is a different hypothesis test using the same DR.

The MPDR outlook is a way of looking at the assumptions of the statis-
tical DR and how the DR is interpreted, so we start in Section 2 discussing
assumptions in scientific research in general, showing how the MPDR, assump-
tions (i.e., statistical assumptions) fit into scientific inferences. In Section 3 we
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formalize our notation and terminology surrounding MPDRs. In Section 4 we
define the MPDR and discuss some useful properties. In Section 5 we detail
some MPDRs for two sample tests of central tendency, formally stating many of
the perspectives and the associated properties. This is the primary example of
this paper and it fleshes out cases where some perspectives are subsets of other
perspectives within the same MPDR. In Section 6.1 we discuss tests for interval
censored data as an example of a different use of the MPDR. In this case, the
MPDR outlook takes two different DRs developed under two different sets of
assumptions and shows that either DR may be applied under the other set of
assumptions, and we can compare the two decisions by looking at them from the
same perspective (i.e., from the same set of assumptions). In Section 6.2 we dis-
cuss genetic tests of neutrality as an example of how having several perspectives
on a DR may be vital to the proper interpretation of the decision.

2. Assumptions in scientific research

In order to show that the MPDR framework has practical value, we need to first
outline how statistical assumptions fit into scientific research. Thus, although
non-statistical assumptions for scientific research are not our main focus, we
briefly discuss them in this section. Throughout this section we refer to the
Physician’s Health Study (PHS) (Hennekens, Eberlein for PHS Research Group,
1985; Sterring Committee of the PHS Research Group, 1988, 1989), as a spe-
cific example to clarify general concepts.

The Physician’s Health Study was a randomized, 2 by 2 factorial, double
blind, placebo-controlled clinical trial of male physicians in the US between
the ages of 40 and 84. An invitational questionnaire was mailed to 261,248
individuals, and 33,211 were willing, eligible and started on a run-in phase of
the study. Of these individuals, 22,071 adhered to their regimen sufficiently
well to be enrolled in the randomized portion of the study, where each subject
was randomized to either aspirin or aspirin-placebo and either [-carotene or
[-carotene-placebo. We will focus on the aspirin aspect of the study which was
designed to detect whether alternate day consumption of aspirin would reduce
total cardiac mortality and death from all causes.

We begin our scientific assumption review with the influential book by Mayo
(Mayo, 1996, see also Mayo and Spanos, 2004, 2006), which describes how hy-
pothesis tests are used in scientific research, and it “successfully knots together
ideas from the philosophy of science, statistical concepts, and accounts of sci-
entific practice” (Lehmann, 1997). Mayo (1996) starts with a “primary model”
which in her examples is often a fairly specific framing of the problem in a
statistical model. In this aspect, Mayo (1996) matches closely with the typical
presentation of a statistical model by a mathematical statistician. For example,
Mayo (1996) goes into great detail on Jean Perrin’s experiments on Brownian
motion, describing the primary model as (Table 7.3):

Hypothesis: H : the displacement of a Brownian particle over time t, S; follows
the Normal distribution with p = 0 and variance= 2Dt.
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This is a wonderful example of a statistical model that describes a scien-
tific phenomenon. Although it is not framed as a null and alternative set of
assumptions, Mayo’s (1996) “primary model” is nonetheless framed as a statis-
tical model. Mayo (1996) then defines the other models and assumptions which
make up the particular scientific inquiry (models of experiment, models of data,
experimental design, data generation). It is not helpful to go into the details of
those models here, particularly since:

[Mayo does] not want to be too firm about how to break down an inquiry into
different models since it can be done in many different ways (Mayo, 1996, p. 222).

The point of this paper is that although there are examples where the pri-
mary hypothesis that drives the experimental design can be stated within a clear
statistical model (e.g., Perrin’s experiments), often in the biological sciences the
motivating primary theory is much more vague and perhaps many different sta-
tistical models could equally well describe the primary scientific theory. In other
words, often the null hypothesis is meant to express that the data are somehow
random, but that randomness may be formalized by many different statistical
models. This vagueness and lack of focus on one specific statistical model is
inherent in biological phenomena, since unlike the physical sciences, often there
are several statistical models that can equally well describe for example, a male
physician’s response to aspirin or aspirin-placebo. Thus, Mayo’s (1996) notion
that the design of an experiment begins with a primary model which can be
represented as a statistical model does not appear to describe many of the bi-
ological experiments we encounter in our work. If possible, a statistical model
based on the science of the application is preferred; however, often so little is
known about the mechanism of action of the effect to be measured that any of
several different statistical models could be applied.

Note that although this paper emphasizes hypothesis testing and p-values,
we are not implying that other statistics should not supplement the p-value. For
example, if a meaningful confidence interval is available then it can add valu-
able information. Similarly, power calculations or severity calculations (see e.g.,
Mayo, 2003, or Mayo and Spanos, 2006) could also supplement the hypothesis
test. The problem with all three of these statistics is that often more structure
is required of the hypothesis test assumptions in order to define these statistics.

Let us outline a typical experiment in the biological sciences. Here, we will
start with what we will call a scientific theory, which is less connected to a
particular statistical model than Mayo’s (1996) “primary model”. In the PHS a
scientific theory is that prolonged low-dose aspirin will decrease cardiovascular
mortality. This scientific theory is not attached to a particular statistical model,;
for example, that theory is not that low-dose aspirin will decrease cardiovascular
mortality by the same relative risk for all people by the same parameter which
is to be estimated from the study. The scientific theory is more vague than a
detailed statistical model. Next the researchers make some assumptions to be
able to study the scientific theory. Since these assumptions relate the study be-
ing done to some external theory that motivated the study, we will call them
the external validity assumptions. In the PHS, the external validity assumptions
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include the assumption that people who are eligible, elect to participate, and
sufficiently adhere to a regimen (i.e., those who actually could end up in the
study) will be similar to prospective patients to whom we would like to suggest
a prolonged low-dose aspirin regimen. Since the PHS is restricted to male physi-
cians aged 40 to 84, an external validity assumption is that this population will
tell us something about future prospective patients.

Assumptions related to the statistical hypothesis test should be kept separate
from these external validity assumptions. This position was stated in a different
way by Kempthorne and Doerfler (1969):

[T]here are two aspects of experimental inference. The first is to form an opinion
about what would happen with repetitions of the experiment with the same
experimental units, such repetitions being unrealizable because the experiment

‘destroys’ the experimental units. The second is to extend this ‘inference’ to some
real population of experimental material that is of interest. (p. 235)

The classic example in which this dichotomy arises is with randomization
tests (see e.g., Ludbrook and Dudley, 1998; Mallows, 2000). Ludbrook and Dud-
ley (1998) emphasize the first point of view, arguing that randomization tests
are preferred to ¢t or F' tests because they not only perform better for small
sample sizes, but because “randomization rather than random sampling is the
norm in biomedical research”. They point out, in keeping with the sentiments of
Kempthorne and Doerfler (1969) and others, that the subsequent generalization
to a larger population is separate and not statistical: “However, this need not
deter experimenters from inferring that their results are applicable to similar
patients, animals, tissues, or cells, though their arguments must be verbal rather
than statistical. (p. 129)”

External validity assumptions are important, and they must be reasonable,
otherwise one may design a very repeatable study which gives not very useful
results. In the PHS the external validity assumptions seem reasonable since
one would expect that although male physicians are different from the general
population (especially females), it is not unreasonable to expect that results
from the study would tell us something about non-physicians — at least for
males of the same ages. The external validity assumption that allows us to
apply the results to females is a bigger one, but this issue is separate from the
internal results of the study and whether there was a significant effect for the
PHS. In this paper we are emphasizing statistical hypothesis tests, which are
tools to make inferences about the study that was performed and cannot tell
us anything about the external validity of the study. For example, statistical
assumptions have nothing to do with whether we can generalize the results of
the PHS to females.

The next step in the process is that the researchers design an ideal study
(either an experiment or an observational study) to test their theory. The term
ideal refers to the study being done exactly according to the design. In the PHS
the ideal study is a double-blind placebo-controlled study on male physicians
aged 40 to 84. It is ideal in the sense that all inclusion criteria and randomization
are carried out exactly as designed and all instruments are accurate to the spec-
ified degree, and the data are recorded correctly, etc. We call the assumptions
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needed to treat the actual study as the ideal study, the study implementation
assumptions.

The study is carried out and data are observed. Then the researchers make
some statistical assumptions in order to perform a statistical hypothesis test
and calculate related statistics such as p-values and confidence intervals. For the
PHS some statistical assumptions were that the individuals were independent,
the randomization was a true and fair one, and that the rate of myocardial
infarction (MI) events (heart attacks) under the null hypothesis was the same
for the group randomized to the aspirin as the group randomized to aspirin-
placebo. The PHS showed that the relative risk of aspirin to placebo for MI
was significantly lower than 1. If the null hypothesis is rejected, then if all the
assumptions are correct, chance alone is not a reasonable explanation of the
results. What this statistical decision says about the scientific theory depends
on all of the assumptions, the statistical assumptions, the study implementation
assumptions, and the external validity assumptions.

In this paper we will focus on statistical assumptions. This focus should
not be interpreted to imply that the other types of assumptions are not vital
for the scientific process. However, often times the non-statistical assumptions
are separated enough from the statistical ones that the statistical assumptions
may be changed without modifying the non-statistical ones. Here we treat each
possible set of statistical assumptions as a different lens through which we can
look at the data. Through the lenses of the statistical assumptions and the
accompanying DRs, we can see how randomness may play its role in the data.
Each DR in our toolbox is associated with many lenses, and for any particular
study some of those lenses may be more useful than others. It is even possible
that using multiple lenses on the same study may clarify its interpretation.
The usefulness of the DR depends on how clearly the lenses of the statistical
assumptions help us see reality.

3. Terminology and properties for hypothesis tests and decision
rules

Since we are associating a DR with many different hypotheses, we need to
be clear about terminology and about what properties of hypothesis tests are
associated with the DRs apart from the assumptions about the hypotheses.

Consider a study where we have observed some data, z. In order to perform
a hypothesis test we need to make several assumptions. We assume the sample
space, X, the (possibly uncountable) set of all possible values of new realizations
of the data if the study could be repeated. Let X be an arbitrary member of X'.

In the usual hypothesis testing framework, we assume that the data were
generated from one of a set of probability models, P = {FP|0 € O}, and we
partition that set into two disjoint sets, the null hypothesis, H = {Fyl0 €
©p} and the alternative hypothesis, K = {FPy|0 € Ok}, where § may be an
infinite dimensional parameter. Since we will compare many sets of assumptions,
we bundle all the assumptions together as A = (X, H, K). We often assign
subscripts to different sets of assumptions.
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Let « be the predetermined significance level, and let 6(-,«) = § denote a
DR (also called the critical function, see Lehmann and Romano, 2005) which
is a function of « and either 2 or X. The function ¢ takes on values in [0, 1]
representing the probability of rejecting the null hypothesis. In this paper we
only consider non-randomized DRs, where §(X, ) € {0, 1}, for all X € X. We
call the set (9, A) a hypothesis test. This terminology is a more formal statement
of the standard usage for the term ‘hypothesis test’ where the assumptions
are often implied or left unstated. For example, the Wilcoxon-Mann-Whitney
(WMW) DR is often used without any explicit statement of what hypotheses
are being tested.

Let the power of a DR under Py be denoted Pow[§(X, a); 0] = Pr[é(X,a) =
1;0]. A test is a valid test (or an a-level test) if for any 0 < a < .5 the size of the
test is less than or equal to a, where the size is o, = supycg,, Pow [6(Xn, a); 0],
where X = X,, with n indexing the sample size. There are two types of asymp-
totic validity (see Lehmann and Romano, 2005, p. 422). A test is pointwise
asymptotically valid (PAV) (or pointwise asymptotically level «) if for any
0 € Oy, limsup,, ,. Pow[6(X,,a);0] < a. Note that when a test is PAV,
this does not mean that the size of the test will necessarily converge to a
value less than «. This latter, more stringent property is the following: a test is
uniformly asymptotically valid (UAV) (or uniformly asymptotically level a) if
limsup,,_, . o) < a. We give examples of these asymptotic validity properties
with respect to two-sample tests in Section 5.2.1.

The classical approach to developing a hypothesis test is to set the assump-
tions, then choose the decision rule which produces a valid test with the largest
power under the alternative. If the null and alternative hypotheses are sim-
ple (i.e., represent one probability distribution each) then the Neyman-Pearson
fundamental lemma (see Lehmann and Romano, 2005, Section 3.2) provides a
method for producing the (possibly randomized) most powerful test. For ap-
plications, the hypotheses are often composite (i.e., represent more than one
probability distribution), and ideally we desire one decision rule which is most
powerful for all # € O. If such a decision rule exists, the resulting hypothesis
test is said to be uniformly most powerful (UMP).

For some assumptions, A, there does not exist a UMP test, and extra condi-
tions may be added so that among those tests which meet that added condition,
a most powerful test exists. We discuss two such added conditions next, unbi-
asedness and invariance. A test is unbiased (or strictly unbiased) if the power
under any alternative model is greater than or equal to (or strictly greater than)
the size. A test that is uniformly most powerful among all unbiased tests is called
UMP unbiased. Often we will wish the hypothesis test to be invariant to cer-
tain transformations of the sample space. A general statement of invariance is
beyond the scope of this paper (see Lehmann and Romano, 2005, Chapter 6);
however, one important case is invariance to monotonic transformations of the
responses. A test invariant to monotonic transformations would, for example,
give the same results regardless of whether we log transform the responses or
not. Tests based on the ranks of the responses are invariant to monotonic trans-
formations. Additionally, we may want to restrict our optimality consideration
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to the behavior of the tests close to the boundary between the null and alter-
native and study the locally most powerful tests, which are defined as the UMP
tests within a region of the alternative space that is infinitesimally close to the
null space (see Héjek and Sidak, 1967, p. 63).

A test is pointwise consistent in power (or simply consistent) if the power
goes to one for all # € Ok. Because many tests may be consistent, in order
to differentiate between them using asymptotic power results, we consider a
sequence of tests that begin in the alternative space and approach the null
hypothesis space. Consider the parametric case where 6 is k& dimensional. Let
0, = 0o + hn'/?, where h is a k dimensional constant with |h| > 0, 6, €
Ok and 0y € Op. The test (0, A) is asymptotically most powerful (AMP)
if it is PAV and for any other sequence of PAV tests, say (6*, A), we have
limsup,,_, ., { Pow[d(X,,, a);0,] — Pow[6* (X, );6,]} > 0 (see Lehmann and
Romano, 2005, p. 541).

For the applied statistician, usually the asymptotic optimality criteria are
not as important as the finite sample properties of power. At a minimum we
want the power to be larger than « for some 6 € O, and practically we want
the power to be larger than some large pre-specified level, say 1 — 3, for some
e Ok.

Now consider some properties of DRs that require only the sample space
assumption, X, and need not be interpreted in reference to the rest of the
assumptions in A. First we call a DR monotonic if for any 0 < o/ < o < .5

(X, a) <X, a) forall X € X .

Non-monotonic tests have been proposed as a way to increase power for unbiased
tests, but Perlman and Wu (1999) (see especially the discussion of McDermott
and Wang, 1999) argue against using these tests. Although there are cases where
the most powerful test is non-monotonic (see Lehmann and Romano, 2005, p. 96
prob 3.17, p. 105, prob 3.58), non-monotonic tests are rarely if ever needed in
applied statistics.

The p-value is

p(X) =inf{a: §(X,a) =1},

and is a function of the DR and & only. The validity of the p-value depends on
the assumptions. We say a p-value is valid if (see e.g., Berger and Boos, 1994)

sup Pro[p(X) <a] <a
0Oy

We will say a hypothesis test is valid if the p-value is valid. For non-randomized
monotonic DRs, a valid hypothesis test (i.e., valid p-value) implies an a-level
hypothesis test, and in this paper we will use the terms interchangeably. Most
reasonable tests are at least PAV, asymptotically strictly unbiased, and mono-
tonic.
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4. Multiple perspective decision rules

We call the set (0, A1,...,Ax) a multiple perspective DR, with each of the
hypothesis tests, (0, 4;),i = 1,...,k called a perspective. We only consider
perspectives which are either valid or at least PAV.

We say that A; is more restrictive than A; if X; C X;, H; € Hj, K; C K,
and either H; N H; # H; or K; N K; # K, and we denote this as A; C A;. In
other words, if both (4, A;) and (9, A;) are valid tests and A; C A; then (4, A;)
is a less parametric test than (4, A;).

We state some simple properties of MPDR which are obvious by inspection
of the definitions. If 4; C A; then:

o if (0, A;) is valid then (9, 4;) is valid (and if (8, A;) is invalid then (4, A;)
is invalid),

if (8, A;) is PAV then (6, A;) is PAV,

if (5, AJ) is UAV then (5, Az) is UAV,

if (4, A;) is unbiased then (4, 4;) is unbiased, and

if (9, A;) is consistent then (4, 4;) is consistent.

Note that the statements about validity only require H; C H;.

We briefly mention broad types of perspectives. First, an optimal perspective
shows how the DR has some optimal property (e.g., uniformly most powerful
test) under that perspective. Second, a consistent perspective delineates an al-
ternative space whereby for each Py € K, the DR has asymptotic power going
to one. Sometimes the full probability space for consistent perspectives (i.e.,
P = HUK) is not a “natural” probability space in that it is hard to justify the
assumption that the true model exists within the full probability space but not
within some smaller subset of that space. This vague concept will become more
clear through the examples given in Section 5. In cases where the full probability
space is not natural in this sense, we call the perspective a focusing perspective,
since it focuses the attention on certain alternatives. We now consider some real
examples to clarify these broad types of perspectives and show the usefulness
of the MPDR framework.

5. MPDRs for two-sample tests of central tendency

Consider the case where the researcher wants to know if group A has generally
larger responses than group B. The researcher may think the choice between the
Wilcoxon rank sum/Mann-Whitney U test (WMW test) and the t-test depends
on the results of a test of normality (see e.g., Figure 8.5 of Dowdy, Weardon
and Chilko, 2004). In fact, the issue is not so simple. In this section we explore
these two DRs and the choice between them and some related DRs.

Let the data be x = z, = {y1,%2,-.-,Yn, 21,22 ..., 2n} where y; represents
the ordinal (either discrete or continuous) response for the ith individual, and
z; is either 0 (for ng individuals) or 1 (for ny = n — ng individuals) representing
either of the two groups. Let X = X,, = {V1,Ya2,...,Y,,, Z1,Z>...,Z,} be
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another possible realization of the experiment. Throughout this section, for all
asymptotic results we will assume that ng/n — Ao, where 0 < Ay < 1.

For all of the perspectives discussed in the following except Perspective 9, we
assume the sample space is

X = {zY:Ye€)}

where ) is a set of possible values of Y if the experiment were repeated. The z
vector does not change for this sample space. Further, for all perspectives except
Perspective 9, we assume that the Y; are independent with ¥; ~ F if Z; = 1
and Y; ~ G if Z; = 0. Failure of the independence assumption can have a large
effect on the validity of some if not all the hypothesis tests to be mentioned.
This problem exists for all kinds of distributions, but incidental correlation is
not a serious problem for randomized trials (see Box, Hunter and Hunter, 2005,
Table 3A.2, p. 118, and Proschan and Follmann, 2008).

5.1. Wilcoxon-Mann-Whitney and related decision rules
5.1.1. Valid perspectives for the WMW decision rule

Wilcoxon (1945) proposed the exact WMW DR allowing for ties presenting the
test as a permutation test on the sum of the ranks in one of the two groups. Let
ow be this exact DR, which can be calculated using network algorithms (see
e.g., Mehta, Patel and Tsiatis, 1984). Wilcoxon (1945) does not explicitly give
hypotheses which are being tested but talks about comparing the differences
in means. We do not have a valid test if we only assume that the means of F'
and G are equal, since difference in variances can also cause the test statistic
to be significant. Thus, for our first perspective we assume F' = G under the
null to ensure validity, and make no assumptions about the discreteness or the
continuousness of the responses:

Perspective 1. Difference in Means, Same Null Distributions

Hy = {FG:F=G}
Ky = {FG:Ep(Y)# Ec(Y)}

This is a focusing perspective, since P = HUK is hard to justify in an applied
situation because P is the strange set of all distributions I’ and G except those
that have equal means but are not equal. This is not a consistent perspective.

Mann and Whitney (1947) assumed continuous responses and tested for
stochastic ordering. Letting W be the set of continuous distributions, the per-
spective is:

Perspective 2. Stochastic Ordering:

Hy = {F,G:F=G;FcUc}
Ky = {FFG:F<4GorG<y4F;F,GeV¢}



M.P. Fay and M.A. Proschan/Multiple interpretations of decision rules 11

where F' <g G denotes that G is stochastically larger than F', which is equivalent
to G(y) < F(y) for all y with strict inequality for at least some y.

Mann and Whitney (1947) showed the consistency of the WMW DR under
the Stochastic Ordering (SO) perspective. Lehmann (1951) shows the unbiased-
ness under the SO perspective, and his result holds even without the continuity
assumption. Lehmann (1951) also notes that the Mann and Whitney (1947)
consistency proof shows the consistency for all alternatives under the following
perspective:

Perspective 3. Mann- Whitney Functional (continuous, equal null distribu-
tions):

Hg = {F,G:F=G;FecVg}

{F,G co(F,G) £ %;F,G S \I/c}

Kg

where ¢ is called the Mann-Whitney functional, defined (to make sense for dis-
crete data as well) as

or.c) = 5 (1+ [Gwir) - [ Fuic)

1
PT[YF > YG] + §PT[YF = Yg]

where Yp ~ F and Yg ~ G.

Similar to Perspective 1, the Mann-Whitney functional perspective is a fo-
cusing one since the full probability set, P, is created more for mathematical
necessity than by any scientific justification for modeling the data, which in this
case does not include distributions with both ¢(F,G) = 1/2 and F' # G. It is
hard to imagine a situation where this complete set of allowable models, P, and
only that set of models is justified scientifically; the definition K3 acts more to
focus on where the WMW procedure is consistent. A more realistic perspective
in terms of P = H U K is the following:

Perspective 4. Distributions Equal or Not
Hy = {F =G}
K 4 {F # G}

Later we will introduce another realistic perspective (Perspective 10), for
which the WMW procedure is invalid, but first we list a few more perspectives
for which oy is valid.

Under the following optimal perspective, dyy is the locally most powerful rank
test (see Hettmansperger, 1984, section 3.3) as well as an AMP test (van der
Vaart, 1998, p. 225):
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Perspective 5. Shift in logistic distribution

H; = {F,G:F=G;FeV}
Ks = {F.G:Gy)=Fy+A);A+#0,Fecw,}

where Wy, is the set of logistic distributions.

Hodges and Lehmann (1963) showed how to invert the WMW DR to create
a confidence interval for the shift in location under the following perspective:

Perspective 6. Location Shift (continuous)

Hg = {F,G:F=G;FecVg}
Kg = {F.G:Gly) =Fly+A;A#0;F eV}

Sometimes we observe responses, say Y;*, where Y;* € (0,00) and there are
extreme right tails in the distribution. A general case is the gamma distribu-
tion, which has chi squared and exponential distributions as special cases. For
the gamma distribution a shift in location does not conserve the support of the
distribution (i.e., ) changes with location shifts), and a better model is a scale
change. This is equivalent to a location shift after taking the log transforma-
tion. Let ¥; = log,(Y;*); then the scale change for the random variables Y;* is
equivalent to the location shift for Y;, which has a log-gamma distribution.

Perspective 7. Shift in log-gamma distribution

Hy = {F,G:F=GFeV.g}
Ky = {F,G:Gly) =Fly+A;A#0;Fe€Vg}

where Vg is the set of log gamma distributions.

Consider a perspective useful for discrete responses. Assume there exists a
latent unobserved continuous variable for the ith observation, and denote it here
as Y;*. Let F* and G* be the associated distributions for each group. All we
observe is some coarsening of that variable, Y; = ¢(Y;*), where ¢(-) is an unknown
non-decreasing function that takes the continuous responses and assigns them
into k ordered categories (without loss of generality let the sample space for Y;
be {1,...,k}). We assume that for j = 1,...k, c(Y*) =jif {1 <Y* < ¢
for some unknown cutpoints —co = £ < & < -+ < €po1 < & = oo. Then
F*(&;) = F(j). Then a perspective that allows easy interpretation of this type
of data is the proportional odds model, where

G*(y*) ( F*(y*) > :
= A* for all y* with A* > 0.
-G (y) \1-F(y) Y

The observed data then also follows a proportional odds model regardless of the
unknown values of &;:
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Perspective 8. Proportional Odds

Hg = {F,G:F=G;FeVp}

G(y) ( F(y) >
Kg = JF,G: = A forally; A#1; F € ¥p
s { 1-Gly) \1-F(y) '
where ¥p, is a set of discrete distributions with sample space 1,... k.

Under the proportional odds model the WMW test is the permutation test on
the efficient score, which is the locally most powerful similar test for one-sided
alternatives (McCullagh, 1980, p. 117). Note that if we could observe Y;* then
the logistic shift perspective on Y;* follows the proportional odds model, since
the shifting of a logistic distribution by Ar, say, is equivalent to multiplying
the odds by exp(Arp).

All of the above perspectives use a population model, i.e., postulate a distri-
bution for the Y;,7 = 1,...,n. Another model is the randomization model that
assumes that each time the experiment is repeated the responses y;,i =1,...,n
will be the same, but the group assignments Z;,7 = 1, ..., n may change. Notice
how this perspective is very different from the other perspectives, which are all
different types of population models (see Lehmann, 1975, for a comparison of
the randomization and population models):

Perspective 9. Randomization Model
X = {y,Z:Zell(2)},

where T1(z) is the set of all permutations of the ordering of z, which has N =
n!/(n1!(n —n1)!) unique elements. Let I1(z) = {Z1,...,2Zn}.

Hg = {Pr(Z=2,=N"" for all a}

The randomization model does not explicitly state a set of alternative proba-
bility models for the data, i.e., it is a pure significance test (see Cox and Hinkley,
1974, Chapter 3), although it is possible to define the alternative as any proba-
bility model not in Hg.

5.1.2. An invalid perspective and some modified decision rules

Here is one perspective for which the WMW procedure is not valid:

Perspective 10. Mann-Whitney Functional (Different null distributions):
1
Hyp = {F, G:¢(F,G) = 2 Var(F(Yg)) > 0,Var(G(Yr)) > O}
1
K = {F, G:¢9(F,G) # 2 Var(F(Yg)) > 0,Var(G(Yr)) > O}.

Note that the conditions Var(F(Yg)) > 0 and Var(G(Yr)) > 0 are not very
restrictive, allowing both discrete or continuous distributions. This perspective
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has also been called the nonparametric Behrens-Fisher problem (Brunner and
Munzel, 2000), and under this perspective dy is invalid (see e.g., Pratt, 1964).
Brunner and Munzel (2000) gave a variance estimator for ¢(F', G) which allows
for ties, where F' and G are the empirical distributions. Since for continuous
data the variance estimator can be shown equivalent to Sen’s jackknife estimator
(Sen, 1967, see e.g., Mee, 1990), we denote this V;. Brunner and Munzel (2000)
showed that comparing

INnBr = %

N[

to a t-distribution with degrees of freedom estimated using a method similar to
Satterthwaite’s gives a PAV test under Perspective 10. We give a slight modifi-
cation of that DR in Appendix A, and denote it as Inprq-

For the continuous random variable case, Janssen (1999) showed that if
we perform a permutation test using a statistic equivalent to Ty pr as the test
statistic, then the test is PAV under Perspective 10 with the added condition
of F,G € ¥¢. Neubert and Brunner (2007) generalized this to allow for ties,
i.e., they created a permutation test based on Brunner and Munzel’s Ty pr. We
denote that DR as dnprp. Since it is a permutation test, dnprp is valid for
finite samples for perspectives where F' = G.

5.2. Decision rules for two-sample difference in means (t-tests)
5.2.1. Some valid t-tests

To talk about DRs for t-tests we introduce added notation. Let the sample
means and variances for the first group be i, = nl_l Yo, Z;Y; and 6% = (n1 —
1)~ Zi(Y; — fun)? and similarly define the sample mean (fip) and variance
(63) for the second group. Let 67 = (n—2)~' ((n1 — 1)6% + (no — 1)63) be the
pooled sample variance used in the usual t-test DR, say 6;. Let

T(X) = %7
Tt\/ar T 7
so the DR is
1T > (- af2)
0(X) = { 0 otherwise

where t;12(q) is the ¢th quantile of the t-distribution with n — 2 degrees of
freedom. The standard perspective for this DR is:

Perspective 11. Shift in Normal Distribution

Hyy = {F,G:F=G;FecU¥y}
Kjp = {F,G:Gly)=Fy+A);A#0;F €Wy}

where W is the set of normal distributions.
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Under this perspective, the associated test, (d;, A11), is the uniformly most
powerful unbiased test and can be shown to be asymptotically most power-
ful (see Lehmann and Romano, 2005, Section 5.3 and Chapter 13). Under the
following perspective, the standard t-test is PAV (see Lehmann and Romano,
2005, p. 446):

Perspective 12. Difference in Means, (Finite Variances, Equal Null distribu-
tions)

Hyp = {F,G:F=GFecVy,}
Kig = {F,G:E(Yg)# E(Yr),F,G € ¥y, }

where Wy, is the class of distributions with finite variances.

Note that the fact that a test is PAV does not guarantee that for sufficiently
large n, the size of the test is close to «; for this we require UAV. In fact,
(04, A1) is pointwise but not uniformly asymptotically valid (PNUAV). To see
this, take F,, = G, to be Bernoulli(p,,) such that np, — A. The numerator of
the t-statistic behaves like a difference of Poissons, and the type I error rate can
be inflated (see Appendix B for details).

We show in Appendix C that if we restrict the distributions to the following
perspective then the t-test is UAV:

Perspective 13. Difference in Means, (Variance > ¢ > 0 and E(Y*) < B with
0 < B < 00, Equal Null distributions)

Hyp = {FG:F=GF¢€¥p}
Kip = {F.G:E(Yg)# E(Yr),F.G € Up}

where Wp, is the class of distributions with Var(Y) > € > 0 and E(Y*) < B,
with 0 < B < o0.

Using different methods, Cao (2007) appears to show that only finite third
moments are needed to show that the t-test is UAV.

Consider the exact permutation test for the difference in means. This DR is
defined by enumerating all permutations of indices of the z;, recalculating ji; — fig
for each permutation, and using the permutation distribution of that statistic to
define the DR. Denote this DR as ;. It is equivalent to the permutation test on
the standard t-test (Lehmann and Romano, 2005, p. 180). Note that although
dip is asymptotically equivalent to ¢; under Hy, (Lehmann and Romano, 2005,
p. 642), &4y is valid (and hence UAV) while §; is not UAV. This issue is discussed
in Appendix D. Note that because d;, is a permutation test, it is valid for any
n for any perspective for which F' = G under the null.

Now consider a perspective where neither §; nor d;, is valid:

Perspective 14. Behrens-Fisher: Difference in Normal Means, Different Vari-
ances

Hyy = {F,G:Ep(Y)=E(Y);F,G€ Wy}
K14 = {F,G:EF(Y)7£EG(Y);F,G€\I/N}
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For this perspective, Welch’s modification to the t-test is often used. Let the
Behrens-Fisher statistic (see e.g., Dudewicz and Mishra, 1988, p. 501) be

Tpr(X) = %
Vi
Welch’s DR is
(1 i Ter(X)| >t (1—a/2)
duw (X) = { 0 otherwise ’

where

62 62\2
ni no
(G3/m)” | (GB/mo)”

n1—1 n()—l

dv (5.1)

Welch’s DR, v, is approximately valid for the Behrens-Fisher perspective. If
we replace dyy with min(ny, ng)—1 then the associated DR is Hsu's, d; g, which is
a valid test under the Behrens-Fisher perspective (see e.g., Dudewicz and Mishra,
1988, p. 502). Both (d¢w, A14) and (d¢q, Aq4) are asymptotically most powerful
tests (Lehmann and Romano, 2005, p. 558).

Finally, as with the rank test, we may permute Tgr to obtain a PAV test
under Perspective 14 and a valid test whenever F' = G; we denote this statistic
dprp. Janssen (1997) showed that d g, is PAV under less restrictive assumptions
than Perspective 14, replacing ¥ with the set of distributions with finite means
and variances.

5.2.2. An invalid perspective

Consider the seemingly natural perspective:

Perspective 15. Difference in Means, Different Null Distributions

Hys = {F,G:Ep(Y)=Eg(Y)}
K5 = {F,G:Ep(Y)#Ec(Y)}

For this perspective, for any DR that has a power of 1 — 8 > « for some
probability model in the alternative space, the size of the resulting hypothesis
test is at least 1 — 3. To show this, take any two distributions, F* and G*, for
which the DR has a probability of rejection equal to 1 — 3. Now create F' and
G as mixture distributions, where F' = (1 — e)F* + eF¢, G = (1 — €)G* + G
and F° and G€ are distributions which depend on € that can be chosen to make
Ep(Y) = Eq(Y) for all e. More explicitly, let x(-) be the mean functional, so that
the mean of the distribution F' is u(F'). Then for any constant u, we can create a
F¢ which meets the above condition as long as u(F€¢) = e ! {u — (1 — e)u(F*)},
and similarly for u(G¢). For any fixed n we can make e close enough to zero, so
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that the the power of the test under this probability model in the null hypothesis
space approaches 1 — 3, and the resulting test is not an a—level test. Note that
the above result holds even if we restrict the perspective so that F and G have
finite variances. See Lehmann and Romano (2005), Section 11.4, for similar ideas
but which focuses mostly on the one-sample case.

5.3. Comparing assumptions and decision rules
5.3.1. Relationships between assumptions

In Figure 1 we depict the cases where we can say that one set of assumptions
is more restrictive than another. Most of these relationships are immediately
apparent from the definitions; however, the relationships related to stochas-
tic ordering (assumptions A9) are not obvious. If G is stochastically larger
than F' (i.e., F <4 @) then for all nondecreasing real-valued functions h,
E(h(Yr)) < E(h(Yg)) (see e.g., Whitt, 1988). Thus, stochastic ordering implies
both ordering of the means (letting h be the identity function) and ordering
of the Mann-Whitney function for continuous data (letting h = F), so that
A9 C Ay and Ay C Ag. We can use Figure 1 to show validity and consistency
of DRs under various perspectives.

A11 (Shift in Normal)

A14 (Behrens-Fisher)
Logistic)
A7 (Shift in Log—-Gamma)
gcation Shift, Continuous)

2 (Stocastic Ordering, Continuous)

A8 (Proportional Odds)

eans, Equal Null, Finite Variances)
A13 (Difference in Means, Equal Null, B, epsilon)

iffarence in Means, Equal Null)

A3 (Mann-Whitney Functional, Equal Null, Continuous
A4 (Distriqutions Equal or Not)
A10 (Mann-Whitney Functional, Different Null)

A15 (Difference in Means, Different Null)

Fic 1. Relationship between assumptions. A; < A; denotes that A; C Aj (i.e., A; are more
restrictive assumptions than Aj).
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TABLE 1
Validity and Consistency of Two Sample MPDRs

Decision Rules
WMW  =Wilcoxon-Mann-Whitney (exact)
NBF, =Nonparametric Behrens-Fisher (asymptotic)

NBF, =Nonparametric Behrens-Fisher (permutation)
t =t-test (pooled variance)
tw =Welch’s t-test (Satterthwaite’s df)
te =Hsu’s t-test (df=min(n;)-1)
tp =permutation t-test
tprp  =permutation test on Behrens-Fisher statistic
Perspective WMW NBF, NBF, t tw tyg tp tprp
11. Normal Shift vy uy yy yy uy yy yy yy
14. Behrens-Fisher n- ay ay n- uy yy n- ay
5. Shift in Logistic vy uy vy ay ay ay yy vy
7. Shift in Log-Gamma vy uy vy ay ay ay yy yy
6*. Location Shift, fv vy uy vy ay ay ay yy yy
2*. Stochastic Ordering, SN, fv vy uy yy ay ay ay yy Yy
8. Proportional Odds, SN vy uy vy ay ay ay yy yy
12. Diff in Means, SN,fv yn un yn PY PY DY YY YY
13. Diff in Means, SN, Be yn un yn uy uy uy yy vy
3*. Mann-Whitney Func., SN, fv yy uy vy an an an yn yn
4*. Distributions Equal or Not, fv yn un yn an an an yn yn
15*. Diff in Means, DN, fv n- n- n- n- n- n- n- n-
10*. Mann-Whitney Func., DN, fv n- ay ay n- n- n- n- n-
9. Randomization Model y- - - y- - - -- y- Y-

Perspective numbers with * have the additional assumption that F,G € W, in both H and K.
SN=Same Null Distns., DN=Different Null Distns., fv=Finite Var.,

Be={EBE(Y!) < Band Var(Y) > ¢}

Each hypothesis test is represented by 2 sets of symbols representing the 2 properties:

(i) validity, and (ii) (pointwise) consistency, where each character answers the question,

This test has this property: y=yes, n=no, and — = not applicable.

For validity we also have the symbols: u=UAV, a = PAV, p =PNUAV.

5.8.2. Validity and consistency

Table 1 summarizes the validity and consistency of the DRs introduced under
different perspectives. For this table we assume finite variances for F' and G (so
Perspectives 6, 2, 3, 4, and 10 have this additional restriction), although both
validity and consistency results hold for the rank tests without this additional
assumption. The first symbol for each test answers the question “Is this test
valid?” with either: y=yes (for all n), u=UAV, a = PAV, p = pointwise but not
uniformly asymptotically valid (PNUAV), n=no (not even asymptotically). The
symbol a for PAV, denotes an unsolved answer to the question of whether the
perspective is UAV or PNUAV. For Perspective 9 there is no probability model
for the responses so only permutation based DRs will be valid. Others will be
marked as ‘-’ for undefined. Justifications for the validity symbols of Table 1
not previously discussed are given in Appendix D.1.

The second symbol in Table 1 denotes consistency: y=yes or n=no, but will
only be given for tests that are at least PAV, otherwise we use a ‘-’ symbol.
Justification for the consistency results is given in Appendix D.2.



M.P. Fay and M.A. Proschan/Multiple interpretations of decision rules 19

Besides the asymptotic results, there are many papers which simulate the
size of the t-test for different situations. For example, for many practical sit-
uations when F' = G (e.g., lumpy multimodal distributions, and distributions
with digital preference), Sawilowsky and Blair (1992) show by simulation that
the t-test is approximately valid for a range of finite samples. These simulations
agree with the above.

5.3.3. Power and small sample sizes

We consider first the minimum sample size needed to have any possibility of
rejecting the null. For simplicity we deal only with the case where there are equal
numbers in both groups. It is straightforward to show that when « = 0.05, the
sample size should be at least 4 per group (i.e., n = 8) in order for the WMW
exact or the permutation t procedures to have a possibility of rejecting the
null. In contrast, we only need 2 per group (i.e., n = 4) for Student’s t and
Welch’s t. There are subtle issues on using tests with such small sample sizes.
For example, a t-test with only 2 people per treatment group could be highly
statistically significant, but the 2 treated patients might have been male and
the two controls female so that sex may have explained the observed difference.

5.8.4. Relative efficiency of WMW vs. t-test

Since the permutation t-test is valid under the fairly loose assumptions of Per-
spectives 4 or 9, some might argue that it is preferred over the WMW because
the WMW uses ranks which is like throwing some data away. For example,
Edgington (1995), p. 85, states:

When more precise measurements are available, it is unwise to degrade the pre-
cision by transforming the measurements into ranks for conducting a statistical
test. This transformation has sometimes been made to permit the use of a non-
parametric test because of the doubtful validity of the parametric test, but it is
unnecessary for that purpose since a randomization test provides a significance
value whose validity is independent of parametric assumptions, while using the
raw data.

Although this position appears to make sense on the surface, it is misleading
because there are many situations where the WMW test has more power and
is more efficient. For example, for distributions with heavy tails or very skewed
distributions, we can get better power by using the WMW procedure rather
than the t procedure. Previously, Blair and Higgins (1980) carried out some
extensive simulations showing that in most of the situations studied, the WMW
is more powerful than the t-test. Here we just present two classes of distributions:
for skewed distributions we will consider the location tests on the log-gamma
distribution (equivalent to scale tests on the gamma distribution) and for heavy
tails we consider location tests on the t-distribution.

Consider first the location shift on the log gamma distribution (Perspec-
tive 7). Here is the pdf of the log transformed gamma distribution with scale=1
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Probability Density Function

Centered and Scaled Log transformed Gamma Response

Fi1a 2. The probability density functions for some log transformed gamma distributions. All
distributions are scaled and shifted to have mean 0 and variance 1. The value a is the shape
parameter, and ARFE is asymptotic relative efficiency. An ARE of 2 denotes that it will take
twice as many observations to obtain the same asymptotic power for the t-test compared to
the WM W-test.

and shape=a.
fly) = ﬁ exp (ay — e”) (5.2)

By changing the a parameter we can change the extent of the skewness. We plot
some probability density functions standardized to have a mean 0 and variance
1 in Figure 2. Although all the tails are more heavy on the left, the results below
would be identical if we had used —y so that the tails are skewed to the right.
In the legend, we give the asymptotic relative efficiency (ARE) of the WMW
compared to the t-test for different distributions. This ARE is given by (see e.g.,
Lehmann, 1999, p. 176)

ARE = 120° ( / f2(y)dy)2
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F1G 3. Relative efficiency of WMW test to t-test for testing for a location shift in log-gamma
distribution. The value a is the shape parameter. The solid black line is the ARE. The dotted
grey horizontal line is at 1, and is where both tests are equally asymptotically efficient, which
occurs at the dotted grey vertical line at a = 5.55. The solid grey horizontal lines are at 3
and 3/m = .955, which are the limits as a — 0 and a — oo. Points are simulated relative
efficiency for shifts which give about 80% power for the WMW DR when there are about 20
in each group.

where o2 is the variance associated with the distribution f(y). Now using f
from equation 5.2 we get

124" (a)T%(2a)
ARE = T(a)2
where ¢’(a) is the trigamma function, ¢’(a) = W. We plot the ARE
for different values of a in Figure 3.

To show that these AREs work well enough for finite samples, we plot addi-
tionally the simulated relative efficiency for several values of a where the asso-
ciated shift for each a is chosen to give about 80% power for a WMW DR with
sample sizes of 20 in each group. The simulated relative efficiency (SRE) is the
ratio of the expected sample size for the t (pooled variance) over that for the
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exact WMW, where the expected sample size for each test randomizes between
the sample size, say n, that gives power higher than .80 and n — 1 that gives
power lower than .80 such that the expected power is .80 (see Lehmann, 1999,
p. 178). The powers are estimated by a local linear kernel smoother on a series
of simulations at different sample sizes (with up to 10° replications for sample
sizes close to the power of .80).

Note that from Figure 2 the distribution where the ARE=1 looks almost
symmetric. Thus, histograms for moderate sample sizes that look symmetric
may still have some small indiscernible asymmetry which causes the WMW DR
to be more powerful.

Now suppose the underlying data have a t-distribution, which highlights the
heavy tailed case. The ARE of the WMW test to the t-test when the distribution
is t with d degrees of freedom (d > 2) is

120 (451) T2 (24)
m(d—2)0* () T2 (d+1)

ARE (5.3)

We can show that as d approaches 2 the ARE approaches infinity, and since the t-
distribution approaches the normal distribution as d gets large, limy_,oc ARE =
3/m. From equation 5.3, if d < 18 then the WMW test is more efficient, while if
d > 19 then the t-test is more efficient. We plot the scaled t-distribution with
d = 18 (scaled to have variance equal to 1), and the standard normal distribution
in Figure 4. In Figure 4a, we can barely see that the tails of the t-distribution
are larger than that of the normal distribution, but on the log-scale (Figure 4b)
we can see the larger tails. Further, there is a distribution for which the ARE
is minimized (see e.g., Lehmann, 1975, p. 377) at 108/125 = .864, given by
fy) = ﬁg@ —4?) for y € (—/5,v/5). We plot this distribution in Figure 4
as well.

In Figure 5 we plot the ARE and simulated relative efficiency for the case
where 20 in each group give a power of about 80% for the WMW DR. Note
that the ARE gives a fairly good picture of the efficiency even for small samples
(although when d — 2 and the ARE — oo, the SRE at d = 2 is only 2.3).

In Figure 4 we see that the distribution with ARE=1 looks very similar to
a normal distribution. If the tails of the distribution are much less heavy than
the t with 18 degrees of freedom, then the t-test is recommended. This matches
with the simulation of Blair and Higgins (1980) who showed that the uniform
distribution had slightly better power for the t procedure than for the WMW.

5.8.5. Robustness

Robustness is a very general term that is used in many ways in statistics. Some
traditional ways the term is used we have already discussed. We have seen
that the classical t-test, i.e., (0;, A11), is a UMP unbiased test, yet d; retains
asymptotic validity (specifically UAV) when the normality assumption does not
hold (i.e., it is asymptotically robust to the normality assumption), and all we
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Fic 4. Standard normal distribution (black dashed) and scaled t-distribution with 18 degrees
of freedom (grey solid), and the distribution with the minimum ARE (black dotted), where all
distributions have mean 0 and variance 1. The plots are the same except the right plot (b),
has the f(x) plotted on the log scale to be able to see the difference in the extremities of the
tails.

require for this UAV is second and fourth moment bounds on the distributions
(see Perspective 13 and Table 1). Similarly we can say that although the test
given by (dw, Ag) is AMP, the validity of that test is robust to violations of the
logistic distribution assumption (see Table 1).

We have addressed robustness of efficiency indirectly by focusing on the ef-
ficiency comparisons between the t-test and the WMW test with respect to
location shift models as discussed in Section 5.3.4. We can make statements
about the robustness of efficiency of the WMW test from those results. Since
we know that (0, A1) is asymptotically most powerful, and we know that the
t-distribution approaches the normal distribution as n — oo, we can say that
for large n the WMW test retains 95.5% efficiency compared to the AMP test
against the normal shift.
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F1G 5. Relative efficiency of WMW test to t-test for testing for location shift in t-distributions.
The dotted grey horizontal line is at 1, and is where both tests are equally asymptotically
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limits, the vertical line shows ARE goes to infinity at df = 2, the horizontal line shows ARE
goes to 3/ = .955 as df — oo. Points are simulated relative efficiency for shifts which give
about 80% power for the WMW DR when there are about 20 in each group.

Consider another type of robustness. Instead of wishing to make inferences
about the entire distribution of the data, we may wish to make inferences about
the bulk of the data. For example, consider a contamination model where the
distribution F' (G) may be written in terms of a primary distribution, F, (Gp)
and an outlier distribution, F, (G,) with €y (¢4) of the data following the outlier
distribution. In other words,

F = (1 — Ef)Fp + EfFO
and (5.4)
G = (1-¢)Gp+¢,G,

In this setup, we want to make inferences about F, and G,, not about F' and
G, and the distributions F, and G, represent gross errors that we do not wish
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to overly influence our results. In this setup, the WMW decision rule outper-
forms the t-test in terms of robustness of efficiency. We can perform a simple
simulation to demonstrate this point. Consider X1,..., X190 ~ N(0,1) and
Yi,...,Y99 ~ N(1,1) and Y1990 = 1000 is an outlier caused by perhaps an er-
ror in data collection. When we simulate the scenario excluding Yjgg, then all
p-values for 6, and &g are less than 5 x107% and all for dy are less than 3
x107°, while if we include Yi9o we get simulated p-values for §, and &, be-
tween 0.26 and 0.29 and p-values for &y between 107'° and 10~%. Clearly the
WMW decision rule has much better power to detect differences between F,
and G, in the presence of the outlier. Here we see that only one very gross error
in the data may totally “break down” the power of the t-test, even when the
outlier is in the direction away from the null hypothesis. A formal statement of
this property is given in He, Simpson and Portnoy (1990).

There is an extensive literature on robust methods in which many more as-
pects of robustness are described in very precise mathematics, and although
not a focus, robustness for testing is addressed within this literature (see e.g.,
Hampel, Ronchetti, Rousseeuw and Stahel, 1986; Huber and Ronchetti, 2009;
Jureckova and Sen, 1996). Besides the power breakdown function previously
mentioned, an important theoretical idea for limiting the influence of outliers is
to find the mazimin test, the test which maximizes the minimum power after
defining the null and alternative hypotheses as neighborhoods around simple hy-
potheses (e.g., using equation 5.4 with F}, and G, representing two distinct single
distributions). Huber (1965) showed that maximin tests (also called minimax
tests) are censored likelihood ratio-type tests (see also Lehmann and Romano,
2005, Section 8.3, or Huber and Ronchetti, 2009, Chapter 10). The problem
with this framework is that it is not too convenient for composite hypotheses
(Jureckova and Sen, 1996, p. 407). An alternative more general framework is to
work out asymptotic robustness based on the influence function (see Huber and
Ronchetti, 2009, Chapter 13). A thorough review of those robust methods and
related methods and properties are beyond the scope of this paper.

5.8.6. Recommendations on choosing decision rules

The choice of a decision rule for an application should be based on knowledge of
the application, and ideally should be done before looking at the data to avoid
the appearance of choosing the DR to give the lowest p-value. To keep this sec-
tion short, we focus on choosing primarily between §; (or d;) and dyy, although
for any particular application one of the other tests presented in Table 1 may
be appropriate. When using the less well known or more complicated DRs, one
should decide whether their added complexity is worth the gains in robustness
of validity or some other property.

The choice between t- and WMW DRs should not be based on a test of nor-
mality. We have seen that under quite general conditions the t-test decision rules
are asymptotically valid (see Table 1), so even if we reject the normality assump-
tion, we may be justified in using a t-test decision rule. Further, when the data
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are close to normal or the sample size is small it may be very difficult to reject
normality. Hampel et al. (1986, p.23), reviewed some research on high-quality
data and the departures from normality of that data. They found that usually
the tails of the distribution are larger than the normal tails and t-distributions
with degrees of freedom from 3 to 10 often fit real data better than the normal
distribution. In light of the difficulty in distinguishing between normality and
those t-distributions with moderate sample sizes, and in light of the relative ef-
ficiency results that showed that the WMW is asymptotically more powerful for
t-distributions with degrees of freedom less than 18 (see Section 5.3.4), it seems
that in general the WMW test will often be asymptotically more powerful than
the t-test for real high quality data. Additionally, the WMW DR has better
power properties than the classical t-test when the data are contaminated by
gross errors (see Section 5.3.5).

In a similar vein to the recommendation not to test for normality, it is not
recommended to use a test of homogeneity of variances to decide between the
classical (pooled variance) t-test DR (0;) and Welch’s DR (), since this
procedure can inflate the type I errors (Moser, Stevens and Watts, 1989).

One case where a t-test procedure may be clearly preferred over the WMW
DR is when there are too few observations to produce significance for the WMW
DR (see Section 5.3.3). Also, if there are differences in variance, then &y (or
some of the other decision rules, see Table 1) may be used while dyy is not valid.
In general, whenever the difference in means is desired for interpretation of the
data, then the t-tests are preferred. Nonetheless, if there is a small possibility
of gross errors in the data (see Section 5.3.5), then there may be better robust
estimators of the difference in means which will have better properties (see
References in Section 5.3.5).

6. Other examples and uses of MPDRs

In Section 5 we went into much detail on how some common tests may be
viewed under different perspectives. In this section, we present without details
two examples that show different ways that the MPDR framework can be useful.

6.1. Comparing decision rules: Tests for interval censored data

Another use of the MPDR outlook is to compare DRs developed under different
assumptions. Sun (1996) developed a test for interval censored data under the
assumption of discrete failure times. In the discussion of that paper, Sun states
that his test “is for the situation in which the underlying variable is discrete”
and “if the underlying variable is continuous and one can assume proportional
hazards model, one could use Finkelstein’s [1986] score test”. Although there can
be subtle issues in differentiating between continuous and discrete models espe-
cially as applied to censored data (see e.g., Andersen, Borgan, Gill and Keiding,
1993, Section IV.1.5), in this case Sun’s (1996) test can be applied if the un-
derlying variable is continuous. If we look at Sun’s (1996) DR as a MPDR then
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this extends the usefulness and applicability of his test, since it can be applied
to both continuous and discrete data. In fact, under the MPDR outlook Finkel-
stein’s (1986) test can be applied to discrete data as well. See Fay (1999) for
details.

6.2. Interpreting rejection: Genetic tests of neutrality

In the examples of Section 5, the MPDR outlook was helpful in interpreting the
scope of the decision. Some perspectives provide a fairly narrow scope with per-
haps some optimal property (e.g., t-test of difference in normal means with the
same variances is uniformly most powerful unbiased), while other perspectives
provide a much broader scope for interpreting similar effects (e.g., the difference
in means from the t-test can be asymptotically interpreted as a shift in location
for any distribution with finite variance). In this section, we provide an exam-
ple where the different perspectives do not just provide a difference between
a broad or narrow scope of the same general tendency, but the different per-
spectives highlight totally different effects. In other words, from one perspective
rejecting the null hypothesis means one thing, and from another perspective
rejecting the null hypothesis means something else entirely.

The example is a test of genetic neutrality (Tajima’s [1989] D statistic), and
the original perspective on rejection is that evolution of the population has not
been neutral (e.g., natural selection has taken place). This perspective requires
many assumptions. Before mentioning these we first briefly describe the DR.

The data for this problem are n sequences of DNA, where each sequence is
from a different member of a population of n individuals from the same species.
The sequences have been aligned so that each sequence is an ordered list of w
letters, where each letter represents one of the four nucleotides of the genetic
code (A, T,C, and G). We call each position in the list, a site. Let S be the
number of sites where not all n sequences are equal to the same letter. Let k be
the average number of pairwise differences between the n sequences. Tajima’s
D statistic is

where a1 = Z?:_ll 1, and V is an estimate of the variance of k — a—Sl which is
a function of S and some constants which are functions of n only (see Tajima,
1989, equation 38). We reject if D is extreme compared to a generalized beta
distribution over the range D, to Dine, with mean equal to 0 and variance
1, and both range parameters are also functions of n only (see Tajima, 1989).
To create a probability model for D Tajima assumed (under the null hypoth-

esis) that:

1. there is no selection (i.e., there is genetic neutrality),

the population size is not changing over time,

there is random mating in the population,

the species is diploid (has two copies of the genetic material),

- W
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5. there is no recombination (i.e., a parent passes along either his/her mother’s
or his/her father’s genetic material in its entirety instead of picking out
some from the mother and some from the father),

6. any new mutation happens at a new site where no other mutations have
happened,

7. the mutation rate is constant over time.

If all the assumptions hold then Tajima’s D has expectation 0 and the associated
DR is an approximately valid test. The problem is that when we observe an
extreme value of D, then it could be either due to (1) chance (but this is unlikely
because it is an extreme value), (2) selection has taken place in that population
(i.e., assumption 1 is not true), or (3) one of the other assumptions may not
be true. This interpretation may seem obvious, but unfortunately, according to
Ewens (2004), p. 348, the theory related to tests of genetic neutrality is often
applied “without any substantial assessment of whether [the assumptions] are
reasonable for the case at hand”.

The MPDR framework applied to this problem could define the same null
hypothesis as listed above, but have a different alternative hypothesis for each
perspective according to whether one of the assumptions does not hold. For
intuition into the following, recall that D will be negative if each site on average
has a lower frequency of pairwise nucleotide differences than would be expected.
Now consider alternatives where one and only one of the assumptions of the null
is false.

Selection: If Assumption 1 is false, then the associated alternative creates a
perspective that is Tajima’s original one, and that is why the test is called
a test of genetic neutrality. When we reject the null hypothesis, then this is
seen as implying that there is selection (i.e., there is not genetic neutrality).
Specifically, if there has recently been an advantageous mutation such
that variability is severely decreased in the population, this is a selective
sweep and the expectation of D would be negative. Conversely, if there is
balancing selection, then the expectation of D would be positive (see e.g.,
Durrett, 2002).

Non-constant Population Size: Consider when Assumption 2 is false under
the alternative.

Growth of Population: If the population is growing exponentially then
we would expect D to be negative (see e.g., Durrett, 2002, p. 154).

Recent Bottleneck: A related alternative view is that the genetic vari-
ation in the population happened within a fairly large population,
but then the population size was suddenly reduced dramatically and
the small remaining population grew into a larger one again. This
is known as bottle-necking (see e.g., Winter, Hickey and Fletcher,
2002). Tajima (1989) warned that rejection of the null hypothesis
could be caused by recent bottlenecking, and Simonsen, Churchill
and Aquadro (1995) showed that Tajima’s D has reasonable power
to reject under the alternative hypothesis of a recent bottleneck.
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Random Mating: Consider the alternative where Assumption 3 is false. If
the mating is more common (but still random) within subgroups, then
this can lead to positive expected values of D (see e.g., Durrett, 2002, p.
154, Section 2.3).

These results for Tajima’s D are now ‘well known’, and a user of the method
should be aware of all the possible alternative interpretations (different perspec-
tives) when the null hypothesis is rejected. As with other MPDRs the p-value
is calculated the same way, but the interpretation has very real differences de-
pending on the perspective. But unlike the previous examples of Section 5 and
6.1, the different interpretations are not just an expansion or shrinkage of scope
of applicability, but they describe qualitatively different directions for looking
at rejection of the null.

7. Discussion

We have described a framework where one DR may be interpreted under many
different sets of assumptions or perspectives. We conclude by reemphasizing two
major points highlighted by the MPDR framework:

e Do not necessarily disregard results of a decision rule because
it is obviously invalid from one perspective. Perhaps it is valid or
approximately valid from a different perspective. For example, consider a
hypothesis test comparing two HIV vaccines, where the response is HIV
viral load in the blood one year after vaccination. Even if both groups have
median HIV viral loads of zero even under the alternative (which is very
likely), invalidating the location shift perspective and all more restrictive
perspectives than that (see Figure 1), that does not mean that a WMW
DR cannot be applied under a different perspective (e.g., Perspective 3).
As another example, suppose that a large clinical trial shows a significant
difference in means by t-test but the test of normality determines the
data are significantly non-normal. Then the t-test p-value can still be
used under the general location shift perspective instead of under the
normal shift perspective. Finally, consider the tests for interval censored
data developed for continuous data which could be shown to be valid for
discrete data as well (see Section 6.1).

e Be careful of making conclusions by assumption. In Section 6.2 we
showed how the rejection of a genetic test of neutrality could be interpreted
many different ways depending on the assumptions made. Every time a
genetic test of neutrality is used, all the different perspectives (sets of as-
sumptions) should be kept in mind, since focusing on only one perspective
could lead to the totally wrong interpretation of the decision rule.

Therefore, the fact that a decision rule can have multiple perspectives can be
either good or bad for clarification of a scientific theory; the MPDR may help
support the theory by offering multiple statistical formulations consistent with
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it, or the MPDR may highlight statistical formulations that may be consistent
with alternative theories as well.

Appendix A: Nonparametric Behrens-Fisher decision rule of
Brunner and Munzel

Let Ry,..., R, be the mid-ranks of the Y; values regardless of Z; value, and
let Wh,..., W, be the within-group mid-ranks (e.g., if there are no ties and
W; = w and Z; = 1 then Y; is the wth largest of the responses with Z; = 1).
Let Rl = % Z?:l ZlRl and RO = nlo Z?:l(l — ZZ)RZ, and

n

1 ny+1 2
2 — - N“z(Rr-w,—-R !
Tl (m_lz < L+
0—1

=1
n

2
DS (R Wi — RO+"°2+1)
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More intuitively, we can write 72 and 7¢ as

#? = 11_anzi(é(n)—G)2

nog —

where F(t) = ny 'S0 | Z; {IY <t)+3I1(Y;=t)} and F = ng' Y0 (1 -
Z;)F(Y;), and similarly for G and G. Then, let

L2 a2
T T
1

Vy = 2+
no n1

T =
VEE Nz Nz

When there is no overlap between the two groups, then 79 = 7, = 0 and V; = 0;
in this case Neubert and Brunner (2007), p. 5197, suggest setting V; equal to the
lowest possible non-zero value: \/2111(2)—711 We reject when |Typr| >t ( —a/2)

where d is given by dy of equation 5.1 except that 7& and 77 replace 03 and 0.

Appendix B: Counterexample to uniform control of error rate for
the t-test

Let Y1,...,Y, be iid Bernoulli random variables with parameter p,, = In(2)/n.
Suppose that the two groups have equal numbers so that ng = ny = n/2. Let
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Si =Y, ZY; and So = Y (1 — Z;)¥;. Then
S1— 8o
\/ﬁ (Sl_ﬁ-i-so—%)'

When S; > 1 and Sy = 0 then

Sl Sl
T,(X) = > =S >1
t( ) \/ n Si1(n—281) \/ n Si1(n—2) L=
n—2 n n—2 n

Now suppose that a = .16 one-sided. If n > 100 then ¢, ',(.84) > .9995 and we
would reject whenever S; > 1 and Sy = 0, which occurs with probability

Ty(X) =

Pr[S; >1and Sp =0] = (1 — Pr[S; =0])Pr[So = 0] = (1 — gn, )qn, =~ 0.25
where ¢,, = (1—@)” and the approximation uses lim,,,~ ¢, = exp(—In(2)) =
%; for n = 100 we get g50(1 —g¢50) = 0.249994 and for n > 100 the approximation
gets closer to .25. Therefore, for this sequence of distributions, with n > 100 the
type I error rate is 0.249 or more instead of the intended 0.16.

Appendix C: Sufficient conditions for uniform control for the t-test

The test d; is UAV if we impose certain conditions on the common distribution
function F. For example, for 0 < B < oo and € > 0, consider the class U  of
distribution functions such that Var(Y) > ¢ and E(Y?) < B. We will show that
for every sequence of functions F,, € Vg, assuming lim, . no/n = Ao and
0 < Ao < 1, the type 1 error rate has limit «. We do this in three steps: 1) we
use the Berry-Esseen theorem to show that even though F,, may change with
n, the distribution of the z-score associated with the sample mean converges
uniformly to a normal distribution, 2) we show that the same is true of the
z-score for the difference of two sample means, and 3) we show that the same
is true for the t-score, which uses the sample variance instead of the population
variance in the denominator.

Step 1

Consider a sequence of distribution functions F,, € ¥p . with associated mean
and variance equal to y,, and o2. In this appendix Y;, denotes a random variable
from F,, and the sample means for each group are i1, and fig,. According to
the Berry-Esseen theorem, for any sequence of distribution functions F},, € ¥Up,

Pr{ﬂln — M z} —B(2)

- 33E|Y, — pn]?
On//m1

4 odmi

sup <

z
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for all n. Of course the same is true of the group with Z; = 0 except with n;
replaced by ng, because they have the same distribution. Notice that E|Y,, —
pnl? < {E[Y, = pn[*}¥/4, and
Yo —pial' < (Yal + lial)* < {2max((Yal, )}
= 2Y{max(|Yal, [ua)}* < 24 ([Yal" + |1a]")
— 16(Y + [B(Y)[) < 16(Y + E(Y,)
< 16(Y;' + B).
It follows that E|Y;, — u,|* < 16(E(Y;?) + B) < 32B, so E|Y,, — un|® < (32B)%/4.

Furthermore, because 02 > ¢, the Berry-Esseen bound is no greater than A,,, =
(33/4)(32B)%/*/{n1€3}'/2 — 0. The same result holds for the second group.

Step 2

We next show that even though the distribution function F,, may change with
n, (firn — flon)/(02(1/n1 +1/ng))*/? converges uniformly to a standard normal
distribution. Specifically, we show that

An_ n Yn_ n
Pr{u1 fin a §z}—<1)(z)

sup
z

S Anl + A’n.[n

Onbn Onbn

where b, = (1/ng + 1/n1)"/2.
Let Aop, = no/n and Ay, = 1 — Ao, = n1/n, so that A(lh/f = b;lnfl/z, and
assume that Ao, — Ao and 0 < A\g < 1. Let H,,, and H,,, denote the distribution

functions for Zn, = (fin — pin)/(on/my?) and Zj, = (fion — pmn)/(on/ng*),
respectively. Then

Pr(Zn\/E -z Alngz)
- /ZHn <\/%+u i—;Z)dHno(u)
- /_Z{@(\/%Jru\/%)jtfln(\/%Jru\/%)—
) (\/% + “\/%) } dH,, ()

= Cn+Dn7
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where

> z /\ln
c, = / O —=— +uy /222 ) dH,,, (u),
0o <V)\On )\On> ()

and

o0 z /\1n z )\1n
D, Hy, | —— 2 ) @ [ e w22 ) S dH,, (u).
/oo{ <\/)\On+u /\0n> <\/)\On+u AOn)} (U)

Ain) — Aon
Note that C,, = Pr(V < T Zpo/3) = Pr(Z],, > V)3 — \/;\Z?),
where V' is independent of Z;, and has a standard normal distribution. We can
therefore rewrite C,, as

(o)
/{1_@<v¢§_¢%>}¢@dv+

/{cp <\/§I_ T) o, <\/§I— T) } H(v)dv
~wi- [ {q) (\@ - T) _m, (@ - T) } S0}

To show the last step, notice that if we let V and V' be independent standard
normals, then Vv/Agn — V/v/1 — Aoy, is standard normal, so that

/{I—Q)(v\/%—\/%)}qﬁ(v)dv—Pr V’>V\/%—\/%]

= Pr [V\/E— V' An < z} =®(z2)

Ch

Thus,

> /)\On z | Xon z
|Cn - (I)(Z)l < /_OO ’Hno (’U )\—m — —/\1”> - <’U )\—m - _)\171) ‘(b(’l})d’l}

< / Apo(v)dv = A,
where A,, is as specified at the end of step 1. Also,
o )\On z /\On z
Hy, [0/ - Y ‘dHn
~/—oo ’ ! (U )‘177« V Aln) <v /\171 V Aln) O(U)

/ Ap dHp, (u) = Ay, .
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In summary,

Pr (an 7' Ain < z)
}Pr (an— Z'\an < z) - @(z)‘

B(2) + Cp — B(2) + Dy,

IN

|Cy — ®(2)| + | Dyl
Apy + An, — 0. (C.1)

IN

Step 3

The next step is to show that the t-statistic, Ty, also converges to a standard
normal distribution. To do so, we will show that &fm /o2 converges to 1 in
probability, where 67, is the pooled variance. Because o7 > ¢, this is equivalent
to showing that 67, — o7, — 0 in probability. It is clearly sufficient to show that
this is true of each of the two sample variances, say 67, and 63,, since &%n is
a weighted average of the two sample variances. In the following, we consider
only the group with Z; = 1 so all summations are over {i : Z; = 1}, and further

let Y, ~ F,, for all 1.
(nl - 1)&7211 = Z(Y;n — Hn + Hn — /lln)2
(Y;n - Nn)2 + nl(Mn - ﬂn1)2 + 2(/1471 - ﬂnl) Z(szn - Mn)
(Y;n - Nn)z + nl(/lnl - Mn)z - 2nl(ﬂn1 - Nn)z
= Z(Ym - .Un)2 - nl(ﬂnl - /Ln)z-

That is, 67, = (n1—1) "' {3 (Yin — 1tn)? — na(fi1n — pn)? }. The proof is slightly
easier if we replace n; — 1 with n;. Therefore, we show that > (Y, — n)?/n1 —
(fiin — pn)? — 02 — 0 in probability. Use Markov’s inequality to conclude that
(firn, — pn)? converges to 0 in probability: Pr{(ji1, — un)? > 7} < E(fi1n —
pin)? /0 = var(jinn)/n = oy /(nan), and op = E(Y, — pn)? < VE(Yn — pn)* <
V32B (from the calculations in step 1). Thus, ({1, — ptn)? — 0 in probability.
The only remaining task is to prove that | > (Yi, — pn)?/n1 — 02| converges in
probability to 0. Note that

> (Yin — /Ln)2 2 2 2
AL o LV < -
Pr <| o o, >n| < var (Z(Ym fn) /nl) /n
o ovar(Yy, — pn)?
— 7711772
_ E((Yn - M)4) - {E(Yn - Mn)2}2
nyn?
4
< E(|Y, —pl*) <328,
nin? nin?



M.P. Fay and M.A. Proschan/Multiple interpretations of decision rules 35
Appendix D: Justifications for Table 1
D.1. Validity

All the permutation-based DRs (e.g., dw, dNBFp, Otp, and d7) are valid whenever
each permutation is equally likely under all 8 € © 7. These DRs can be expressed
by either permuting the Z values or permuting the Y values; therefore, all
perspectives with F' = G for all models in the null space, plus Perspective 9
(the randomization model) give valid tests.

Under Hyg then d; is asymptotically equivalent to dy,, so when 6, is not valid
for less restrictive hypotheses (e.g., Perspectives 14 and 15, see below), &, is
also not valid. Since we have assumed F,G € Wy, for all of Table 1, whenever
Otp is valid then §; is at least PAV.

Since the denominator of Ty can be written as 6pp(1/n1 + 1/n0)'/? with
6% r =n"" (no6f +n163), and we see that 6% is just a weighted average of the
individual sample variances, then similar methods to Appendix C can be used
to show that the other t-tests (0, and d;x) are also UAV under Perspective 13.

The 6; is valid under Perspective 11 and d;y is valid under Perspective 14
(see e.g., Dudewicz and Mishra, 1988, p. 502), so (0, Aqq) is valid. Since
Opw is equivalent to ;g except it has larger degrees of freedom (see e.g.,
Dudewicz and Mishra, 1988, p. 502), it is UAV under Perspectives 14 and 11.
One can show that (d;w, A1) is not valid for finite samples by simulation
from standard normal with n; = 2 and ny = 30, which gives type I error of
around 12%.

The rules npr, and dypr, were shown to be PAV under Hy( (see Brunner
and Munzel, 2000 and Neubert and Brunner, 2007 respectively).

For any null where F' = G and F' € V¢, any rank test that is PAV and only
depends on the combined ranks is also UAV. To see that, note that such a DR
is invariant to monotone transformations. Thus, if we let Y = F,(Y;,) for all
1 =1,...,n, where F,, is the common distribution function regardless of Z;,
then the Y} s are iid uniforms. The type I error rate of the rank test applied to
the original data is the same as that applied to the uniforms, so the type I error
rate is controlled uniformly over all continuous distributions.

Pratt (1964) showed that under the Perspective 14 (Behrens-Fisher), both
the WMW and the t tests are not valid (not even PAV), so since A14 C Aqj
and and A1y C Aq(), both those DRs are not valid under Perspectives 15 and
10. However, note that when n; = ng then 7} = Tgp, and (d;, Ayy4) is UAV.
We have previously shown in Section 5.2.2 that Perspective 15 is invalid for
any DR which has power > « for some P € K15. For Perspective 10 we can
show the two simple discrete distributions with three values at (—1,0,2) and
probability density functions at those three points as (.01,.98,.01) (associated
with F') and (.48,.02,.48) (associated with G) are in Hy but are not valid for
0uw, 6t OF OBFyp.
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D.2. Consistency

The consistency of dw was shown for Perspective 3 by Lehmann (1951) and
Putter (1955) expanded this result showing consistency for discrete distribu-
tions. We can use the relationship among the assumptions (see Figure 1) to
show consistency for most of Table 1. Brunner and Munzel (2000) showed the
asymptotic normality of Tnpr whenever ¢(F,G) = 1/2 and Var(F(Yg)) > 0
and Var(G(Yr)) > 0, and it is straightforward to extend this to show the
asymptotic normality of

even when ¢(F,G) # 1/2. Thus, dnpr, is consistent for Perspective 10 and all
more restrictive assumptions. Neubert and Brunner (2007) showed the asymp-
totic normality of the permutation version Tnpr(¢) and hence dnpp, is con-
sistent for the same perspectives as dyprq. For all three rank DRs (dw, dnNBFa
and dnprp), the associated tests are not consistent when there are alternatives
which include probability models with ¢(F,G) = 1/2.

The consistency of §; under Kj9 is shown in e.g., Lehmann and Romano
(2005), p. 466, and it is straightforward to extend this to o,y and §;. Thus, for
all more restrictive assumptions those tests are also consistent. Similar methods
analogously show that both ;1 and 6,y are consistent for K7,4. For alternatives
that contain probability models with po = p1, all the t-tests are not consistent.

Under K71 then d; is asymptotically equivalent to 4, (Lehmann and Romano,
2005, p. 683, problem 15.10); therefore dy, is consistent. Janssen (1997), The-
orem 2.2, showed the consistency of é:pr), as long as po # p1 under a less
restrictive assumptions than Aj4 which include Ag and A7. The DRs dy, and
dprp are consistent whenever respectively, J, and dy are consistent assuming
finite variances (see van der Vaart, 1998, p. 188).
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