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Abstract: The Importance Sampling method is used as an alternative
approach to MCMC in repeated Bayesian estimations. In the particular
context of numerous data sets, MCMC algorithms have to be called on sev-
eral times which may become computationally expensive. Since Importance
Sampling requires a sample from a posterior distribution, our idea is to use
MCMC to generate only a certain number of Markov chains and use them
later in the subsequent IS estimations. For each Importance Sampling pro-
cedure, the suitable chain is selected by one of three criteria we present here.
The first and second criteria are based on the L1 norm of the difference
between two posterior distributions and their Kullback-Leibler divergence
respectively. The third criterion results from minimizing the variance of IS
estimate. A supplementary automatic selection procedure is also proposed
to choose those posterior for which Markov chains will be generated and
to avoid arbitrary choice of importance functions. The featured methods
are illustrated in simulation studies on three types of Poisson model: sim-
ple Poisson model, Poisson regression model and Poisson regression model
with extra Poisson variability. Different parameter settings are considered.
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1. Introduction

Bayesian approach allows the introduction of prior knowledge of the parameter
via prior probability distribution. The Bayesian idea consists of combining two
sources of information on the parameter, one from the data through a likelihood
function, and the other implied by the prior. The result is the posterior distribu-
tion of the parameter which is a conditional distribution, given the data. In com-
plex models, an analytical solution of the posterior distribution and its descrip-
tive statistics are generally not available. In this case, approximation methods
are used which are based on stochastic MCMC algorithms such as the Hastings-
Metropolis algorithm (Hastings, 1970) or Gibbs sampler (Geman and Geman,
1984). These algorithms generate a Markov chain whose stationary distribu-
tion is the posterior distribution. The ergodic theorem guarantees that empiri-
cal averages provide good approximations but on condition that the algorithm
achieves convergence, which often requires a huge number of iterations. In cases
where new models are studied, performances of estimates can be evaluated in
a simulation study. For example, traditionally, in order to assess qualities such
as bias or quadratic errors of estimates, different data sets are simulated for
different parameter settings, then relevant priors are set on these parameters
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and posterior estimates computed for all data sets using an MCMC approach.
Unfortunately, the time required to perform this computation is usually pro-
hibitive. An alternative solution would be to apply the Importance Sampling
(IS) method, by which we can estimate one expected probability distribution us-
ing a sample from a different distribution which is easier to simulate. The simul-
taneous use of IS and MCMC was previously proposed by Geyer and Thompson
(1992) in likelihood computation, by Gelfand, Dey and Chang (1992) in cross-
validation and model determination, and more recently in Population Monte
Carlo approach (Cappé et al., 2004; Douc et al., 2007a,b; Cappé et al., 2007).
A global use of IS in repeated MCMC is described in McVinish et al. (2008)
where IS is used among other techniques in simulation studies and asymptotic
efficacy is discussed.

Importance Sampling has to be done under conditions where both densities
are close and the support of the sampling distribution covers the support of the
initial one. When simulation studies are performed, the posterior distribution
is conditional on different data sets which have been simulated under the same
model. Theoretically, these posteriors should resemble one another as should the
data sets. A first idea is to run an MCMC algorithm on the first data set and
then apply IS to obtain estimates for the other distributions using the first pos-
terior distribution as the importance function. This approach can be compared
with an idea of predictive distribution estimations of Gelfand, Dey and Chang
(1992) where a single choice of importance sampling distribution is taken into
account. Nevertheless, in a more general case, if the posterior distribution is
conditional on one data set this could lead to poor approximations (when used
as an importance function in the IS method) for the other data sets. This is why
the choice of sampling distribution may depend on the choice of data set. We
therefore propose three criteria for choosing the posterior sampling distribution.

The objective of this paper is to assess and improve the efficacy of IS in rela-
tion to the MCMC method as an easier and faster way of Bayesian estimation.
The method is illustrated on Poisson models and the data sets used in this
study are simulated for different values of the parameters. The parameters were
estimated for each data set by both MCMC and the IS method, and the results
were compared through the mean square errors.

In section two we present the concept of the IS method and define a context
in which we use it. Then we propose three criteria for choosing the best sam-
pling distribution for the IS approximation among a set of preselected posterior
distributions. In the third section we present results of discussed estimation
methods applied in different Poisson models. A selection procedure is presented
in the fourth section to obtain automatically the set of preselected posterior
distributions. Conclusions are reported in the final section.

2. Methods

Suppose data X are described by a probability model (π(x|θ), θ ∈ Θ). Prior
distribution on the parameter θ (which can be multidimensional) is denoted
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by π(θ) and the posterior distribution by π(θ|x). We are equally interested
in some descriptive statistics of this posterior distribution such as posterior
mean, posterior standard deviation, posterior quantiles (credibility interval),
etc. Unfortunately, the closed-form solution for the posterior is very often not
available and nor are its descriptive statistics. In the Bayesian context the stan-
dard solution for dealing with this problem is provided by MCMC methods (see
Gilks, Richardson and Spiegelhalter, 1996). For a given data set X and a given
prior distribution on θ, a MCMC algorithm generates a Markov chain θ1, . . . , θN
whose stationary distribution is π(θ|x). The ergodic theorem ensures that the
expected value E[θ|X][g(θ)]with respect to the posterior distribution of θ of any

integrable function g can be approximated almost surely by 1/N
∑N

i=1 g(θi). Ac-
cording to the choice of the function g we can approximate different descriptive
statistics for the posterior distribution.

In the case of many repeated Bayesian estimations (e.g. while testing a new
model’s properties by simulating many data sets and estimating the model’s pa-
rameters afterwards), MCMC has to be used for each sample, which is often ex-
pensive and time-consuming. When carrying out an empirical study of estimates,
data are generally simulated from the model π(x|θ) under different parameteri-
zation schemes. Parameters (or functions of the parameters) are then estimated
for each simulated data set. Since we are interested in Bayesian estimation and
the posterior does not have an analytical solution, we can approximate it via
MCMC. Consider L parameterization schemes and for each K simulated sam-
ples, then the MCMC algorithm must be run L×K times, thus extending the
time taken for the estimations. In order to speed up the computation of poste-
rior expectations, we propose two strategies applying the Importance Sampling
method. Globally, these methods require that MCMC algorithm is used on a
subset of samples. As IS theoretical results are based on the assumption that
MCMC samples are from the posterior distribution, we assume that the conver-
gence of algorithms is carefully checked. In section 3, different diagnostics are
proposed for our applications.

2.1. Importance Sampling: fixed strategy

Importance Sampling (IS) is a well-known estimation method. We are particu-
larly interested in using it to approximate expected values under posterior dis-
tributions in order to reduce the number of times MCMC is used. We present
the concept of IS on the example of E[θ|X(k)][g(θ)] estimation using two data sets

X(k) andX(m) drawn from the same model π(x|θ) (with the same model param-
eterization). The expected value E[θ|X(k)][g(θ)] is given by the integral formula
and the Importance Sampling method relies on the following transformation
under the integral sign

E[θ|X(k)][g(θ)] =

∫

g(θ)π(θ|X(k))dθ =

∫

g(θ)
π(θ|X(k))

π(θ|X(m))
π(θ|X(m))dθ (1)
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with π(θ|X(m)) 6= 0 whenever π(θ|X(k)) 6= 0. The posterior distribution π(θ|X(m))
is called the importance function in IS procedure (right term of 1). Then, if we

already have an MCMC sample θ
(m)
1 , . . . , θ

(m)
N from the posterior distribution

π(θ|X(m)) of length N, the approximation of the expected value E[θ|X(k)][g(θ)] of
a real-valued function g such that E[θ|X(k)][|g(θ)|] < ∞, by the ergodic theorem
(Theorem 3 Tierney, 1994) is:

1

N

N
∑

i=1

g(θ
(m)
i )

π(θ
(m)
i |X(k))

π(θ
(m)
i |X(m))

→ E[θ|X(k)][g(θ)] a.s.. (2)

If there is no closed-form solution for the posterior distribution, the approxima-
tion (2) can be replaced by another one which is easily calculable with normal-
ized weights:

N
∑

i=1

g(θ
(m)
i )w̃i(k,m) (3)

where w̃i(k,m) =
wi(k,m)

∑N
i=1 wi(k,m)

and wi(k,m) =
π(X(k)|θ

(m)
i )

π(X(m)|θ
(m)
i )

The IS estimator with normalized weights given in (3) is also consistent for
E[θ|X(k)][g(θ)] as a consequence of the strong law of large numbers. Geweke
(1989) discusses the IS estimator with normalized weights for a case of iid
samples, which can be extended to the case of Markovian samples as a re-
sult of the Markov chains theory (see, for example Tierney, 1994). Moreover,
Geweke (1989) gives conditions for central limit theorem to hold for IS estima-
tor with normalized weights which can also be extended for Markovian samples.
Indeed, in discussion with Tierney (1994), Doss (1994) proves that for station-
ary and uniformly ergodic chain for which conditions Eπ(θ|X(m))[(g(θ)w(θ))

2 ] <

∞ and Eπ(θ|X(m))[(w(θ))
2] < ∞ are satisfied, an IS estimator with normal-

ized weights has a normal asymptotic distribution. As discussed in Geweke
(1989), the limiting distribution assessment may give us some indications of
∣

∣

∑N
i=1 g(θ

(m)
i )w̃i(k,m)−Eπ(θ|X(k))[g(θ)]

∣

∣. Hence, the MCMC sample θ
(m)
1 , . . . ,

θ
(m)
N used in further calculations needs to be ergodic from the posterior distri-
bution π(θ|X(m)) being its equilibrium distribution. Consequently we can easily
approximate E[θ|X(k)][g(θ)] for all k = 1, . . . ,m− 1,m+1, . . . ,K, using system-

atically the MCMC sample from π(θ|X(m)). We call this first strategy “fixed
strategy” because m is fixed and unique over all IS estimations of E[θ|X(k)][g(θ)]
for all k 6= m. In practice this means that it is enough to run MCMC only
once to obtain K estimations of E[θ|X(k)][g(θ)] for k = 1 . . . ,K. Without loss of
generality, m is fixed to 1.

Even if the data sets are simulated under the same model, considerable vari-
ability between samples could appear and thus posteriors may be remote. For
this reason we propose a second strategy to improve the IS method by choosing
a different importance function for each estimation.
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2.2. Importance Sampling: modulated strategy

The basic idea is to use an MCMC algorithm on M preselected simulated data
set (M < K) and to apply the IS procedure to remaining data where, for each
data set, the importance function is one of the M preselected posterior distribu-
tions approximated by MCMC. We denote this second strategy by “modulated
strategy.” M has to be relatively small with regard to K in order to ensure a
gain in computer time. In our examples, M is equal to 10 and K is equal to
100. The difficulty of this strategy is to establish relevant criteria for choosing
the more adequate preselected posterior distributions for the IS procedure. We
propose and compare three criteria, which are detailed further. More precisely,
this second strategy can be formulated as follows.

Suppose that M simulated data (X(m),m = 1, . . . ,M) have been preselected

from all data sets and M Markov Chains ((θ
(m)
1 , . . . θ

(m)
N ),m = 1, . . . ,M) have

been produced by MCMC under (π(θ|X(m)), m = 1, . . . ,M) respectively. We
now want to approximate E[θ|X(k)][g(θ)] for k = M + 1, . . . ,K via IS. In the
modulated strategy, IS estimations are based on the choice of mk ∈ {1, . . . ,M},
so that π(θ|X(mk)) becomes the importance function which may change from one
estimation to another within M possible choices. Following the same reasoning
as before, the approximation of E[θ|X(k)][g(θ)] is then

N
∑

i=1

g(θ
(mk)
i )w̃i(k,mk) → E[θ|X(k)][g(θ)] (4)

but depends on the choice of mk.
For M > 1, we propose three criteria for choosing mk ∈ {1, . . . ,M} for each

k = M + 1, . . . ,K. The choice of importance function in the IS procedure is
discussed in the literature with different solutions. For instance, solutions are
proposed as an adaptation procedure of Cappé et al. (2007) where this function
is based on minimization of deviance criterion or as in Douc et al. (2007b) via
minimization of the asymptotic variance of IS. Let the IS estimation be as in
equation (4). We expect that the IS method will provide a good estimation
if π(θ|X(mk)) is “close” to the target distribution π(θ|X(k)). It seems natural
then to choose mk for which the norm L1 of the difference between these two
posterior distributions ||π(θ(mk)|X(k)) − π(θ(mk)|X(mk))|| is the smallest. The
first criterion corresponds to the smallest approximation of this norm and mk

is chosen, satisfying the following expression

min
mk∈{1,...,M}

{

1

N

N
∑

i=1

∣

∣

∣

∣

∣

π(θ
(mk)
i |X(k))

π(θ
(mk)
i |X(mk))

− 1

∣

∣

∣

∣

∣

}

(5)

or, when the closed-form of posteriors is not available

min
mk∈{1,...,M}

{

N
∑

i=1

∣

∣

∣

∣

w̃i(k,mk)−
1

N

∣

∣

∣

∣

}

. (6)
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A major concern in the context of our study is verifying the support condi-
tion to apply the importance sampling estimator as discussed in section 2.4.
To handle this difficulty we may check a tail behavior of both target and
sampling distributions, since we want the sampling distribution to be flat-
ter. To control tail behaviors many authors suggest basing the choice of IS
density on a minimization of a Kullback-Leibler divergence (see, for example,
Asmussen, Kroese and Rubinstein (2005); Chen and Shao (1997); Rubinstein
and Kroese (2004) and Gustafson and Wasserman (1995)). Following this con-
cept, the second criterion may choose mk corresponding to the IS distribu-
tion for which a Kullback-Leibler divergence KL(π(θ|X(K)), π(θ|X(mk))) =
∫

log( π(θ|X(k))

π(θ|X(m
k
))
)π(θ|X(k))dθ is the smallest:

min
mk∈{1,...,M}

{

1

N

N
∑

i=1

π(θ
(mk)
i |X(k))

π(θ
(mk)
i |X(mk))

ln
π(θ

(mk)
i |X(k))

π(θ
(mk)
i |X(mk))

}

(7)

or, when the closed-form of posteriors is not available

min
mk∈{1,...,M}

{

N
∑

i=1

w̃i(k,mk) lnwi(k,mk)−
ln 1

N

∑N
i=1 wi(k,mk)

1
N

∑N
i=1 wi(k,mk)

}

. (8)

The third criterion is based on the variance of g(θ) π(θ|X(k))

π(θ|X(m
k
))
. We would like

to choose mk ∈ {1, . . . ,M} satisfying the following inequality:

V ar[θ|X(m
k
)]

[

g(θ)π(θ|X(k))

π(θ|X(mk))

]

< V ar[θ|X(k)][g(θ)] (9)

corresponding to the variance of the IS estimate on the left and the variance of
the MCMC estimate on the right.

As E[θ|X(m
k
)][

g(θ)π(θ|X(k))

π(θ|X(m
k
))

] = E[θ|X(k)][g(θ)], it is then equivalent to:

E[θ|X(m
k
)]

[(

g(θ)π(θ|X(k))

π(θ|X(mk))

)2]

< E[θ|X(k)][(g(θ))
2] (10)

As the choice of π(θ|X(mk)) is limited to the M preselected data, it is not
certain that the above inequalities will be satisfied for any of these densities.

However, if E[θ|X(m
k
)][(

g(θ)π(θ|X(k))

π(θ|X(m
k
))

)2] is finite, we can find mk for which the vari-

ance of the IS estimate is smallest. For this reason, for each k = M + 1, . . . ,K,
the second criterion selects mk ∈ {1, . . . ,M} such that the corresponding pos-

terior density π(θ|X(mk)) minimizes the variance of g(θ) π(θ|X(k))

π(θ|X(m
k
))
.

It can be shown (see Robert, 2007, section 6.2.2) that to minimize this vari-
ance, π(θ|X(mk)) should be proportional to |g(θ)| · π(θ|X(k)), therefore mk is

chosen to make |g(θ)| π(θ|X(k))

π(θ|X(m
k
))
the most stable. Thus, the third criterion chooses

mk which satisfies

min
mk∈{1,...,M}

{

maxi=1,...,N u(θ
(mk)
i )−mini=1,...,N u(θ

(mk)
i )

∑N
i=1 u(θ

(mk)
i )

}

(11)
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where u(θ
(mk)
i ) = |g(θ

(mk)
i )| · π(θ

(mk)
i |X(k))/π(θ

(mk)
i |X(mk)) or

u(θ
(mk)
i ) = |g(θ

(mk)
i )| · π(X(k)|θ

(mk)
i )/π(X(mk)|θ

(mk)
i )

when the posterior distributions cannot be calculated. Note that this third cri-
terion depends on function g and thus must be calculated for each function g.
This is not the case for two other previous criteria.

2.3. Comparison of different strategies

In a simulation study to judge the performance of one estimation method against
another, we calculate the mean square error for each one, which by definition is
the mean square difference between estimations and true expected value.

However, when there is no analytical expression of E[θ|X(k)][g(θ)], comparison
with the true posterior mean is not possible. We therefore propose to compare
the IS estimate directly with the MCMC estimate, as MCMC is the traditional
procedure to use and can thus be considered as reference. Let us denote by
MCMC(k) the estimate of E[θ|X(k)][g(θ)] obtained using the traditional MCMC
procedure and by IS(k)/(m) the estimate obtained using IS, as in (3). We thus
define the mean square errors as follows:

MSEfs =
1

K − 1

∑

k 6=m

(IS(k)/(m) −MCMC(k))
2 (12)

for the “fixed strategy” (fs), and

MSEms =
1

K −M

∑

k 6=mk

(IS(k)/(mk) −MCMC(k))
2 (13)

for the “modulated strategy” (ms). In this second case, the mean square errors
will be evaluated for the three criteria, allowing us to assess the effect of the
criteria on the IS estimates. In fact, this mean square error can be considered
as a distance between the IS and MCMC methods.

As each procedure (MCMC or IS) corresponds to an approximation, we also
calculate mean square errors of MCMC and IS procedures for the values fixed
in the simulation scheme.

The choice ofM preselected simulated data for the three criteria could appear
arbitrary and not necessarily optimal. We therefore propose a procedure allowing
“automatic” selection. This point will be described in section 4. Convergence of
MCMC algorithms was checked systematically using different tools.

2.4. Importance Sampling performances

Generally speaking, the use of IS is justified if the support of the target poste-
rior distribution is included in the support of the importance function. In our
study, the target density is π(θ|X(k)) and the importance function is the poste-
rior density π(θ|X(m)) for fixed strategy or π(θ|X(mk)) for modulated strategy.
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This problem of support is particularly delicate and crucial when the posterior
distribution depends on parameter values. A simple example of this case is when
data are assumed to be uniform on an interval determined by parameters which
implies that parameter space of the posterior depends entirely on data. GLM
models do not correspond to this situation. Apart from these cases of links be-
tween parameter space and data, the difficulty appears when, in any part of
the support, the sampling distribution π(θ|X(mk)) tends to zero faster than the
target distribution π(θ|X(k)). Then, the weights involved in the IS procedure
are very unstable with possible huge values. The accuracy of estimates obtained
by IS depends a great deal on weight behavior. Hence, the support assumption
may be ensured in a way by the control of the tail behavior of weights. Different
tools exist in the literature to detect weight instability. For instance, Geweke
(1989) proposed two diagnostics for computational accuracy: the first, based on
order statistics of weights, is able to indicate thin tails in IS density relative to
the posterior, and the second, relative numerical efficiency (RNE), is the ratio
between the number of iterations used in IS and the number of iterations used in
traditional MCMC to give the same numerical standard error. McVinish et al.
(2008) proposed a statistic ∆(X(k), X(mk)) to control the variance of weights
when posterior distributions (π(θ|X(k)) and π(θ|X(mk))) are approximated by
Gaussian distributions. The greater the values of ∆(X(k), X(mk)), the bigger
the variability of weights. Under this gaussian approximation, we can show that
the Kullback-Leibler divergence is proportional to this statistic ∆(X(k), X(mk)).
More precisely, with same notations as McVinish et al. (2008), π(θ|X(k)) and

π(θ|X(mk)) are approximated by Gaussian centered at θ̂k and θ̂mk
respectively

with asymptotic covariances matrices Jk and Jmk
. If J−1

k = nI0(1 + op(1)) and
J−1
mk

= nI0(1+op(1)), I0 being a fixed positive definite matrix, the authors show
that the asymptotic variance of weights is:

var(w̃(k,mk)|X
(k), X(mk)) = exp{n(θ̂mk

− θ̂k)
T I0(θ̂mk

− θ̂k) + op(1)} − 1

The statistic ∆(X(k), X(mk)) = (θ̂mk
− θ̂k)

TJ−1
mk

(θ̂mk
− θ̂k) can thus predict

the stability of the weights. The Kullback-Leibler divergence KL(π(θ|X(k)),
π(θ|X(mk))) is:

KL(π(θ|X(k)), π(θ|X(mk))

= 1/2

(

log

(

|Jmk
|

|Jk|

)

+ tr(J−1
mk

Jk) + (θ̂mk
− θ̂k)

tJ−1
mk

(θ̂mk
− θ̂k) + r

)

where r is the dimension of parameter space. If we assume that Jk = Jmk

(sample sizes of X(k) and X(mk) are implicitly assumed to be equal) then:

KL(π(θ|X(k)), π(θ|X(mk)) = 1/2((θ̂mk
− θ̂k)

tJ−1
mk

(θ̂mk
− θ̂k))

KL(π(θ|X(k)), π(θ|X(mk)) = 1/2∆(X(k), X(mk))

which is exactly the statistic controling the variability of weights in McVinish
et al. (2008). If X(k) and X(mk) are mutually independent and if θ̂k and θ̂mk
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are maximum likelihood estimators then ∆(X(k), X(m))
d
→ 2χ2

r. This remark
goes in favor of the choice of Kullback-Leibler divergence as a criterion for
modulated strategy because it minimizes the statistic ∆(X(k), X(mk)). A critical
situation for modulated strategies would be when these computational accuracy
diagnostics give poor indications for all M preselected data sets. Note that
this situation occurs very rarely especially because, as mentioned by Asmussen,
Kroese and Rubinstein (2005), the importance function is chosen from among
the same parametric family as the target density, as happens in our case. If this
critical situation exists for a specific π(θ|X(k)), one solution is to add the data
X(k) in the preselected data set (containing then M + 1 elements); this can be
done without any difficulty.

3. Applications

In this section we use both the MCMC (Gibbs sampling in our case) and IS
methods to estimate parameters of three Poisson models. The first is a Poisson
model with one parameter (the mean), the second is a Poisson regression on
one covariate with two parameters (intercept and covariate association), and
the third is a Poisson regression on one covariate with extra Poisson variability
introduced by a Gaussian residual error term with three parameters (intercept,
covariate association and residual variance). The first model can be seen as a
toy example with explicit posterior distributions; the second corresponds to a
widely used GLM model, and the third introduces over-dispersion which is es-
sential, for example, in medical applications since association estimates would
be biased if extra-Poisson variability was not modelled (see Breslow (1984) for
motivations). For each model K = 101 data sets are simulated for different
values of the parameters. All data sets contain n = 20 observations. Vague
priors are assigned to the parameters and the posterior values are estimated
via MCMC and IS as discussed above. Note that it is essential that MCMC
convergence is achieved, therefore several (and not only one) diagnostics of
convergence have to be checked as suggested by Brooks and Roberts (1998)
and Mengersen, Robert and Guihenneuc-Jouyaux (1999). Many diagnostics are
available in the BRuGS package CODA, namely convergence diagnostics of
Geweke, Gelman and Rubin, Raftery-Lewis, Heidelberger and Welch. In our
examples, we use MC error (MC error was less then 5% of the posterior stan-
dard deviation) and Gelman and Rubin diagnostics as well as graphical tools
(history, autocorrelation). For all estimating values we ran an MCMC algorithm
for 50, 000 iterations with a burn-in of 5, 000.

Firstly, we study performance of the fixed strategy with m = 1 over all IS
estimations. Then we generalize the concept of the fixed strategy by evaluating
mean square errors for all possible values of m (m = 1, . . . , 101). This means
that the fixed strategy is repeated 101 times, and each time only one posterior
distribution is taken as an importance function in all estimations. However, any
time the fixed strategy is repeated, this posterior distribution, which is used as
an importance function, depends on another data set. This approach allows us
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to assess the best and the worst performance of this strategy in terms of mean
square error. We also draw box-plots to summarize all these mean square errors.

For the second strategy, we preselect the first 10 simulated data (M = 10)
and use them next in criteria. For each criterion we calculate corresponding
mean square errors, which are then reported on the box-plots mentioned above.

Finally, we compare the results with those obtained when: (1) the number
of observations increases to n = 1, 000 and (2) the number of coefficients in-
creases by introducing 10 covariates into the regression. All the calculations
were done using R software environment for statistical computing and graphics
(R Development Core Team, 2008). The BRugs package (Thomas et al., 2006)
was used in MCMC simulations. Note that for storage reasons, a subset of
MCMC iterations (thin equal to 20) is used for Model 3 with n = 1, 000 for all
procedures.

3.1. Simple Poisson model

As a tool example we consider that the data are described by a simple Poisson
model with one parameter λ, that isX1, . . . , Xn are iid andXi|λ ∼ P(λ). We use
λ ∼ G(α, β) as a prior distribution and then the true posterior distribution of the
parameter given the whole data setX = (X1, . . . , Xn) is a G(

∑n
i=1 Xi+α, β+n).

To simulate data sets of size n = 20 each, we use two values for the model
parameter λ = 1 and λ = 20. In both cases the parameters of the prior are
α = 0.01 and β = 0.01.

The mean square errors for the fixed strategy and the modulated strategy for
g(λ) = λ are presented in figure 1 with λ = 1 on the left and λ = 20 on the right.
Black, white and grey diamonds correspond to the first, second and the third cri-
teria respectively for the modulated strategy. The box-plots give results for the
fixed strategy when all possibilities of fixed m are considered. Box-plots without
ouliers (extreme MSEs) are presented in the top right corner of each graphic.
We observe that mean square errors are greater for λ = 20 as data variability is
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Fig 1. Box-plot of the MSEfs of all possible m in fixed strategy together with the MSEms of
three criteria in Model 1 with g(λ) = λ for λ = 1 (left) and λ = 20 (right); black diamond for
the first criterion, white diamond for the second criterion and grey diamond for the third.
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greater. However, in both cases of lambda, modulated strategies (first to third
criteria) seem to reduce the mean square errors compared with the MSEfs for
fixed strategy. As it is impossible to choose with certainty one good sample dis-
tribution for the fixed strategy, the results show that thanks to the criteria, we
can avoid those m (fixed strategy) for which associated MSE is greatest.

The advantage of this simple example is that the true posterior mean of λ

is known, equal to (
∑n

i=1 X
(k)
i + α)/(β + n) for simulated data X(k). For each

approximation procedure (MCMC and IS), table 1 presents MSEs with regard
to the true posterior mean for λ = 1 on the left and λ = 20 on the right.

Generally these MSEs are small for all strategies studied (notice that values
reported in table 1 are multiplied by 106). For λ = 1 MSEs calculated for MCMC
are smaller than for other strategies, however for λ = 20 MSEs calculated for
the first and the third criteria are smaller than those calculated for MCMC.
Three modulated strategies have MSEs sharply smaller than the biggest MSE
(the worst case) of the fixed strategy. An advantage of modulated strategies
is that the estimations are on average closer to the true posterior means than
are estimations calculated with fixed strategy. For the second criterion based
on Kullback-Leibler divergence, numerical problems can appear due to the log
of weigths. For λ = 20 and second criterion, MSE is equal to 124.95 10−6

due to two extreme values. If these values are omitted (and then the mean is
based on 89 values instead on 91 values), MSE is equal to 53.3 10−6, which is
comparable to the other MSEs obtained from modulated strategies. The mean
square errors calculated with respect to the true values set in simulations (results
not shown) show similar performances for the modulated strategies and MCMC
and sometimes, as in table 1, slightly better results are obtained from modulated
strategies than from the MCMC procedure.

Table 1

Mean square errors with regard to the true posterior mean in Model 1 for g(λ) = λ with
λ = 1 (left) and λ = 20 (right) and n = 20

strategy λ = 1 λ = 20

MSE1 q97.5%
2 MSE1 q97.5%

2

MCMC 3 1.050 0.035 90.327 1.194
The best fixed strategy4 3.481 0.071 1152.119 90.131
The worst fixed strategy5 2520.477 83.316 120260.480 10325.171
Modulated strategy

with 1st criterion6 1.253 0.087 42.127 0.669
Modulated strategy

with 2nd criterion6 2.148 0.172 124.950 3.958
Modulated strategy

with 3rd criterion6 2.306 0.131 44.615 0.671
1Mean square errors with regard to the true posterior mean(×106)
2Highest 97.5% of the terms involved in mean square error expression (×106)
3MCMC strategy (×106)
4IS with fixed strategy associated to the best MSE (×106)
5IS with fixed strategy associated to the worst MSE (×106)
6IS with modulated strategy (×106)
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3.2. Poisson regression model

The second model is a Poisson regression with a covariate Z and two parameters
a and b, that is Xi|λ ∼ P(λi) where log(λi) = a + bZi. For both coefficients
a and b we use N (0, 105) as vague priors, and data sets are simulated when
a = 0 and b = 0.5. For this model, no analytical solution of posterior parameter
distribution is available. Table 2 shows the mean square errors for the best and
for the worst choice of the sampling distribution with fixed strategy, and also
when the sampling distribution changes according to the three criteria. These
results are illustrated by the box plots of all mean square errors (figure 2).

Table 2

Mean square errors with regard to the MCMC posterior means in Model 2 with a = 0,
b = 0.5 and n = 20 for g(θ) = a (left)and g(θ) = b (left)

strategy a b

MSE1 q97.5%
2 MSE1 q97.5%

2

The best fixed strategy3 0.042 0.003 0.046 0.003
The worst fixed strategy4 15.886 2.930 37.664 2.047
Modulated strategy

with 1st criterion5 0.007 <0.001 0.014 0.001
Modulated strategy

with 2nd criterion5 0.058 0.070 0.155 0.020
Modulated strategy

with 3rd criterion5 0.026 0.001 0.594 0.001
1Mean square errors on (K-M) samples (×103)
2Highest 97.5% of the terms involved in mean square error expression (×103)
3IS with fixed strategy associated to the best MSE (×103)
4IS with fixed strategy associated to the worst MSE (×103)
5IS with modulated strategy (×103)
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Fig 2. Box-plot of the MSEs of all possible fixed choices together with the MSEcs of both
criteria in Model 2 with θ = (a = 0, b = 0.5) for g(θ) = a (top left) and g(θ) = a2 (top right),
g(θ) = b (bottom left) and g(θ) = b2 (bottom right); black diamond for the first criterion,
white diamond for the second criterion and grey diamond for the third.
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Again, both strategies provide better estimations in comparison with most of
the estimations for which fixed choice of sampling distribution was used. Indeed,
we can ascertain from figure 2 that the MSEs for criteria are smaller than the
quasi-totality of the MSEs for the fixed choice.

3.3. Poisson regression model with extravariability

The third model gives an example of extra-variability. Poisson regression on one
covariate Z with extra-variability is supposed. The model is then the following:

Xi|λ ∼ P(λi)

log(λi) = a+ bZi + ǫi

ǫi ∼ N (0, σ2)

For both coefficients a and b we use N (0, 105) as vague priors, and inverse
gamma distribution IG(0.01, 0.01) (the second coefficient being the rate) as a
prior of residual variance σ2. In the simulations we set a = 0 and b = 0.5 and we
consider three parameter settings of σ2: 1/8, 1/4, 1/2. There is no closed-form
expression for the posterior parameter distribution. For each strategy and each
parameter setting, mean square errors (MSEfs and MSEms) with regard to
MCMC posterior means are presented in table 3 as well as the highest 97.5% of
the terms involved in mean square error expression.

Overall, the modulated strategy always gives better results than the worst
fixed strategy for the three parameters, but sometimes the best fixed strategy is
better. The impact of criterion choice for the modulated strategy is minor, with
results being almost the same. Figure 3 presents box-plots for the fixed strategy
when all possibilities of fixed m are considered. As previously, black, white and
grey diamonds correspond to the first, second and third criteria respectively for
the modulated strategy. From left to right, the results are given for the three
values of σ2 (1/8, 1/4, 1/2) respectively. These box-plots clearly confirm that
the modulated strategy avoids the worst cases of fixed strategy and show that
in most cases, fixed strategy leads to greater MSEs even if it is less clear that
modulated strategy performances are better for the parameter σ2.

As the MCMC procedure corresponds to an approximation, mean square
errors of MCMC and of the two IS strategies are assessed with respect to the
“true” parameter values (results not shown). Modulated strategies lead again
to good results, sometimes better than those from the MCMC procedure. For
instance, in the case of σ2 = 1/2, MSEs of coefficient b for three criteria of
modulated strategy are equal to 67×10−3, 64×10−3 and 58×10−3 respectively,
while the MSE of b from MCMC is 83× 10−3.

In all three models, there are cases where fixed strategy corresponds to smaller
MSEfs than MSEms and also where it is smaller than the MSE of MCMC.
Nevertheless, while comparing posterior estimations with the values set in simu-
lations, modulated strategy again shows better results than fixed strategy except
in a small number of cases and avoids the worst case of the fixed strategy.
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Table 3

Mean square errors with regard to the MCMC posterior means in Model 3 with a = 0,
b = 0.5, σ2 = 1/8 (first part) or σ2 = 1/4 (second part) or σ2 = 1/2 (third part) and n = 20

for g(θ) = a (left), g(θ) = b (middle) and g(θ) = σ2 (left)

strategy a b σ2

σ2 = 1/8 MSE1 q97.5%
2 MSE1 q97.5%

2 MSE1 q97.5%
2

The best fixed strategy3 5.791 0.385 0.261 0.222 51.079 4.224
The worst fixed strategy4 66.384 3.928 31.762 2.814 132.263 8.763
Modulated strategy

with 1st criterion5 7.058 0.579 3.674 0.338 74.385 5.527
Modulated strategy

with 2nd criterion5 12.325 1.725 4.125 0.344 89.494 5.963
Modulated strategy

with 3rd criterion5 12.122 1.311 5.156 0.564 95.190 6.340
a b σ2

σ2 = 1/4 MSE1 q97.5%
2 MSE1 q97.5%

2 MSE1 q97.5%
2

The best fixed strategy3 8.531 1.075 3.453 0.381 72.822 4.434
The worst fixed strategy4 74.240 10.928 44.829 3.199 149.402 12.262
Modulated strategy

with 1st criterion5 14.282 1.672 5.498 0.568 110.520 9.642
Modulated strategy

with 2nd criterion5 17.309 2.562 9.282 0.861 110.328 9.902
Modulated strategy

with 3rd criterion5 15.785 1.831 7.183 0.568 122.447 12.324
a b σ2

σ2 = 1/2 MSE1 q97.5%
2 MSE1 q97.5%

2 MSE1 q97.5%
2

The best fixed strategy3 17.827 2.053 4.859 0.396 234.222 18.205
The worst fixed strategy4 181.103 8.557 138.765 5.907 361.212 33.731
Modulated strategy

with 1st criterion5 29.918 2.782 6.398 0.645 287.724 31.109
Modulated strategy

with 2nd criterion5 40.138 3.519 10.198 0.804 280.986 31.820
Modulated strategy

with 3rd criterion5 30.869 2.389 9.941 0.761 297.203 27.430
1Mean square errors on (K-M) samples (×103)
2Highest 97.5% of the terms involved in mean square error expression (×103)
3IS with fixed strategy associated to the best MSE (×103)
4IS with fixed strategy associated to the worst MSE (×103)
5IS with modulated strategy (×103)

3.4. Sensitivity analysis

As an extension, three other cases are considered, in each of which we increase
the number n of observations per data set to n = 1, 000. The first case (case
1) is again the Poisson regression model with extra-variability as previously
described in section 3.3. The same parameter values are chosen (a = 0, b =
0.5, σ2 = 1/2) and the same priors are taken. Two other cases of Poisson
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Fig 3. Box-plot of the MSEfs of all possible fixed choices together with the MSEms of both

criteria in Model 3 with a = 0, b = 0.5 and σ2 = 1/8 (1st line), σ2 = 1/4 (2nd line) or
σ2 = 1/2 (3rd line), for g(θ) = a (left) and g(θ) = b (middle), g(θ) = σ2 (right); black
diamond for the first criterion, white diamond for the second criterion and grey diamond for
the third criterion in modulated strategy.

regression models are studied where the number of covariates is now 10 which
are all continuous (normally distributed from N (0, 1)) (case 2) or which are
continuous or binary (Zij ∼ N (0, 1) for j = 1, . . . , 5 and Zij ∼ Bernoulli(0.25)
for j = 6, . . . , 10) (case 3). For these last two cases, the linear predictor becomes

log(λi) = a+
∑10

j=1 bjZij + ǫi.

We use N (0, 105) as vague priors for coefficients a and {bj , j = 1, . . . , 10},
and inverse gamma distribution IG(0.01, 0.01) as prior of residual variance σ2

of ǫi. In simulations we set a = 0, bj = 0.05 for j = 1, . . . , 10 and σ2 = 1/2.
For each case, mean square errors are calculated with regard to MCMC pos-

terior means. For these three cases, similar performances are obtained for mod-
ulated strategies to those in section 3.3. The increase in the number of observa-
tions n leads to smaller MSEs, as expected. Table 4 gives these MSEs for case 1
and has to be compared with the last line of table 3 corresponding to a similar
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Table 4

Mean square errors in Model 3 with a = 0, b = 0.5, σ2 = 1/2 and n = 1000 for g(θ) = a
(left), g(θ) = b (middle) and g(θ) = σ2 (left) calculated with regard to MCMC posterior

means

strategy a b σ2

σ2 = 1/2 MSE1 q97.5%
2 MSE1 q97.5%

2 MSE1 q97.5%
2

The best fixed strategy3 1.580 0.077 1.247 0.067 2.600 0.126
The worst fixed strategy4 23.382 0.520 9.124 0.266 52.230 1.083
Modulated strategy

with 1st criterion5 3.486 0.144 2.131 0.097 14.806 0.506
Modulated strategy

with 2nd criterion5 8.019 0.308 3.079 0.139 32.478 0.890
Modulated strategy

with 3rd criterion5 2.776 0.169 2.043 0.083 16.514 0.602
1Mean square errors on (K-M) samples (×103)
2Highest 97.5% of the terms involved in mean square error expression (×103)
3IS with fixed strategy associated to the best MSE (×103)
4IS with fixed strategy associated to the worst MSE (×103)
5IS with modulated strategy (×103)

case but with n = 20. MSEs are approximately divided by 3 with n = 1, 000 but
the interclassification is preserved. An increase in the number of covariates gives
similar results. Concerning case 2, mean of 10 MSEs corresponding to 10 covari-
ate associations is calculated for each strategy. The three modulated strategies
give very close results (2.4 × 10−3, 2.9 × 10−3 and 2.3 × 10−3 for criteria 1, 2
and 3 respectively), MSE means for the best and the worst fixed strategy being
1.2× 10−3 and 11.7× 10−3 respectively. As before, the result for the worst fixed
strategy is considerably less good than for modulated strategies but slightly
better for the best fixed strategy. Concerning case 3, results for associations
with normal covariates are separated from those with Bernoulli covariates. For
the 5 normal covariates, results are completely similar to the previous case. For
the 5 Bernoulli covariates, MSE means for the three modulated strategies are
13.6×10−3, 15.0×10−3 and 12.5×10−3 for strategies 1, 2, and 3 and 6.1×10−3,
66.4× 10−3 for the best and worst fixed strategy respectively. Less good MSEs
are approximately multiplied by 6 but conclusions are similar.

An increase in n and in the number of covariates clearly increases computation
times. Improving procedures in terms of computation times is then a major
challenge, particularly in high dimension. Comparisons of these times for the
different procedures are presented and discussed in the last section (section 5).

4. Selection procedure

In this section, we propose a procedure to selectM sampling distributions useful
for the modulated strategies. The basic idea is to find M posterior distributions
which are, in a certain sense, representative of the K − M remaining poste-
rior distributions. As in our examples vague priors are chosen, this is almost
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equivalent to considering sampling distributions instead of posterior distribu-
tions. First, we define this selection procedure and then illustrate it on Model 3
defined previously.

4.1. Selection method

The basic idea of this automatic selection method is to build M clusters from
K sampling distributions and then to select one distribution in each cluster to
become the M preselected simulated data set used in section 2.2. The cluster
constructions are based on a summary statistic characterizing a sampling distri-
bution and on a distance between these statistics. Different choices of statistic
and distance are possible, but for simplicity reasons, we choose the empirical
mean as summary statistic and the Euclidean distance. The most suitable meth-
ods here are “k-medoids” methods which partition all elements into M clusters
returning its central element for each cluster, the medoid. Since we want to select
M sampling distributions representative of theK sampling distributions, the ad-
vantage of such a method is that a “medoid” of each cluster is obtained directly.
Several clustering methods exist and some are implemented in R packages. To
illustrate this procedure, we choose the “Partitioning Around Medoids” (PAM)
method introduced by Kaufman and Rousseeuw (1990) and well-documented in
Nakache and Confais (2005). The R procedure is “PAM” in the Cluster package
(Maechler et al., 2005). Note that other “k-medoid” methods exist, such as Clus-
tering LARge Applications (Kaufman and Rousseeuw, 1990), Clustering LARge
Applications based on RANdomized Search (Ng and Han, 1994) and Fast In-
telligent Subspace Clustering Algorithm using Dimension Voting (Woo et al.,
2004).

4.2. Illustration

The selection procedure used in the third model was as defined in section 3.3
with the parameter settings a = 0, b = 0.5 and σ2 = 1/2. The number of sim-
ulated data sets is K = 101 and of preselected data sets M = 10 as before.
Figure 4 represents estimated marginal posterior distributions for each param-
eter approximated by classical MCMC, where bold densities correspond to the
10 data sets preselected by the automatic procedure PAM. This figure shows
clearly that the 10 posterior distributions of selected data sets represent all the
posterior existing distributions well.

Table 5 presents the mean square errors when IS with modulated strategies
is used with the 10 simulated data sets selected automatically using the above
procedure. The reader can check that these results are comparable to those given
in table 3. These results are again always better than those obtained with the
worst fixed choice of table 3. The selection procedure seems to give results which
are as good as previous ones and has the great advantage of being automatic and
therefore avoiding the arbitrary choice of preselected sampling distributions.
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Fig 4. Marginal posterior densities of a (left), b (middle) and σ2 (right) obtained with MCMC
in Model 3 with parameter settings θ = (a = 0, b = 0.5, σ2 = 1/2). Ten posterior densities
selected by PAM clustering algorithm, are drawn in bold.

Table 5

Mean square errors in Model 3 with the Automatic Selection Procedure and parameter
settings θ = (a = 0, b = 0.5, σ2 = 1/2) for g(θ) = a (left part), g(θ) = b (middle part) and

g(θ) = σ2 (right part)

strategy a b σ2

MSE1 q97.5%
2 MSE1 q97.5%

2 MSE1 q97.5%
2

Modulated strategy
with 1st criterion3 25.784 1.790 5.073 0.337 259.049 27.550

Modulated strategy
with 2nd criterion3 40.005 3.577 13.133 0.805 279.517 35.416

Modulated strategy
with 3rd criterion3 32.721 3.098 6.307 0.449 292.787 30.407

1−2See the legend of Table 4
3IS with the different π(θ|X(m)) selected by the 1st or the 2nd criterion (×103)

5. Conclusions

In this paper, we compare a classical MCMC algorithm with MCMC combined
with an IS approach in repeated posterior estimations conditional on different
data sets. The aim is to run MCMC on only a small number of data sets and
then use generated chains in IS procedure in the following estimations condi-
tional on the remaining data sets. The sampling distribution, namely a chain,
can be the same in each IS estimation (“fixed strategy”) or differ one from an-
other according to one of the three proposed criteria (“modulated strategy”).
We compare the results of the approaches using IS with those based on MCMC
only, using mean square errors. When the true posterior means are available we
compare estimations with them. Comparison becomes impossible since posterior
expectation values are unknown. To overcome this difficulty we try to compare
the estimation strategies involving IS directly with MCMC posterior mean es-
timations, considering MCMC estimation as a benchmark. The disadvantage of
this comparison, however, is that both IS and MCMC are only approximate.
In the studied examples, we chose vague priors on parameters. Hence, we also
calculated mean square error with regard to the values set on parameters in the
simulations.
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The methods discussed were applied to the Poisson models. The results of
IS estimation were quite satisfying in the case of the fixed strategy and the
modulated strategy. The first model was the simplest and its true posterior
characteristics were available. In this example we saw that IS estimations were
very close to them and also to the MCMC estimations. For the other two mod-
els, analytical estimates were not available, and therefore the IS results were
compared with the MCMC estimations showing concordance between the two
methods. For Model 3, it emerges that a residual variance is more difficult to
estimate and the MCMC algorithm does not handle it well either, returning
estimates with large credibility intervals. In this case, larger MSEs are not sur-
prising. For the modulated strategy, neither criterion has managed to produce
mean square errors smaller than the smallest MSEs obtained for the fixed strat-
egy, but nevertheless, they are always smaller than the largest ones and in most
cases smaller than the fixed strategy MSEs. As an extension of this study, we
have tested IS strategies on the same Poisson regression, but increasing the
number of observations per data set to n = 1, 000. To increase the number of
parameters, we have also added more covariates. They were chosen arbitrarily
to be normal or normal and Bernoulli. The main conclusions remain unchanged.
The modulated strategy allows us to avoid the worst case of the fixed strategy
for both types of mean square error. When comparing estimations with the val-
ues set in simulations, IS may outperform MCMC, as in the best case of the
fixed strategy. Unfortunately it is impossible to indicate conditionally the data
set in which a posterior distribution is the best importance function in the fixed
choice strategy to give the smallest corresponding MSEfs.

In terms of computation times, modulated strategies and fixed strategies al-
ways run faster than the MCMC procedure for complex models as Model 3. The
gain depends on the number of observations n and the number of parameters.
Generally speaking, the higher the dimension of the parameter space and/or the
number of observations, the greater the time difference between the methods. All
comparisons were carried out on the same computer and on the same number of
iterations in the MCMC procedure. Table 6 gives the ratio of computation times
between the IS and MCMC methods for Models 2 and 3 with n = 1, 000 and
ten covariates. For the Poisson model with extra-variability (Model 3), the ratio
between fixed strategy and MCMC computation times is on average 0.036, the
ratio between modulated strategy and MCMC is 0.278, 0.266 and 0.652 for cri-
teria 1, 2 and 3 respectively. The benefit in terms of computation times between
classic MCMC and MCMC together with IS is thus considerable. For Poisson

Table 6

Ratio of computation times between the IS strategies and MCMC methods with n = 1, 000
and 10 covariates

Strategy: fixed criterion 1 (L1) criterion 2 (KL) criterion 3

Model 2 0.057 0.957 0.773 1.156

Model 3 0.036 0.278 0.266 0.652
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model without extra-variability (Model 2), the ratio between fixed strategy and
MCMC computation times is on average 0.057 showing again a clear benefit of
IS procedure. But, the gain between MCMC and IS with modulated strategies
is less important. Even if ratio is smaller than 1 for criteria 1 and 2, note that
classic MCMC is faster than IS with criterion 3 because this last criterion needs
to be assessed for each function g as discussed in section 2.2. For simple models,
MCMC runs very fast and so, the use of alternative approaches as IS seems less
crucial than for models requiring expensive computation times as Model 3.

To conclude, modulated strategies, especially when associated with the first
or second criterion, show the best compromise between estimate performances
and computation times. Indeed, the estimate performances are nearly equivalent
for modulated strategies and MCMC, but with computation times that are sig-
nificantly smaller. Moreover, the comparison with fixed strategy revealed better
performances for the modulated strategy. Interesting extensions of this work
could be to study IS estimates for generalized linear mixed models (GLMM)
which are widely used in practice. These models appear typically to require
computation time improvement because they correspond to a high dimensional
case. From a methodological point of view, IS based on a mixture of preselected
posterior distributions versus only a single distribution is an important perspec-
tive. It offers the advantage that it probably proposes an importance function
with greater support range, and hence more stable weights.

Acknowledgments

The authors would like to thank Dr McVinish for helpful and constructive com-
ments which enabled us to improve this article. The authors thank the editor,
associate editor and the referee for their helpful comments and suggestions which
led to a significant improvement. Dr Gajda’s research is supported by university
Paris Sud 11 - ED420 doctoral grant.

References

Asmussen, S., Kroese, D. P. and Rubinstein, R. Y. (2005). Heavy tails,
importance sampling and cross-entropy. Stoch. Models 21 57–76. MR2124359

Breslow, N. E. (1984). Extra-PoissonVariation in Log-LinearModels. Journal
of the Royal Statistical Society. Series C (Applied Statistics) 33 38–44.

Brooks, S. P. and Roberts, G. O. (1998). Convergence assessment tech-
niques for Markov chain Monte Carlo. Statistics and Computing 8 319–335.
http://dx.doi.org/10.1023/A:1008820505350
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