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A Case for Robust Bayesian Priors with
Applications to Clinical Trials

Jairo A. Fúquene∗, John D. Cook† and Luis R. Pericchi‡

Abstract. Bayesian analysis is frequently confused with conjugate Bayesian ana-
lysis. This is particularly the case in the analysis of clinical trial data. Even
though conjugate analysis is perceived to be simpler computationally (but see
below, Berger’s prior), the price to be paid is high: such analysis is not robust with
respect to the prior, i.e. changing the prior may affect the conclusions without
bound. Furthermore, conjugate Bayesian analysis is blind with respect to the
potential conflict between the prior and the data. Robust priors, however, have
bounded influence. The prior is discounted automatically when there are conflicts
between prior information and data. In other words, conjugate priors may lead
to a dogmatic analysis while robust priors promote self-criticism since prior and
sample information are not on equal footing. The original proposal of robust priors
was made by de-Finetti in the 1960’s. However, the practice has not taken hold
in important areas where the Bayesian approach is making definite advances such
as in clinical trials where conjugate priors are ubiquitous.

We show here how the Bayesian analysis for simple binary binomial data, ex-
pressed in its exponential family form, is improved by employing Cauchy priors.
This requires no undue computational cost, given the advances in computation and
analytical approximations. Moreover, we introduce in the analysis of clinical trials
a robust prior originally developed by J.O. Berger that we call Berger’s prior. We
implement specific choices of prior hyperparameters that give closed-form results
when coupled with a normal log-odds likelihood. Berger’s prior yields a robust
analysis with no added computational complication compared to the conjugate
analysis. We illustrate the results with famous textbook examples and also with
a real data set and a prior obtained from a previous trial. On the formal side,
we present a general and novel theorem, the “Polynomial Tails Comparison Theo-
rem.” This theorem establishes the analytical behavior of any likelihood function
with tails bounded by a polynomial when used with priors with polynomial tails,
such as Cauchy or Student’s t. The advantages of the theorem are that the likeli-
hood does not have to be a location family nor exponential family distribution and
that the conditions are easily verifiable. The binomial likelihood can be handled
as a direct corollary of the result. Next, we proceed to prove a striking result: the
intrinsic prior to test a normal mean, obtained as an objective prior for hypothesis
testing, is a limit of Berger’s robust prior. This result is useful for assessments and
for MCMC computations. We then generalize the theorem to prove that Berger’s
prior and intrinsic priors are robust with normal likelihoods. Finally, we apply the
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results to a large clinical trial that took place in Venezuela, using prior information
based on a previous clinical trial conducted in Finland.

Our main conclusion is that introducing the existing prior information in the
form of a robust prior is more justifiable simultaneously for federal agencies, re-
searchers, and other constituents because the prior information is coherently dis-
carded when in conflict with the sample information.

Keywords: Berger’s Prior, Clinical Trials, Exponential Family, Intrinsic Prior,
Parametric Robust Priors, Polynomial Tails Comparison Theorem, Robust Priors

1 Introduction

In Bayesian statistics the selection of the family of prior distributions is crucial to the
analysis of data because the conclusions depend on this selection. However, there is
little analysis of clinical trials using non-conjugate priors. It is common to report an
analysis using different conjugate priors: clinical, skeptical, and non-informative. The
precision in these priors is important and sensitivity analyses regarding the priors is
necessary. One approach to this problem is advocated by Greenhouse and Wasserman
(1995) who compute bounds on posterior expectations over an ε-contaminated class
of prior distributions. An alternative solution is proposed in Carlin and Louis (1996),
where one re-specifies the prior and re-computes the result. These authors obtain fairly
specific results for some restricted non-parametric classes of priors. Along the same
line, another alternative is the “prior partitioning” of Carlin and Sargent (1996) which
selects a suitably flexible class of priors (a non-parametric class whose members include
a quasi-unimodal, a semi-parametric normal mixture class, and the fully parametric
normal family) and identify the priors that lead to posterior conclusions of interest.
These are (very few) proposals about what may be called “non-parametric” robustness
to the prior. The proposals in this paper are “parametric” robust Bayesian analysis,
quite distinct from the previous proposals. Some general results on parametric Bayesian
robustness are in Dawid (1973), O’Hagan (1979), Pericchi and Sansó (1995). We believe
that the main road forward for clinical trials is on the parametric side for three reasons.
First, it is more natural to represent the information given by a previous trial in terms
of parametric priors. More generally, parametric priors are easier to assess. Second, it
is far more clear how to generalize a parametric robust analysis to hierarchical modeling
than a non-parametric class of priors. Finally, non-parametric priors do not appear to
have achieved a significant impact in practice. In Gelman et al. (2008) the authors take
a somewhat similar point of view to ours. Their arguments are very applied while ours
are more theoretical and so the papers are complementary.

Clinical trials are exceptional in at least two ways. First, there is often substan-
tial “hard” prior data. Second, there are multiple parties overseeing the analysis: re-
searchers, statisticians, regulatory bodies such as the FDA, data and safety monitoring
boards, journal editors, etc. In this framework there are fundamental issues such as
the following. How do you assess a prior from the prior data? How do you assess how
relevant the previous data is to the current trial? By using prior information are we
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enhancing the analysis or biasing it? Our key message in this paper is that robust priors
are a better framework to get consensus in clinical trials for the following reason:

1. Prior information may be substantial about certain characteristics like location,
scale, but it is very weak about the tails of prior distributions.

2. The tail size is crucial in the posterior inference when there is conflict between
prior and sample.

3. The behavior of posterior inference under robust priors is superior because when
the prior information is irrelevant for the case at hand, then the prior information
is coherently and automatically discarded by Bayes’ theorem.

Conjugate light-tailed priors do not have these features and may be called “dogmatic.”
See Berger (1985) for an authoritative discussion of these issues and our example in
6.1. Of course if all involved had unlimited time for several sensitivity analysis, the
results using light tailed priors might be acceptable. Instead, we are suggesting that
Bayes’ theorem should be allowed to perform coherently the sensitivity analyses, and
for that heavy tailed priors are required. A referee has pointed out that “a researcher
who had carefully constructed a prior distribution that reflected substantial available
information almost certainly would prefer for that information to be reflected in the
posterior distribution or at least for prior/data conflict to be recognized and investi-
gated”. Certainly, if someone has a prior that they want included in the analysis, fine.
But it need not be the only prior used. There’s no harm in repeating an analysis with
several priors, and in fact it is a recommended practice to do so. Furthermore, there are
limits to how well someone can quantify their prior uncertainty, particularly far from
the center of their estimate. It is hard to imagine that someone could say that their
prior belief follows a normal distribution rather than a Student-t with say six degrees of
freedom. If individuals cannot specify with fidelity the tail behavior of their subjective
priors, the tail behavior should be determined by technical criteria such as robustness.

The popular normal/normal (N/N) or beta/binomial (B/B) conjugate analysis (see
for example Spiegelhalter et al. (2004)) will be exposed in this article as non-robust.
Workable (parametric) alternatives are available to the practitioner. For motivation
consider: The posterior mean µn in the N/N and B/B models is (see next section)
µn = (n0 + n)−1(n0µ + nX̄n). Thus the mean is a convex combination of the prior
expectation, µ, and the data average, X̄n, and thus the prior has unbounded influence.
For example, as the location prior/data conflict |µ − x̄| grows, so does |µn − x̄| and
without bound. These considerations motivate the interest in non-conjugate models
for Bayesian analysis of clinical trials, and more generally motivate heavy-tailed priors.
(See the theorem in the next section.)

We may employ the following heuristic: Bayesian clinical trials are not better because
they stop sampling earlier (although they often do) but because they stop intelligently,
that is the stopping is conditional on the amount of evidence. Robust priors are not
better because they have less influence (though this is true) but because they influence
in a more intelligent way: the influence of the robust prior is a function of the potential
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conflict between prior and sample information about the region where the parameters are
most likely to live. (For more general measures of prior-sample conflict see for example,
Evans and Moshonov (2006)). In this paper we show that the Cauchy prior is robust in
two models for clinical trials. Pericchi and Smith (1992) considered the robustness of
the Student-t prior in the Student-t/normal model. We consider as a particular case the
Cauchy/normal (C/N) model for normal log-odds. Much less known, however, is the
robust property of the Cauchy prior with the binomial likelihood and more generally
for exponential family likelihoods. To prove the robustness of the Cauchy prior when
coupled with a binomial likelihood, we prove a more general result that only requires a
bound in the tail behavior of the likelihood. This novel theorem is easy to verify and is
very general. Under these conditions, when the prior and the model are in conflict, then
the prior acts “as if” it were uniform. In other words, the prior influences the analysis
only when prior information and likelihood are in broad agreement. Otherwise Bayes’
theorem effectively switches back to a uniform prior. In this paper we rely heavily on the
fact that the binomial likelihood belongs to the exponential family (though the theorem
is not limited to exponential family likelihoods) showing the robustness of the Cauchy
prior in the Cauchy/binomial (C/B) model for binary data.

Cauchy priors do not lead to analytical closed-form results, but our next suggestion
does. In his very influential book (Berger (1985)) Berger proposes a prior (called here
“Berger’s prior”). We use Berger’s prior for clinical trials analysis, assuming a prior
mean and scale suggested by previous data or by general features of the current trial. It
turns out that this gives closed-form results when coupled with a normal log-odds like-
lihood. We show the robustness of Berger’s prior for the Berger-prior/normal log-odds
(BP/N) model, which makes it more attractive than both the Cauchy and conjugate
priors. We also prove here a striking result: The intrinsic prior to test a normal mean of
Berger and Pericchi (1996) which is obtained as an objective prior for hypothesis test-
ing, is also a limit of Berger’s robust prior. This result is useful for assessments and for
MCMC computations. We then generalize the Polynomial Tails Comparison theorem
to prove that Berger’s prior and intrinsic priors are robust with normal likelihoods. We
finally apply the results to massive clinical trial that took place in Venezuela, and the
prior information is taken from a previous clinical trial in Finland.

Lastly we remark that the hierarchical model is not the solution for the lack of
robustness of conjugate analysis. Quite to the contrary, the hierarchical model should
use robust priors in the hierarchy to prevent unbounded and undesirable shrinkages.
This is being studied in work in progress by M.E. Perez, and L.R. Pericchi.

This article is organized as follows. Section 2 is devoted to the Polynomial Tails
Comparison Theorem. In Section 3 we review the prior specification and posterior
moments of the C/B model. In Section 4 we examine the robustness of the Cauchy
prior in the C/B posterior model. In the Sections 3 and 4 we show the application of
the C/B model in a clinical trial. In Section 5 we describe the robustness of the C/N
and BP/N models and prove that the intrinsic prior is a limit of Berger’s priors. In
Section 6 we prove the Generalized Polynomial Tails theorem and illustrate the results
in a real and important clinical trial published in the New England Journal of Medicine.
We make some closing remarks in Section 7.
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2 The Polynomial Tails Comparison Theorem

The following theorem is decidedly useful and easy to apply when determining whether
a prior is robust with respect to a likelihood.

For ν > 0, define

t(λ;µ, ν) =
(

1 +
(λ− µ)2

ν

)−(ν+1)/2

.

Aside from a normalization constant that would cancel out in our calculations, t(λ; µ, ν)
is the PDF of a Student-t distribution with ν degrees of freedom centered at µ.

Let f(λ) be any likelihood function such that as |λ| → ∞
∫

|λ|>m

f(λ) dλ = O(m−ν−1−ε). (1)

In the application we have in mind, f is a binomial likelihood function although the
result is more general. For instance the latter holds for any ν in any likelihood with
exponentially decreasing tails.

Denote by πT (λ |data) and πU (λ |data) the posterior densities employing the Student-
t and the uniform prior densities respectively. Applying Bayes’ rule to both densities,
for any parameter value λ0 the following ratio:

πU (λ0 | data)
πT (λ0 |data)

=

∫∞
−∞ f(λ) t(λ;µ, ν) dλ

t(λ0; µ, ν)
∫∞
−∞ f(λ) dλ

.

Theorem 2.1. For fixed λ0,

lim
µ→∞

∫∞
−∞ f(λ) t(λ; µ, ν) dλ

t(λ0; µ, ν)
∫∞
−∞ f(λ) dλ

= 1. (2)

Proof. We will show that

lim
µ→∞

∫∞
−∞ f(λ) t(λ;µ, ν) dλ− t(λ0; µ, ν)

∫∞
−∞ f(λ) dλ

t(λ0; µ, ν)
∫∞
−∞ f(λ) dλ

= 0. (3)

Note that the numerator can be written as
∫ ∞

−∞
f(λ) (t(λ; µ, ν)− t(λ0;µ, ν)) dλ.

We break the region of integration in the numerator into two parts, |λ| < µk and
|λ| > µk, for some 0 < k < 1 that we will pick later, and show that as µ → ∞ each
integral goes to zero faster than the denominator.
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First consider ∫

|λ|<µk

f(λ) (t(λ; µ, ν)− t(λ0; µ, ν)) dλ. (4)

For every λ, there exists a ξ between λ and λ0 such that

t(λ;µ, ν)− t(λ0; µ, ν) = t′(ξ; µ, ν)(λ− λ0)

by the mean value theorem. Since µ →∞, we can assume µ > µk > λ0.

|t(λ; µ, ν)− t(λ0; µ, ν)| = |t′(ξ;µ, ν)(λ− λ0)|
=

(ν + 1)|λ− µ| |λ− λ0|
ν

(
1 + (λ−µ)2

ν

)(ν+3)/2

=
O(µ1+k)
Ω(µν+3)

= O(µk−ν−2).

[Here we use the familiar O notation and the less familiar Ω notation. Just as
f = O(µn) means that f is eventually bounded above by a constant multiple of µn, the
notation f = Ω(µn) means that f is eventually bounded below by a constant multiple
of µn.]

As µ →∞, the integral (4) goes to zero as O(µk−ν−2). Since t(λ0; µ, ν) is Ω(µ−ν−1),
the ratio of the integral (4) to t(λ0; µ, ν) is O(µk−1). Since k < 1, this ratio goes to zero
as µ →∞.

Next consider the remaining integral,

∫

|λ|>µk

f(λ) (t(λ; µ, ν)− t(λ0; µ, ν)) dλ. (5)

The term t(λ; µ, ν)− t(λ0; µ, ν) is bounded, and we assumed

∫

|x|>m

f(λ) dλ = O(m−ν−1−ε).

Therefore the integral (5) is O((µk)−ν−1−ε) = O(µ−k(ν+1+ε)). Since t(λ0;µ, ν) is
Ω(µ−ν−1), the ratio of the integral (5) to t(λ0; µ, ν) is of order O(µ−k(ν+1+ε/(ν+1)).
This term goes to zero as µ →∞ provided k > (ν + 1)/(ν + 1 + ε).

Note that in particular the theorem applies when f is the likelihood function of a
binomial model with at least one success and one failure and ν = 1, i.e. a Cauchy prior.
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3 The Binomial Likelihood with Conjugate and Cauchy
Priors

Assume a sample of size n with X1, . . . , Xn ∼ Bernoulli(θ). The binomial likelihood in
its explicit exponential family form is given by

f(X+ |λ) ∝ exp
{
X+λ− n log(1 + eλ)

}
, (6)

where X+ =
∑n

i=1 Xi ∼ binomial(n, θ) is the number of success in n trials. Notice that
for the binomial likelihood, it is enough to assume that there is at least one success and
one failure, i.e. 0 < X+ < n, (for assumption (2.1) of the theorem of the previous section
to be fulfilled for every ν ≥ 1), since then the binomial has exponentially decreasing
tails. The natural parameter is the log-odds, λ = log(θ/(1−θ)), which is the parameter
to be modeled as a Cauchy variable later, for which one can make use of the theorem.
If desired, a Student-t prior with more than one degree of freedom can be used, and all
results apply as well. We employ the Cauchy for good use of “conservatism” regarding
the treatment of prior information, a point shared with Gelman et al. (2008).

First we perform a conjugate analysis, expressing the beta(a, b) prior, after the
transformation of the parameter θ to log-odds, as

πB(λ) =
Γ(a + b)
Γ(a)Γ(b)

(
eλ

1 + eλ

)a (
1

1 + eλ

)b

a, b > 0. (7)

The cumulant generating function of the prior distribution πB(λ) is given by

Kλ(t) = − log(Γ(a)Γ(b)) + log(Γ(a + t)) + log(Γ(b− t)), (8)

hence EB(λ) = Ψ(a) − Ψ(b) and VB(λ) = Ψ
′
(a) + Ψ

′
(b), where Ψ(·) is the digamma

function and Ψ
′
(·) is the trigamma function, that are extensively tabulated in for

example Abramowitz and Stegun (1970). The posterior distribution of the B/B model
is given by

πB(λ | X+) = K × exp
{
(a + X+)λ− (n + a + b) log(1 + eλ)

}
(9)

where K =
Γ(n + a + b)

Γ(X+ + a)Γ(n−X+ + b)
. On the other hand, one proposal for robust

analysis for binomial data (see also the next sections for Berger’s prior for an alternative)
is to use a Cauchy prior for the natural parameter λ in order to achieve robustness with
respect to the prior,

πC(λ) =
β

π[β2 + (λ− α)2]
, (10)

with parameters of location and scale α and β respectively. The posterior distribution
of the C/B model is

πC(λ | X+) =
exp

{
X+λ− n log(1 + eλ)− log

(
β2 + (λ− α)2

)}

m(X+)
,
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where m(X+) is the predictive marginal. Notice that this posterior also belongs to
the exponential family. One approach to the approximation of m(X+) is Laplace’s
method, refined by Tierney and Kadane (1986) for statistical applications given by
m(X+) ≈ √

2πσ̂n−1/2 exp{−nh(λ̂)} where −nh(λ) = log(πC(λ)f(X+ |λ)), λ̂ is the
maximum of −h(λ̂), and σ̂ = [h

′′
(λ)]−1/2|λ=λ̂. The accuracy is of order O(n−1).

Example 3.1. A Textbook Clinical Trial Example. We apply the preceding appro-
ximation adapting an example considered in Spiegelhalter et al. (2004). Suppose that
previous experience with similar compounds has suggested that a drug has a true res-
ponse rate θ, between 0 and 0.4, with an expectation around 0.2. For normal distri-
butions we know that m ± 2s includes just over 95% of the probability, so if we were
assuming a normal prior we might estimate m = 0.2 and s = 0.1. However, the beta
distributions with reasonably high a and b have approximately normal shape, so that
θ ∼ beta(a = 3, b = 12). Suppose that we test the drug on 20 additional patients and
observe 16 positive responses (X+ = 16). Then the likelihood of the experiment is X+ ∼
binomial(n = 20, θ) and the posterior in this case θ | X+ ∼ beta(a = 19, b = 16). Our
proposal is to use a Cauchy prior in order to achieve robustness with respect to the prior,
πC(λ), with the same parameters of location and scale of the beta prior. For this exam-
ple the location and the scale are Ψ(3) − Ψ(12) = −1.52 and

√
Ψ′(3) + Ψ′(12) = 0.69

respectively. Figures 1 and 2 display a large discrepancy between the means of the prior
information and the normalized likelihood (i.e. the posterior density using a uniform
prior) of the data. In the B/B model the prior and the likelihood receive equal weight.
The weight of the likelihood in the C/B posterior model is higher that in the B/B model.
The form of the C/B model is much closer to the normalized likelihood.
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Figure 1: Beta prior, normalized binomial likelihood and B/B posterior model for the Example
1.
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Figure 2: Cauchy prior, normalized binomial likelihood and C/B posterior model for the
Example 1.

The posterior moments of the natural parameter of an exponential family are con-
sidered in Pericchi et al. (1993) and Gutierrez-Peña (1997). The cumulant generating
function of the posterior, πB(λ | X+), in the B/B model is

Kλ |X+(t) = log
(

Γ(X+ + a + t)Γ(n−X+ + b− t)
Γ(X+ + a)Γ(n−X+ + b)

)
, (11)

hence

EB(λ |X+) = Ψ(X+ + a)−Ψ(n−X+ + b) (12)

VB(λ |X+) = Ψ
′
(X+ + a) + Ψ

′
(n−X+ + b). (13)

In the C/B model, we need to calculate the approximation of EC(λ |X+) and VC(λ |X+).
The posterior expectation EC(λ |X+) involves the ratio of two integrals and the Laplace
method can be used, as

Ẽ(λ |X+) =
(

σ∗

σ̂

)
exp

{
−n[h∗(λ∗)− h(λ̂)]

}
, (14)

where −nh∗(λ) = log(λπC(λ)f(X+ |λ)), λ∗ is the maximum of −h∗(λ) and
σ∗ = [h∗

′′
(λ)]−1/2|λ=λ∗ . The error in (14) is of order O(n−2) (see Tierney and Kadane

(1986)). However, in (14) we must assume that λ does not change sign. Tierney et al.
(1989) recommend to add a large constant c to λ, apply Laplace’s method (14) and
finally subtract the constant. We let ẼC(λ |X+) and ṼC(λ |X+) to denote approximate
posterior expectation and posterior variance of the C/B model
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ẼC(λ |X+) = Ẽ(c + λ |X+)− c. (15)

ṼC(λ |X+) = Ẽ((c + λ)2 |X+)− [Ẽ(c + λ |X+)]2. (16)

For both functions h(λ̂) and h∗(λ) it is not possible to find the maximum analyti-
cally and then we use Newton Raphson algorithm. Here c is the value of λ such that
πC(λ = c | X+) ≤ 0.5−4 and the starting value in the Newton-Raphson algorithm is the
maximum likelihood estimator (MLE) of the natural parameter, λ̂ = log((X̄n)/(1−X̄n)).

Result 3.1. The posterior expectations for the C/B model and B/B satisfy the follow-
ing:

1. Robust result:

lim
α→±∞

EC(λ |X+) ≈ λ̂ +
e2λ̂ − 1

2neλ̂
. (17)

2. Non-robust result:
lim

EB(λ)→±∞
EB(λ |X+) → ±∞. (18)

respectively.

Proof. See the Appendix. Result 3.1 is a corollary of the Theorem 2.1.

Note: the limit (17) is not equal to the MLE, but consistent with Theorem 2.1.

4 Computations with Cauchy Priors

We use weighted rejection sampling to compute the (“exact”) posterior moments in
the C/B model due to its simplicity and generality for simulating draws directly from
the target density πC(λ | X+) (see Smith and Gelfand (1992)). In the C/B model the
envelope function is the Cauchy prior. The rejection method proceeds as follows:

1. Calculate M = f(X+ | λ̂).

2. Generate λj ∼ πC(λ).

3. Generate Uj ∼ uniform(0,1).

4. If MUj πC(λj) < f(X+ |λj) πC(λj), accept λj . Otherwise reject λj and go to Step
2.
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It is clear that the Cauchy density is an envelope. Because it is simple to generate
Cauchy distributed samples, the method is feasible. Using Monte Carlo methods and
10,000 random samples from πC(λ | X+) we compute Esim and Vsim. Results available
from the authors show that the agreement between the Laplace approximations and the
rejection algorithm is quite good for sample sizes bigger than n = 10. In Figures 3 to
5 we illustrate the striking qualitative difference of posterior moments, as a function of
the discrepancy between prior and sample location |µ − x̄|. Figure 3 shows that the
beta prior has an unbounded influence and it is not robust. Figures 4 and 5 display
the qualitative forms of dependence of the posterior expectation and variance on the
discrepancy between the prior location and the MLE using a Cauchy prior. Here λ̂ = 0
and a and b take various values with their sum fixed at 50. In Figures 4 and 5, the
approximations (15) and (16) are shown as functions of the discrepancy. Note that
(16) is non-monotonic in the discrepancy. The posterior expectation, ẼC(λ |X+), is a
function of the “information discount.”
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Figure 3: Behavior of the posterior expectation, EB(λ |X+), in the B/B model for values
n = 10, λ̂ = 0 and a + b = 50.
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Figure 4: Behavior of the posterior expectation, ẼC(λ |X+), in the C/B model for values
n = 50, λ̂ = 0 and a + b = 50.
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Figure 5: Behavior of the posterior variance, VB(λ |X+) in the B/B and ṼC(λ |X+) in the
C/B for values n = 50, λ̂ = 0 and a + b = 50.
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Example 4.1. Textbook Example (Continued): Moments and predictions for
binary data.

EB(λ |X+) VB(λ |X+) ẼC(λ |X+) ṼC(λ |X+) M.L.E

0.18 0.12 1.26 0.33 1.39

Table 1: Posterior Expectation and Variance for the B/B and C/B models.

The estimate resulting from the C/B model is closer to the data because the MLE
0.8 of θ is closer to 0.77 than to 0.54, the estimate resulting from the B/B model.

In Table 1 there is a large difference between the values of the posterior mean (0.18)
for the B/B model and the MLE. On the other hand, the results of the C/B model and
the MLE λ̂ are similar. The discrepancies between the expectations of the posterior
models and the MLE are approximately 3.5 and 0.23 standard errors for B/B and C/B
respectively. For the scale of θ that is the true response rate for a Bernoulli trials
set, we know that the predictive mean of the total number of successes in m trials is
E(Xm) = mE(θ |X+). If we plan to treat 40 additional patients in the B/B model the
predictive mean is 40 × 0.54 ≈ 22, and in the C/B model is equal to 40 × 0.77 ≈ 31.
The estimate resulting from the C/B model is closer to the data because the MLE 0.8
of θ is closer to 0.77 than to 0.54, the estimate resulting from the B/B model. The beta
prior is more “dogmatic” than the Cauchy prior leading to non-robust results. Bayesian
analysis is not dogmatic in general, but conjugate Bayesian analysis can be. This is a
major selling point of robust Bayesian methods.

5 Normal Log-Odds and Berger’s Prior

An alternative to the binomial likelihood is the normal likelihood in the log-odds, see
Spiegelhalter et al. (2004). Pericchi and Smith (1992) showed some aspects of the
robustness of the Student-t prior for a normal location parameter and provided appro-
ximations to the posterior moments in the model Student-t/normal. The Cauchy prior,
as a Student-t with one degree of freedom, can be used in this context as well. However,
for normal log-odds there is a robust prior that leads to a closed-form posterior and
moments, a sort of “best of both worlds.” Bayesians have long come to terms with
the disadvantages of procedures based on conjugate priors because of the desire for
closed-form results. However, Berger (1985) proposed for comparison of several means
a robust prior (called “Berger’s prior” in this work) that gives closed-form results for
coupled normal means. Berger’s prior (BP) is similar to a Cauchy prior in the tails.
Our proposal is an analysis based on Berger’s prior that we call BP/N posterior model.
In this work the location of Berger’s prior, πµ

BP (λ), is denoted by µ. This prior has the
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following form.

πBP (λ) =
∫ 1

0

N(λ |µ;
d + b

2ν
− d) · 1

2
√

ν
dν (19)

Here N(λ |µ, τ2) denotes a normal density on the parameter λ with mean and vari-
ance µ, τ2 respectively, which is well-defined whenever b ≥ d. The hyper-parameters d
and b have to be assessed (see the end of the section for alternative assessments). We
set here b = β2 (equal to the scale of the Cauchy) and d = σ2/n.

Suppose that X1, . . . , Xn ∼ normal(λ, σ2) where σ2 is assumed known and λ is
unknown, then the Berger’s prior is

πBP (λ) =
∫ 1

0

K × exp
{
−n

2

[
2ν(λ− µ)2

σ2(1− 2ν) + nβ2

]}
dν (20)

where

K =
√

n√
4π(σ2(1− 2ν) + nβ2)

. (21)

Result 5.1. Suppose that X1, . . . , Xn ∼ normal(λ, σ2) where σ2 is assumed known and
λ is unknown. The predictive distribution of the BP/N model is

m(X̄n) =

√
σ2 + nβ2

√
4πn(X̄n − µ)2

[
1− exp

{
−n(X̄n − µ)2

σ2 + nβ2

}]
.

The posterior distribution of the BP/N model is

πBP (λ | X̄n) =
πBP (λ) exp

{
−n(X̄n − λ)2

2σ2

}

σ
√

σ2 + nβ2

√
2n(X̄n − µ)2

[
1− exp

{
−n(X̄n − µ)2

σ2 + nβ2

}] . (22)

The posterior expectation of the BP/N model

EBP (λ | X̄n) = X̄n +
2σ2n(X̄n − µ)2 − 2σ2(σ2 + nβ2)(f(X̄n)− 1)

n(X̄n − µ)(σ2 + nβ2)(f(X̄n)− 1)
, (23)

and the posterior variance of the BP/N model is

VBP (λ | X̄n) =
σ2

n
− σ4

n2

{
4n2(X̄n − µ)2f(X̄n)

(σ2 + nβ2)2(f(X̄n)− 1)2

}
(24)

+
σ4

n2

{
2(σ2 + nβ2)(f(X̄n)− 1)((σ2 + nβ2)(f(X̄n)− 1)− n)

(σ2 + nβ2)2(f(X̄n)− 1)2(X̄n − µ)2

}
,
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where f(X̄n) = exp
{

n(X̄n − µ)2

σ2 + nβ2

}
.

Proof. See Appendix.

The posterior expectation for the BP/N model satisfies the following

lim
µ→±∞

EBP (λ | X̄n) = X̄n; lim
µ→X̄n

EBP (λ | X̄n) = X̄n. (25)

This can be shown simply using L’Hôpital’s rule on the expression of the posterior
expectation (23) and proves the robustness of the Berger prior coupled with the normal
log-odds (see also Berger (1985)). Also we have the following result for a Cauchy prior
(as a corollary of the theorem):

lim
α→±∞

ECN (λ | X̄n) ≈ lim
α→±∞

X̄n − 2σ2(X̄n − α)
n(β2) + (X̄n − α)2

= X̄n. (26)

5.1 The Intrinsic Prior as the Limit of Berger’s Prior

It is a striking sort of synthesis result that the limit (as n → ∞, for d = σ2/n) of
Berger’s prior is the intrinsic prior (Berger and Pericchi (1996)). Define η = λ− µ and
recall the standard intrinsic prior for a normal location parameter:

ϕ(η) =
1

2
√

π

1− exp(−η2)
η2

. (27)

and extend it to a scale family by defining

ϕ(η; σ) =
1
σ

ϕ
( η

σ

)
.

Then
lim
d→0

πBP (η; b, d) = ϕ(η,
√

b)

as we will prove in the next section.

5.2 Bounds for Berger’s prior

In this section we develop upper and lower bounds for the density of Berger’s prior. We
then use these bounds to prove that the limiting case of Berger’s prior is the intrinsic
prior. First, define

w(ν; b, d) =
1

b + d− 2νd
.

We will suppress the dependence on b and d unless there is a need to be explicit. With
this notation the integral defining Berger’s prior becomes
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πB(η) =
1

2
√

π

∫ 1

0

exp
(−η2 w(ν) ν

)
w(ν)1/2 dν.

Next we multiply and divide by (wν)′ where the prime indicates the derivative with
respect to ν. Then

πB(η) =
1

2
√

π

∫ 1

0

exp
(−η2 w(ν) ν

)
(w(ν)ν)′

w(ν)1/2

(w(ν) ν)′
dν.

Note that
w(ν)1/2

(w(ν) ν)′
=

(b + d− 2νd)3/2

b + d
.

Therefore

k1(b, d) ≡ (b− d)3/2

b + d
≤ w(ν)1/2

(w(ν) ν)′
≤ (b + d)1/2 ≡ k2(b, d).

It follows that

πBP (η) =
1

2
√

π

∫ 1

0

exp
(−η2 w(ν) ν

)
(w(ν)ν)′

w(ν)1/2

(w(ν)ν)′
dν. (28)

≤ 1
2
√

π

∫ 1

0

exp
(−η2 w(ν) ν

)
(w(ν)ν)′k2(b, d) dν. (29)

=
k2(b, d)
2
√

πη2

(
1− exp

(
− η2

b− d

))
(30)

by computing the integral (29). Similarly, by applying the lower bound k1(b, d) in the
integral (29) and reversing the direction of the inequality

πBP (η) ≥ k1(b, d)
2
√

πη2

(
1− exp

(
− η2

b− d

))
.

To summarize,

k1(b, d)ψ(η; b, d) ≤ πB(η; b, d) ≤ k2(b, d) ψ(η; b, d) (31)

where

ψ(η; b, d) =
1− exp

(
− η2

b−d

)

2
√

πη2
.

Note that as d → 0 the terms k1(b, d) and k2(b, d) converge to
√

b. Therefore the
upper and lower bounds on πBP (η; b, d) converge to the intrinsic prior scaled by

√
b.
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Also, these bounds suggest that one could construct an efficient accept-reject algorithm
for sampling from Berger’s prior by using the intrinsic prior as a proposal density.

Notice that the intrinsic prior was obtained by a completely unrelated method
(Berger and Pericchi (1996)). It was originally obtained as the implicit prior to which
the arithmetic intrinsic Bayes factor converges. The intrinsic Bayes factor is derived
within an approach to objective model selection. It is pleasant that it coheres with
robust Bayesian reasoning. The intrinsic prior does not yield closed-form results with
the normal likelihood. The next theorem generalizes the Polynomial Tails Comparison
Theorem to prove that the intrinsic prior, as well as the Cauchy prior, are robust.

6 Generalized Polynomial Tails Comparison Theorem

We begin by reviewing the symbols O, Ω, and Θ used to denote asymptotic order,
extending the notation used in Section 2. We say f(λ) = O(g(λ)) if there exist positive
constants M and C such that for all λ > M ,

f(λ) ≤ Cg(λ).

Similarly, we say f(λ) = Ω(g(λ)) if there exist positive constants M and C such that
for all λ > M ,

f(λ) ≥ Cg(λ).

One could read O as “eventually bounded above by a multiple of” and Ω as “eventually
bounded below by a multiple of.” Finally, we say f(λ) = Θ(g(λ)) if f(λ) = O(g(λ))
and f(λ) = Ω(g(λ)).

Let f(λ) be any bounded likelihood function such that as |λ| → ∞
∫

|λ|>m

f(λ) dλ = O(m−d−ε) (32)

for positive constants d and ε. In particular, note that this condition is satisfied for the
binomial likelihood in logistic form as long as there has been at least one success and at
least one failure observed. The condition also applies for any likelihood function with
exponentially decreasing tails.

Let p(λ) be a continuous, symmetric distribution. (The assumption of symmetry
is not essential, but the distributions we are most interested in are symmetric and the
assumption simplifies the presentation.) We may extend p to a location-scale family as:

p(λ;µ, σ) =
1
σ

p

(
λ− µ

σ

)
.

Assume that as λ → ∞, p(λ) = Θ(λ−d) and that p′(λ;µ) = O(λ−d−1) where p′

is the derivative of p with respect to λ. We will show later that the Student-t family,
Berger’s prior, and the intrinsic prior all satisfy these two conditions.
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We are now ready to state and prove the generalized polynomial tails comparison
theorem. Denote by πP (λ | data) and πU (λ | data) the posterior densities employing
the prior p(λ |µ, σ) and the uniform prior respectively. Applying Bayes’ rule to both
densities yields for any parameter value λ0 the following ratio:

πU (λ |data)
πP (λ | data)

=

∫∞
−∞ f(λ)p(λ; µ, σ) dλ

p(λ0;µ, σ)
∫∞
−∞ f(λ) dλ

.

Theorem 6.1. For fixed λ0,

lim
µ→∞

∫∞
−∞ f(λ)p(λ; µ, σ) dλ

p(λ0; µ, σ)
∫∞
−∞ f(λ) dλ

= 1.

Proof. Since our only assumptions on the prior p(λ; µ, σ) involve the asymptotic order
of p and its derivative, and since these assumptions are not effected by a scaling factor
σ, we may assume σ = 1 and drop σ from our notation.

We will show that

lim
µ→∞

∫∞
−∞ f(λ)p(λ;µ) dλ− p(λ0; µ)

∫∞
−∞ f(λ) dλ

p(λ0; µ)
∫∞
−∞ f(λ) dλ

= 0. (33)

Note that the numerator may be written as
∫ ∞

−∞
f(λ)(p(λ; µ)− p(λ0; µ)) dλ.

We break the region of integration in the numerator into two parts, |λ| < µk and
|λ| > µk, for some 0 < k < 1 to be chosen later, and show that as µ →∞ each integral
goes to zero faster than the denominator.

First consider
∫

|λ|<µk

f(λ)(p(λ; µ)− p(λ0;µ)) dλ. (34)

By the fact that p(λ; µ) = p(λ− µ) and the mean value theorem we have
∣∣∣∣∣
∫

|λ|<µk

f(λ)(p(λ; µ)− p(λ0;µ)) dλ

∣∣∣∣∣ ≤
∫

|λ|<µk

f(λ)p′(ξ(λ))|λ− λ0| dλ

where −µk < λ, λ0 < µk and each ξ(λ) is between λ − µ and λ0 − µ. Therefore
ξ(λ) = O(µ) and p′(ξ(λ)) = O(µ−d−1). The term |λ − λ0| is O(µk) and so the the
integral (34) is O(µk−d−1). The denominator of (33) is Ω(µd) and so the contribution
of (34) to (33) is O(µk−d−1)/Ω(µ−d) = O(µk−1). Since k < 1, this term goes to zero as
µ →∞.
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Next consider
∫

|λ|>µk

f(λ)(p(λ; µ)− p(λ0;µ)) dλ. (35)

The term (p(λ; µ) − p(λ0; µ)) is bounded and so by the assumption on the tails of
the likelihood function f , the integral (35) is of order O((µk)−d−ε) = O(µ−k(d+ε)).
Therefore the contribution of the integral (35) to the ratio (33) is O(µd−k(d+ε)) and so
this term goes to 0 as µ →∞ provided k < d/(d + ε).

Next we show that the Student-t family, the intrinsic prior, and Berger’s prior all
satisfy the conditions of the Generalized Polynomial Tail Comparison Theorem.

Clearly the tails of a Student-t distribution with ν degrees of freedom are Θ(λ−1−ν).
Also, the intrinsic prior and Berger’s prior are clearly Θ(λ−2) in the tails. The derivative
conditions remain to be demonstrated.

The density for a Student-t is proportional to

(
1 +

λ2

ν

)−(ν+1)/2

and so its derivative is proportional to

−(1 + ν)λ
(

1 +
λ2

ν

)−(3+ν)/2

which is of order O(λ−2−ν).

For the intrinsic prior, the asymptotic order is determined by the λ−2 term, the
1 − exp(−λ2) being essentially 1 in the tails. Therefore the asymptotic order of the
derivative of the tails is λ−3.

Showing that the derivative of Berger’s prior has the necessary asymptotic order is
more involved.

By differentiating inside the integral defining Berger’s prior, we have

d

dλ
πB(λ) = − λ√

π

∫ 1

0

exp(−wλ2ν)w3/2ν dν.

Next we multiply and divide by the derivative with respect to ν of wνλ2 and define

M = sup
0≤ν≤1

1√
π

w3/2

(wν)′
=

1√
π(b + d)

.

Then

|π′BP (λ)| ≤ M

λ

∫ 1

0

ν exp(−wλ2ν)(wλ2ν)′ dν.
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Next, we integrate by parts, showing the the right hand side above equals

M

λ

(∫ 1

0

exp(−wλ2ν) dν − exp(−wλ2)
)
≤ M

λ

(∫ 1

0

exp(−wλ2ν) dν

)
.

We can show that ∫ 1

0

exp(−wλ2ν) dν = O(λ−2)

by an argument similar to that used to establish the bounds on the tails of πBP (λ).
Therefore π′BP (λ) = O(λ−3) and so πBP satisfies the requirements of the Generalized
Polynomial Tail Comparison Theorem.

Figures 6 and 7 display the qualitative forms of dependence of the posterior mean
and variance on the discrepancy between the prior location parameter and the observed
sample mean, for n = 10 and β2 = σ2 = 1. The posterior expectation and variance
are shown as functions of the discrepancy |µ − X̄n|. Figure 6 shows that the posterior
expectations with a Cauchy prior and with Berger’s prior are very similar. In both
posterior models the posterior expectation has a bounded influence. On other hand,
Figure 7 displays that the variances have the same qualitative form, but the variance
with the Cauchy prior is smaller when µ tends to X̄n. We argue that the variance with
Berger’s prior is preferable than with the Cauchy in this example. Finally, if we consider
a normal prior for this analysis then the posterior variance is constant in |µ− X̄n|, and
equal to 0.09.
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Figure 6: Behavior of the posterior expectation: EBP (λ|X̄n) in the BP/N, ECN (λ|X̄n) in
the C/N and ENN (λ|X̄n) in the N/N model. For values n = 10, X̄n = 0 and β = σ = 1.
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Figure 7: Behavior of the posterior variance: VBP (λ|X̄n) in the BP/N, VCN (λ|X̄n) in the
C/N and VNN (λ|X̄n) in the N/N model. For values n = 10, X̄n = 0 and β = σ = 1.

Example 6.1. Application BP/N model for Example 3.1. In this example
the Berger prior has µ = −1.52 and β = 0.63. We must approximate the binomial
likelihood by a normal distribution. For the likelihood (6), the Fisher information is
In(λ) = (neλ/(1+eλ)2). In this example X̄n ∼ N(log(0.8/(1−0.8)), (1+e1.38)2/20e1.38),
that is, X̄n ∼ N(1.38, 0.31). The posterior mean and variance of λ for the BP/N model
are EBP (λ|X̄n) = 1.16 and VBP (λ|X̄n) = 0.33 respectively. These results are robust
and very similar to the obtained with the Cauchy prior for the C/B model.

6.1 Application: BP/N and C/N model in a clinical trial

In this section we show application of the C/N and BP/N model in a clinical trial.

Example 6.2. Bayesian analysis of a trial of the Rhesus Rotavirus-Based
Quadrivalent Vaccine.
Reference: Pérez-Schael et al. (1997).
Study Design: Randomized, double blind, placebo-controlled trial.
Aim of Study: To compare rhesus rotaviruses-based quadrivalent vaccine (a new drug
that is highly effective in preventing severe diarrhea in developed countries) and placebo.
Outcome measure: Over approximately 19 to 20 months, episodes of gastroenteritis
were evaluated at the hospital among infants. The ratio of the odds of response (episode
of gastroenteritis) following the new treatment to the odds of response on the conven-
tional: OR < 1 therefore favors the new treatment.
Statistical Models: Approximate normal likelihood and normal prior for the log-
arithm of the odds ratio. In the Cauchy prior and Berger’s prior the values of the
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location parameters are the same with respect to normal prior. The scale is the same
in the Cauchy and normal prior.
Prior Distribution: Was based on a published trial: Joensuu et al. (1997), where it is
shown that in Finland the vaccine had a high success rate in preventing severe rotavirus
diarrhea. In this trial the primary efficacy analysis was based on children of which 1128
received three doses of rhesus rotaviruses-based quadrivalent vaccine and 1145 placebo.
100 episodes of gastroenteritis were severe, 8 in rhesus rotaviruses-based quadrivalent
recipients and 92 in placebo recipients:

Vaccine Placebo

Event Episode of gastroenteritis 8 92 100

Non-episode of gastroenteritis 1120 1053 2173

1128 1145 2273

Table 2: Episodes of gastroenteritis in the groups Vaccine and Placebo, Finland.

Loss function or demands: None specified.
Computation/software: Conjugate normal analysis and C/N and BP/N models.
Evidence from study: In this randomized, double-blind, placebo-controlled trial,
2207 infants received three oral of the rhesus rotaviruses-based quadrivalent vaccine.
The following data show the episodes of gastroenteritis in Venezuela.

Vaccine Placebo

Event Episode of gastroenteritis 70 135 205

Non-episode of gastroenteritis 1042 960 2002

1112 1095 2207

Table 3: Episodes of gastroenteritis in the groups Vaccine and Placebo, Venezuela.

Results: We show the normal approximation for binary data for the log-odds with
the approximate standard error recommended in Spiegelhalter et al. (2004) for 2 × 2
tables, following their suggestion of an standard error of the likelihood normal and N/N
posterior model equal to σ = 2. In Table ?? the prior and likelihood have a standard
deviation of σ/

√
n0 = 0.36 and σ/

√
n = 0.15 respectively. The posterior mean for

the posterior model N/N is equal to (n0µ + nX̄n)/(n0 + n) = −0.99. We see that the
standard errors of the C/N and BP/N model with respect to the likelihood are equal.
The influence of the equivalent number of observations in the posterior distribution
(n0 +n = 31+178 = 209, thus the likelihood can be thought to have around 178/31 ≈ 6
times as much information as the prior) over the standard error (σ/

√
n0 + n) is very

high in the N/N model. The data of the current experiment (data in the Venezuelan
experiment) dominated the C/N and BP/N models, resulting in a posterior expectation
much closer to the MLE.
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Location Scale

Prior Normalized likelihood Posterior Prior Normalized likelihood Posterior

N/N -2.45 -0.73 -0.99 0.36 0.15 0.14

C/N -2.45 -0.73 -0.76 0.36 0.15 0.15

BP/N -2.45 -0.73 -0.76 0.36 0.15 0.15

Table 4: Exact and approximate moments of the N/N, C/N and BP/N models in the scale
of log-odds.

The expectations of the BP/N and C/N posterior models and the MLE are appro-
ximately equal. We can see in Table 5 that N/N, C/N and BP/N posterior models
are in favor of the vaccine (OR<1). However, the risk reduction in the N/N model
is 63% (the estimated odds ratio is around e−0.99 = 0.37) and in the C/N and BP/N
models is around 53% (in the normalized likelihood is 52%). The credible interval of the
C/N and BP/N posterior model is closely related to the data in the trial. Finally, the

OR 95% Credible Interval (OR Scale)

N/N 0.37 [0.28; 0.49]

C/N 0.47 [0.35; 0.63]

BP/N 0.47 [0.35; 0.63]

Normalized likelihood 0.48 [0.36; 0.65]

Table 5: Odds ratio and Credible Interval of the Posterior Model.

discrepancies between the expectation of the posterior models and the MLE are 1.86
standard errors for N/N and 0.2 for C/N and BP/N. This case dramatically illustrates
the danger of assuming a conjugate prior as prior information in clinical trials. Figures
8 and 9 show the posterior distributions obtained in the conjugate analysis and non-
conjugate analysis. We see that the prior distribution receives more weight in the N/N
model. The posterior model C/N is very similar to the normalized likelihood. For
the Figure 9 the posterior distributions for the C/N and BP/N model are almost the
same. The results in the N/N model are suspect because the mean posterior is far
from the likelihood given the conflict between the Finnish and the Venezuelan data.
Incidentally, the researchers concluded that the Finnish and the Venezuelan responses
were qualitatively different given the different levels of exposure of the children to the
virus. In short, the robust analyses are giving a sensible answer while the conjugate
analysis myopically insists that Finland and Venezuela are quite similar in respect to
children’s responses. On the other hand, if the two cases were indeed similar, without a
drastic conflict on responses, then the robust analyses would give answers quite similar
to the conjugate analysis, with conclusions with high precision. In other words, the
use of robust priors makes Bayesian responses adaptive to potential conflicts between
current data and previous trials.
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Figure 8: Prior(Finland), normalized likelihood (Venezuela) and posterior distributions in
the Bayesian analysis of a trial of the Rhesus Rotavirus-Based Quadrivalent Vaccine for the
N/N model.
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Figure 9: Prior(Finland), normalized likelihood(Venezuela) and posterior distributions in the
Bayesian analysis of a trial of the Rhesus Rotavirus-Based Quadrivalent Vaccine for the C/N
and BP/N model.
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7 Conclusions

The issues discussed in this paper have led us to the following conclusions: 1). The
Cauchy prior in the Cauchy/binomial model is robust but the beta prior in the con-
jugate beta/binomial model for inference on the log-odds is not. We can use the
Cauchy/binomial model in clinical trials making a robust prediction in binary data.
2). Simulation of the moments in the Cauchy/binomial model reveals that the appro-
ximation performs well over a range of n ≥ 10. Furthermore, we can use rejection
sampling with either large or small sample sizes for exact results. 3) Berger’s prior
is very useful in clinical trials for a robust estimation since it gives closed-form exact
results (when the normal log-odds likelihood is employed), and at the same time does
not have the defects of conjugate priors. It can be argued that besides computational
convenience it is superior to the Cauchy as a robust prior, because the posterior vari-
ance does not decrease as much as with the Cauchy, when the assessed priors scales are
equal or close, see Figure 7. Berger’s prior seems more cautious. 4). In more complex
situations, with several different centers that are modeled with a hierarchical structure,
the use of robust priors may be even more important. This will be explored elsewhere.
5). The use of prior information in terms of robust (and non-conjugate) priors will be
much more acceptable to both researchers and regulatory agencies, because the prior
can not dominate the likelihood when the data conflict with the prior. Remember the
archetypal criticism of “Bayesian” analysis: “With Bayes, you can get the results you
want, by changing your prior!” This should say instead: “With conjugate Bayes, you
can get the results you want, by changing your prior!”

1 Proofs of Results 3.1

1.1 Cauchy Prior

Proof. Invoking the Polynomial Tails Comparison Theorem, we can use the uniform
prior instead of the Cauchy prior when α → ±∞ for the binomial likelihood, (assuming
that 0 < X+ < n) so the generating function for the C/B model is

lim
α→±∞

EC(etλ|X+) =

∫∞
−∞ exp

{
X+λ− n log(1 + eλ) + tλ

}
dλ∫∞

−∞ exp {X+λ− n log(1 + eλ)} dλ
, (36)

after of the transformation λ = log(θ/(1− θ)), (36) is

lim
α→±∞

EC(etλ|X+) =
Γ(X+ + t)Γ(n−X+ − t)

Γ(X+)Γ(n−X+)
, (37)

hence
lim

α→±∞
EC(λ|X+) = Ψ(X+)−Ψ(n−X+). (38)

The approximation of the Digamma function (see Abramowitz and Stegun (1970)) is

Ψ(z) ≈ log(z)− 1
2z
−O(z−2), (39)
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hence

lim
α→±∞

EC(λ|X+) ≈ log
(

X̄n

1− X̄n

)
− 1

2X+
+

1
2(n−X+)

−O(X−2
+ ) +O((n−X+)−2).

(40)
Now, we show that the limit in (36) exists: consider the following functions of real
variable with positive real values, defined by the equations

F (λ, t) =
exp{(X+ + t)λ}

(1 + eλ)n
; f(λ) =

exp(X+λ)
(1 + eλ)n

; τ(λ) =
1

β2 + λ2
, (41)

where X+, n ∈ N; n ≥ 2, X+ ≥ 1 and β is a positive constant. We prove that the
convolutions of F ∗ τ and f ∗ τ , defined respectively by the equations

∫

R
F (λ)τ(α− λ)dλ =

∫ ∞

−∞

exp{X+λ− n log(1 + eλ) + tλ}
β2 + (λ− α)2

dλ (42)

∫

R
f(λ)τ(α− λ)dλ =

∫ ∞

−∞

exp{X+λ− n log(1 + eλ)}
β2 + (λ− α)2

dλ (43)

are finite. For λ ∈ (−∞,∞), we have

|F (λ)g(α− λ)| =
∣∣∣∣

exp{(X+ + t)λ}
(1 + eλ)n(β2 + (α− λ)2)

∣∣∣∣

≤ | exp(X+ + t)λ|
| exp(nλ)| β−2

≤ exp{(t− s)|λ|}
β2

= g(λ)

Since |F (λ)g(α − λ)| is dominated by the function g(λ), and g belongs to L1(R), if
t− s ≤ 0 (where s = n−X+ ≥ 1). Therefore F ∗ τ < ∞. A similar argument shows

|f(λ)g(α− λ)| ≤ exp{−s|λ|}
β2

(44)

and thus f ∗ τ < ∞.

1.2 Conjugate Prior

Proof. We have EB(λ) →∞ as a →∞ and EB(λ) → −∞ as b →∞, the approximation
of the posterior expectation for the conjugate beta/binomial model is

EB(λ|X+) ≈ log
(

nX̄n + a

n(1− X̄n) + b

)
− 1

2(nX̄n + a)
+

1
2(n(1− X̄n) + b)

− O((nX̄n + a)2) +O((n(1− X̄n) + b)2)

and EB(λ|X+) →∞ as a →∞ and EB(λ|X+) → −∞ as b →∞.
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2 Proof of Result 5.1 Berger Prior

Proof. We make the change of variable η = λ− µ. With the normal likelihood

f(X̄n | η) =
√

n√
2πσ

exp
{
− n

2σ2
(η − (X̄n − µ))2

}
, (45)

it follows that the predictive density satisfies the relation

m(X̄n) =
∫ 1

0

∫ ∞

−∞
K × exp

{
−n

2
K2

}
dη dν, (46)

where

K2 =
[

2νη2

σ2(1− 2ν) + nβ2
+

1
σ2

(η − (X̄n − µ))2
]

. (47)

The method of completing the square tell us that

K2 =
[
η − (X̄n − µ)(σ2(1− 2ν) + nβ2)

σ2 + nβ2

]2
σ2 + nβ2

σ2(1− 2ν) + nβ2
(48)

+
2ν(X̄n − µ)2

σ2 + nβ2
.

The generating-function of the posterior distribution (22) is given by

EBP (etη | X̄n) =

∫ 1

0

∫∞
−∞K × exp

{−n
2 K3

}
dη dν

∫ 1

0

∫∞
−∞K × exp

{−n
2 K2

}
dη dν

, (49)

where

K3 =
[

2νη2

σ2(1− 2ν) + nβ2
+

1
σ2

(η − (X̄n − µ))2 − 2t

n
(η + µ)

]
. (50)

Hence, the cumulant-generating function of the posterior distribution (22) is given by

Kη|X̄n
∝ log

[
1− exp

{
− n

σ2 + nβ2

(
X̄n − µ +

t

n

)2
}]

− 2 log
(

X̄n − µ +
t

n

)
+

n

2

(
X̄n − µ +

t

n

)2

+ tµ. (51)
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