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Markov Switching Dirichlet Process Mixture
Regression

Matthew A. Taddy* and Athanasios Kottas'

Abstract. Markov switching models can be used to study heterogeneous pop-
ulations that are observed over time. This paper explores modeling the group
characteristics nonparametrically, under both homogeneous and nonhomogeneous
Markov switching for group probabilities. The model formulation involves a finite
mixture of conditionally independent Dirichlet process mixtures, with a Markov
chain defining the mixing distribution. The proposed methodology focuses on
settings where the number of subpopulations is small and can be assumed to be
known, and flexible modeling is required for group regressions. We develop Dirich-
let process mixture prior probability models for the joint distribution of individual
group responses and covariates. The implied conditional distribution of the re-
sponse given the covariates is then used for inference. The modeling framework al-
lows for both non-linearities in the resulting regression functions and non-standard
shapes in the response distributions. We design a simulation-based model fitting
method for full posterior inference. Furthermore, we propose a general approach
for inclusion of external covariates dependent on the Markov chain but condition-
ally independent from the response. The methodology is applied to a problem
from fisheries research involving analysis of stock-recruitment data under shifts in
the ecosystem state.

Keywords: Dirichlet process prior; hidden Markov model; Markov chain Monte
Carlo; multivariate normal mixture; stock-recruitment relationship.

1 Introduction

The focus of this work is to develop a flexible approach to nonparametric switching re-
gression which combines Dirichlet process (DP) mixture nonparametric regression with
a hidden Markov model. A modeling framework for data that has been drawn from a
number of unobserved states (or regimes), where each state defines a different relation-
ship between response and covariates, switching regression was originally developed in
the context of econometrics (Goldfeld and Quandt 1973; Quandt and Ramsey 1978) and
has primarily been approached through likelihood-based estimation. A hidden Markov
mixture model in this context holds that the state vector constitutes a Markov chain,
and thus introduces an underlying dependence into the data. In such models, the re-
gression functions corresponding to individual population regimes are typically linear
with additive error, and may or may not include an explicit time-series component
(e.g., Hamilton 1989; McCulloch and Tsay 1994). The work presented here has a dif-
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ferent focus: flexible nonparametric inference within regimes, guided by an informative
parametric hidden Markov model for regime state switching. Such approaches reveal
a baseline inference: the posterior distribution for individual regression functions when
informed by little more than the state switching model. The proposed posterior simu-
lation algorithms will also serve as a useful framework for more general inference about
mixtures of conditionally independent nonparametric processes.

Bayesian nonparametrics, and DP mixtures in particular, provide highly flexible
models for inference. Indeed, the practical implication of this flexibility is that, for
inference based on small to moderate sample sizes, a certain amount of prior information
must be provided to avoid a uselessly diffuse posterior. The DP hyperparameters provide
the natural mechanism for introducing prior information. However, it is also possible to
constrain inference by embedding the nonparametric component within a larger model.
The typical semiparametric extension to linear regression — nonparametric modeling for
the additive error distribution — is a familiar example of this approach. One can afford
to be very noninformative about the error distribution only because linearity of the
mean imposes a substantial constraint on model flexibility.

This paper explores one such class of semiparametric inference settings: nonparamet-
ric density or regression estimation for heterogeneous populations, using a DP mixture
framework, nested within an informative parametric model for the group membership,
using an either homogeneous or nonhomogeneous hidden Markov switching model. Al-
though this framework applies generally to nonparametric density estimation, our par-
ticular focus is Markov switching nonparametric regression, specified in detail in Section
2, including model elaboration for the inclusion of external covariates. Following this,
Section 3 describes efficient forward-backward posterior simulation methodology for de-
pendent mixtures of nonparametric mixture models, along with details for full posterior
inference.

In Section 4, the methods are illustrated with an application from fisheries research
involving analysis of stock-recruitment data under shifts in the ecosystem state, which
can be characterized as regimes that are either favorable or unfavorable for reproduction.
Here, the Markov switching nonparametric regression framework enables simultaneous
inference for the regime-specific biological stock-recruitment relationship and for the
probability of regime switching. Moreover, the DP mixture regression approach relaxes
parametric regression assumptions for the stock-recruitment relationships, and yields
inference that can capture non-standard response density shapes. These are impor-
tant features of the proposed model, since they can improve predictive inference for
years beyond the end of the observed time series, a key inferential objective for fishery
management. Finally, Section 5 concludes with a summary and discussion of possible
extensions.

2 Markov Switching Nonparametric Regression

In Section 2.1, we introduce the two building blocks upon which our modeling approach
is based: Markov switching mixtures of DP mixtures, and fully nonparametric implied
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conditional regression. Section 2.2 presents the hidden Markov DP mixture model, and
Section 2.3 extends the model to include external variables that are correlated with the
underlying Markov chain, but conditionally independent of the joint covariate-response
distribution.

2.1 Mixtures of Conditionally Independent
Dirichlet Process Mixtures

The generic nonparametric DP mixture model is written as f(z;G) = [ k(z;0)dG(0)
for the density of z, with a parametric kernel density, k(z;0), and a random mixing
distribution G that is assigned a DP prior (Ferguson 1973; Antoniak 1974). In particular,
G ~ DP(a, Gy), where « is the precision parameter, and Gy is the centering distribution.

More specifically, the starting point for our approach is Bayesian nonparametric
implied conditional regression, wherein DP mixtures are used to model the joint distri-
bution of response and covariates, from which full inference is obtained for the desired
conditional distribution for response given covariates. Both the response distribution
and, implicitly, the regression function are modeled nonparametrically, thus providing
a flexible framework for the general regression problem. In particular, working with
(real-valued) continuous variables, DP mixtures of multivariate normal densities can
be used to model the joint density of the covariates, X, and response Y (as in, e.g.,
Miiller et al. 1996). Hence, the normal DP mixture regression model can be described
as follows:

f(z:0) = / N(z: 1, %) dG(1, %), G | oyt ~ DP(a, Go), 1)

where z = (x,y), and Gy can be built from independent normal and inverse Wishart
components for g and 3, respectively. Inference for the implied conditional response
distribution under our Markov switching regression model is discussed in Section 3,
following the development in Taddy and Kottas (2009), where full inference about f(y |
x; G) was required to estimate quantile regression functions.

A model for multiple heterogeneous populations may be built upon the DP mixture
platform under either the density estimation or regression setting discussed above. As-
sume R distinct random mixing distributions Gy, ..., Gg, each characterized as a DP in
the prior, such that, for observations z1, ..., z, with population membership vector h =
(h1,. .. hy), f(2i;Gh,) = [ k(2i;0)dGh, (0). This leads to the G, being independent in
the posterior full conditional (due, in particular, to conditioning on h), which is both
conceptually important and, in Markov chain Monte Carlo (MCMC) simulation, prac-
tically useful. Model specification is completed with a state probability vector, p; =
(Pi1s .-, Pi,r), defining the probability that the i-th observation was drawn from the DP
mixture corresponding to each of the G,.. The goal of this framework is to introduce
information into the model through the p;.

One way to inform p; , is to incorporate temporal structure, and a natural way to do
so is by assuming that the h; constitute a Markov chain. Robert et al. (1993) and Chib
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(1996) discuss such hidden Markov models in the estimation of mixtures of paramet-
ric densities. Moreover, the basic Markov switching regression model defines distinct
regression functions for data that have been drawn from populations corresponding to
a number of unobserved states (see, e.g., Chapters 10 and 11 in Frithwirth-Schnatter
2006). Following the early work of Goldfeld and Quandt (1973) and Quandt and Ram-
sey (1978), the more recent literature includes, for instance, approaches for switching
dynamic linear models (Shumway and Stoffer 1991) and switching ARMA models (Bil-
lio et al. 1999). Moreover, Hurn et al. (2003) describe a Bayesian decision theoretic
approach to estimation for mixtures of linear regressions, whereas the approach of Shi
et al. (2005) offers a departure from the linear regression assumption through a mixture
of Gaussian process regressions.

Since, in our context, the GG, are modeled nonparametrically, this leads to inference
that is driven primarily by state membership and, in particular, the Markov transi-
tion probabilities. Taking this approach further, the proposed nonparametric switching
regression methodology will be most effective when state membership probabilities are
informed by external covariates. Hughes and Guttorp (1994) and Berliner and Lu (1999)
have proposed nonhomogeneous hidden Markov models where each observation’s state
probability vector p; is regressed onto a set of external covariates, u;. In Section 2.3, we
obtain a similar model by assuming that the external u; are randomly distributed ac-
cording to a state dependent density function, pp,(u;). Conditioning on u; then implies
a nonhomogeneous hidden Markov model for h.

Hence, our methodological framework involves a known (small) number of states
where prior information is available on the properties of the underlying state Markov
chain, but there is a need for nonparametric modeling within each subpopulation. The
assumption that the number of mixture states is known fits within the general premise
of an informative state estimation coupled with flexible nonparametric modeling for
regression estimation. Thus, while the methodology is not generally suitable for set-
tings with little information about state membership, it offers a practical solution to
switching regression problems that lack prior information about the shape of the indi-
vidual regression functions and/or the form of the corresponding conditional response
densities.

2.2 Model Specification for Hidden Markov Nonparametric
Switching Regression

Mixtures of regressions are used to study multiple populations each of which involves a
different conditional relationship between response and covariates. The generic mixtures
of regressions setting holds that the response Y given covariates X has been drawn
from a member of a heterogeneous set of R conditional distributions defined by the
densities fi(y | x),...,fr(y | %), and hence that Pr(y | x) = p1fily | x) +... +
prfr(y | x), where Zle pr = 1. We propose a departure from this standard form,
wherein the response and covariates are jointly distributed according to one of the

densities f1(x,y),..., fr(X,y) —ie., now Pr(x,y) =p1 f1(x,y) + ...+ prfr(x,y) — and
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therefore Pr(y | x) = p1f1(x,y) + ...+ prfr(X,y), where p. = p,./ Zle pefe(x). Thus,
the approach is particularly appropriate whenever mixture component probabilities for
a given x and y should be dependent upon the joint distribution for response and
covariates, even though primary interest is in the regression relationship for response
given covariates.

Specifically, we develop the extension of DP mixture implied conditional regression to
the context of time dependent switching regression. The data consist of covariate vectors
Xy = (xtl,...wtd"), and corresponding responses y; observed at times t = 1,...,T,
where dy is the dimension of the covariate space. The data from each time point
are associated with a hidden state variable, hy € {1,..., R}, such that, given h;, the
response-covariate joint distribution is defined by a state-specific density fp, (x¢, y:). We
begin by describing density estimation in the d = dx + 1 dimensional setting, with data
D ={z; = (x¢,4¢) : t=1,...,T}. Now, however, the successive observations z; are
correlated through dependence in state membership h = (hq, ..., h7), which constitutes
a stationary Markov chain defined by an R x R transition matrix Q. Although we
consider only first-order dependence in the Markov chain, the model and posterior
simulation methods can be extended to handle higher order Markov chains.

The first-order hidden Markov location-scale normal DP mixture model (referred to
as model M1) can then be expressed as follows,

Zy | htaGht i;’bd fht(zt) = f(zt;Ght) = /N(thIlaE)dGht(Ha E)v t= 1a v 7T

Gr|amty % DP(ay,Go(ty)), r=1,...,R 2)
T
h|Q ~ Pr(h|Q =]]Qn_.n,
t=2

where we denote the r-th row of Q by Q, = (Qr.1,...,Qrr), with Qs = Pr(hy = s |
hi—y =r),forr,s=1,...., R (and t = 2,...,T). Moreover, the DP centering distributions,
Go(p, 359,) = N(uymy, Vo)W, (371 571, with o, = (m,, V., S.). Here, W,(:; M)
denotes the Wishart distribution with v degrees of freedom and expectation v M.

Applying the regression approach discussed in Section 2.1, the joint response-covariate
density specification in (2) yields our proposed hidden Markov switching regression
model. In particular, for state r, the prior model for the marginal density for X can be
written as f(x;G,) = [ N(x; p*, 2**)dG,. (1, X), after the mean vector and covariance
matrix of the normal kernel have been partitioned. In particular, p comprises (dyx x 1)
vector p* and scalar p¥, and ¥ is a square block matrix with diagonal elements given by
(dx % dyx) covariance matrix ¥** and scalar variance XY, and above and below diagonal
vectors X*Y, and XY*, respectively.

We assume that, in the prior, each state is equally likely for hy. Forr =1,... R, we
place hyperpriors on 1, and «, such that 7(¢,.) = N (m;am,, Bm,) Wa,, (V.71 B;Tl)
Was, (Sr; Bs,), and 7(a,) = I'(ar;@a,,bs,). The prior for Q is built from inde-
pendent Dirichlet distributions, 7(Q,) = Dir(Q,; A\.), where Dir(Q.;A,), with A\, =
(Ar1,- -5 Ar ), denotes the Dirichlet distribution such that E[Q, ;] = )\m/(Zf;l Ari)-
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In practice, the hyperparameters for the a.., 1, and for Q need to be carefully chosen;
our approach to prior specification is detailed in Appendix A.

2.3 Extension to Semiparametric Modeling with External Covariates

In the spirit of allowing the switching probabilities to drive the nonparametric regression,
we extend here model M1 to include additional information about the state vector in
the form of an external covariate, U, with values u = {uy,...,ur}. (Although we
present the methodology for a single covariate, the work can be readily extended to
the setting with multiple external covariates.) The modeling extension involves a non-
homogeneous Markov mixture where the hidden state provides a link between the joint
covariate-response random variable and the external covariate.

The standard non-homogeneous hidden Markov model holds that the transition
probabilities are dependent upon the external covariates, such that Pr(hy | hy,..., he_1,
u) = Pr(h | hy—1,u). Berliner and Lu (1999) present a Bayesian parametric approach
to non-homogeneous hidden Markov models in which Pr(h; | hi—1,u) is estimated
through probit regression. Also related is the likelihood analysis of Hughes and Gut-
torp (1994), wherein a heuristic argument, using Bayes theorem, is proposed to justify
the model Pr(h; | he—1,us) o< Pr(hy | he—1)L(hs;ug), where the likelihood L(hy;uy) in
their example is normal with state dependent mean.

Treating each u; as the realization of a random variable yields a natural modeling
framework in the context of our approach. Hence, we obtain a semiparametric extension

of model M1 (referred to as model M2) by adding a further stage, u; | by g p(ut | vn,)s
to the model, along with hyperpriors for v = {, : r = 1,..., R}, the state-specific
parameters of the distribution for the external covariate. Moreover, we assume that u
is conditionally independent of {z1, ..., z7} given h. Thus, for model M2, the first stage
in (2) is replaced with

ind
Z¢, Ut | htaGhtv’y ~ p(ut ‘ ,Yht)f(zt;Ght)a t= ]-7"'7T'

Clearly, the formulation of model M2 implies that the hidden Markov chain is non-
homogeneous conditional on w. However, unconditionally in the prior, it is more accu-
rate to say that {zi,...,zr} and u are dependent upon a shared homogeneous Markov
chain, and that they are conditionally independent given h. In Section 4, we illustrate
with a Gaussian form for p(u: | vn,). More general examples, with multiple external
covariates, could incorporate dependence relationships, or even model some subset of
the vector of external covariates as a function of the others.

3 Efficient Posterior Simulation

Here, we present MCMC methods for posterior inference under the models developed
in Section 2, beginning with model M1 and adapting this to external covariates in
Section 2.3. To obtain the full probability model, we introduce latent parameters 8 =
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{0: = (ut, %) : t = 1,...,T} such that the first stage in (2) is replaced with z; | 0; ind
N(z;60;) and 6; | hy, Gy, ind Gh,, for t =1, ...,T. The standard approach to posterior
simulation from DP-based hierarchical models involves marginalization of the random
mixing distributions G, in (2) over their DP priors. Conditionally on h, the vector of
latent mixing parameters breaks down into state-specific subvectors 6, = {6y : hy =
r}, r = 1,..., R, such that the distribution of each 6, is built from independent G,
distributions for the 6; corresponding to state r. Thus, the full posterior can be written
as Pr(h | Q) Hf:l ()7 (r)7(Qr)Pr(6; | h, ar, ¥ )DP(Grs af, Gry) H?:l N(z; 64),
using results from Blackwell and MacQueen (1973) and Antoniak (1974). Here, Pr(6, |
h, a;, ¢,) is the Pélya urn marginal prior for 8,.; af = a,.+n, (where n, = [{t : hy = 1});

and Gro() = Gro(- | h, 0, 0, ) = (o + nr)_l ardGo () + Z{t:ht:r} 69t(.)} '

This posterior can be sampled extending standard MCMC techniques for DP mix-
tures (e.g., Neal 2000; Gelfand and Kottas 2002). However, marginalization over the G,
requires that each pair (6, hy) must be sampled jointly, conditional on the remaining
paramaters (6, hy), for all ¢ # ¢. This is possible, but inefficient, through use of a
Metropolis-Hastings step with proposal distribution built from a marginal Pr(h; = r)
Qhy_1.rQriheirs ™ =1,..., R, and a conditional for 6;|h; = r given by the Pélya urn prior
full conditional arising from Pr(0, | h, a,, ;).

3.1 Blocked Gibbs with Forward-Backward Sampling

The posterior simulation approach discussed above requires updating each h; one at a
time, whereas forward-backward sampling for the entire state vector h is a substantially
more efficient method for exploring the state space (see, e.g., Scott 2002). To implement
forward-backward sampling, we need to evaluate the joint probability mass function for
states (h¢—1, ht) conditional on the incomplete data vector {z1, ..., z; } and relevant model
parameters, which include the random mixing distributions {Gi, ..., Gg}. Therefore,
to compute state probabilities, it is necessary to obtain realizations for each G, in
the course of the MCMC algorithm. The blocked Gibbs sampling approach for DP
mixture models (Ishwaran and James 2001) provides a natural approach wherein the
entire MCMC method is based on a finite truncation approximation of the DP, using
its stick-breaking definition (Sethuraman 1994). Based on this definition, a DP(«, Gy)
realization is almost surely a discrete distribution with a countable number of possible
values drawn i.i.d. from Gy, and corresponding weights that are built from i.i.d. (1, «)
variables through stick-breaking. (We use ((a,b) to denote the Beta distribution with
mean a/(a + b).) As well as being the consistent choice if the truncated distributions
are used in state vector draws, blocked Gibbs can lead to very efficient sampling for the
complete posterior.

Using the DP stick-breaking representation, we replace each G, in model M1 with
a truncation approximation. Specifically, for specified (finite) L, we work with

L
GHC) = wirds (),
=1
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where the élm = (fir,r, f]lyr), l=1,..,L,are iid. Go(¢,), and the finite stick-breaking
prior for w, = (w1 ,,...,wr) (denoted by Pr(w, | 1,,)) is defined constructively by

-1
ooy Coo1 Bl ey), C=1; andforl=1,....L: w, =G [[1-¢).  (3)
s=1

Hence, each GZ is defined by the set of L location-scale parameters 0, = (917,,, e éLﬂ,)
and weights w,.. Guidelines to choose the truncation level L, up to any desired accuracy,
can be obtained, e.g., from Ishwaran and Zarepour (2000).

The first stage of model (2) is replaced with z; | Ay, (wp,, O,) nd 21L=1 wih, N(2z¢;
Oip,), t = 1,...,T. The limiting case of this finite mixture model (as L — o) is
the countable DP mixture model f(z;;Gp,) = [ N(z;0)dGp,(0) in (2). Again, we
can introduce latent parameters 0; = (¢, X;) to expand the first stage specification
to z; | 6; ind N(z¢;0;) and 6, | ht,(wh”éht) ind Gﬁt, for t = 1,...,T. Alternatively,
since 0, = él,ht with probability w; p,, we can work with configuration variables k =
(k1, ..., k1), where each k; takes values in {1, ..., L}, such that, conditionally on h, k; =1
if and only if 6, = él,ht- Hence, model M1 with the DP truncation approximation can
be expressed in the following hierarchical form

- ind -
Zt | Oy, , kt P N(Zt;ekt7ht), t=1,..,T

L
ke | heown, Y i dilke), t=1,..,T (4)
=1

L
wr,ér I arawr Z’Q’d PL(wr I 1aar)HdG0(9~l,r;wr)7 r=1,.,R
=1

withh | Q~Pr(h| Q) = H;Q Qh,_1 by > and the hyperpriors for a, 9, and Q given in
Section 2.2.

Denote by ¢ the vector comprising model parameters a, ¥, k, Q, and {(w;,8,) :
r = 1,..,R}. The full posterior, Pr(¢,h | D), corresponding to model (4) is now

proportional to
R

Pr(h| Q) [

r=1

7T(047')7.‘-(7abr)7'r(627“),PL (wr | 1, ar) H dGO(él,r; wr)

=1

L
H (N(zt; Or,.r) Z wl,r5l(kt)>

{t:hy=r} =1

Here, the key observation is that, conditionally on h, the first two stages of model (4),
Hthl Pr(z¢, ks | he, (wh,, 0p,)) = Hthl N(zy; Ok, 1, ) {EzL:l wl,htél(kt)}, can be expressed

in the state-specific form, Hil {H{t:ht:T} N(z¢; ékt’r) {ZIL:I wl7r6l(kzt)}}. To explore
the full posterior, we develop an MCMC approach that combines Gibbs sampling steps
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for parameters in ¢ with forward-backward sampling for the state vector h. We discuss
the latter next, deferring to Appendix B the details of the Gibbs sampler for all other
parameters.

As discussed above, sampling the truncated random mixing distribution GZ =

(wr, 0,.) for each state r, enables use of forward-backward recursive sampling for the
posterior full conditional distribution, Pr(h | ¢», D). Note that this conditional distribu-
tion can be written, in general, as Pr(hr | ¢, D) Z:ll Pr(hr—¢ | {hr—ts1, ..., hr}, ¢, D),
whereas under the hidden Markov model structure it simplifies to
T—1
PI‘(h | (l),D) == Pr(hT | (l),D) H PI‘(hT,t | hT,tJrl, ¢, {Zl, ---aZT7t+1})~ (5)

t=1

Hence, the state vector can be updated as a block in each MCMC iteration by sampling
from each component in (5).

To this end, the forward-backward sampling scheme begins by recursively calculat-
ing the forward matrices F®, for t = 2,...,T, where F,@ = Pr(hty—y = r,hy = s |
¢,{z1,...,2:}), for r,s = 1,..., R. Thus, F®) defines the joint distribution for (hs_1,hs)
given model parameters and data up to time ¢. For t = 3,...,T, F() is obtained from
F®=1 through the following recursive calculation:

FT(tS) x Pr(hiey =1 he =38,z | ¢,{21,...,2¢—1})
= Pr(hy=5|hi—1 =7,¢)Pr(z | he = 5,0)Pr(hi—1 =71 | ¢, {21,...,2t-1})

L R
= QT‘7S ZWZ7SN<Zt; él,s) Z Pr(ht72 = i) htfl =r | (z)) {Zla ceey thl})

=1 =1
L ~ R

= Qre Y wi Nz Y FUY (6)
=1 1=1

where the proportionality constant is obtained from Zf‘:l Zf:1 F,Ets) =1. Fort =2,
a similar calculation yields FT(QS) X Qr.s ZLL:1 wi, sN(2z2; 9~l,s) ZLL:1 wi rN(z1; élm), where,
again, the proportionality constant results from Zle Zf‘:l FT(QS) =

Next, exploiting the form in (5), the (stochastic) backward sampling step begins by
drawing hp according to Pr(hr = r | ¢,D) = Zil Pr(hr—1 = t,hy =7 | ¢,D) =

Zle Fi(f), for r = 1,..., R. Sampling from (5) is then completed by drawing for each
t=T-1,T-2,..,1 from Pr(hy = r | hiy1,0,{z1,....,Ze41}) x Pr(hy = r hy1 |

&, {21, ..., Ze41}) = Fr(thti)l, for r = 1, ..., R, where the proportionality constant arises
R (t+1)
from Y.~ Fr,htﬂ'

3.2 Inference and Forecasting for Regression Relationships

The posterior samples for the truncated DP parameters, {(w;,r, (f,r, ilﬂ.)) l=1,...,L},
for each state r = 1, ..., R can be used to develop inference for the state-specific regres-
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sions. In particular, conditional on the posterior draw for the state-specific mixing dis-
tribution, G, the posterior realization for the conditional response density, f(y | x; G,),
corresponding to state r is

oy GRS wn, N(x, s i, B,

flylxGh) = = -
wl ) fx;GE) Sy wi NG i, S

(7)

for any specified value (x,y).

In addition, the structure of conditional moments for the normal mixture kernel
enables posterior sampling of the state-specific conditional mean regression functions
without having to compute the corresponding conditional density. Specifically,

L
1 ~X XX\ |~ YK ($IXX ) — X

E [Y | X3 Gf} = f(X GL) Zwl,rN(X;/J’l,r? l,r) [Nzr + Ely,r( l,r) l(x - :u‘l,r):| ’

T =1

which, evaluated over a grid in x, yields posterior realizations of the conditional mean
regression function for each state.

Moreover, of interest is prediction in future years (forecasting) for the joint response-
covariate distribution and the corresponding implied conditional regression relationship.
Mustrating with year T + 1, the full model that includes the future covariate-response
vector (Xr41,yr+1) and corresponding regime state hryi, can be expressed as

Pr((x741,yr+1), hr+1,¢,h | D)
L

=Pr(é,h | D)Qny hr sz,hT+1 N(XT415 Y7+15 01 hpsy)-
=1

Hence, the posterior samples for (¢, h) along with draws for the new regime state
hr41, driven by Q and hp, can be used to estimate the joint posterior forecast density
Pr(x741,yr+1 | D). More generally, using the posterior samples for (¢, h) and hry1, we
obtain posterior realizations for the conditional response density in year 7'+ 1 through
flylxGy.. )= f(x,4:Gf,. )/ f(x;Gf, ). Note that, in contrast to (7), these real-
izations incorporate posterior uncertainty in hpiq. This type of inference is illustrated
with the data example of Section 4.

3.3 Extension to External Covariates

Posterior inference under model M2, discussed in Section 2.3, can be implemented
with a straightforward extension of the MCMC algorithm of Section 3.1. The param-
eters v can be sampled conditional on only u and the state vector h. Regarding the
other model parameters, only the MCMC draws that involve h need to be altered. In
particular, the starting point is again an expression analogous to (5) for the posterior
full conditional for h. Specifically, Pr(h | ¢,v,D) = Pr(hr | ¢,v,D) tT:_ll Pr(hp_¢ |
hr—iv1, 0,7, {(ze,up) : € =1,...,T—t+1}). Note that now the data vector D comprises
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{(z,us) : t =1,..,T}. For t =3,...,T, the recursive calculation of (6) for the forward
matrices becomes

L R
Fys,tg) o8 Qr,sp(ut | ’Ys) ZWZ,SN(Zt; el,s) Z Fifr_l)a

=1 i=1

with the proportionality constant obtained from Zil Zle F,gts) = 1. Moreover, FT(QS) x

Qrsp(us | Yo)p(ur | 7r) Sy wi,sN(22: 01,6) 3y wi N(z1; 01,r), where 330, L
F7S2s) = 1. Finally, the backward sampling step proceeds as described in Section 3.1

using probabilities from the forward matrices F(T), p(T-1 F()

4 Analysis of Stock-Recruitment Relationships Under
Environmental Regime Shifts

The relationship between the number of mature individuals of a species (stock) and the
production of offspring (recruitment) is fundamental to the behavior of any ecological
system. This has special relevance in fisheries research, where the stock-recruitment
relationship applies directly to decision problems of fishery management with serious
policy implications (e.g., Quinn and Derisio 1999). A standard ecological modeling as-
sumption holds that as stock abundance increases, successful recruitment per individual
(reproductive success) decreases. However, a wide variety of factors will influence this
reproductive relationship and there are many competing models for the influence of
biological and physical mechanisms. Munch et al. (2005) present an overview of the lit-
erature on parametric modeling for stock-recruitment functions, arguing for the utility
of standard semiparametric Gaussian process regression modeling. In the same spirit,
albeit under the more general DP mixture modeling framework developed in Section 2,
our focus is to allow flexible regression to capture the nature of recruitment dependence
upon stock without making parametric assumptions for either the stock-recruitment
function or the errors around it.

An added complexity in studying stock-recruitment relationships is introduced by
ecosystem regime switching. It has been observed that rapid shifts in the ecosystem
state can occur, during which biological relationships, such as that between stock and
recruitment, will undergo major change. This has been observed in the North Pacific in
particular (McGowan et al. 1998; Hare and Mantua 2000). Although empirical evidence
of regime shifts is well documented and there have been attempts to establish mecha-
nisms for the effect of this switching on stock-recruitment (e.g., Jacobson et al. 2005),
the relationship between the physical effects of regime shifts and their biological mani-
festation is still unclear. This presents an ideal setting for Markov-dependent switching
regression models due to their ability to link observed processes that occur on differ-
ent scales (in this case, biological and physical) and are correlated in an undetermined
manner.

To illustrate our Markov switching regression models, we use data on annual stock
and recruitment for Japanese sardine from years 1951 to 1990. Wada and Jacobson
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Figure 1: The left panel plots the data with the regime allocation from Wada and Jacobson
(1998). The right panel includes draws from the bivariate normal distribution, which, under
each regime, is defined by the marginal mean and covariance matrix for the location of a single
DP mixture component (see Section 4 for details). In both panels, black and grey color indicate
the unfavorable and favorable regime, respectively.

(1998) use modeling of catch abundance and egg count samples to estimate R, the suc-
cessful recruits of age less than one (in multiples of 10° fish). With estimated annual
egg production E (in multiples of 10'2 eggs) used as a proxy for stock abundance, they
investigate the relationship between log(E) and log reproductive success, log(R/E).
Japanese sardine have been observed to switch between favorable and unfavorable feed-
ing regime states related to the North Pacific environmental regime switching discussed
above. Based upon a predetermined regime allocation (see Figure 1), Wada and Ja-
cobson (1998) fit a linear regression relationship for log(E) vs log(R/E) within each
regime.

We consider an analysis of the Japanese sardine data using the modeling framework
developed in Section 2, which relaxes parametric (linear) regression assumptions and
allows for simultaneous estimation of regime state allocation and regime-specific stock-
recruitment relationships. As in the original analysis by Wada and Jacobson (1998), this
model formulation does not take into account temporal dependence between successive
observations from the same regime. This suits the purposes of our application, but one
can envision many settings where a structured time series model is more appropriate
than the fully nonparametric approach. Although the low dimensionality of this example
is useful for illustrative purposes, the techniques will perhaps be most powerful in the
exploration of higher dimensional datasets where such temporal structure is not assumed
(an example of implied conditional regression in higher dimensions is studied in Taddy
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and Kottas 2009).

We first apply model M1 in (4) to the sardine data, z; = (log(E;),log(R:/E})),
available for T' = 40 years from 1951 to 1990, with the underlying states h; defined by
either the unfavorable or favorable feeding regime (with values 1 or 2, respectively). A
(conservative) truncation of L = 100 was used in the stick-breaking priors. Regarding
the prior hyperparameters, we set a, = 2 and b, = 0.2 in the gamma prior for a.
The prior for 1, is specified as outlined in Appendix A such that, conditional on the
prior regime allocation taken from Wada and Jacobson (1998), a,,, and a,,, are set
to data means (5,3) and (5,5) for the unfavorable and favorable regime observations,
respectively, while B,,, and (ay, — 3)"!By,, with diagonal (5.3,2.6) and off-diagonal
—3.1, and B,,, and (ay, — 3)"!By,, with diagonal (4.5,1.4) and off-diagonal —2.0, is
the observed covariance matrix for each regime. The Bg , for r = 1,2, are diagonal
matrices and are specified by setting the diagonal entries of ag, Bg, equal to (7.8,7.7),
which defines one quarter of the data range. Finally, we set v; = vy = ay, = ay, =
as, = as, = 2(d+ 1) = 6. The prior for Q is induced by a ((3,1.5) prior for the
probability of staying in the same state, which reflects the relative rarity of regime
shifts. The data and prior allocation are shown in Figure 1 along with bivariate normal
draws based on the marginal mean and covariance matrix for the location, u,., of a single
component of the DP mixture, for each of the two regimes. Hence, the right panel of
Figure 1 shows draws from the prior expectation of the random mixing distribution
for the p, (i.e., from state-specific normal distributions with means E[u,] = a,,, and
variance var(p,) = var(m,.) + E[V;] = By, + (ay, —3)"'By,). Noting that this does
not include prior uncertainty in the u, due to the DP mixture, clearly shows that the
prior specification has not overly restricted mixture components.

As described above, the sardine feeding regime is part of a larger ecosystem state
for this region of the North Pacific. The physical variables that are linked to the
ecosystem state switching can be used as external covariates for the hidden Markov
chain. Hence, to illustrate the modeling approach of Section 2.3, we choose a physical
variable as the single external covariate, specifically, the winter average Pacific decadal
oscillation (PDO) index, which is highly correlated with biological regime switching
(Hare and Mantua 2000). The PDO index provides the first principle component of an
aggregate of North Pacific sea surface temperatures. Although not directly responsible,
sea surface temperature is believed to be a proxy for mechanisms such as current flow
that control the regime switching (MacCall 2002). Therefore, with vector w comprising
winter average PDO values from 1951 to 1990, we apply model M2 to the sardine
data working with a normal PDO distribution with state-specific mean. Hence, we
assume ug | hy ind N(ue; Yn,, 772), with (independent) normal priors for v = {y1,72}
and a gamma prior for 72, in particular, y; ~ N(—0.44,0.26), 7o ~ N(0.73,0.26), and
72 ~ I'(0.5,0.125). The +, prior mean values are average winter PDO for two ten
year periods that are generally accepted to fall within each ecosystem regime (Hare
and Mantua 2000); the common +, prior variance is the pooled variance for these mean
estimates, and the prior median for 72 is chosen to provide some overlap between prior
PDO densities for each regime. Extending the MCMC algorithm of Section 3.1 to sample
the 7, and 72 is straightforward, since their posterior full conditionals, conditional on
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Figure 2: Mean posterior conditional density surface for each regime. The unfavorable regime
is plotted on the left panels and the favorable on the right panels. The top row corresponds
to the analysis from model M1 and the bottom row to model M2, which includes PDO as an
external covariate. In each panel, the grey points represent the data, i.e., the observed values
for (log(E),log(R:/E:)), t =1, ...,40.

u and h, are given by normal and gamma distributions, respectively. The posterior
means for v; and - are given by —0.65 and 0.69, with 90% posterior intervals of
(—0.89,—0.40) and (0.30,1.10), respectively, and 7-2 has posterior mean 0.68 with a
90% posterior interval of (0.45,1.00).

Results from the analyses under the two models are presented in Figures 2 — 4. The
regime-specific posterior mean implied conditional densities, E[f(log(R/FE) | log(E); GL)
| D], evaluated over a 50 x 50 grid, are shown in Figure 2. These provide point estimates
of the conditional relationship between stock and recruitment for each regime. Figure 3
shows the posterior mean for the state vector h as well as posterior point and interval
estimates for mean regression functions, E[log(R/E) | log(E); GE], for each regime. The
impact of inclusion of PDO as an external variable is evident. In the absence of such
information, the observations for years 1988 — 1990 are more likely to be allocated in
the favorable regime due to the rarity of regime shifting (i.e., due to posterior realiza-
tions of Q which put a high probability on staying in the same state). However, with
the inclusion of PDO, these years are more probably associated with the unfavorable
regime. Also, the posterior estimates for the regime-specific mean regression curves do
not exclude the possibility of a linear mean relationship between log egg production
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Figure 3: The left panels show the posterior mean regime membership by year, where 0 cor-
responds to the unfavorable regime. The right panels include posterior point and 90% interval
estimates for the conditional mean regression function under each regime (interval estimates
are denoted by dashed lines for the favorable regime, and by dotted lines for the unfavorable).
Also included on the right panels are the observed values for (log(E:),log(R:/Et)), t =1, ...,40,
denoted by the grey points. The top row corresponds to model M1 and the bottom row to
model M2, which includes PDO as an external covariate.

and log reproductive success. Hence, it is interesting to note that the more general DP
mixture switching regression modeling framework provides a certain level of support to
the original assumptions of Wada and Jacobson (1998).

Wada and Jacobson (1998) also provide egg production and estimated recruit num-
bers for the years 1991 — 1995, and winter PDO is readily available. The recruit es-
timates after 1990 are regarded as less accurate than field data from previous years,
and for this reason they were not included in our original analysis. However, prediction
for this estimated out-of-sample data provides a useful criterion for model comparison.
Hence, repeated prediction conditional on each existing parameter state was incorpo-
rated into the MCMC algorithm. In each successive year, a regime state is drawn
conditional on the sampled regime corresponding to the previous year, and prediction
for log reproductive success is provided by the associated conditional response density
in year 199x, f(log(R/E) | log(E199+); Gﬁwg*)7 where 199% runs from year 1991 to 1995.
The regime state is then resampled conditional on actual log reproductive success (i.e.,
conditional on log(R199./E199x) and log(F199.)), and the process is repeated with this
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Figure 4: Predictive inference for years 1991 — 1995 (by row, moving from 1991 at top to 1995
at bottom). The left column corresponds to model M1, and the right column to model M2
with PDO as an external covariate. Each panel plots posterior mean and 90% interval estimates
(solid and dashed lines, respectively) for the one-step-ahead conditional density, corresponding
to log(FE) values for 1991 — 1995 of [7.58,6.51,6.13,4.67,4.93]. The grey vertical lines mark the
true log reproductive success for each year reported in Wada and Jacobson (1998).
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state used as the basis for the next year’s prediction. More precisely, considering model
M1, prediction for year 1991 proceeds exactly as outlined in Section 3.2. Next, for year
1992, we sample the previous regime from Pr(hig91 = 7 | h1990, Gf, G%, E1991, Ri991)
f(log(F1991),10g(R1991/E1991); GE)Qhygeo.r» for 7 = 1,2, and use the sampled state r
for prediction through f(log(R/E) | log(FE1992); GE). Prediction for years 1993 — 1995
proceeds in an analogous fashion, and the general approach is similar for prediction
under model M2. Since this occurs at each MCMC iteration, we are averaging over
uncertainty in both higg. and the Gf. The results are shown in Figure 4, and it can be
seen that the introduction of PDO as an external covariate leads to subtle changes in
conditional predictive information. In particular, the predictions for year 1991 benefit
from additional information about the regime state in this year (and in the preceding
three years), resulting in a conditional response density for model M2 that is both
more accurate and less dispersed than the one obtained under model M1. As the
first-order Markov model is only informative in relatively short-term prediction, distri-
butions corresponding to both models become fairly diffuse in later years. However,
model M2 assigned consistently higher one-step-ahead mean conditional probability at
the true log reproductive success values, and the average total log probability assigned
to observations from 1991 — 1995 was —8.2 for model M2 against only —8.6 for model
Ma1.

The inference results reported in Figure 4 illustrate the posterior variability and
non-standard shapes of the predicted conditional response densities. The quantification
of this variability as well as the capacity of the DP mixture switching regression models
to capture non-standard features of the response distribution are important aspects of
the proposed nonparametric modeling framework.

5 Conclusion

We have presented a general framework for semiparametric hidden Markov switching
regression. While the basic switching DP mixture regression methodology provides a
powerful modeling technique in its own right, we feel that it is most practically important
when combined with further parametric modeling for the effect of external covariates
on state membership. Both modeling techniques, with or without external covariates,
have been illustrated with the analysis of stock-recruitment data.

The general approach of having informative parametric modeling linked with non-
parametric models through an underlying hidden stochastic process is both theoretically
appealing and practically powerful. We believe that there is great potential for such
models, since they provide an efficient way to bridge the difference in scale between two
observed processes, and the MCMC algorithms presented in this paper can be the basis
for extended techniques in other settings.

We have focused on models for switching regression, but the methodology is appli-
cable in more general settings involving hidden Markov model structure. In particu-
lar, since the switching occurs at the level of the joint distribution for response and
covariates, the modeling approach is directly applicable to nonparametric density es-
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timation through DP mixtures of multivariate normals for heterogeneous populations
where switching between subpopulations occurs as a Markov chain. Furthermore, the
modeling framework can be elaborated for problems where the multivariate normal is
not a suitable choice for the DP mixture kernel. For instance, categorical covariates
can be accommodated through mixed continuous-discrete kernels. Finally, our work in
the development of the MCMC algorithm can be extended to incorporate stick-breaking
priors other than the DP.

Appendix A: Prior Specification

Here, we discuss the approach to prior specification for the hyperparameters of model
M1 developed in Section 2.2.

Our approach is motivated by a setting where prior information is available on the
state vector h, and the A, parameters of 7(Q,.) are chosen based on prior expectation
for the probabilities of moving from state r to each state in a single time step. How-
ever, this prior information pertains only to the transition probabilities between states
and does not fully identify the state components. Thus, we need to provide enough
information to facilitate identification of the mixture components and ensure that the
transition probabilities defined by Q refer to the intended states. On the other hand,
the nonparametric regression is motivated by a desire to allow flexible inference about
each regression component and we thus seek a more automatic prior specification for
each ..

Within the framework of our DP mixture implied conditional regression, it is pos-
sible to have each state-specific centering distribution, Go(¢,), associate the densities
J N(z; 1, £)dG,. (11, ¥) with specific regions of the joint response-covariate space, without
putting prior information on the shape of the conditional response density or regression
curve within each region. Since the prior parameters m, and V,. control the location of
the normal kernels, the hyperparameters a,,,, B, ay., and By, can be used to express
prior belief about the state-specific joint response-covariate distributions. Specifically,
assume a prior guess for the mean and covariance matrix corresponding to the popula-
tion for state r, where prior information for the covariance may only be available in the
form of a diagonal matrix. Then, we can set a,,, equal to the prior mean, B,,, to the
prior covariance, and choose ay,. and By, such that E[V;] is equal to the prior covariance
(alternatively, E[V,7!] can be set equal to the inverse of the prior covariance matrix and
we have observed the method to be robust to either specification). In the absence of such
prior information, one can use a data-dependent prior specification technique. Given a
prior allocation of observations expressed as the state vector h™ = (hT, ..., hT.), each set
{am, s Bm,., By.} can be specified through the mean and covariance of the data subset
{z¢ : hT = r}. In particular, a,,, is set to the state-specific data mean and both B,
and E[V,] = (av, —d —1)"!By, are set to the state-specific data covariance. With care
taken to ensure that it does not overly restrict the component locations, this approach
provides an automatic prior specification that combines strong state allocation beliefs
with weak information about the state-specific regression functions.
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For the S, we seek only to scale the mixture components to the data, and thus we set
all the E(S,) = as,Bs, equal to a diagonal matrix with each diagonal entry a quarter
of the full data range for the respective dimension. The precision parameters ay., as,,
and v, for r = 1,..., R, are set to values slightly larger than d+ 2; in practice, we have
found 2(d+1) to work well. Working with various data sets, including the one in Section
4, we have observed results to be insensitive to reasonable changes in this specification.
In particular, experimentation with a variety of choices for the matrices Bg,, indicating
prior expectation of either more or less diffuse normal kernel components, resulted in
robust posterior inference.

Specification of the hyperpriors on DP precision parameters is facilitated by the role
that each «, plays in the prior distribution for the number of unique components in
the set of n, latent mixing parameters 6; = (u¢, 2;) corresponding to state r. For a
given n,. (i.e., conditional on h), we can use results from Antoniak (1974) to explore
properties of this prior for different «,. values. For instance, the prior expected number
of unique components in the set {6; : hy = r} is approximately «, log[(n, + a;.)/a,],
and this expression may be used to guide prior intuition about the «,..

Appendix B: MCMC Posterior Simulation

Here, we develop the approach to MCMC posterior simulation discussed in Section 3.
Recall that the key to the finite stick-breaking algorithm is that we are able to use
forward-backward recursive sampling of the posterior conditional distribution for h as
described in Section 3.1. Gibbs sampling details for all other parameters of model (4)
are provided below.

First, for each t = 1,...,T, k; has a discrete posterior full conditional distribution
with values in {1, ..., L} and corresponding probabilities wy p,N(z¢; 0;p,) / 22:1 Wi, hy

N(zt;ém,ht)7 forl=1,.., L.

For each r = 1,..., R, the posterior full conditional distribution for w,., is propor-
tional to Pr(w, | 1, o) H{t:ht:T} (ZZL:1 wl7T51(kt)) =Pr(wr | 1,0a) HlL:l w%”, where
My, = |{t : b = r,k, = 1}|. Note that the Pp(w, | 1,a,) prior for w,, defined
constructively in (3), is given by

-1
L—-2
Pr(wr [ 1) = O‘rL_lwg,r;l(l - wl,r)_l(l — (w1 + W27r))_1"' (1 - Z wl,r) :

1=1

(B.1)
Recall the generalized Dirichlet distribution GD(p;a,b) (Connor and Mosimann 1969)
for random vector p = (p1,...,pr), supported on the L dimensional simplex, with
density proportional to p{*~t ... paLL_*ll—l piL71_1 (1 — py)br—la2tb2) (1 — (p +
o+ pr_g))br-27(@r1+br-1) where the parameters are @ = (ai,...,ar_1) and b =
(b1,...;br,—1). Then, Pr(w, | 1, ) = GD(wy;a,b) witha = (1,...,1) and b = (., ..., ).
Moreover, the HzL:1 wl{\{” form is also proportional to a GD(w,; a, b) distribution with

a= (M, +1,.. .My, +1) and b= ((L—1)+ Y}, My, oy 2+ Mp 1 + My, 1+
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My, ). Hence, the posterior full conditional for w, can be completed to a general-
ized Dirichlet distribution with parameters @ = (M, +1,...,Mr_1,+ 1) and b =
(o + Zlez M, o + Zszs M, ...;o0r + My ). This distribution can be sampled
constructively by first drawing independent {; ~ G(1 + Mj,, o + ZSL:lH M), for
l=1,...,L—1, and then setting w1, = (15 wi,r = qu;ll(l — (), l=2,....,L —1; and
wrr=1- El 1 Wir.

Next, foreachr =1,..., R, the posterior full conditional distribution for 6, is propor-
tional to Hl LdGo (01 1/)T) H] ) | FTr S —— }N(zt, 9k* ). Here, n¥ is the number of
distinct values of the k; that correspond to the r-th state, i.e., the number of distinct
ki for t € {t : hy = r}. These distinct values are denoted by k;*, j=1,..,n% Now, for
all [ ¢ {k;:j=1,..,n;}, we can draw 0, i.i.d. Go(¢,). Otherwise, the posterior full
conditional for Ok » = (fi] ., X7 ) is proportional to

NG VW, (257557 [ N, S50,
{t:he=rke=k;}

and can be sampled by extending the Gibbs sampler to draw from the full conditional
for 47, and for Z;;l. The former is normal with covariance matrix 7; = (V,7! +

Mj*rEz‘Tl) , where My = [{t : by = r,k; = kj}|, and mean vector T;(V,”'m, +

S Y e ko= ko) Zt) The latter is Wy, arz (5 (Sr 4 22 grn, =r gy =hs y (20 = f15,) (20 =
Mg,r) )7h).

The posterior full conditional for the hyperparameters, ¥, = (m.,V;,S;), can be
simplified by marginalizing the joint posterior full conditional for 8, and ¢, over all the
01, for I ¢ {k} :j =1,...,n;}. Thus, for each r = 1,..., R, the full conditional for ¢, is
proportional to

*
n

N (my; am,, Bm,) Wavr (Vr71§ B\;Tl)wasr (Sr; Bs,) H N(ﬂ;;-; My, Vi)W, (E; rla S, )
j=1
Hence, 1, can be updated by separate draws from the posterior full conditionals for
my, V., and S,.. The full conditional for m, is normal With covariance matrix B;nr =

(B, +n;V,1) 7! and mean vector B}, (By,tam, +V, 7! EJ 1 #5,,-). The full conditional
for V71 is Wys 1ay,. (5 (By, + Z;L’" 1([1;‘ »—my)(@5, —m,)")7"), and the full conditional
for S, is Wy, s qas, (4 (BS + Z r Z* “Hh).

Regarding the DP precision parameters, combining the I'(aq,., by, ) prior for o, with

the relevant terms from (B.1), we obtain that, for each r = 1, ..., R, the posterior full
conditional for a; is a I'(aq, + L — 1, —log(wr, ) + ba,.) distribution.

Finally, with the Dir(Q,; A.) prior on each row @, of the transition matrix Q, the
posterior full conditional for @, is Dir(Q,; A, + J,.), where J, = (Jy.1, ..., Jr r) With J,.
denoting the number of transitions from state r to state s, which are defined by the
currently imputed state vector h.
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