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Comment on Article by Jensen et al.

Fernando A. Quintana∗ and Peter Müller †

1 Introduction

We congratulate Shane T. Jensen, Blake McShane and Abraham J. Wyner (henceforth
JMW) for a very well written and interesting modeling and analysis of hitting perfor-
mance for Major League Baseball players. JMW proposed a hierarchical model for data
extracted from the Lahman Baseball Database. They model the player/year-specific
home run rate using covariate information such as the player’s age, home ballpark,
and position. The proposed approach successfully strikes a balance of parsimonious
assumptions where detail does not matter versus structure where it is important for the
underlying decision problem. An interesting feature of the model is the time-dependence
that is induced by assuming the existence of a hidden Markov chain that drives the tran-
sition of players between “elite” and “non-elite” conditions. In the former case, JMW
postulate that the home run rate is increased by a certain position-dependent quan-
tity. The model is used to predict home run totals for the 2006 season, and the results
compared to some external methods (MARCEL and PECOTA). The comparison gives
some mixed results, with the proposed method rating generally well, compared to their
competitors.

2 Some general comments

Inference for the Lahmann baseball data raises a number of practical challenges. The
data include records on over 2,000 players, but for many of them there is information for
only a couple of years. In many cases there are several years with missing information.
As usual in sports data, there is tremendous heterogeneity and unbalance among the
experimental units (players). We suspect this is partly the reason why the focus is
on predictions for a subset of players. However, this opens the question of whether
the model actually provides a good fit for all the players. We believe an interesting
challenge is to extend the modeling approach to larger subsets, and maybe all players.
For such extended inference the model needs to be extended to properly reflect the
increased heterogeneity across all players. We propose a possible approach below. Also,
the inference focus would shift from prediction to more emphasis on an explanatory
model.

Model (2) and the proposed variations, have the interesting feature of incorporating
in the home run rates θij an explicit dependence on player position k, home ballpark
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b and a smooth position-specific age trajectory, expressed as an hypothesized linear
combination in the logit scale. The smooth function of age seems to capture interesting
nonlinear features of the home run rates evolution on time, as seen in Figures 3 and 5.
One may even venture the existence of an “optimal” age for hitting, and a natural decay
in abilities with progressing age. In fact, such conclusions have been reached elsewhere,
and even if not the target of this work, it is a nice feature of the analysis that the same
kind of findings are uncovered.

The hidden Markov model for “elite” status is the model component that is re-
sponsible for introducing dependence across seasons for a given player. The extended
model allows for player-specific transition parameters, i.e., individual trajectories for
the binary elite indicator variables. Concretely, JMW assume the parameters (νi

00, ν
i
11)

controlling these transitions to be a priori independent and Beta-distributed, with con-
ditional independence across players sharing a same position k. These assumptions
imply flexibility in the evolution of the {Eij} elite indicators, which are well defined
regardless of missing data patterns along the sequences of home runs. Looking at the
results of the analysis, it is quite remarkable that a large number of players achieve elite
status after only one or two major league seasons, as seen in Figure 2. Intuitively one
would have expected a peak more likely around 3-5 years. JMW seem to be equally
surprised at such findings, when they comment that the sum over years 2 through 11
still represents 75% of the cases considered.

Another consequence of the elite/non-elite model is that the effect on home run rates
θij is only through a position-specific added term αk = αk0(1 − Eij) + αk1Eij on the
logit scale. While this has the advantage of borrowing strength across players with the
same position, it may be not flexible enough to capture highly heterogeneous home run
profiles.

3 Extending the proposed approach

The latent elite indicator Eij defines a mixture model for the observed home run totals.
The use of Eij is an elegant way to formalize inference about top players. The model
balances parsimony with sufficient structure to achieve the desired inference. The au-
thors correctly point out some of the remaining limitations. Perhaps the most important
limitation is that the model reduces the heterogeneity of the population of all players
to a mixture of only two homogeneous subpopulations. This is particularly of concern
in the light of the underlying decision problem. The resulting inference only informs
us about the probability of a player being in the elite group. Some evidence for more
heterogeneity beyond the mixture of only two subpopulations is seen in Figure 4. The
wide separation of the credible intervals suggests scope for intermediate performance
groups in the model. The population of players is highly heterogeneous, but not in such
a sharply bimodal fashion. It is also interesting to note in the same figure the almost
preserved ordering across positions between elite and non-elite groups.

A minor extension of the model could generalize the mixture to a random partition
into H subpopulations, which could help closing the gap just pointed out. Each cluster
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could have a cluster-specific set of intercepts αkh, h = 0, . . . , H − 1 for the logistic
regression prior (2) of player-season home run rates θij . Like in JMW’s model, the
intercepts remain ordered αkh ≤ αk,h+1, k = 1, . . . , 9. This allows us to interpret the
clusters labels h = 0, . . . , H − 1 as latent player performance.

Formally the model extension would replace (2) by

logit(θij) = αih + βb + fk(Aij), (1)

where βb and fk(Aij) are as earlier, and h = Eij is the imputed cluster membership
for player i in season j. The prior for αk = (αkh, h = 0, . . . , H − 1) is similar to (9),
now for the H−dimensional vector αk. The prior for the latent cluster membership Eij

remains as in (3), extended to transitions between H states. The number of transition
parameters νrs remains unchanged with prior probability ν01 for upgrades in elite level,
prior probability ν10 for downgrades and ν00 for the probability of remaining in state
Eij = 0 and ν11 for the probability of remaining in a performance state E > 0. Like in
(7) the transition probabilities are position-specific.

The number of states H would itself be treated as unknown, with a geometric prior
p(H) = (1− p)H−1p and a hyperparameter p. The only additional step in the MCMC
implementation is a transition probability to change H. We consider two transitions,
“birth” of an additional performance level by splitting an existing level h into two new
levels and the reverse “death” move. This could be implemented as a reversible jump
move.

The generalized model defines a random partition of the player-years (ij) into per-
formance clusters h = 0, . . . , H−1. The unique features of this random partition model
would be the ordering of the clusters and the dependence across j. Both features are
naturally accommodated by the outlined model-based clustering. We see it as an in-
teresting and challenging application of model-based clustering. In contrast to much of
the of clustering models in the recent Bayesian literature, the use of standard cluster-
ing models such as the ubiquitous Polya urn would be inappropriate. The Polya urn
model does not naturally allow the desired ordering of cluster-specific parameters and
time-dependence of cluster membership indicators.

4 Final words

We realize the above proposal can be extended/modified in many different ways, the
main point being the possibility of improving on the analysis and model proposed by
JMW. Our aim here was not to criticize the model but to help improve it. We indeed
think the hidden Markov component is a very nice feature, which combined with a
flexible extension, could motivate further analysis of the data under a more general
framework.
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