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Comments on Article by Yin

Ciprian M. Crainiceanu∗

Inferential methods for Generalized Linear Mixed Models (GLMMs) are under in-
tense methodological development because they: 1) are widely applicable; and 2) raise
non-trivial technical and inferential challenges. The Generalized Method of Moments
(GMM) (Hansen (1982); Newey and West (1987)) provides a powerful and robust set of
inferential tools for GLMMs, especially when the likelihood formulation is difficult and
interest is centered on the fixed effects parameters.

The paper by Yin (2009) is an important contribution to this literature. The main
idea of the paper is to provide a simple Bayesian framework for what I considered to
be a frequentist method, par excellence. I found the paper thought provoking, fresh
and definitely worthy of discussion. Below I summarize my reactions and comments
and provide a set problems that could be, but are not currently, addressed by this
methodology.

1 Why?

The most important question in my mind after reading the paper was “Why should we
use Bayesian GMM instead of GMM?” Simulations seem to indicate that both methods
produce similar results, with the Bayesian methodology requiring more computational
effort. One answer that I do not particularly like is “Because we can”. Another possible
answer could be that in some data sets with a smaller number of clusters the posterior
distribution π̃(β|y) ∝ L̃(y|β)π(β) might not be well approximated by a normal. In such
a context, the next natural step would be to consider the sampling variability of the
data by conducting a nonparametric bootstrap of the clusters. Pooled analyses using
Bayesian GMM and GMM could then be compared. Some applications and simulations
supporting these ideas would add credibility to the proposed methods.

2 What?

The approach proposed by Yin is to treat the quadratic objective function

Qn(β) = UT
n (β)Σ−1

n (β)UT
n (β)

as an approximation of minus twice the log of the conditional likelihood L(y|β). More
precisely, the author replaced the unknown L(y|β) by the approximate likelihood L̃(y|β) =
exp{−Qn(β)/2}. When observations are not clustered Un(β) =

∑n
i=1 Ui(β)/n, where

Ui(β) = Div
−1
i (yi−µi), Di = ∂µi/∂β is the vector of derivatives of the subject i-specific

mean with respect to the model parameters, and vi = var(yi|Zi) is the conditional vari-
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ance of observations given the covariates. When observations are clustered vi is replaced
by the matrix V i = A1/2

i CiA
1/2
i , where Ai = diag{h(µi)}, θi = h(βT Zi), and θi is

the location parameter. The matrix Ci contains the information about the correlation
structure. The author uses the idea in Qu et al. (2000) to replace Ci by the mix-
ture α1Ci,(1) + . . . + αJCi,(J), where Ci,(1), . . . ,Ci,(J) are known basis matrices and
α1, . . . , αJ control the importance of a particular correlation structure. For example, if
Ci,(1) is the identity matrix and α1 = 1, α2 = . . . = αJ = 0 then the model assumes
working independence. Given standard generalized estimating equation results (GEE)
Liang and Zeger (1986), one would expect that the choice of α will affect the posterior
distribution of β, but not its posterior mean. This structure raises several questions
that would require further discussion.

1. Under what conditions is L̃(y|β) a proper likelihood? It seems that in standard
examples the integral c−1(β) =

∫
exp{−Qn(β)/2}f(y|Z, β)dy is finite. However,

having a sufficient condition for c−1(β) < ∞ would help in non-standard applica-
tions, that is when the method is most likely to provide additional insight.

2. What is the effect of ignoring the normalizing constant c(β) in the definition of
L̃(y|β)? Clearly, c−1(β) cannot be calculated if the likelihood function f(y|Z, β)
is not specified. However, the author argues convincingly that c(β) is well approx-
imated by (2π)−p/2|Σn(β)|−1/2. Thus, it seems clear that the effect of ignoring
c(β) should be minimal when ∂|Σn(β)|/∂β ≈ 0, as it is the case in simulations.
However, this may not always be the case.

3. Does including (2π)−p/2|Σn(β)|−1/2 in the definition of L̃(y|β) lead to sampling
algorithms that are significantly harder to implement?

4. In the clustered case, how are the parameters α1, . . . , αJ included in the Bayesian
GMM? As I mentioned above their choice (or distribution) is likely to affect the
posterior distribution of β. However, the substituted likelihood L̃(y|β) (Section
2.2) does not contain them. Moreover, the author mentions that αj ’s “do not need
to be sampled in the Bayesian GMM procedure”.

3 When?

Standard parametric correlation matrices for random effects are those corresponding
to independent, exchangeable or AR(1) structures. These correlation structures are
very popular in practice because they are often sufficient to capture observed variabil-
ity. Moreover, they are easy to implement either using Bayesian analysis, likelihood
inference or GEEs. Thus, a good practice would be to start with these methods and
investigate discrepancies, if any, between data and assumptions. This can be done in
many ways, but here are two ideas. First, fit GEEs with various parametric struc-
tures and compare the length of the confidence intervals. Second, calculate and plot
nonparametric estimates of the covariance/correlation structure and investigate what
parametric assumption best fits the data. These two simple steps would provide a lot of
additional information in general and in the Nursing Intervention Study in particular.
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4 Where?

The author develops the Bayesian GMM methodology for standard GLMMs with a large
number of clusters, where the GMM methodology was successfully applied. Thus, one
would expect the current methodology to also do well on the beaten path. A challenging
alternative problem is estimating a smooth, but otherwise unspecified, population mean
function f(Z) instead of βT Z. Another set of problems where the Bayesian GMM
methodology could have an impact are generated by emerging literature on multilevel
functional data analysis (Crainiceanu et al. (2009); Di et al. (2009)), where random
effects are replaced by random processes.
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