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In this paper we consider a novel statistical inverse problem on the
Poincaré, or Lobachevsky, upper (complex) half plane. Here the Riemannian
structure is hyperbolic and a transitive group action comes from the space of
2 × 2 real matrices of determinant one via Möbius transformations. Our ap-
proach is based on a deconvolution technique which relies on the Helgason–
Fourier calculus adapted to this hyperbolic space. This gives a minimax non-
parametric density estimator of a hyperbolic density that is corrupted by a
random Möbius transform. A motivation for this work comes from the re-
construction of impedances of capacitors where the above scenario on the
Poincaré plane exactly describes the physical system that is of statistical in-
terest.

1. Introduction. The recovery of objects, for example, densities and func-
tionals thereof, based on noisy indirect observations, otherwise known as statisti-
cal inverse problems (see, e.g., [23]), is scientifically of intense interest. The liter-
ature is vast and we mention only a few selected papers. Most of the work is con-
cerned with deconvolution on Euclidean spaces. Prominent approaches are based
on wavelet and wavelet-vagulette expansions (see [1, 24] and [39]) or, on singular
value decompositions (see [5, 26] and [33]), where for the latter block thresholding
techniques lead to adaptive estimators (see [8]). Minimax rates in deconvolution
have been investigated by Fan [15], and many others. Recently, oracle inequali-
ties have been proved in [9]. The specific problem of boxcar deconvolution and its
link to Diophantine approximation have been investigated in [21] and [22]. Other
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methods include the linear functional strategy (see [16] and variants thereof). Very
popular are Fourier series estimators which have been known for a long time, and
often they become particularly simple because on Euclidean spaces they can be
treated with kernel methods (see [15, 19] and [44]). We note that even though our
approach also utilizes Fourier methods on groups, due to the hyperbolic geometry,
the resulting estimator cannot be treated by kernel methods thus complicating our
endeavor considerably.

In this paper we provide a novel methodology for statistical object recovery on
the Poincaré upper half plane which we call the problem of Möbius deconvolu-
tion. Here the group of Möbius transformations is given by all fractions of the
form (az + b)/(cz + d) for a complex number z and a 2 × 2 matrix with real
entries a, b, c, d of determinant 1. The metric which is invariant under these trans-
formations is the hyperbolic metric (to be specified in the next section) which will
replace the Euclidean metric in a natural way. In fact, a key observation is that
this problem can be tackled by generalized Fourier methods similar in spirit to
the Euclidean case. The development of the theory builds on the foundations laid
out in [43], Chapter 3. However, extending Euclidean arguments to this manifold
is challenging since the hyperbolic space is noncompact, the (hyperbolic) geome-
try is non-Euclidean and the group of Möbius transformations is noncommutative.
A fundamental technical difficulty comes from a lack of a dilation property that
does not extend over from the Euclidean case. Despite these difficulties, a generic
element is the Riemannian structure on a manifold, on which a Laplacian can then
be defined. This together with the generic Euclidean approach as outlined in [33]
will be the foundation to what will be presented below.

In addition to the theoretical interest of this novel scenario of Möbius deconvo-
lution, there are important practical applications as well. One particular situation
occurs in alternating current circuit analysis and design whenever signals travel
through circuit elements as well as whenever geometries of waveguides change.
A simple example of the latter is a connector to a coaxial cable, say. Here, the
so-called “reflections” are modeled on the complex unit disk and the correspond-
ing “impedances” occur in a complex half plane. Usually, these reflections or im-
pedances are not directly visible but observed through other electrical devices, such
as a “two-port” which in turn is modeled by Möbius transformations. In particu-
lar, a class of so-called “lossless” two-ports can be identified with 2 × 2 matrices
of determinant 1. One particular aspect of Möbius deconvolution is related to the
temporal decay of impedances of capacitors whereby the above scenario on the
Poincaré plane exactly describes the physical system that is of statistical inter-
est. Other applications include the field of electrical impedance spectroscopy, as
well as electrical impedance tomography. In the former, measuring varying im-
pedances due to variable ion transport through biological membranes is currently
of high interest in view of pharmaceutical drug design (see [14] as well as [41]).
In the latter, in a noninvasive and radiation-free way, medical imaging can be cost
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effectively accomplished by measuring skin-impedances (cf. [6]). Indeed, for suc-
cessful reconstruction, control of various errors is of paramount importance (see
[17]). There is also work in higher-dimensional hyperbolic spaces with respect to
medical imaging (see, e.g., [29]).

In statistics there is also some recognition of the Poincaré plane and its hyper-
bolic geometry particularly so because the parameter space of the Gaussian distri-
bution (with unknown mean and standard deviation) is this space. Furthermore, it
has been shown by several authors that the Riemannian metric derived from the
Fisher information is exactly hyperbolic (see [25, 32] for details). Obviously, lo-
cation and dispersion parameters of arbitrary distributions and random estimators
thereof can be viewed within the Poincaré plane. Curiously here, the family of
Cauchy distributions play a specific role as being equivariant under Möbius trans-
formations (see [34, 35] for this and its consequences for parameter estimation).
Based on the above, techniques from the hyperbolic geometry of the Poincaré
plane are developed exclusively from a parametric point of view (cf. [36]). As
far as the authors are aware, our contribution is the first attempt at nonparametric
developments.

We now summarize the paper. Section 2 is a preliminary section which intro-
duces the notation along with the Helgason–Fourier analysis needed for this paper.
Following this, Section 3 presents the main results. In Section 4 we focus on com-
putational aspects of Möbius deconvolution illustrating the ideas through simula-
tions. To this end we introduce in addition to the hyperbolic Gauss the hyperbolic
Laplace distribution. In Section 5 we go into explicit detail with respect to the
Möbius deconvolution problem for statistically recovering the temporal decay of
impedances of capacitors as outlined two paragraphs above. We will briefly sketch
the background; however, if the reader is well versed in this field, then one can
start from Section 5.4 where we examine a data set that was acquired through col-
laboration with the University of Applied Sciences (Fulda, Germany) that depicts
the physical system of this paper. In particular, we are able to identify random
impedances when only their impedances viewed through random capacitive two-
ports are given. Following this, technical details of the Poincaré upper half plane
and the proofs of the main theorems are collected in Appendices A and B.

As usual for two function g and f , write f � g if f (x) = O(g(x)) and g(x) =
O(f (x)) for x → ∞ or x → 0, depending on context.

2. Preliminaries. In the following let R and C denote the real and complex
numbers, respectively. Furthermore, the group of real 2×2 matrices of determinant
one is denoted by

SL(2,R) :=
{
g =

(
a b

c d

)
:a, b, c, d ∈ R, ad − bc = 1

}
.(2.1)
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This defines the group of Möbius transformations Mg : C → C by setting for each
g ∈ SL(2,R),

Mg(z) := az + b

cz + d
,(2.2)

where MgMh = Mgh for g,h ∈ SL(2,R). Let

H := {z ∈ C : Im(z) > 0}(2.3)

be the upper half plane where “Re(z)” and “Im(z)” denote the real and imaginary
parts of a complex number z, respectively. Then for each g ∈ SL(2,R), the Möbius
transformation Mg is a bijective selfmap of H. Moreover, for arbitrary z, z′ ∈ H

there exists a (in general not unique) g ∈ SL(2,R) such that z′ = Mg(z
′).

The action of SL(2,R) on H, which is rather involved, is further discussed in
Appendix A. It will be used in the proof of the lower bound in Appendix B.3. For
the following we note that Möbius transformations preserve the family of vertical
lines and circles centered at the real axis (cf. Figure 1). This is a consequence of
the fact, that Möbius transformations leave the cross ratio

c(z1, z2,w1,w2) = (z1 − w1)(z2 − w2)

(z1 − z2)(w1 − w2)

invariant. For a detailed introduction (cf. Nevanlinna and Paatero [38], Chapter 3).
The deconvolution, or statistical inverse problem of reconstructing the density

of a random object X on H, of which we only see a version Y corrupted by an
independent random error ε on SL(2,R) can now be formulated as

Y = Mε(X).(2.4)

A natural geometry for (2.4) is the given by the hyperbolic distance on H

d(z, z′) = log
1 +

√
|c(z, z′, z′, z)|

1 −
√

|c(z, z′, z′, z)|

FIG. 1. The shortest connection (a geodesic segment) between two points z, z′ ∈ H in the hyper-
bolic geometry is either a vertical line segment [if Re(z) = Re(z′)] or an arc on the circle through z

and z′ with center on the real axis.
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since for this distance the space of isometries of H is precisely the group of Möbius
transformations, meaning that d(Mg(z),Mg(z

′)) = d(z, z′) for all g ∈ SL(2,R)

and z, z′ ∈ H. Here, z = x − iy denotes the complex conjugate of z = x + iy. The
corresponding hyperbolic measure is chosen such that:

(i) its area element dz agrees with the area element dx dy of Lebesgue mea-
sure at z = i, and

(ii) it is invariant under Möbius transformations.

In consequence, the Radon–Nikodym derivative of the hyperbolic area element
with respect to the Lebesgue area element at w = u + iv is given by v−2 which is
the determinant of the Jacobian (

ux uy

vx vy

)
of a Möbius transformation M yielding M(i) = (ai + b)/(ci + d) = u + iv. This
can be verified with the complex derivative M ′(i) = (ci + d)2 = ux + ivx and the
Cauchy differential equations uy = −vx, vy = ux ; cf. Terras [43], Chapter III.

At z = x + iy ∈ H we have hence the hyperbolic area element

dz := dx dy

y2 .(2.5)

In addition, in order to properly define below in (2.6) a convolution of a density
on H with a density on SL(2,R), a compatible bi-invariant Haar measure dg on
SL(2,R) is chosen in Appendix A.

Hence, X and Y are random complex numbers in the upper half plane H

equipped with the hyperbolic geometry, and ε is a random isometric self-map of
H applied to X by (2.2). The problem of the Möbius deconvolution can be made
precise as follows. A density on the upper complex half plane with respect to the
hyperbolic measure is called a hyperbolic density. Densities on SL(2,R) are taken
with respect to the Haar measure dg.

PROBLEM 2.1. Under the model (2.4) estimate nonparametrically, the hyper-
bolic density fX of X from the hyperbolic density fY of Y when the density fε on
SL(2,R) is known.

We note that this setup assumes underlying i.i.d. X1, . . . ,Xn corrupted by i.i.d.
errors ε1, . . . , εn, also independent of Xj (j = 1, . . . , n) giving observations Yj =
Mεj

(Xj ), j = 1, . . . , n.
We will base our work using Fourier or singular value decomposition methods

that are common for the Euclidean case (see [5, 26] and [33]) and the fact that the
densities of (2.4) are related by the convolution

fY (z) = (fε ∗ fX)(z) =:
∫

SL(2,R)
fε(g)fX(Mg−1(z)) dg.(2.6)
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This fact is a consequence of (A.4) in Appendix A.
From here on, we will make the abbreviation SL(2) := SL(2,R), as well as to

write (2.2) as simply g(z) or gz for g ∈ SL(2) and z ∈ H whenever the context is
clear.

2.1. Fourier analysis on the Poincaré plane. For purposes of Möbius decon-
volution for Problem 2.1 we sketch the Helgason formulation of hyperbolic Fourier
calculus which can be found in more detail in [43], Chapter 3.2. The Helgason–
Fourier transform of f ∈ C∞

c (H) with the latter being the space of real valued
functions with compact support in H with derivatives of all orders, is defined as
the function

Hf (s, k) :=
∫

H

f (z)(Im(k(z)))s dz

analytic for (s, k) ∈ C×SO(2) where overline denotes complex conjugation. Here,

k = ku =
(

cosu sinu

− sinu cosu

)
∈ SO(2) ⊂ SL(2)

is naturally identified with u ∈ [0,2π) acting on H as the Möbius transformation

Mk(z) = z cosu + sinu

cosu − z sinu

as defined in (2.2) (cf. Appendix A). Note that for all s ∈ C, z = x + iy → ys and
z → (Im(k(z)))s are eigenfunctions with corresponding eigenvalues s(s − 1) of
the Laplace–Beltrami operator

� = y2
(

∂2

∂x2 + ∂2

∂y2

)
(2.7)

on H. With the spectral measure

dτ = 1

8π2 t tanh(πt) dt du

on R × SO(2) the inverse Helgason–Fourier transform is given by

f (z) =
∫
t∈R

∫ u=2π

u=0
Hf

(
1

2
+ it, ku

)
(Im(k(z)))1/2+it dτ,(2.8)

where i2 = −1. The following result justifies these definitions: mapping to
the Helgason–Fourier transform extends to an isometry L2(H, dz) → L2(R ×
SO(2), dτ ); that is, we have the Plancherel identity∫

H

|f (z)|2 dz =
∫
t∈R

∫ u=2π

u=0

∣∣∣∣Hf

(
1

2
+ it, ku

)∣∣∣∣2 dτ,(2.9)

where we denote the space of square integrable functions over some space by L2.
We note that f ∈ L2(H, dz) is SO(2)-invariant if and only if Hf ∈ L2(R ×
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SO(2), dτ ) is SO(2)-invariant. Thus, for numerical computations ([43], pages 141
and 149) for an SO(2)-invariant function f , transforms and inverse transforms can
be considerably simplified

Hf

(
1

2
+ it

)
= 2π

∫ ∞
0

f (e−r i)P−1/2+it (cosh r) sinh r dr,

f (e−r i) = 1

4π

∫ ∞
−∞

Hf

(
1

2
+ it

)
P−1/2+it (cosh r)t tanh(πt) dt(2.10)

with the Legendre function

Pa(c) := 1

2π

∫ 2π

0

(
c +

√
c2 − 1 cos(φ)

)a
dφ.

Throughout this work we will use the following assumptions:

(D.1) all densities are square-integrable

fX,fY ∈ L2(H, dz), fε ∈ L2(SL(2), dg);
(D.2) the error density fε is bi-invariant

fε(agb) = f (g) ∀g ∈ SL(2), a, b ∈ SO(2);
(D.3) fX ∈ Fα(Q) for a Sobolev ball

Fα(Q) = {f ∈ L2(H, dz) :‖�α/2f ‖2 ≤ Q}
with α > 1 and Q > 0.

Here, �α/2f denotes the unique function h ∈ L2(H, dz) with Hh(s, k) =
s(s − 1)α/2Hf (s, k).

As detailed in Appendix A, the isometry SL(2)/SO(2) → H :gSO(2) �→ Mg(i)

preserves the action of SL(2). Hence a density fε satisfying (D.2) can be regarded
as an SO(2)-invariant mapping H → R. In particular, in case of (D.1) and (D.2),
the Helgason–Fourier transform Hfε(z) is well defined, we have

HfY (s, k) = H(fε ∗ fX)(s, k) = Hfε(s) · HfX(s, k);(2.11)

[43], page 149. One final assumption to be made is the following.

(D.4) ∃ constants β,γ,C1,C2 > 0 such that

C1 exp
{
−|s|β

γ

}
≤ |Hfε(s)| ≤ C2 exp

{
−|s|β

γ

}
∀s = 1

2
+ it, t ∈ R.

As an example, the hyperbolic Gaussian-distribution (see Section 3 below) satisfies
(D.4).

Of course, any density on the upper half plane (or on the unit disk) can be
rescaled with respect to hyperbolic measure. One example, using the normalized
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squared absolute cross ratio c(z, θ, z, θ), has been kindly provided by one of the
referees,

1

π

( |z − z||θ − θ |
|z − θ |2

)2

dz = 4σ 2 dx dy

π((x − μ)2 + (y + σ)2)2 , z = x + iy ∈ H,

with a hyperbolic parameter θ = μ + iσ ∈ H; for example, one could take x and y

as suitable estimators of the location and dispersion parameters of another distribu-
tion (cf. [34, 35]). Note that this density is not SL(2)-invariant; rather it is equivari-
ant with respect to the SL(2) action on both variable z and parameter θ . In the con-
text of this research one is interested also in SL(2)-invariant densities. Such can be
generated from suitable densities on y ∈ [1,∞). Moreover, SL(2)-invariant func-
tions additionally fulfilling (D.3) can be obtained by applying the inverse Helgason
transform (2.10) to suitable functions on s = 1

2 + it , −∞ < t < ∞. If the function
is even in t , then the inverse Helgason transform thus obtained is real. It is, how-
ever, not necessarily nonnegative. As a consequence of P−1/2+it (cosh r) > 0 for
t = 0, nonnegativity can be obtained if the function tends sufficiently fast to zero as
t → ∞. Numerical experiments indicate that one may consider for τ > −1/4 and
α > 1 a suitable multiple of a power of a Cauchy density in the spectral domain

Hhα,τ (s, k) ∝ 1

(τ − s(s − 1))α
= 1

(τ + 1/4 + t2)α
(2.12)

giving an invariant hyperbolic Laplace density hα,τ ∈ Fα(Q). This density can be
lifted as in Appendix A giving a bi-invariant density h̃α,τ on SL(2). In particular
h̃α1,τ1 ∗ hα2,τ2 ∈ Fα1+α2(Q) for τ1, τ2 > −1/4, α1, α2 > 1 and suitable Q > 0.

We will not elaborate further on this topic, but we mention that motivated by our
research and by many potential applications, the task of generalizing non-Gaussian
distributions to hyperbolic spaces may lead to a new field of challenging research.

3. Main results. Let us begin with the definition of the Helgason–Fourier
transform of the generalized derivative of the empirical distribution f

(n)
Y (z) =

1
n

∑n
j=1 δYj

(z) where Y1, . . . , Yn is a random sample in H

Hf
(n)
Y (s, k) = 1

n

n∑
j=1

(Im(k(Yj )))
s .(3.1)

Obviously

EHf
(n)
Y (s, k) = HfY (s, k),(3.2)

where “E” denotes expectation. We estimate the Helgason transform of an SO(2)-
invariant density as well by an SO(2)-invariant estimator

Hf
(n)
Y (s) := Hf

(n)
Y (s, I) = 1

n

n∑
j=1

Im(Yj )
s(3.3)
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with the identity element I ∈ SO(2).
From the Helgason–Fourier transform (3.1) we build an estimator by using

(2.11) and the inverse Helgason–Fourier transformation (2.8) with a suitable cutoff
T > 0

f
(n,T )
X (z) :=

∫
|t |<T

∫ u=2π

u=0

Hf n
Y (1/2 + it, ku)

Hfε(1/2 + it)
(Im(ku(z)))

1/2+it dτ(3.4)

for the density fX . This is well defined if Hfε �= 0 is bounded from below on com-
pact sets which is guaranteed under assumption (D.4). Even though we consider
in this section the general case, we note in view of (3.3) and (2.10) that for the
estimation of an SO(2)-invariant density fX , we can use the simpler

f
(n,T )
X (e−r i) := 1

4π

∫ T

−T

Hf n
Y (1/2 + it)

Hfε(1/2 + it)
P−1/2+it (cosh r)t tanh(πt) dt.

As the first main result we have:

THEOREM 3.1. For fX,fY and fε satisfying (D.1)–(D.3), and Hfε �= 0
bounded from below on compact sets, there is a constant C > 0 not depending
on T ,α,Q and n such that

E
∥∥f (n,T )

X − fX

∥∥2 ≤ C sup
|t |≤T

∣∣∣∣Hfε

(
1

2
+ it

)∣∣∣∣−2 T 2

n
+ QT −2α

as n → ∞.

If the corruption by error is smooth enough, or equivalently if the asymptotic
rate of the decay of its Helgason–Fourier transform is suitable, the cutoff T can be
adjusted appropriately to obtain the following rates.

THEOREM 3.2. Suppose that fX,fY and fε satisfy (D.1)–(D.4). Then by let-
ting T = (

γ
2 logn − ηγ

2 log(logn))1/β where η ≥ 2(α + 1)/β

E
∥∥f (n,T )

X − fX

∥∥2 ≤ Q

(
γ

2
logn

)−2α/β(
1 + o(1)

)
as n → ∞ where α is from condition (D.3).

The optimal rate of a power of logn in case of error smoothness (D.4) is in
agreement with Euclidean results. On the real line, condition (D.4) corresponds
to supersmooth errors for which Fan [15] establishes the same type of rate. This
rate has also been established by Butucea and Tsybakov [7] in case of addition-
ally supersmooth signals. For a scenario corresponding to our setup on compact
Lie groups, see [28] and more general on any compact manifold, see [27], where
similar rates have been found.

The above results are minimax in the sense that the rate of convergence is
matched by a corresponding lower bound. We have the following theorem.
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THEOREM 3.3. Suppose that fX,fY and fε satisfy (D.1)–(D.4). Then for
some constant C > 0, we have

inf sup E‖f n − fX‖2 ≥ C(logn)−2α/β

as n → ∞, where the infimum is taken over all estimators f n and the supremum
over all fX ∈ Fα(Q).

Recall the Gaussian density gρ on the real line with zero mean and variance
2ρ > 0 can be characterized as yielding the solution of the heat equation

(� − ∂ρ)u = 0

with initial condition u(z,0) = f (z) by

u(z,ρ) = (gρ ∗ f )(z).(3.5)

Similarly on H, the density gρ giving the solution of the heat equation by (3.5)
is also called the Gaussian density for H. Here, the Laplace–Beltrami operator �

would be defined by (2.7), and the convolution in (3.5) would be defined as in (2.6).
Using (2.11) for SO(2)-invariant f and u it is easily seen that Hgρ(s) ∝ es(s−1)ρ .
Consequently, in terms of assumption (D.4), the Gaussian density satisfies β = 2
and γ = 1/ρ. We have the following result.

COROLLARY 3.4. For fX and fY satisfying (D.1)–(D.3) consider corruption
according to a Gaussian distribution fε = gρ . Then by letting T 2 = 1

4ρ
[logn −

η log(logn)] where η ≥ 1 + α,

E
∥∥f (n,T )

X − fX

∥∥2 � (logn)−α

as n → ∞ gives the optimal rate of convergence.

4. Computations and simulations. In this section we elaborate on compu-
tational aspects, simulations and, in particular, discuss the Gaussian distribution
on H. We begin by first discussing methods for choosing the truncation parameter.

4.1. Estimating truncation parameter. A popular technique for data-driven
choice of a truncation parameter is least squares cross-validation (see [13] or [45],
Chapter 3.3). We will discuss how that technique can be adapted to our setting. For
a given random sample Y1, . . . , Yn, an optimal cutoff T = T ∗

n > 0 minimizes the
mean integrated squared error

T ∗
n = arg min

T >0

{
E

(∫
H

(
f

(n,T )
X (z)

)2
dz

)
− 2E

(∫
H

fX(z)f
(n,T )
X (z) dz

)}
.
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Instead of deriving a minimizer of the above we content ourselves with minimizing
a suitable estimator. Obviously,

∫
H
(f

(n,T )
X (z))2 dz is an unbiased estimator of the

first term. Let

f
(n,T ,l)
X :=

∫ T

−T

∫ 2π

0

1

n − 1

∑
j �=l

Im(k(Yj ))
1/2−it Im(k(Yl))

1/2+it dτ

Hfε(1/2 + it)

and therefore choose

Tn := arg min
T >0

(∫
H

(
f

(n,T )
X (z)

)2
dz − 2

n

n∑
l=1

f
(n,T ,l)
X

)
,

which is an estimate for an optimal T = T ∗
n .

Alternatively, we can use the result of Corollary 3.2 and set

T =
[
γ

2
logn − γ

2
log(logn)η

]1/β

.

We are aware of the fact that cross-validation in general suffers from too large
variability and, of course, more involved parameter selection methods could be
generalized here as well (see, e.g., [11, 12, 37, 40] and [42] among many others).
However, we do not pursue this issue any further in this paper.

4.2. Simulation of the Gaussian distribution. For simulation we use the analog
gρ of the Gaussian distribution on the upper half plane introduced above. Recall
that by a more subtle argument (see [43], pages 153 and 155), the inverse transform
is obtained in polar coordinates [for any k ∈ SO(2)]

gρ(k(e−r i)) = gρ(e−r i) = 1√
4πρ

3

√
2e−ρ/4

∫ ∞
r

be−b2/4ρ db√
coshb − cosh r

=: g̃ρ(r)

2π sinh r
;

that is, for a ρX-Gaussian distributed SO(2)-invariant random object X on H and
an SO(2)-invariant subset A ⊂ H,

P{X ∈ A} =
∫
{r≥0 : e−r i∈A∩H}

g̃ρX
(r) dr

[see (A.2)]. Hence, in order to simulate X from an invariant Gaussian distribution
we simulate rX ∼ g̃ρX

on R and uX uniform on [0,2π); then

X = kuX
◦ RrX(i) = kuX

(e−rX i).

Note that gρX
∈ Fα(Q) for all α > 0 with suitable Q = Qα > 0. That is, fX satis-

fies condition (D.3).
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Similarly, in order to simulate ε from a bi-invariant ρε-Gaussian distribution
on SL(2) we consider rε ∼ g̃ρε and kuε , ku′

ε
independent and uniform on [0,2π).

Then

Y = kuε ◦ Rrε ◦ ku′
ε
(X)

[see (2.4) and (A.3)].
According to Theorem 3.1, (3.1) and (3.4) we can then estimate the density fX

by

f
(n,T )
X (z) =

∫
|t |<T

∫ u=2π

u=0

1/n
∑n

j=1(Im(ku(Yj )))
1/2−it

e−(t2+1/4)ρε
(Im(ku(z)))

1/2+it dτ.

By SO(2)-invariance it suffices to estimate for z = e−r i only, hence we estimate
g̃ρX

(r) by

f̃
(n,T )
X (r) := 2π sinh rf

(n,T )
X (e−r i)

with the integral simplified as in (2.10).
In the following simulation we consider an original distribution with ρX =

0.1 under a corrupting Möbius transformation distributed with ρε = 0.05. From
this we create three data sets with different sample sizes: n = 100,1000 and
10,000. Figure 2 shows the original X1, . . . ,Xn and the corrupted data Y1 =
Mε1(X1), . . . , Yn = Mεn(Xn) in cartesian coordinates in the upper half plane. In
Figure 3 we show the corresponding densities times hyperbolic area on [0,∞).
Note that these are then densities in the usual sense; that is, their integrals with
respect to Lebesgue measure on [0,∞) are 1. The density estimation by decon-
volution has been obtained from the observed data Y1, . . . , Yn by the proposed
method. For the deconvolution, since only the optimal rate

T ≈
(

1

4ρε

logn

)1/4

=
⎧⎨⎩

2.19, (n = 100),
2.42, (n = 1000),
2.61, (n = 10,000),

is guaranteed by Corollary 3.4, we have used the estimate via least squares cross-
validation as proposed in Section 4.1.

4.3. Simulation of the hyperbolic Laplace distribution. Using formula (2.10)
directly with (2.12) to simulate Laplace (α, τ )-deviates for Laplace distributed
SL(2) error corruption, we obtain results similar to the ones reported above. Due to
the oscillation of the Legendre polynomials to be evaluated, however, the compu-
tational time is much longer. In analogy to Theorem 3.2 we have the upper bound
O(n−α/(1+α)) for the choice T = n1/(2(α+1)).

5. Impedance density estimation in AC driven circuits. For the conve-
nience of the reader, we begin this section with a review of classical electrical
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FIG. 2. Three simulated data samples of n = 100 (top row), n = 1000 (middle row) and n = 10,000
(bottom row) independent random data points on the upper half plane. Left row: original independent
invariant ρX-Gaussian distributed data points, right row: transformed data points under independent
n bi-invariant ρε-Gaussian distributed SL(2) transformations (right).

engineering theory specifically tailored to the application of hyperbolic statistics in
mind. For the underlying engineering terminology we refer to standard textbooks
such as [10]. More mathematical approaches are explained in [2, 20] and [43],
Chapter 3. In the following we rephrase this problem in the language of statis-
tics. We are then able to identify a typical problem as a novel inverse problem in
hyperbolic space.

Here, general Möbius transformations appear with complex coefficients a, b,
c, d in (2.1). Moreover, hyperbolic space materializes in the form of the upper
half plane H, the open unit disk D := {w ∈ C : |w| < 1}, and the open right half
plane −iH := {ζ ∈ C : Re(ζ ) > 0}. With the notation of (2.3), all are related to one
another by Möbius transformations, the first is usually called the Cayley transform

w = C(z) := z − i

z + i
, z = i

1 + w

1 − w
, iζ = z,

(5.1)

w = ζ − 1

ζ + 1
, ζ = 1 + w

1 − w
.
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FIG. 3. Left-hand side: population and empirical densities times hyperbolic area [corresponding
to g̃ρX (r) and g̃ρX+ρε (r)] along the first polar coordinate r of the data depicted and described
in Figure 2. Top row: n = 100, middle row: n = 1000 and bottom row: n = 10,000. Right-hand

side: additionally the respective estimate times hyperbolic area: g̃
(n,T )
X (r) of the original density by

Möbius deconvolution. The corresponding optimal cutoff parameters T = Tn have been estimated by
least squares cross-validation as in Section 4.1.

5.1. Complex impedance in AC circuits. We begin our discussion with a one-
port, a single load impedance serially inserted in a circuit of a voltage generator
and its impedance [see Figure 4(a)]. Recall that voltages, currents and impedances
in an alternating current (AC) circuit are modeled by complex numbers; otherwise,
a loss of alternating real voltage u : t �→ u0 cos(ωt) over a load giving a phase
shifted current j : t �→ j0 cos(ωt +φ) would result into an awkward time dependent
real resistance u(t)/j (t). In complex notation, the ratio of voltage u(t) = u0e

iωt

over current j (t) = j0e
i(ωt+φ) is constant and called impedance

Z := u(t)

j (t)
= u0

j0
eiφ ∈ C.

Its real part is called resistance, the imaginary part is the reactance. For example,
under an AC-voltage u0 cos(ω)t , a serial circuit of a resistor with direct current
DC-resistance R and an ideal capacitor with capacitance C features an inverse
impedance (called admittance) of Z−1 = R−1 + iωC. In fact, in realistic scenarios,
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(a) (b)

FIG. 4. Basic circuit models for signal processing. Left: one-port, right: two-port. (a) Serial circuit
with generated voltage uG, generator impedance ZG and load impedance ZL; (b) circuit of Fig-
ure 4(a) with a two-port inserted between generator and load, depicting input (a·) and output waves
(b·) at the two-port and at load.

the resistance is positive, thus Z ∈ −iH, and the boundary (the imaginary axis)
corresponds to ideal (lossless) impedances.

5.2. Reflections and characteristic impedance. We now assume that our cir-
cuit features a generator generating the open circuit voltage uG with internal im-
pedance ZG and a load with impedance ZL as depicted in Figure 4(a) with total
impedance Z = ZG + ZL according to Kirchhoff’s circuit law.

Inspired by the wave model, voltage loss uL over and current flow jL along the
load is considered to be the superimposition of an incoming (denoted by “+”) and
a reflected wave (denoted by “−”) in such a way that each single wave satisfies
Ohm’s law with a common characteristic impedance Zc. Since the reflected wave
propagates into a direction opposite to the incoming wave, we have the ansatz

uL = u+
L + u−

L and jL = j+
L − j−

L

with Ohm’s law

u+
L

j+
L

= Zc = u−
L

j−
L

and
u+

L + u−
L

j+
L − j−

L

= ZL.

The specific decomposition or equivalently the choice of Zc is arbitrary in many
applications, and it will be guided by imposing additional conditions. Usually Zc is
taken positive, or at least chosen such that the normalized impedances Z̃ := Z/Zc

will be again of positive real part, that is, Z̃ ∈ −iH. The analog for the right half
plane of the Cayley transform, (5.1), yields then reflection coefficient of the load

�L := u−
L

u+
L

= j−
L

j+
L

= ZL − Zc

ZL + Zc

= Z̃L − 1

Z̃L + 1
= C(−iZ̃L)(5.2)

as an element of the unit-disk D. Of course, there is no reflection if ZL = Zc.
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5.3. The chain matrix. We are now in a position to investigate the generic
scenario of signal transmission through a two-port [see Figure 4(b)]. Among others
due to linearity of the Maxwell equations, voltages and currents (j1 = a1, j2 = a2)

on either side of the two-port have a linear relationship governed by a so-called
impedance matrix Z

Z

(
j1
j2

)
=

(
Z11 Z12
Z21 Z22

)(
j1
j2

)
=

(
u1
u2

)
.

For given circuit parameters, the coefficients of the impedance matrix can be eas-
ily computed. For example, Z11 = u1

j1
|j2=0 is the well-known input-impedance (by

inserting a load of infinite impedance the right-hand side becomes an open circuit
with j2 = 0). In most applications it turns out that Z is symmetric; the correspond-
ing two-port is then called reciprocal.

One easily verifies that the chain matrix which is usually denoted by q (the
Russian letter “cha”) relating (u2,−j2) with (u1, j1) is given by

q
(

u2
−j2

)
= 1

Z21

(
Z11 det(Z)

1 Z22

)(
u2
−j2

)
=

(
u1
j1

)
[in contrast to the mathematical literature, the engineering literature tends to use a
transmission matrix relating (u2, j2) with (u1, j1) instead, with reversed j2 = −a2
in Figure 4(b)]. An advantage of the chain matrix over the impedance matrix is
that the former is well defined for the limit Z21 → ∞, for example, for an ideal
coil in series with the load.

Again, only using lossless (i.e., purely imaginary) impedances (such as ideal
inductances, transformers and capacitors) guarantees that the corresponding chain
matrix has real diagonal coefficients and imaginary coefficients elsewhere. Mo-
reover, for cascaded two-ports (i.e., several two-ports in serial connection), the re-
sulting chain matrix is just the product of the individual chain matrices. By linear
algebraic decomposition of SL(2,R) it can be shown that every lossless two-port
of lumped elements can be modeled by cascading combinations of two-ports invol-
ving only inductances, transformers and capacitors (see [20], page 18). Note that
j2 = a2 = −aL = −jL in Figure 4(b). Hence q defines a Möbius transformation
relating load impedance with the input impedance of the two-port

Mq(ZL) = q11ZL + q12

q21ZL + q22
= q11u2 − q12j2

q21u2 − q22j2
= u1

j1
= Z1.

Here, Z1 = u1/j1 is the impedance of the load ZL = −u2/j2 as viewed through
the two-port. As a consequence we make the following remark.

REMARK 5.1. Serial cascading of lossless two-ports is equivalent to the ac-
tion of the Möbius group SL(2,R) on the i-fold iZL ∈ H of load impedances ZL.

We are thus led to the statistical inverse problem (cf. Problem 2.1).
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PROBLEM 5.2. Estimate the load impedance ZL when only the impedance
Z(1) viewed through the two-port can be observed where ε = I ◦ Mq ◦ I −1 ∈
SL(2) is assumed to be of known distribution. Here, I : C → C : z → iz denotes
the multiplication with i.

In conclusion we note that one may as well consider normalized impedances
Z̃ = Z/Zc or equivalently reflection coefficients, (5.2). Then the mapping for the
normalized impedances goes as follows:

Z1

Zc

= q11ZL/Zc + q12/Zc

Zcq12ZL/Zc + q22
.

5.4. Estimating resistances seen through electrolyte capacitors. It is well
known that over the duration of years properties of electronic equipment change
due to wear-out effects of various elements. In particular, electrolyte capacitors
have a tendency to loose capacitance. In effect, older electronic devices deviate
from original calibration and may feature nondesired side-effects; for example,
field strengths of transmitters may grow stronger than tolerated.

In an application of our method we consider a series of n = 150 measurements
of random resistors of 15 � provided with an accuracy of 10 percent by the manu-
facturer (they range from 13.5 � to 17.7 �) viewed through 30 random capacitors
at 1 kHz taken at the Department of Electrical Engineering, University of Applied
Sciences, Fulda, Germany. These originally identical lossy 22 μF capacitors have
been collected from over ten year old electronic gear. For the impedance measure-
ments the LCR-Bridge “HM8118” has been used that comes with an accuracy of
0.3% guaranteed by its producer HAMEG. We model the i-fold of the impedance
Z of these capacitors with a hyperbolic Gaussian-distribution at unit impedance,
that is, Zi = ZcMρε(i) with a suitable characteristic impedance Zc and a random
hyperbolic Gaussian ρ-distributed Möbius transformation Mρε . Measurement of
the capacitors gives ρε ≈ 0.0004 corresponding to a spread of roughly 4.8%. Our
goal lies in the reconstruction of the one-dimensional resistances R solely from
the observations

W = 1

1/R + 1/Z
= ZR

Z + R

and the known dispersion ρε of the corruption as posed in Problem 5.2. To this end
we apply Möbius deconvolution to the model

W

Wc

i = Mε

(
R

Rc

i

)
with suitable characteristic impedances Wc and Rc. For this application the Euc-
lidean means have been chosen as characteristic impedances. Alternatively, a bet-
ter approach may be to use hyperbolic intrinsic means (see [3] and [4]). Figure 5
shows the observations W in the left top corner. Möbius deconvolution is computed
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FIG. 5. Random resistors seen through random capacitors. Left top: original measurements. Right
top: hyperbolic polar mesh points at which the Möbius deconvolution was computed. The bottom left
image depicts the deconvolved densities times hyperbolic measure along fixed angles. The red and
blue line goes along the red and blue mesh points. For verification, the one-dimensional distribution
of the resistors seen through the single mean capacitor is depicted in the bottom right image.

along the hyperbolic polar mesh-points depicted in the right top corner (Figure 5).
Below in the bottom left corner the deconvolved densities along fixed angles of the
mesh are depicted. The angle depicted in red shows highest density followed by
the angle depicted in blue. The location of the two dominating directions depicted
with the same colors in the right top corner (Figure 5) is in high agreement with
the location of the impedances of the resistors seen through the mean capacitor de-
picted in the bottom right image of Figure 5. Indeed, one can say that with the few
measurements available, we were able to reconstruct the nature of the unobserved
elements, namely resistors with impedances distributed along a one-dimensional
subset in the complex half plane.

In Figure 6 the above scenario is more prominently reenacted in a simulation of
n = 1000 measurements using Rc = min(R) and Wc from the preceding example
(depicted by “x”). We show observed measurements and unobserved capacitors
in the top row as well as original density and the deconvolved densities along
respective angles as in Figure 5 in the bottom row. Obviously the distribution of
the unobserved resistors is quite reasonably recovered along the grid.
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FIG. 6. Simulation of n = 1000 random resistors seen through n random capacitors. Top left:
observed impedances, characteristic impedance denoted by “x.” Top right: unobserved underlying
normalized resistors seen through unobserved mean capacitor. Bottom left: radial density times hy-
perbolic measure of nonobserved resistors. Bottom right: deconvolved densities times hyperbolic
measure along fixed angles of mesh in Figure 5.

APPENDIX A: POLAR COORDINATES AND CONVOLUTION

In this appendix we focus on the right and left action (they are different due to
noncommutativity) of the special orthogonal group SO(2) on SL(2) giving rise to
polar coordinates and to H viewed as the quotient with respect to one of the actions.
In fact, the action of SL(2) on H can be naturally viewed in polar coordinates (cf.
Figure 7) of which we will make extensive use in the proof of Theorem 3.3 in
Appendix B.3.

In contrast to a metric on a manifold in the usual topological sense, a Rieman-
nian metric is a metric in every tangent space, that varies smoothly with the offset
of the tangent space. Thereby, every Riemannian metric defines a metric on the
manifold in the usual sense and a unique volume element, called the Riemannian
volume, giving rise to a unique measure on the manifold. For more details we refer
to Lee [31], Chapter 3.

If the Riemannian metric on SL(2) underlying the Haar measure dg is chosen
such that the natural Riemannian quotient metric on H yields the hyperbolic me-
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FIG. 7. The polar coordinates (r, u) of z ∈ H are obtained from the unique circle hyperbolically
centered at i (star) containing z; that is, this circle is symmetric to the imaginary axis and intersects
it at points of form e−r i and er i (x-crosses). Rotating z by the hyperbolic angle −u along this
circle, the lower point e−r i is obtained. The polar coordinates (u2,R,u1) of g ∈ SL(2) rotate z by
the hyperbolic angle u1 along the above circle to obtain z1, rescale z1 by e−R to obtain z2 = e−Rz1
and subsequently rotate z2 by the hyperbolic angle u2 along the unique hyperbolic circle through z2
hyperbolically centered at i yielding g(z).

asure dz on H, then we are able to lift densities on the bottom space H to the top
space SL(2) to obtain (A.4) yielding (2.6).

Let us begin with the observation that the hyperbolic measure (2.5) is the Ri-
emannian volume element of the extension of the standard Euclidean metric in
the tangent space of H at z = i in a left-invariant way under the action of SL(2)

on H. Similarly, we equip SL(2) with the Riemannian metric obtained from the left
SL(2)-invariant extension of the standard Euclidean metric in the tangent space
of the unit matrix I ∈ SL(2). We denote the corresponding Riemannian volume
element which defines a left-invariant Haar measure by dg. According to [43],
Exercise 19, page 149, it is also right invariant, that is,∫

SL(2)
f (agb)dg =

∫
SL(2)

f (g) dg ∀a, b ∈ SL(2), f ∈ L1(SL(2), dg).

As mentioned before, for arbitrary z, z′ ∈ H there exists a g ∈ SL(2) such that
z′ = Mg(z). Given one such g, any other g′ ∈ SL(2) satisfies Mg′(z) = z′ if, and
only if, g−1g′ ∈ SO(2). In particular, Mg(i) = i if, and only if, g ∈ SO(2). This
entails that the following mapping of the quotient space SL(2)/SO(2) due to the
right action of SO(2) is well defined and bijective

SL(2)/SO(2) → H

gSO(2) �→ Mg(i)

}
.(A.1)

Since the mapping preserves the action of SL(2), the natural Riemannian quotient
metric of SL(2)/SO(2) is isometric with the the hyperbolic metric of H.

Next, consider the left action of SO(2) on SL(2). This projects to a left-action
on H giving rise to polar coordinates u ∈ [0,2π), called the hyperbolic angle and
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r > 0 (cf. Figure 7) of

z = Mku ◦ MRr (i) with ku =
(

cosu sinu

− sinu cosu

)
,Rr =

(
e−r/2 0

0 er/2

)
.

For ease of notation, for the entire paper we identify Mku with ku and MRr with Rr ,
respectively, such that ku ◦ Rr(i) = ku(e

−r i). Since for every z ∈ H \ {i} we have
that kφ(z) = z if, and only if φ ≡ 0 modπ , polar coordinates cover the hyperbolic
plane twice. As a consequence, z ∈ H has polar coordinates with r ≥ 0 uniquely
determined and u unique modulo π if r > 0. Thus, the hyperbolic area element
(2.5) transforms to

dz = sinh(r) dr du.(A.2)

Polar coordinates can also be defined on SL(2): every element g ∈ SL(2) has a
decomposition

g = kuRrku′, r ∈ [0,∞), u,u′ ∈ [0,2π),(A.3)

with uniquely determined r ≥ 0; if r > 0 then u and u′ are also uniquely deter-
mined modulo π (in fact, one of the two is unique modulo 2π ). In view of the
isometry (A.1), this gives our choice of Haar measure in polar coordinates

dg = sinh(r) dr dudu′.

If g,g′ are independent random elements in SL(2) with densities f1, f2 conti-
nuous with respect to Haar measure, we have for the probability that the product
is contained in a measurable subset A ⊂ SL(2) by left-invariance of the measure
that P(gg′ ∈ A) = ∫

A(f1 ∗ f2)(a) da with the convolution of f1 and f2 given by

(f1 ∗ f2)(a) :=
∫

SL(2)
f1(g)f2(g

−1a)dg.

In general, convolutions over noncommutative groups are noncommutative.
Suppose now that Z is a random quantity on H with density f2 continuous with

respect to the hyperbolic measure. Using polar coordinates, this density lifts to
a right SO(2)-invariant density f̃2 on SL(2) f̃2(kuRrk

′
u) := f2(kuRr(i)). Hence,

convolutions of a density f1 on SL(2) with a density f2 on H can be well defined
by lifting to a right SO(2)-invariant density on SL(2)

(f1 ∗ f2)(z) :=
∫

SL(2)
f1(g)f̃2(g

−1a)dg(A.4)

with any a ∈ SL(2) giving Ma(i) = z. This convolution is commutative if either
f1 is bi-invariant or if f2 is SO(2)-invariant.
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APPENDIX B: PROOFS

B.1. Upper bound: Proof of Theorem 3.1. In order to measure the perfor-
mance of f

(n,T )
X we consider the mean integrated squared error

E
∥∥fX − f

(n,T )
X

∥∥2 = E
∥∥fX − Ef

(n,T )
X

∥∥2 + ∥∥Ef
(n,T )
X − fX

∥∥2

with the usual variance-bias decomposition. The assertion of Theorem 3.1 then
follows from the following more detailed lemma.

LEMMA B.1. For fX,fY and fε satisfying (D.1) and (D.2), and Hfε bounded
from below on compact sets, there is a constant C > 0 independent of T and n such
that

E
∥∥fX − Ef

(n,T )
X

∥∥2 ≤ C

inf|t |<T |Hfε(1/2 + it)|2
T 2

n
.

If, additionally, fX satisfies (D.3), then∥∥Ef
(n,T )
X − fX

∥∥2 ≤ QT −2α.

PROOF. We first note that by (2.8), definition (3.4), since the right-hand side
is in L2(H, dz),

Hf
(n,T )
X

(
1

2
+ it, k

)
= Hf n

Y (1/2 + it, k)

Hfε(1/2 + it, k)
I(−T ,T )(t).

Here I denotes the indicator function. Hence by the Fubini–Tonelli theorem, (3.4),
(3.2), (2.8) and (2.11)

H
(
Ef

(n,T )
X

)(1

2
+ it, k

)

= H
(
z →

∫
|t ′|<T

∫ u′=2π

u′=0

EHf n
Y (1/2 + it ′, ku′)

Hfε(1/2 + it ′)

× (Im(ku′(z)))1/2+it ′ dτ ′
)(

1

2
+ it, k

)
= HfX

(
1

2
+ it, k

)
I(−T ,T )(t).(B.1)

Deduce from (3.1),

E

∣∣∣∣Hf
(n)
Y

(
1

2
+ it, k

)∣∣∣∣2
=

∣∣∣∣HfY

(
1

2
+ it, k

)∣∣∣∣2 + Im(Ek(Y )) − |HfY (1/2 + it, k)|2
n

.(B.2)
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In addition, Im(Ek(Y )) = HfY (1, k) implies that∫ 2π

0
|Im(Eku(Y ))|du =

∫ 2π

0
|HfY (1, ku)|du ≤ C(B.3)

with a suitable constant C > 0, since HfY is analytic. Thus, using the Planche-
rel identity (2.9), (2.11), the Fubini–Tonelli theorem, (3.2), (B.1), (B.2) and (B.3)
[by hypothesis (D.1) and (2.9), ‖fY ‖2 = ‖HfY ‖2 < ∞], we have indeed for the
variance

E

∫
H

∣∣f (n,T )
X − Ef

(n,T )
X

∣∣2 dz

=
∫
t<|T |

∫
u∈[0,2π)

E|Hf
(n)
Y − HfY |2
|Hfε|2 dτ

= 1

n

1

8π2

∫
t<|T |

∫
u∈[0,2π)

Im(Eku(Y )) − |HfY (1/2 + it)|2
|Hfε(1/2 + it)|2 t tanh(πt) dt du

≤ C

inf|t |<T |Hfε(1/2 + it)|2
T 2

n

with a constant C > 0 involving neither n nor T .
In the next step we similarly estimate the squared bias under the additional

assumption (D.3) using also (2.9) and (B.1)∫
H

∣∣Ef
(n,T )
X − fX

∣∣2 dz

=
∫
|t |≥T

∫
u∈[0,2π)

|HfX|2 dτ

= 1

8π2

∫
|t |≥T

∫ u=2π

u=0

∣∣∣∣(1

2
+ it

)(
−1

2
+ it

)∣∣∣∣−α∣∣∣∣(1

2
+ it

)(
−1

2
+ it

)∣∣∣∣α

×
∣∣∣∣HfX

(
1

2
+ it, ku

)∣∣∣∣2t tanh(πt) dt du

≤ QT −2α. �

B.2. Optimal rate: Proof of Theorem 3.2. If fε satisfies (D.4) we have the
upper bound

logC + logC1 + 2 logT − logn + 2

γ
T β

(
1 + 1

4T 2

)β/2

(B.4)

for the logarithm of the variance term (cf. Lemma B.1). A sufficient condition for
convergence of the variance term while T = T (n) → ∞, is that (B.4) tends to
−∞. Hence, T is of form

T (n) =
(

γ

2
logn − γ

2
A(n)

)1/β
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with A(n) → +∞ at a rate lower than that of logn. A short computation gives the
rate

2

β
log(logn) − A(n)

for (B.4). In case of optimality this rate must be larger or equal to the logarithmic
rate of the upper bound of the bias term in Lemma B.1 which is then

−2α

β
log(logn).

In consequence the rate of A(n) is η log(logn) with η ≥ 2(1 +α)/β as asserted by
Theorem 3.2.

B.3. Lower bound properties: Proof of Theorem 3.3. Recall the decompo-
sition in polar coordinates from Appendix A (cf. Figure 7). The general idea of
proof goes as follows. Define the dilation of H by

Hδ(k(e−r i)) := H(k(e−δr i))
sinh(δr)

sinh r
P−1/2(cosh(δr)).(B.5)

For arbitrary SO(2)-invariant H and δ > 0, Hδ is obviously also SO(2)-invariant
To derive a lower bound for estimating fX in L2 norm, we follow a classical

scheme which has been condensed in [15], pages 1261 and 1262 (cf. also [18],
pages 1555 and 1556). The adaption of this scheme to the Poincaré plane, however,
is not at all obvious and will be the subject of the following sections. After some
elaborate preparation in the following two sections we take a pair f0 ∈ Fα(Q),
fn ∈ Fα(Q), for which

fn = f0 + CHδ−αHδ,

where δ = δn (cf. Sections B.3.3 and B.3.4 below). Then, in Section B.3.5 we show
that δ can be chosen such that

χ2(fε ∗ f0, fε ∗ fn) :=
∫ ∞

0
(fε ∗ f0 − fε ∗ fn)

2(fε ∗ f0)
−1 dz ≤ C

n
.(B.6)

In consequence by (3.3) of [15], there is d1 > 0 such that for any estimator f n of
fX ,

sup
fX∈{f0,fn}

Pf {‖f n − fX‖2 > ‖f0 − fn‖2/2} > d1,(B.7)

which gives with (3.4) of [15] a lower bound

sup
fX∈Fα(Q)

E‖f n − fX‖2 ≥ d1

4
‖f0 − fn‖2 � δ−α‖Hδ‖2.

The choice of δ in (B.17) at the end of Section B.3.5 in conjunction with ‖Hδ‖2 �
‖H‖2 from Lemma B.5 then yields the rate

δ−α‖Hδ‖2 � (logn)−2α/β

asserted by Theorem 3.3.
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B.3.1. Convolution equation in polar coordinates.

LEMMA B.2. Suppose f is bi-invariant and h is SO(2)-invariant. Write z =
kuRr(i), g = kαRskβ ∈ SL(2) and dg = sinh s dα ds dβ . Then,

(f ∗ h)(z) = 2π

∫ 2π

φ=0

∫ ∞
s=0

f (e−s i)h(esk−φ(e−r i)) sinh s dφ ds.

PROOF. Since k−αku = ku−α observe that

(f ∗ h)(z) =
∫

SL(2)
f (g)h(g−1z) dg

=
∫ ∫

α,β∈[0,2π)

∫ s=∞
s=0

f (kαRskβ)h(k−βR−sk−αkuRr(i))

× sinh s dα ds dβ

= 2π

∫ 2π

φ=0

∫ ∞
s=0

f (e−s i)h(R−sk−φRr(i)) sinh s dφ ds. �

LEMMA B.3. Define η(r, s, φ) and R(r, s,φ) by kη(r,s,φ)e
−R(r,s,φ)i = esk−φ ×

e−r i, where 0 ≤ η(r, s, φ) < 2π and R(r, s,φ) ≥ 0. Suppose φ ∈ [0,2π) and
r, s ≥ 0. Then,

|r − s| ≤ R(r, s,φ) ≤ r + s.

PROOF. Let ψ = 2φ. From [43], page 125, we take

k−φe−r i = − sinψ sinh r + i

cosψ sinh r + cosh r
.

Let kη(r,s,φ)e
−R(r,s,φ)i = x + iy. Then using [43], page 150,

cosh(R(r, s, φ)) = 1

2

1 + x2 + y2

y

= 1

2

(
e−s(cosψ sinh r + cosh r) + es sin2 ψ sinh2 r + 1

cosψ sinh r + cosh r

)
.

Set t = cosψ . Since

sin2 ψ sinh2 r + 1

cosψ sinh r + cosh r
= (1 − t2) sinh2 r + 1

t sinh r + cosh r

= cosh r − t sinh r,

we have

cosh(R(r, s, φ)) = 1
2{e−s(cosh r + t sinh r) + es(cosh r − t sinh r)}

= −t sinh r sinh s + cosh r cosh s.
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Since −1 ≤ t ≤ 1, cosh(R(r, s, φ)) has the maximum cosh(r + s) at t = −1 and
the minimum cosh(r − s) at t = 1. Suppose that cosha ≤ coshb with b ≥ 0. This
implies that b ≥ |a| since {

b ≥ a, if a ≥ 0,
b ≥ −a, if a < 0.

The desired result follows from this and the assumption R(r, s,φ) ≥ 0. �

The following lemma is an immediate consequence of Lemma B.3.

LEMMA B.4. Suppose H is SO(2)-invariant and H(e−r i) is monotonically
decreasing in r . Then,

H(esk−φe−r i) ≤ H
(
e−|r−s|i

)
for s ≥ 0, φ ∈ [0,2π), r ≥ 0.

B.3.2. Dilation.

LEMMA B.5. Suppose

HH
(1

2 + it
) = 0 for t /∈ [1

2 ,1
]
.(B.8)

Then for δ → ∞,

HHδ

(
1

2
+ it

)
� 1

δ
HH

(
1

2
+ i

t

δ

)
,(B.9)

‖Hδ‖2 � ‖H‖2,

‖�α/2Hδ‖2 � δα/2‖�αH‖2

and for fε satisfying (D.4) with γ = 1, with a constant C > 0,∫
|fε ∗ Hδ|2 ≤ Ce−2(δ/2)2β

.

PROOF. Let’s start with an alternate representation of the Legendre function
from [43], page 158, and a specific derivative

P−1/2+it (cosh r) =
√

2

π

∫ r

0

cos(tu) du√
cosh r − coshu

,

A(cosh r) := − ∂2

(∂t)2

∣∣∣∣
t=0

P−1/2+it (cosh r)

=
√

2

π

∫ r

0

u2 du√
cosh r − coshu

.
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In the next step we make use of [43], Exercise 28(b), page 158. For fixed t, κ > 0,
and large δ, that is, r = κ/δ → 0

P−1/2+it

(
cosh

κ

δ

)
� J0

(
t
κ

δ

)

=
∞∑

j=0

(−1)j

(j !)2

(
tκ

2δ

)2j

= 1 − 1

4

(
t

δ

)2

κ2 + · · · .

Similarly,

P−1/2+it/δ(coshκ) = P−1/2(coshκ) − A(κ)

2

(
t

δ

)2

+ · · · .

Then with the two above developments,

HHδ

(
1

2
+ it

)
= 2π

δ

∫ ∞
0

H(e−κ i)P−1/2(coshκ)

(
1 + O

(
1

δ2

))
sinh(κ) dκ

� 2π

δ

∫ ∞
0

H(e−κ i)P−1/2+it/δ(coshκ) sinh(κ) dκ

= 1

δ
HH

(
1

2
+ i

t

δ

)
.

Moreover since HH(1
2 + iu) = 0 for u ∈ (0, 1

2),

‖Hδ‖2
2 � 1

4π

∫ ∞
0

1

δ2

∣∣∣∣HH

(
1

2
+ i

t

δ

)∣∣∣∣2t tanh(πt) dt

= 1

4π

∫ ∞
0

∣∣∣∣HH

(
1

2
+ iu

)∣∣∣∣2 tanh(πδu)

tanh(πu)
u tanh(πu)du

� ‖H‖2
2

and taking additionally into account that δ is large

‖�α/2Hδ‖2
2

� 1

4π

∫ ∞
0

(t2 + 1/4)α
1

δ2

∣∣∣∣HH

(
1

2
+ i

t

δ

)∣∣∣∣2t tanh(πt) dt

≤ δ2α 1

4π

∫ ∞
0

(
u2 + 1

4

)α∣∣∣∣HH

(
1

2
+ iu

)∣∣∣∣2 tanh(πδu)

tanh(πu)
u tanh(πu)du

≤ Cδ2α‖�α/2H‖2
2.
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Since by hypothesis

|Hfε(1/2 + it)| ≤ C2 exp[−|1/2 + it |β] = C2e
−(1/4+t2)β/2

,

we obtain

sup
u∈[1/2,1]

|Hfε(1/2 + iδu)| ≤ C2e
−(1/4+δ2/4)β/2 ≤ C2e

−(δ/2)β .(B.10)

It follows from (B.8), (B.9) and (B.10) that there is a constant C > 0 such that∫
|fε ∗ Hδ|2 =

∫
|HHδ(1/2 + it)|2|Hfε(1/2 + it)|2 dτ

�
∫ 1

1/2
δ−2|HH(1/2 + iu)|2|Hfε(1/2 + iδu)|2(δu) tanh(πδu)δ du

≤ Ce−2(δ/2)β .

This completes the proof of Lemma B.5. �

B.3.3. Bound on g0 = fε ∗ f0. Choose f0 as

f0(k(e−r i)) = f0(e
−r i) = a − 1

2π
(cosh r)−a for a > 1.

LEMMA B.6. f0 is SO(2)-invariant and∫ ∞
r=0

∫ 2π

u=0
f0(ku(e

−r i)) sinh r dr du = 1.

PROOF. By the definition of f0, it is SO(2)-invariant and∫ ∞
r=0

∫ 2π

u=0
f0(ku(e

−r i)) sinh r dr du

= (a − 1)

∫ ∞
r=0

(cosh r)−a sinh r dr

= (a − 1)

∫ ∞
x=1

x−a dx = 1. �

LEMMA B.7. Suppose that fε is bi-invariant and∫ Cε

0
fε(e

−s i) sinh s ds ≥ 1

2

for some positive constant Cε . Then, g0 = fε ∗ f0 satisfies

g0(e
−r i) ≥

{
2π(a − 1)2a−1e−2ar , for r > Cε,
2π(a − 1)2a−1e−2aCε , for r ≤ Cε.
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PROOF. Note that 0 ≤ s ≤ Cε < r implies r + s ≤ 2r whereas 0 ≤ s, r ≤ Cε ,
implies r + s ≤ 2Cε . It follows from these facts, fε ≥ 0, Lemmas B.2 and B.3 that

fε ∗ f0(e
−r i)

= 2π

∫ 2π

0

∫ ∞
0

fε(e
−s i)f0

(
kη(r,s,φ)e

−R(r,s,φ)i
)

sinh s ds dφ

= (a − 1)

∫ 2π

0

∫ ∞
0

fε(e
−s i) cosh−a(R(r, s, φ)) sinh s ds dφ

≥ 2π(a − 1)

∫ Cε

0
fε(e

−s i) cosh−a(r + s) sinh s ds

≥ a − 1

cosha(2τ)

∫ Cε

0
fε(e

−s i) sinh s ds

≥ 2π
a − 1

2 cosha(2τ)
≥ 2π(a − 1)2a−1e−2aτ

with τ = r for r > Cε and τ = Cε for r ≤ Cε . �

B.3.4. Bound on fε ∗ Hδ . We note from [30], page 188,

P−1/2(cosh r) = 2

π cosh(r/2)
K

(
tanh(r/2)

)
,

where the complete elliptic integral of the first kind is defined by

K(t) =
∫ π/2

0

dφ√
1 − t2 sin2 φ

.

In consequence there is a C > 0 such that for all r > 0

P−1/2(cosh r) ≤ C.(B.11)

Define

μδ(e
−r i) = δe−(m0−1)δr for r ≥ 0.

When m0 > 1 and δ > 0, ‖μδ‖∞ ≤ δ and μδ(e
−r i) is monotonically decreasing

in r .

LEMMA B.8. Suppose |H(e−r i)| ≤ Ce−m0r with m0 > 1 and δ ≥ 1. Then,
there is a constant C > 0 such that Hδ(e−r i) ≤ Cμδ(e

−r i).

PROOF. By Taylor’s expansion,

(er)δ − (e−r )δ = δηδ−1(er − e−r )
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for e−r ≤ η ≤ er . Since ηδ−1 ≤ e(δ−1)r ≤ eδr ,

sinh(δr)

sinh r
≤ δeδr for r ≥ 0.

Hence with C > 0 from (B.11),

|Hδ(e−r i)| = |H(e−δr i)|sinh(δr)

sinh r
P−1/2(cosh(δr))

≤ C|H(e−δr i)|sinh(δr)

sinh r
≤ Ce−m0δrδeδr = Cμδ(e

−r i). �

LEMMA B.9. Suppose that∫ r+ξ0r

r−ξ0r
fε(e

−s i) sinh s ds ≤ Ce−(ξ−ξ0)r for 0 < ξ0 < 1 and ξ > 1 + ξ0,

H(e−r i) is bounded and monotonely decreasing in r and satisfies the tail condition

H(e−r i) ≤ Ce−m0r for m0ξ0 > ξ.(B.12)

Then, for δ ≥ 1 and r > 0,

(fε ∗ Hδ)(e−r i) ≤ Cδe−(ξ−ξ0)r .

PROOF. Set R1 = {s : |r − s| ≤ ξ0r} and R2 = {s : |r − s| > ξ0r}. It follows
from Lemmas B.2, B.4 and B.8 that

1

2π
(fε ∗ Hδ)(e−r i)

=
∫ 2π

φ=0

∫ ∞
s=0

fε(e
−s i)Hδ(kη(r,s,φ)e

−R(r,s,φ)i
)
sinh s dφ ds

≤ C

∫ 2π

φ=0

∫ ∞
s=0

fε(e
−s i)μδ

(
e−R(r,s,φ)i

)
sinh s dφ ds

≤ 2πC

∫
fε(e

−s i)μδ

(
e−|r−s|i

)
sinh s ds.(B.13)

Set

Ij =
∫

Rj

fε(e
−s i)μδ

(
e−|r−s|i

)
sinh s ds for j = 1,2.

Since m0 > ξ/ξ0 > 1,

‖μδ‖∞ ≤ δ.

Observe that

I1 ≤ ‖μδ‖∞
∫
|r−s|≤ξ0r

fε(e
−s i) sinh s ds

≤ Cδe−(ξ−ξ0)r .(B.14)



MÖBIUS DECONVOLUTION 2495

From the tail condition (B.12),

I2 =
∫
|r−s|>ξ0r

fε(e
−s i)

(
δe−(m0−1)δ|r−s|) sinh s ds

≤ δe−(m0−1)δξ0r
∫
|r−s|>ξ0r

fε(e
−s i) sinh s ds

≤ δe−(m0−1)δξ0r .(B.15)

Since r ≥ 0, m0ξ0 > ξ and δ is large,

e−(ξ−ξ0)r

e−(m0−1)δξ0r
= e(m0−1)δξ0r−(ξ−ξ0)r ≥ e(m0−1)ξ0r−(ξ−ξ0)r = e(m0ξ0−ξ)r ≥ 1.

Combining (B.13), (B.14), (B.15), we have the desired result. �

B.3.5. Chi-square distance: Proof of (B.6). With the above notation, choose a
pair of densities

f0(k(e−r i)) = f0(e
−r i) = a − 1

2π
(cosh r)−a and fn = f0 + CHδ−αHδ,

where a satisfies 1 < a < 2, and H satisfies the hypotheses of Lemmas B.5
and B.9. By choosing CH close to 0, we have f0, fn ∈ Fα(Q) for all large δ.
Let g0 = fε ∗f0 and gn = fε ∗fn with fε satisfying the hypotheses of Lemma B.9
and (D.4) with γ = 1.

The χ2 distance between g0 and gn is defined by

χ2(g0, gn) :=
∫

(gn − g0)
2

g0
dz = 2πC2

Hδ−2α
∫

(fε ∗ Hδ(e−r i))2

g0(e−r i)
sinh r dr

and with a suitable constant M > 0 guaranteed by Lemma B.7, by Lemmas B.5,
B.8 and B.9∫

(fε ∗ Hδ(e−r i))2

g0(e−r i)
sinh r dr

≤
(∫

er≤M
+

∫
er>M

)
(fε ∗ Hδ(e−r i))2

g0(e−r i)
sinh r dr

≤ M2a

C

∫ (
fε ∗ Hδ(e−r i)

)2 sinh r dr + δ2

C

∫
er>M

e−2(ξ−ξ0)r

e−2ar
sinh r dr

= O
(
M2ae−2(δ/2)β + δ2M−2(ξ−ξ0)+2a+1) = O

(
e−μ1(δ/2)β )

,

where C = 2π(a−1)2a−1. For the last equality we set M = e1/2(δ/2)β , μ0 = 2(ξ −
ξ0) − 2a − 1 and μ1 = min(μ0/2, (2 − a)). Then indeed

M2ae−2(δ/2)β = e−(2−a)(δ/2)β = O(e−μ1δ
β

) and δ2M−μ0 = O(e−μ1δ
β

).
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Hence,

χ2(g0, gn) = O
(
δ−2αe−μ1(δ/2)β )

.(B.16)

Letting e−μ1(δ/2)β = n−1, or equivalently

δ = 2μ
−1/β
1 (logn)1/β,(B.17)

we conclude that the right-hand side of (B.16) is of order o(n−1), that is, (B.6) is
proven.
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