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PCA CONSISTENCY IN HIGH DIMENSION,
LOW SAMPLE SIZE CONTEXT

BY SUNGKYU JUNG AND J. S. MARRON

University of North Carolina

Principal Component Analysis (PCA) is an important tool of dimension
reduction especially when the dimension (or the number of variables) is very
high. Asymptotic studies where the sample size is fixed, and the dimension
grows [i.e., High Dimension, Low Sample Size (HDLSS)] are becoming in-
creasingly relevant. We investigate the asymptotic behavior of the Principal
Component (PC) directions. HDLSS asymptotics are used to study consis-
tency, strong inconsistency and subspace consistency. We show that if the first
few eigenvalues of a population covariance matrix are large enough compared
to the others, then the corresponding estimated PC directions are consistent or
converge to the appropriate subspace (subspace consistency) and most other
PC directions are strongly inconsistent. Broad sets of sufficient conditions for
each of these cases are specified and the main theorem gives a catalogue of
possible combinations. In preparation for these results, we show that the geo-
metric representation of HDLSS data holds under general conditions, which
includes a ρ-mixing condition and a broad range of sphericity measures of
the covariance matrix.

1. Introduction and summary. The High Dimension, Low Sample Size
(HDLSS) data situation occurs in many areas of modern science and the asymp-
totic studies of this type of data are becoming increasingly relevant. We will focus
on the case that the dimension d increases while the sample size n is fixed as done
in Hall, Marron and Neeman [8] and Ahn et al. [1]. The d-dimensional covariance
matrix is challenging to analyze, in general, since the number of parameters is
d(d+1)

2 , which increases even faster than d . Instead of assessing all of the parame-
ter estimates, the covariance matrix is usually analyzed by Principal Component
Analysis (PCA). PCA is often used to visualize important structure in the data, as
shown in Figure 1. The data in Figure 1, described in detail in Bhattacharjee et
al. [4] and Liu et al. [15], are from a microarray study of lung cancer. Different
symbols correspond to cancer subtypes, and Figure 1 shows the projections of the
data onto the subspaces generated by PC1 and PC2 (left panel) and PC1 and PC3
(center panel, resp.) directions. This shows the difference between subtypes is so
strong that it drives the first three principal components. This illustrates a common
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FIG. 1. Scatterplots of data projected on the first three PC directions. The dataset contains 56 pa-
tients with 2530 genes. There are 20 Pulmonary Carcinoid (plotted as +), 13 Colon Cancer Metas-
tases (∗), 17 Normal Lung (◦), and 6 Small Cell Carcinoma (×). In spite of the high dimensionality,
PCA reveals important structure in the data. This corresponds to the consistent case in our asymp-
totics, as shown in the scree plot on the right. Note that the first few eigenvalues are much larger than
the rest.

occurrence: the data have an important underlying structure which is revealed by
the first few PC directions.

PCA is also used to reduce dimensionality by approximating the data with the
first few principal components.

For both visualization and data reduction, it is critical that the PCA empirical
eigenvectors reflect true underlying distributional structure. Hence, our focus is on
the underlying mechanism which determines when the sample PC directions con-
verge to their population counterparts as d → ∞. In general, we assume d > n.
Since the size of the covariance matrix depends on d , the population covariance
matrix is denoted as �d and similarly the sample covariance matrix, Sd , so that
their dependency on the dimension is emphasized. PCA is done by eigen decom-
position of a covariance matrix. The eigen decomposition of �d is

�d = Ud�dU ′
d,

where �d is a diagonal matrix of eigenvalues λ1,d ≥ λ2,d ≥ · · · ≥ λd,d and Ud is
a matrix of corresponding eigenvectors so that Ud = [u1,d , u2,d , . . . , ud,d ]. Sd is
similarly decomposed as

Sd = Ûd�̂dÛ ′
d .

Ahn et al. [1] developed the concept of HDLSS consistency which was the first
investigation of when PCA could be expected to find important structure in HDLSS
data. Our main results are formulated in terms of three related concepts:

1. Consistency: The direction ûi,d is consistent with its population counterpart ui,d

if Angle(ui,d , ûi,d) → 0 as d → ∞. The growth of dimension can be under-
stood as adding more variation. The consistency of sample eigenvectors occurs
when the added variation supports the existing structure in the covariance or is
small enough to be ignored.
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2. Strong inconsistency: In situations where ûi,d is not consistent, a perhaps
counter-intuitive HDLSS phenomenon frequently occurs. In particular, ûi,d is
said to be strongly inconsistent with its population counterpart ui,d in the sense
that it tends to be as far away from ui,d as possible, that is, Angle(ui,d , ûi,d) →
π
2 as d → ∞. Strong inconsistency occurs when the added variation obscures
the underlying structure of the population covariance matrix.

3. Subspace consistency: When several population eigenvalues indexed by j ∈ J

are similar, the corresponding sample eigenvectors may not be distinguishable.
In this case, ûj,d will not be consistent for uj,d but will tend to lie in the lin-
ear span, span{uj,d : j ∈ J }. This motivates the definition of convergence of a
direction ûi,d to a subspace, called subspace consistency;

Angle(ûi,d , span{uj,d : j ∈ J }) −→ 0

as d → ∞. This definition essentially comes from the theory of canonical an-
gles discussed by Gaydos [7]. That theory also gives a notion of convergence
of subspaces, that could be developed here.

In recent years, substantial work has been done on the asymptotic behavior of
eigenvalues of the sample covariance matrix in the limit as d → ∞, see Baik,
Ben Arous and Péché [2], Johnstone [11] and Paul [16] for Gaussian assumptions
and Baik and Silverstein [3] for non-Gaussian results when d and n increase at
the same rate, that is, n

d
→ c > 0. Many of these focus on the spiked covariance

model, introduced by Johnstone [11]. The spiked covariance model assumes that
the first few eigenvalues of the population covariance matrix are greater than 1 and
the rest are set to be 1 for all d . HDLSS asymptotics, where only d → ∞ while n is
fixed, have been studied by Hall, Marron and Neeman [8] and Ahn et al. [1]. They
explored conditions which give the geometric representation of HDLSS data (i.e.,
modulo rotation, data tend to lie at vertices of a regular simplex) as well as strong
inconsistency of eigenvectors. Strong inconsistency is also found in the context of
n
d

→ c, in the study of phase transition; see for example, Paul [16], Johnstone and
Lu [12] and Baik, Ben Arous and Péché [2].

A reviewer pointed out a useful framework for organizing these variation is:

1. Classical: d(n)/n → 0, as n → ∞.
2. Random matrices: d(n)/n → c, as n → ∞.
3. HDLSS: n fixed, with d → ∞.

We view all of these as informative. Which is most informative will depend on the
particular data analytic setting, in the same way that either the Normal or Poisson
approximation can be “most informative” about the Binomial distribution.

In this paper, we focus only on the HDLSS case, and a broad and general set
of conditions for consistency and strong inconsistency are provided. Section 2 de-
velops conditions that guarantee the nonzero eigenvalues of the sample covariance
matrix tend to an increasing constant, which are much more general than those of
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Hall, Marron and Neeman [8] and Ahn et al. [1]. This asymptotic behavior of the
sample covariance matrix is the basis of the geometric representation of HDLSS
data. Our result gives a broad new insight into this representation as discussed
in Section 3. The central issue of consistency and strong inconsistency is devel-
oped in Section 4, as a series of theorems. For a fixed number κ , we assume the
first κ eigenvalues are much larger than the others. We show that when κ = 1, the
first sample eigenvector is consistent and the others are strongly inconsistent. We
also generalize to the κ > 1 case, featuring two different types of results (con-
sistency and subspace consistency) according to the asymptotic behaviors of the
first κ eigenvalues. All results are combined and generalized in the main theorem
(Theorem 2). Proofs of theorems are given in Section 5.

1.1. General setting. Suppose we have a d×n data matrix X(d) = [X1,(d), . . . ,

Xn,(d)] with d > n, where the d-dimensional random vectors X1,(d), . . . ,Xn,(d) are
independent and identically distributed. We assume that each Xi,(d) follows a mul-
tivariate distribution (which does not have to be Gaussian) with mean zero and
covariance matrix �d . Define the sphered data matrix Z(d) = �

−1/2
d U ′

dX(d). Then
the components of the d × n matrix Z(d) have unit variances, and are uncorrelated
with each other. We shall regulate the dependency (recall for non-Gaussian data,
uncorrelated variables can still be dependent) of the random variables in Z(d) by
a ρ-mixing condition. This allows serious weakening of the assumptions of Gaus-
sianity while still enabling the law of large numbers that lie behind the geometric
representation results of Hall, Marron and Neeman [8].

The concept of ρ-mixing was first developed by Kolmogorov and Rozanov [14].
See Bradley [5] for a clear and insightful discussion. For −∞ ≤ J ≤ L ≤ ∞,
let F L

J denote the σ -field of events generated by the random variables (Zi , J ≤
i ≤ L). For any σ -field A, let L2(A) denote the space of square-integrable, A
measurable (real-valued) random variables. For each m ≥ 1, define the maximal
correlation coefficient

ρ(m) := sup| corr(f, g)|, f ∈ L2(F
j
−∞), g ∈ L2(F

∞
j+m),

where sup is over all f , g and j ∈ Z. The sequence {Zi} is said to be ρ-mixing if
ρ(m) → 0 as m → ∞.

While the concept of ρ-mixing is useful as a mild condition for the develop-
ment of laws of large numbers, its formulation is critically dependent on the or-
dering of variables. For many interesting data types, such as microarray data, there
is clear dependence but no natural ordering of the variables. Hence, we assume
that there is some permutation of the data which is ρ-mixing. In particular, let
{Zij,(d)}di=1 be the components of the j th column vector of Z(d). We assume that
for each d , there exists a permutation πd : {1, . . . , d} 
−→ {1, . . . , d} so that the se-
quence {Zπd(i)j,(d) : i = 1, . . . , d} is ρ-mixing. This assumption makes the results
invariant under a permutation of the variables.
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In the following, all the quantities depend on d , but the subscript d will be omit-
ted for the sake of simplicity when it does not cause any confusion. The sample
covariance matrix is defined as S = n−1XX′. We do not subtract the sample mean
vector because the population mean is assumed to be 0. Since the dimension of
the sample covariance matrix S grows, it is challenging to deal with S directly.
A useful approach is to work with the dual of S. The dual approach switches the
role of columns and rows of the data matrix, by replacing X by X′. The n×n dual
sample covariance matrix is defined as SD = n−1X′X. An advantage of this dual
approach is that SD and S share nonzero eigenvalues. If we write X as U�1/2Z

and use the fact that U is a unitary matrix,

nSD = (Z′�1/2U ′)(U�1/2Z) = Z′�Z =
d∑

i=1

λi,dz′
izi,(1.1)

where the zi ’s, i = 1, . . . , d , are the row vectors of the matrix Z. Note that nSD

is commonly referred to as the Gram matrix, consisting of inner products between
observations.

2. HDLSS asymptotic behavior of the sample covariance matrix. In this
section, we investigate the behavior of the sample covariance matrix S when
d → ∞ and n is fixed. Under mild and broad conditions, the eigenvalues of S, or
the dual SD , behave asymptotically as if they are from the identity matrix. That is,
the set of sample eigenvectors tends to be an arbitrary choice. This lies at the heart
of the geometric representation results of Hall, Marron and Neeman [8] and Ahn et
al. [1] which are studied more deeply in Section 3. We will see that this condition
readily implies the strong inconsistency of sample eigenvectors; see Theorem 2.

The conditions for the theorem are conveniently formulated in terms of a mea-
sure of sphericity

ε ≡ tr2(�)

d tr(�2)
= (

∑d
i=1 λi,d)2

d
∑d

i=1 λ2
i,d

,

proposed and used by John [9, 10] as the basis of a hypothesis test for equality of
eigenvalues. Note that these inequalities always hold:

1

d
≤ ε ≤ 1.

Also note that perfect sphericity of the distribution (i.e., equality of eigenvalues)
occurs only when ε = 1. The other end of the ε range is the most singular case
where in the limit as the first eigenvalue dominates all others.

Ahn et al. [1] claimed that if ε � 1
d

, in the sense that ε−1 = o(d), then the eigen-
values of SD tend to be identical in probability as d → ∞. However, they needed
an additional assumption (e.g., a Gaussian assumption on X(d)) to have indepen-
dence among components of Z(d), as described in Example 3.1. In this paper, we
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extend this result to the case of arbitrary distributions with dependency regulated
by the ρ-mixing condition as in Section 1.1, which is much more general than
either a Gaussian or an independence assumption. We also explore convergence
in the almost sure sense with stronger assumptions. Our results use a measure
of sphericity for part of the eigenvalues for conditions of a.s. convergence and
also for later use in Section 4. In particular, define the measure of sphericity for
{λk,d, . . . , λd,d} as

εk ≡ (
∑d

i=k λi,d)2

d
∑d

i=k λ2
i,d

.

For convenience, we name several assumptions used in this paper made about
the measure of sphericity ε:

• The ε-condition: ε � 1
d

, that is,

(dε)−1 =
∑d

i=1 λ2
i,d

(
∑d

i=1 λi,d)2
→ 0 as d → ∞.(2.1)

• The εk-condition: εk � 1
d

, that is,

(dεk)
−1 =

∑d
i=k λ2

i,d

(
∑d

i=k λi,d)2
→ 0 as d → ∞.(2.2)

• The strong εk-condition: For some fixed l ≥ k, εl � 1√
d

, that is,

d−1/2ε−1
l = d1/2 ∑d

i=l λ
2
i,d

(
∑d

i=l λi,d)2
→ 0 as d → ∞.(2.3)

REMARK. Note that the εk-condition is identical to the ε-condition when
k = 1. Similarly, the strong εk-condition is also called the strong ε-condition when
k = 1. The strong εk-condition is stronger than the εk condition if the minimum of
l’s which satisfy (2.3), lo, is as small as k. But, if lo > k, then this is not necessarily
true. We will use the strong εk-condition combined with the εk-condition.

Note that the ε-condition is quite broad in the spectrum of possible values of ε:
It only avoids the most singular case. The strong ε-condition further restricts εl to
essentially in the range ( 1√

d
,1].

The following theorem states that if the (strong) ε-condition holds for �d , then
the sample eigenvalues behave as if they are from a scaled identity matrix. It uses
the notation In for the n × n identity matrix.

THEOREM 1. For a fixed n, let �d = Ud�dU ′
d , d = n + 1, n + 2, . . . , be a

sequence of covariance matrices. Let X(d) be a d ×n data matrix from a d-variate
distribution with mean zero and covariance matrix �d . Let Sd = Ûd�̂dÛ ′

d be the
sample covariance matrix estimated from X(d) for each d and let SD,d be its dual.
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(1) Assume that the components of Z(d) = �
−1/2
d U ′

dX(d) have uniformly
bounded fourth moments and are ρ-mixing under some permutation. If (2.1) holds,
then

c−1
d SD,d −→ In,(2.4)

in probability as d → ∞, where cd = n−1 ∑d
i=1 λi,d .

(2) Assume that the components of Z(d) = �
−1/2
d U ′

dX(d) have uniformly
bounded eighth moments and are independent to each other. If both (2.1) and (2.3)
hold, then c−1

d SD,d → In almost surely as d → ∞.

The (strong) ε-condition holds for quite general settings. The strong ε-condition
combined with the ε-condition holds under:

(a) Null case: All eigenvalues are the same.
(b) Mild spiked model: The first m eigenvalues are moderately larger than the

others, for example, λ1,d = · · · = λm,d = C1 · dα and λm+1,d = · · · = λd,d =
C2, where m < d , α < 1 and C1,C2 > 0.

The ε-condition fails when:

(c) Singular case: Only the first few eigenvalues are nonzero.
(d) Exponential decrease: λi,d = c−i for some c > 1.
(e) Sharp spiked model: The first m eigenvalues are much larger than the others.

One example is the same as (b), but α ≥ 1.

The polynomially decreasing case, λi,d = i−β , is interesting because it depends
on the power β:

(f-1) The strong ε-condition holds when 0 ≤ β < 3
4 .

(f-2) The ε-condition holds, but the strong ε-condition fails when 3
4 ≤ β ≤ 1.

(f-3) The ε-condition fails when β > 1.

Another family of examples that includes all three cases is the spiked model
with the number of spikes increasing, for example, λ1,d = · · · = λm,d = C1 · dα

and λm+1,d = · · · = λd,d = C2, where m = �dβ�, 0 < β < 1 and C1,C2 > 0:

(g-1) The strong ε-condition holds when 0 ≤ 2α + β < 3
2 .

(g-2) The ε-condition holds but the strong ε-condition fails when 3
2 ≤ 2α+β < 2.

(g-3) The ε-condition fails when 2α + β ≥ 2.

3. Geometric representation of HDLSS data. Suppose X ∼ Nd(0, Id).
When the dimension d is small, most of the mass of the data lies near origin.
However, with a large d , Hall, Marron and Neeman [8] showed that Euclidean
distance of X to the origin is described as

‖X‖ = √
d + op

(√
d
)
.(3.1)
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Moreover, the distance between two samples is also rather deterministic, that is,

‖X1 − X2‖ = √
2d + op

(√
d
)
.(3.2)

These results can be derived by the law of large numbers. Hall, Marron and Nee-
man [8] generalized those results under the assumptions that d−1∑d

i=1Var(Xi)→1
and {Xi} is ρ-mixing.

Application of part (1) of Theorem 1 generalizes these results. Let X1,(d), X2,(d)

be two samples that satisfy the assumptions of Theorem 1 part (1). Assume without
loss of generality that limd→∞ d−1 ∑d

i=1 λi,d = 1. The scaled squared distance
between two data points is

‖X1,(d) − X2,(d)‖2∑d
i=1 λi,d

=
d∑

i=1

λ̃i,dz2
i1 +

d∑
i=1

λ̃i,dz2
i2 − 2

d∑
i=1

λ̃i,dzi1zi2,

where λ̃i,d = λi,d∑d
i=1 λi,d

. Note that by (1.1), the first two terms are diagonal elements

of c−1
d SD,d in Theorem 1 and the third term is an off-diagonal element. Since

c−1
d SD,d → In, we have (3.2). (3.1) is derived similarly.

REMARK. If limd→∞ d−1 ∑d
i=1 λi,d = 1, then the conclusion (2.4) of Theo-

rem 1 part (1) holds if and only if the representations (3.1) and (3.2) hold under
the same assumptions in the theorem.

In this representation, the ρ-mixing assumption plays a very important role. The
following example, due to John Kent, shows that some type of mixing condition is
important.

EXAMPLE 3.1 (Strong dependency via a scale mixture of Gaussian). Let X =
Y1U +σY2(1−U), where Y1, Y2 are two independent Nd(0, Id) random variables,
U = 0 or 1 with probability 1

2 and independent of Y1, Y2, and σ > 1. Then,

‖X‖ =
{

d1/2 + Op(1), w.p. 1
2 ,

σd1/2 + Op(1), w.p. 1
2 .

Thus, (3.1) does not hold. Note that since Cov(X) = 1+σ 2

2 Id , the ε-condition
holds and the variables are uncorrelated. However, there is strong dependency,
i.e., Cov(z2

i , z
2
j ) = (1+σ 2

2 )−2 Cov(x2
i , x2

j ) = (1−σ 2

1+σ 2 )2 for all i �= j which implies
that ρ(m) > c for some c > 0, for all m. Thus, the ρ-mixing condition does not
hold for all permutation. Note that, however, under Gaussian assumption, given
any covariance matrix �, Z = �−1/2X has independent components.

Note that in the case X = (X1, . . . ,Xd) is a sequence of i.i.d. random variables,
the results (3.1) and (3.2) can be considerably strengthened to ‖X‖ = √

d +Op(1),
and ‖X1 −X2‖ = √

2d +Op(1). The following example shows that strong results
are beyond the reach of reasonable assumption.
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EXAMPLE 3.2 (Varying sphericity). Let X ∼ Nd(0,�d), where �d = diag(dα,

1, . . . ,1) and α ∈ (0,1). Define Z = �
−1/2
d X. Then the components of Z, zi ’s, are

independent standard Gaussian random variables. We get ‖X‖2 = dαz2
1 +∑d

i=2 z2
i .

Now for 0 < α < 1
2 , d−1/2(‖X‖2 −d) ⇒ N (0,1) and for 1

2 < α < 1, d−α(‖X‖2 −
d) ⇒ z2

1, where ⇒ denotes convergence in distribution. Thus, by the delta-method,
we get

‖X‖ =
{√

d + Op(1), if 0 < α < 1
2 ,√

d + Op(dα−1/2), if 1
2 < α < 1.

In both cases, the representation (3.1) holds.

4. Consistency and strong inconsistency of PC directions. In this section,
conditions for consistency or strong inconsistency of the sample PC direction
vectors are investigated in the general setting of Section 1.1. The generic eigen-
structure of the covariance matrix that we assume is the following. For a fixed
number κ , we assume the first κ eigenvalues are much larger than others. (The
precise meaning of large will be addressed shortly.) The rest of eigenvalues are as-
sumed to satisfy the ε-condition, which is very broad in the range of sphericity. We
begin with the case κ = 1 and generalize the result for κ > 1 in two distinct ways.
The main theorem (Theorem 2) contains and combines those previous results and
also embraces various cases according to the magnitude of the first κ eigenvalues.
We also investigate the sufficient conditions for a stronger result, that is, almost
sure convergence, which involves use of the strong ε-condition.

4.1. Criteria for consistency or strong inconsistency of the first PC direction.
Consider the simplest case that only the first PC direction of S is of interest. Sec-
tion 3 gives some preliminary indication of this. As an illustration, consider a
spiked model as in Example 3.2 but now let α > 1. Let {ui} be the set of eigenvec-
tors of �d and Vd−1 be the subspace of all eigenvectors except the first one. Then
the projection of X onto u1 has a norm ‖Proju1

X‖ = ‖X1‖ = Op(dα/2). The pro-

jection of X onto Vd−1 has a norm
√

d + op(
√

d) by (3.1). Thus, when α > 1, if
we scale the whole data space Rd by dividing by dα/2, then ProjVd−1

X becomes
negligible compared to Proju1

X (see Figure 2). Thus, for a large d , �d ≈ λ1u1u
′
1

and the variation of X is mostly along u1. Therefore, the sample eigenvector cor-
responding to the largest eigenvalue, û1, will be similar to u1.

To generalize this, suppose the ε2 condition holds. The following proposition
states that under the general setting in Section 1.1, the first sample eigenvector û1
converges to its population counterpart u1 (consistency) or tends to be perpendic-
ular to u1 (strong inconsistency) according to the magnitude of the first eigenvalue
λ1, while all the other sample eigenvectors are strongly inconsistent regardless of
the magnitude λ1.
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FIG. 2. Projection of a d-dimensional random variable X onto u1 and Vd−1. If α > 1, then the
subspace Vd−1 becomes negligible compared to u1 when d → ∞.

PROPOSITION 1. For a fixed n, let �d = Ud�dU ′
d , d = n+ 1, n+ 2, . . . , be a

sequence of covariance matrices. Let X(d) be a d ×n data matrix from a d-variate
distribution with mean zero and covariance matrix �d . Let Sd = Ûd�̂dÛ ′

d be the
sample covariance matrix estimated from X(d) for each d . Assume the following:

(a) The components of Z(d) = �
−1/2
d U ′

dX(d) have uniformly bounded fourth
moments and are ρ-mixing for some permutation.

For an α1 > 0,

(b) λ1,d

dα1 −→ c1 for some c1 > 0.

(c) The ε2-condition holds and
∑d

i=2 λi,d = O(d).

If α1 > 1, then the first sample eigenvector is consistent and the others are strongly
inconsistent in the sense that

Angle(û1, u1)
p−→ 0 as d → ∞,

Angle(ûi, ui)
p−→ π

2
as d → ∞ ∀i = 2, . . . , n.

If α1 ∈ (0,1), then all sample eigenvectors are strongly inconsistent, i.e.,

Angle(ûi, ui)
p−→ π

2
as d → ∞ ∀i = 1, . . . , n.

Note that the gap between consistency and strong inconsistency is very thin, i.e.,
if we avoid α1 = 1, then we have either consistency or strong inconsistency. Thus
in the HDLSS context, asymptotic behavior of PC directions is mostly captured by
consistency and strong inconsistency. Now it makes sense to say λ1 is much larger
than the others when α1 > 1, which results in consistency. Also note that if α1 < 1,
then the ε-condition holds, which is in fact the condition for Theorem 1.
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4.2. Generalizations. In this section, we generalize Proposition 1 to the case
that multiple eigenvalues are much larger than the others. This leads to two differ-
ent types of result.

First is the case that the first p eigenvectors are each consistent. Consider a co-
variance structure with multiple spikes, that is, p eigenvalues, p > 1, which are
much larger than the others. In order to have consistency of the first p eigenvec-
tors, we require that each of p eigenvalues has a distinct order of magnitude, for
example, λ1,d = d3, λ2,d = d2 and sum of the rest is order of d .

PROPOSITION 2. For a fixed n, let �d , X(d), and Sd be as before. Assume
(a) of Proposition 1. Let α1 > α2 > · · · > αp > 1 for some p < n. Suppose the
following conditions hold:

(b) λi,d

dαi −→ ci for some ci > 0 ∀i = 1, . . . , p.
(c) The εp+1-condition holds and

∑d
i=p+1 λi,d = O(d).

Then, the first p sample eigenvectors are consistent and the others are strongly
inconsistent in the sense that

Angle(ûi, ui)
p−→ 0 as d → ∞ ∀i = 1, . . . , p,

Angle(ûi, ui)
p−→ π

2
as d → ∞ ∀i = p + 1, . . . , n.

Consider now a distribution having a covariance structure with multiple spikes
as before. Let k be the number of spikes. An interesting phenomenon hap-
pens when the first k eigenvalues are of the same order of magnitude, that is,
limd→∞ λ1,d

λk,d
= c > 1 for some constant c. Then the first k sample eigenvectors

are neither consistent nor strongly inconsistent. However, all of those random di-
rections converge to the subspace spanned by the first k population eigenvectors.
Essentially, when eigenvalues are of the same order, the eigen-directions can not
be separated but are subspace consistent with the proper subspace.

PROPOSITION 3. For a fixed n, let �d , X(d), and Sd be as before. Assume (a)
of Proposition 1. Let α1 > 1 and k < n. Suppose the following conditions hold:

(b) λi,d

dα1 −→ ci for some ci > 0 ∀i = 1, . . . , k.
(c) The εk+1-condition holds and

∑d
i=k+1 λi,d = O(d).

Then the first k sample eigenvectors are subspace-consistent with the subspace
spanned by the first k population eigenvectors, and the others are strongly incon-
sistent in the sense that

Angle(ûi, span{u1, . . . , uk}) p−→ 0 as d → ∞ ∀i = 1, . . . , k,

Angle(ûi, ui)
p−→ π

2
as d → ∞ ∀i = k + 1, . . . , n.
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4.3. Main theorem. Propositions 1–3 are combined and generalized in the
main theorem. Consider p groups of eigenvalues, which grow at the same rate
within each group as in Proposition 3. Each group has a finite number of eigenval-
ues and the number of eigenvalues in all groups, κ , does not exceed n. Also similar
to Proposition 2, let the orders of magnitude of the p groups be different to each
other. We require that the εκ+1-condition holds. The following theorem states that
a sample eigenvector of a group converges to the subspace of population eigenvec-
tors of the group.

THEOREM 2 (Main theorem). For a fixed n, let �d , X(d), and Sd be as before.
Assume (a) of Proposition 1. Let α1, . . . , αp be such that α1 > α2 > · · · > αp > 1
for some p < n. Let k1, . . . , kp be nonnegative integers such that

∑p
j=1 kj

.= κ < n.
Let k0 = 0 and kp+1 = d − κ . Let J1, . . . , Jp+1 be sets of indices such that

Jl =
{

1 +
l−1∑
j=0

kj ,2 +
l−1∑
j=0

kj , . . . , kl +
l−1∑
j=0

kj

}
, l = 1, . . . , p + 1.

Suppose the following conditions hold:

(b) λi,d

dαl −→ ci for some ci > 0,∀i ∈ Jl,∀l = 1, . . . , p.
(c) The εκ+1-condition holds and

∑
i∈Jp+1

λi,d = O(d).

Then the sample eigenvectors whose label is in the group Jl , for l = 1, . . . , p, are
subspace-consistent with the space spanned by the population eigenvectors whose
labels are in Jl and the others are strongly inconsistent in the sense that

Angle(ûi, span{uj : j ∈ Jl}) p−→ 0 as d → ∞ ∀i ∈ Jl,∀l = 1, . . . , p,(4.1)

and

Angle(ûi, ui)
p−→ π

2
as d → ∞ ∀i = κ + 1, . . . , n.(4.2)

REMARK. If the cardinality of Jl , kl , is 1, then (4.1) implies ûi is consistent
for i ∈ Jl .

REMARK. The strongly inconsistent eigenvectors whose labels are in Jp+1

can be considered to be subspace-consistent. Let �d be the subspace spanned
by the population eigenvectors whose labels are in Jp+1 for each d , i.e. �d =
span{uj : j ∈ Jp+1} = span{uκ+1, . . . , ud}. Then

Angle(ûi,d ,�d)
p−→ 0 as d → ∞

for all i ∈ Jp+1.
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Note that the formulation of the theorem is similar to the spiked covariance
model but much more general. The uniform assumption on the underlying eigen-
values, that is, λi = 1 for all i > κ , is relaxed to the ε-condition. We also have cata-
logued a large collection of specific results according to the various sizes of spikes.

These results are now illustrated for some classes of covariance matrices that
are of special interest. These covariance matrices are easily represented in factor
form, that is, in terms of Fd = �

1/2
d .

EXAMPLE 4.1. Consider a series of covariance matrices {�d}d . Let �d =
FdF ′

d , where Fd is a d × d symmetric matrix such that

Fd = (1 − ρd)Id + ρdJd =

⎛
⎜⎜⎜⎜⎝

1 ρd · · · ρd

ρd 1
. . .

...
...

. . .
. . . ρd

ρd · · · ρd 1

⎞
⎟⎟⎟⎟⎠ ,

where Jd is the d ×d matrix of ones and ρd ∈ (0,1) depends on d . The eigenvalues
of �d are λ1,d = (dρd + 1 − ρd)2, λ2,d = · · · = λd,d = (1 − ρd)2. Note that this is
a simple and natural probabilistic mechanism that generates eigenvalues where the
first is order of magnitude larger than the rest (our fundamental assumption). The
first eigenvector is u1 = 1√

d
(1,1, . . . ,1)′, while {u2, . . . , ud} are any orthogonal

sets of direction vectors perpendicular to u1. Note that
∑d

i=2 λi,d = d(1 − ρd)2 =
O(d) and the ε2-condition holds. Let Xd ∼ Nd(0,�d). By Theorem 2, if ρd ∈
(0,1) is a fixed constant or decreases to 0 slowly so that ρd � d−1/2, then the first
PC direction û1 is consistent. Else if ρd decreases to 0 so quickly that ρd � d−1/2,
then û1 is strongly inconsistent. In both cases, all the other sample PC directions
are strongly inconsistent.

EXAMPLE 4.2. Consider now a 2d×2d covariance matrix �d = FdF ′
d , where

Fd is a block diagonal matrix, such that

Fd =
(

F1,d O

O F2,d

)
,

where F1,d = (1−ρ1,d)Id +ρ1,dJd and F2,d = (1−ρ2,d)Id +ρ2,dJd . Suppose 0 <

ρ2,d ≤ ρ1,d < 1. Note that λ1,d = (dρ1,d + 1 − ρ1,d)2 , λ2,d = (dρ2,d + 1 − ρ2,d)2

and the ε3-condition holds. Let X2d ∼ N2d(0,�d). Application of Theorem 2 for
various conditions on ρ1,d , ρ2,d is summarized as follows. Denote, for two non-
increasing sequences μd , νd ∈ (0,1), μd � νd for νd = o(μd) and μd � νd for
limd→∞ μd

νd
= c ∈ [1,∞):

1. ρ1,d � ρ2,d � d−1/2 : Both û1, û2 consistent.
2. ρ1,d � ρ2,d � d−1/2 : Both û1, û2 subspace-consistent to span{u1, u2}.
3. ρ1,d � d−1/2 � ρ2,d : û1 consistent, û2 strongly inconsistent.
4. d−1/2 � ρ1,d � ρ2,d : Both û1, û2 strongly inconsistent.
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4.4. Corollaries to the main theorem. The result can be extended for special
cases.

First of all, consider constructing X(d) from Zd by X(d) ≡ Ud�
1/2
d Zd where Zd

is a truncated set from an infinite sequence of independent random variables with
mean zero and variance 1. This assumption makes it possible to have convergence
in the almost sure sense. This is mainly because the triangular array {Z1i,(d)}i,d
becomes the single sequence {Z1i}i .

COROLLARY 1. Suppose all the assumptions in Theorem 2, with the assump-
tion (a) replaced by the following:

(a′) The components of Z(d) = �
−1/2
d U ′

dX(d) have uniformly bounded eighth mo-
ments and are independent to each other. Let Z1i,(d) ≡ Z1i for all i, d .

If the strong εκ+1-condition (2.3) holds, then the mode of convergence of (4.1) and
(4.2) is almost sure.

Second, consider the case that both d , n tend to infinity. Under the setting of
Theorem 2, we can separate PC directions better when the eigenvalues are distinct.
When d → ∞, we have subspace consistency of ûi with the proper subspace,
which includes ui . Now letting n → ∞ makes it possible for ûi to be consistent.

COROLLARY 2. Let �d , X(d) and Sd be as before. Under the assumptions
(a), (b) and (c) in Theorem 2, assume further for (b) that the first κ eigenvalues are
distinct, that is, ci > cj for i > j and i, j ∈ Jl for l = 1, . . . , p. Then for all i ≤ κ ,

Angle(ûi, ui)
p−→ 0 as d → ∞, n → ∞,(4.3)

where the limits are applied successively.
If the assumption (a) is replaced by the assumption (a′) of Corollary 1, then the

mode of convergence of (4.3) is almost sure.

This corollary can be viewed as the case when d,n tend to infinity together, but
d increases at a much faster rate than n, that is, d � n. When n also increases in
the particular setting of the corollary, the sample eigenvectors, which were only
subspace-consistent in the d → ∞ case, tend to be distinguishable and each of the
eigenvectors is consistent. We conjecture that the inconsistent sample eigenvalues
are still strongly inconsistent when d,n → ∞ and d � n.

4.5. Limiting distributions of corresponding eigenvalues. The study of asymp-
totic behavior of the sample eigenvalues is an important part in the proof of Theo-
rem 2, and also could be of independent interest. The following lemma states that
the large sample eigenvalues increase at the same speed as their population coun-
terpart and the relatively small eigenvalues tend to be of order of d as d tends to
infinity. Let ϕi(A) denote the ith largest eigenvalue of the symmetric matrix A and
ϕi,l(A) = ϕi∗(A) where i∗ = i − ∑l−1

j=1 kj .
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LEMMA 1. If the assumptions of Theorem 2 hold, and let Zl be a kl ×n matrix
from blocks of Z as defined in (5.2), then

λ̂i/d
αl �⇒ ηi as d → ∞ if i ∈ Jl ∀l = 1, . . . , p,

λ̂i/d
p−→ K as d → ∞ if i = κ + 1, . . . , n,

where each ηi is a random variable whose support is (0,∞) almost surely and
indeed ηi = ϕi,l(n

−1C
1/2
l ZlZ

′
lC

1/2) for each i ∈ Jl , where Cl = diag{cj : j ∈ Jl}
and K = limd→∞(dn)−1∑

i∈Jp+1
λi,d .

If the data matrix X(d) is Gaussian, then the first κ sample eigenvalues converge
in distribution to some quantities, which have known distributions.

COROLLARY 3. Under all the assumptions of Theorem 2, assume further that
X(d) ∼ Nd(0,�d) for each d . Then, for i ∈ Jl , l = 1, . . . , p,

λ̂i

dαl
�⇒ ϕi,l(n

−1Wkl
(n,Cl)) as d → ∞,

where Wkl
(n,Cl) denotes a kl × kl random matrix distributed as the Wishart dis-

tribution with degree of freedom n and covariance Cl .
If kl = 1 for some l, then for i ∈ Jl

λ̂i

λi

�⇒ χ2
n

n
as d → ∞,

where χ2
n denotes a random variable distributed as the χ2 distribution with degree

of freedom n.

This generalizes the results in Section 4.2 of Ahn et al. [1].

5. Proofs.

5.1. Proof of Theorem 1. First, we give the proof of part (1). By (1.1), the
mth diagonal entry of nSD can be expressed as

∑d
i=1 λi,dz2

im,d where zim,d is the

(i,m)th entry of the matrix Z(d). Define the relative eigenvalues λ̃i,d as λ̃i,d ≡
λi,d∑d

i=1 λi,d
. Let πd denote the given permutation for each d and let Yi = z2

πd(i)m,d −1.

Then the Yi ’s are ρ-mixing, E(Yi) = 0 and E(Y 2
i ) ≤ B for all i for some B < ∞.

Let ρ(m) = sup| corr(Yi, Yi+m)| where the sup is over all i. We shall use the fol-
lowing lemma.

LEMMA 2. For any permutation π∗
d ,

lim
d→∞

d∑
i=1

λ̃π∗
d (i),dρ(i) = 0.
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PROOF. For any δ > 0, since limi→∞ ρ(i) = 0, we can choose N such
that ρ(i) < δ/2 for all i > N . Since limd→∞

∑d
i=1 λ̃2

π∗
d (i),d

= 0, we get

limd→∞
∑N

i=1 λ̃π∗
d (i),d = 0. Thus, we can choose d0 satisfying

∑N
i=1 λ̃π∗

d (i),d < δ
2

for all d > d0. With the fact
∑d

i=1 λ̃i,d = 1 for all d and ρ(i) < 1, we get for all
d > d0,

d∑
i=1

λ̃π∗
d (i),dρ(i) =

N∑
i=1

λ̃π∗
d (i),dρ(i) +

d∑
i=N+1

λ̃π∗
d (i),dρ(i) < δ.

�

Now let π−1
d be the inverse permutation of πd . Then by Lemma 2 and the ε-

condition, there exists a permutation π∗
d such that

E

(
d∑

i=1

λ̃
π−1

d (i),d
Yi

)2

=
d∑

i=1

λ̃2
π−1

d (i),d
EY 2

i + 2
d∑

i=1

λ̃
π−1

d (i),d

d∑
j=i+1

λ̃
π−1

d (j),d
EYiYj

≤
d∑

i=1

λ̃2
i,dB + 2

d∑
i=1

λ̃i,d

d∑
j=1

λ̃π∗
d (j),dρ(j)B2 → 0,

as d → ∞. Then Chebyshev’s inequality gives us, for any τ > 0,

P

[∣∣∣∣∣
d∑

i=1

λ̃i,dz2
im − 1

∣∣∣∣∣ > τ

]
≤

E(
∑d

i=1 λ̃
π−1

d (i),d
Yi)

2

τ 2 → 0,

as d → ∞. Thus, we conclude that the diagonal elements of nSD converge to 1 in
probability.

The off-diagonal elements of nSD can be expressed as
∑d

i=1 λi,dzimzil . Similar
arguments to those used in the diagonal case, together with the fact that zim and
zil are independent, gives that

E

(
d∑

i=1

λ̃i,dzimzil

)2

≤
d∑

i=1

λ̃2
i,d + 2

d∑
i=1

λ̃i,d

d∑
j=i+1

λ̃
π−1

d (j),d
ρ2(j − i) → 0,

as d → ∞. Thus, by Chebyshev’s inequality, the off-diagonal elements of nSD

converge to 0 in probability.
Now, we give the proof for part (2). We begin with the mth diagonal entry of

nSD ,
∑d

i=1 λi,dz2
im. Note that since

∑k−1
i=1 λ̃i,d → 0 by the ε-condition, we assume

k = 1 in (2.3) without loss of generality.
Let Yi = z2

im − 1. Note that the Yi ’s are independent, E(Yi) = 0 and E(Y 4
i ) ≤ B

for all i for some B < ∞. Now

E

(
d∑

i=1

λ̃i,dYi

)4

= E
d∑

i,j,k,l=1

λ̃i,d λ̃j,d λ̃k,d λ̃l,dYiYjYkYl.(5.1)
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Note that terms in the sum of the form EYiYjYkYl , EY 2
i YjYk and EY 3

i Yj are 0
if i, j, k, l are distinct. The only terms that do not vanish are those of the form
EY 4

i , EY 2
i Y 2

j , both of which are bounded by B . Note that λ̃2
i,d ’s are nonneg-

ative, and hence the sum of squares is less than the square of sum, we have∑d
i=1 λ̃4

i,d ≤ (
∑d

i=1 λ̃2
i,d )2. Also note that by the strong ε-condition,

∑d
i=1 λ̃2

i,d =
(dε)−1 = o(d−1/2). Thus, (5.1) is bounded as

E

(
d∑

i=1

λ̃i,dYi

)4

≤
d∑

i=1

λ̃4
i,dB + ∑

i=j �=k=l

λ̃2
i,d λ̃2

k,dB

≤
(

d∑
i=1

λ̃2
i,d

)2

B +
(

4
2

)(
d∑

i=1

λ̃2
i,d

)2

B

= o(d−1).

Then Chebyshev’s inequality gives us, for any τ > 0,

P

[∣∣∣∣∣
d∑

i=1

λ̃i,dz2
im − 1

∣∣∣∣∣ > τ

]
≤ E(

∑d
i=1 λ̃i,dYi)

4

τ 4 ≤ o(d−1)

τ 4 .

Summing over d gives
∑∞

d=1 P [|∑d
i=1 λ̃i,dz2

im − 1| > τ ] < ∞ and by the Borel–
Cantelli lemma, we conclude that a diagonal element

∑d
i=1 λ̃i,dz2

ij converges to 1
almost surely.

The off-diagonal elements of nSD can be expressed as
∑d

i=1 λi,dzimzil . Using
similar arguments to those used in the diagonal case, we have

P

[∣∣∣∣∣
d∑

i=1

λ̃i,dzimzil

∣∣∣∣∣ > τ

]
≤ E(

∑d
i=1 λ̃i,dzimzil)

4

τ 4 ≤ o(d−1)

τ 4 ,

and again by the Borel–Cantelli lemma, the off-diagonal elements converge to 0
almost surely.

5.2. Proofs of Lemma 1 and Theorem 2. The proof of Theorem 2 is divided
in two parts. Since eigenvectors are associated to eigenvalues, at first, we focus
on asymptotic behavior of sample eigenvalues (Section 5.2.1) and then investigate
consistency or strong inconsistency of sample eigenvectors (Section 5.2.2).

5.2.1. Proof of Lemma 1. The proof relies heavily on the following lemma.
Recall that ϕk(A) denotes the kth largest eigenvalue of A.
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LEMMA 3 (Weyl’s inequality). If A, B are m × m real symmetric matrices,
then for all k = 1, . . . ,m,

ϕk(A) + ϕm(B)

ϕk+1(A) + ϕm−1(B)
...

ϕm(A) + ϕk(B)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

≤ ϕk(A + B) ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕk(A) + ϕ1(B),

ϕk−1(A) + ϕ2(B),
...

ϕ1(A) + ϕk(B).

This inequality is discussed in Rao [17] and its use on asymptotic studies of
eigenvalues of a random matrix appeared in Eaton and Tyler [6].

Since S and its dual SD share nonzero eigenvalues, one of the main ideas of
the proof is working with SD . By our decomposition (1.1), nSD = Z′�Z. We also
write Z and � as block matrices such that

Z =

⎛
⎜⎜⎜⎝

Z1
Z2
...

Zp+1

⎞
⎟⎟⎟⎠ , � =

⎛
⎜⎜⎜⎝

�1 O · · · O

O �2 · · · O
...

...
. . .

...

O O · · · �p+1

⎞
⎟⎟⎟⎠ ,(5.2)

where Zl is a kl ×n matrix for each l = 1, . . . , p+1 and �l(≡ �l,d) is a kl × kl di-
agonal matrix for each l = 1, . . . , p+1 and O denotes a matrix where all elements
are zeros. Now, we can write

nSD = Z′�Z =
p+1∑
l=1

Z′
l�lZl.(5.3)

While Zl depends on d = 1, . . . ,∞, this dependence is not explicitly shown (e.g.,
by subscript) for simplicity of notation.

Note that Theorem 1 implies that when the last term in equation (5.3) is divided
by d , it converges to an identity matrix, namely,

d−1Z′
p+1�p+1Zp+1

p−→ nK · In,(5.4)

where K ∈ (0,∞) is such that (dn)−1∑
i∈Jp+1

λi,d → K. Moreover, dividing by
dα1 gives us

nd−α1SD = d−α1Z′
1�1Z1 + d−α1

p∑
l=2

Z′
l�lZl + d1−α1d−1Z′

p+1�p+1Zp+1.

By the assumption (b), the first term on the right-hand side converges to Z′
1C1Z1

where C1 is the k1 × k1 diagonal matrix such that C1 = diag{cj ; j ∈ J1} and the
other terms tend to a zero matrix. Thus, we get

nd−α1SD �⇒ Z′
1C1Z1 as d → ∞.

Note that the nonzero eigenvalues of Z′
1C1Z1 are the same as the nonzero eigen-

values of C
1/2
1 Z1Z

′
1C

1/2
1 which is a k1 × k1 random matrix with full rank almost
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surely. Since ϕi(A) is a continuous function of the entries of A (see e.g., Kato
[13]), we have for i ∈ J1,

ϕi(nd−α1SD) �⇒ ϕi(Z
′
1C1Z1) as d → ∞

= ϕi(C
1/2
1 Z1Z

′
1C

1/2
1 ).

Thus, we conclude that for the sample eigenvalues in the group J1, λ̂i/d
α1 =

ϕi(d
−α1SD) converges in distribution to ϕi(n

−1C
1/2
1 Z1Z

′
1C

1/2
1 ) for i ∈ J1.

Let us focus on eigenvalues whose indices are in the group J2, . . . , Jp . Suppose
we have λ̂i = Op(dαj ) for all i ∈ Jj , for j = 1, . . . , l − 1. Pick any i ∈ Jl . We will
provide upper and lower bounds on λ̂i by Weyl’s inequality (Lemma 3). Dividing
both sides of (5.3) by dαl , we get

nd−αlSD = d−αl

l−1∑
j=1

Z′
j�jZj + d−αl

p+1∑
j=l

Z′
j�jZj

and apply Weyl’s inequality for the upper bound,

ϕi(nd−αlSD) ≤ ϕ1+∑l−1
j=1 kj

(
d−αl

l−1∑
j=1

Z′
j�jZj

)

+ ϕ
i−∑l−1

j=1 kj

(
d−αl

p+1∑
j=l

Z′
j�jZj

)
(5.5)

= ϕ
i−∑l−1

j=1 kj

(
d−αl

p+1∑
j=l

Z′
j�jZj

)
.

Note that the first term vanishes since the rank of d−αl
∑l−1

j=1 Z′
j�jZj is at most∑l−1

j=1 kj . Also note that the matrix in the upper bound (5.5) converges to a simple
form

d−αl

p+1∑
j=l

Z′
j�jZj = d−αlZ′

l�lZl + d−αl

p+1∑
j=l+1

Z′
j�jZj

�⇒ Z′
lClZl as d → ∞,

where Cl is the kl × kl diagonal matrix such that Cl = diag{cj ; j ∈ Jl}.
In order to have a lower bound of λ̂i , Weyl’s inequality is applied to the expres-

sion

d−αl

l∑
j=1

Z′
j�jZj + d−αl

p+1∑
j=l+1

Z′
j�jZj = nd−αlSD,
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so that

ϕi

(
d−αl

l∑
j=1

Z′
j�jZj

)
+ ϕn

(
d−αl

p+1∑
j=l+1

Z′
j�jZj

)
≤ ϕi(nd−αlSD).(5.6)

It turns out that the first term of the left-hand side is not easy to manage, so we
again use Weyl’s inequality to get

ϕ∑l
j=1 kj

(
d−αl

l−1∑
j=1

Z′
j�jZj

)

(5.7)

≤ ϕi

(
d−αl

l∑
j=1

Z′
j�jZj

)
+ ϕ1−i+∑l−1

j=1 kj
(−d−αlZ′

l�lZl),

where the left-hand side is 0 since the rank of the matrix inside is at most
∑l−1

j=1 kj .

Note that since d−αlZ′
l�lZl and d−αl�

1/2
l ZlZ

′
l�

1/2
l share nonzero eigenvalues,

we get

ϕ1−i+∑l
j=1 kj

(−d−αlZ′
l�lZl) = ϕ1−i+∑l

j=1 kj
(−d−αl�

1/2
l ZlZ

′
l�

1/2
l )

= ϕ
kl−i+1+∑l−1

j=1 kj
(−d−αl�

1/2
l ZlZ

′
l�

1/2
l )

(5.8)
= −ϕ

i−∑l−1
j=1 kj

(d−αl�
1/2
l ZlZ

′
l�

1/2
l )

= −ϕ
i−∑l−1

j=1 kj
(d−αlZ′

l�lZl).

Here, we use the fact that for any m × m real symmetric matrix A, ϕi(A) =
−ϕm−i+1(−A) for all i = 1, . . . ,m.

Combining (5.6)–(5.8) gives the lower bound

ϕ
i−∑l−1

j=1 kj
(d−αlZ′

l�lZl) + ϕn

(
d−αl

p+1∑
j=l+1

Z′
j�jZj

)
≤ ϕi(nd−αlSD).(5.9)

Note that the matrix inside of the first term of the lower bound (5.9) converges
to Z′

lClZl in distribution. The second term converges to 0 since the matrix inside
converges to a zero matrix.

The difference between the upper and lower bounds of ϕi(nd−αlSD) converges
to 0 since

ϕ
i−∑l−1

j=1 kj

(
d−αl

p+1∑
j=l

Z′
j�jZj

)
− ϕ

i−∑l−1
j=1 kj

(d−αlZ′
l�lZl) → 0,

as d → ∞. This is because ϕ is a continuous function and the difference between
the two matrices converges to zero matrix. Therefore, ϕi(nd−αlSD) converges to
the upper or lower bound as d → ∞.
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Now since both upper and lower bound of ϕi(nd−αlSD) converge in distribution
to same quantity, we have

ϕi(nd−αlSD) �⇒ ϕ
i−∑l−1

j=1 kj
(Z′

lClZl) as d → ∞.

(5.10)
= ϕ

i−∑l−1
j=1 kj

(C
1/2
l ZlZ

′
lC

1/2
l ).

Thus, by induction, we have the scaled ith sample eigenvalue λ̂i/d
αl converges in

distribution to ϕ
i−∑l−1

j=1 kj
(n−1C

1/2
l ZlZ

′
lC

1/2
l ) for i ∈ Jl , l = 1, . . . , p, as desired.

Now, let us focus on the rest of the sample eigenvalues λ̂i , i = κ + 1, . . . , n. For
any i, again by Weyl’s upper bound inequality, we get

ϕi(nd−1SD) ≤ ϕi−κ(d
−1Z′

p+1�p+1Zp+1) + ϕκ+1

(
d−1

p∑
j=1

Z′
j�jZj

)

= ϕi−κ(d
−1Z′

p+1�p+1Zp+1),

where the second term on the right-hand side vanishes since the matrix inside is of
rank at most κ . Also for lower bound, we have

ϕi(nd−1SD) ≥ ϕi(d
−1Z′

p+1�p+1Zp+1) + ϕn

(
d−1

p∑
j=1

Z′
j�jZj

)

= ϕi(d
−1Z′

p+1�p+1Zp+1),

where the second term vanishes since κ < n. Thus, we have complete bounds for
ϕi(nd−1SD) such that

ϕi(d
−1Z′

p+1�p+1Zp+1) ≤ ϕi(nd−1SD) ≤ ϕi−κ(d
−1Z′

p+1�p+1Zp+1)

for all i = κ + 1, . . . , n. However, by (5.4), the matrix in both bounds converges to
nK · In in probability. Thus, lower and upper bounds of ϕi(d

−1SD) converge to K

in probability for i = κ + 1, . . . , n, which completes the proof.

5.2.2. Proof of Theorem 2. We begin by defining a standardized version of the
sample covariance matrix, not to be confused with the dual SD , as

S̃ = �−1/2U ′SU�−1/2

= �−1/2U ′(Û�̂Û ′)U�−1/2(5.11)

= �−1/2P�̂P ′�−1/2,

where P = U ′Û = {u′
i ûj }ij ≡ {pij }ij . Note that elements of P are inner products

between population eigenvectors and sample eigenvectors. Since S̃ is standardized,
we have by S = n−1XX′ and X = U�1/2Z,

S̃ = n−1ZZ′.(5.12)



PCA CONSISTENCY IN HDLSS CONTEXT 4125

Note that the angle between two directions can be formulated as an inner prod-
uct of the two direction vectors. Thus, we will investigate the behavior of the inner
product matrix P as d → ∞, by showing that∑

j∈Jl

p2
ji

p−→ 1 as d → ∞(5.13)

for all i ∈ Jl , l = 1, . . . , p and

p2
ii

p−→ 0 as d → ∞(5.14)

for all i = κ + 1, . . . , n.
Suppose for now we have the result of (5.13) and (5.14). Then for any i ∈ Jl ,

l = 1, . . . , p,

Angle(ûi, span{uj : j ∈ Jl}) = arccos
( û′

i[Projspan{uj :j∈Jl} ûi]
‖ûi‖2 · ‖[Projspan{uj :j∈Jl} ûi]‖2

)

= arccos
( û′

i (
∑

j∈Jl
(u′

j ûi)uj )

‖ûi‖2 · ‖∑
j∈Jl

(u′
j ûi)uj‖2

)

= arccos
( ∑

j∈Jl
(u′

j ûi)
2

1 · (∑j∈Jl
(u′

j ûi)2)1/2

)

= arccos
((∑

j∈Jl

p2
ji

)1/2)

p−→ 0 as d → ∞,

by (5.13) and for i = κ + 1, . . . , n,

Angle(ûi, ui) = arccos(|u′
i ûi |)

= arccos(|pii |)
p−→ π

2
as d → ∞,

by (5.14), as desired.
Therefore, it is enough to show (5.13) and (5.14). We begin with taking j th

diagonal entry of S̃, s̃jj , from (5.11) and (5.12),

s̃jj = λ−1
j

n∑
i=1

λ̂ip
2
ji = n−1zj z

′
j ,

where zj denotes the j th row vector of Z. Since

λ−1
j λ̂ip

2
ji ≤ n−1zj z

′
j ,(5.15)
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we have at most

p2
ji = Op

(
λj

λ̂i

)

for all i = 1, . . . , n, j = 1, . . . , d . Note that by Lemma 1, we have for i ∈ Jl1 ,
j ∈ Jl2 where 1 ≤ l1 < l2 ≤ p + 1,

p2
ji = Op

(
λj

λ̂i

)
=

{
Op(dαl2−αl1 ), if l2 ≤ p,
Op(d1−αl1 ), if l2 = p + 1,

(5.16)

so that p2
ji

p→ 0 as d → ∞ in both cases.
Note that the inner product matrix P is also a unitary matrix. The norm of the

ith column vector of P must be 1 for all d , i.e.
∑d

j=1 p2
ji = 1. Thus, (5.13) is

equivalent to
∑

j∈{1,...,d}\Jl
p2

ji

p−→ 0 as d → ∞.
Now for any i ∈ J1,∑

j∈{1,...,d}\J1

p2
ji = ∑

j∈J2∪···∪Jp

p2
ji + ∑

j∈Jp+1

p2
ji .

Since the first term on the right-hand side is a finite sum of quantities converging
to 0, it converges to 0 almost surely as d tends to infinity. By (5.15), we have an
upper bound for the second term,

∑
j∈Jp+1

p2
ji = ∑

j∈Jp+1

λ−1
j λ̂ip

2
ji

λj

λ̂i

≤
∑

j∈Jp+1
n−1zj z

′
jλj

d

d

λ̂i

=
∑n

k=1
∑d

j=κ+1 z2
j,kλj

nd

d

λ̂i

,

where the zj,k’s are the entries of a row random vector zj . Note that by applying

Theorem 1 with �d = diag{λκ+1, . . . , λd}, we have
∑d

j=κ+1 z2
j,kλj /d

p→ 1 as d →
∞. Also by Lemma 1, the upper bound converges to 0 in probability. Thus, we get∑

j∈{1,...,d}\J1

p2
ji

p−→ 0 as d → ∞,

which is equivalent to ∑
j∈J1

p2
ji

p−→ 1 as d → ∞.(5.17)

Let us focus on the group J2, . . . , Jp . For any l = 2, . . . , p, suppose we have∑
j∈Jm

p2
ji

p→ 1 as d → ∞ for all i ∈ Jm, m = 1, . . . , l − 1. Note that it implies
that for any j ∈ Jm, m = 1, . . . , l − 1,∑

i∈{1,...,d}\Jm

p2
ji

p−→ 0 as d → ∞,(5.18)
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since

∑
j∈Jm

∑
i∈{1,...,d}\Jm

p2
ji = ∑

j∈Jm

d∑
i=1

p2
ji − ∑

j∈Jm

∑
i∈Jm

p2
ji

p−→ ∑
j∈Jm

1 − ∑
i∈Jm

1 = 0,

as d → ∞.
Now, pick i ∈ Jl . We have∑

j∈{1,...,d}\Jl

p2
ji = ∑

j∈J1∪···∪Jl−1

p2
ji + ∑

j∈Jl+1∪···∪Jp

p2
ji + ∑

j∈Jp+1

p2
ji .

Note that the first term is bounded as

∑
j∈J1∪···∪Jl−1

p2
ji ≤ ∑

i∈Jl

∑
j∈J1∪···∪Jl−1

p2
ji ≤

l−1∑
m=1

∑
j∈Jm

( ∑
i∈{1,...,d}\Jm

p2
ji

)
p−→ 0

by (5.18). The second term also converges to 0 by (5.16). The last term is also
bounded as

∑
j∈Jp+1

p2
ji = ∑

j∈Jp+1

λ−1
j λ̂ip

2
ji

λj

λ̂i

≤
∑

j∈Jp+1
n−1zj z

′
jλj

d

d

λ̂i

,

so that it also converges to 0 in probability. Thus, we have
∑

j∈{1,...,d}\Jl
p2

ji

p−→ 0
as d → ∞ which implies that∑

j∈Jl

p2
ji

p−→ 1 as d → ∞.

Thus, by induction, (5.13) is proved.
For i = κ + 1, . . . , n, we have λ−1

i λ̂ip
2
ii ≤ n−1ziz

′
i , and so

p2
ii ≤ λ̂−1

i λin
−1ziz

′
i = Op(λ̂−1

i λi),

which implies (5.14) by the assumption (c) and Lemma 1, and the proof is com-
pleted.

5.3. Proof of Corollary 1. The proof follows the same lines as the proof of
Theorem 2, with convergence in probability replaced by almost sure convergence.

5.4. Proof of Corollary 2. From the proof of Theorem 2, write the inner prod-
uct matrix P of (5.11) as a block matrix such that

P =

⎛
⎜⎜⎜⎝

P11 · · · P1p P1,p+1
...

. . .
...

...

Pp1 · · · Ppp Pp,p+1
Pp+1,1 · · · Pp+1,p Pp+1,p+1

⎞
⎟⎟⎟⎠ ,
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where each Pij is a ki × kj random matrix. In the proof of Theorem 2, we have
shown that Pii , i = 1, . . . , p, tends to be a unitary matrix and Pij , i �= j , tends
to be a zero matrix as d → ∞. Likewise, � and �̂ can be blocked similarly as
� = diag{�i : i = 1, . . . , p + 1} and �̂ = diag{�̂i : i = 1, . . . , p + 1}.

Now, pick l ∈ {1, . . . , p}. The lth block diagonal of S̃, S̃ll , is expressed as S̃ll =∑p+1
j=1 �

−1/2
l Plj �̂lP

′
lj�

−1/2
l . Since Pij → 0, i �= j , we get

‖S̃ll − �
−1/2
l Pll�̂lP

′
ll�

−1/2
l ‖F

p−→ 0

as d → ∞, where ‖ · ‖F is the Frobenius norm of matrices defined by ‖A‖F =
(
∑

i,j A2
ij )

1/2.

Note that by (5.12), S̃ll can be replaced by n−1ZlZ
′
l . We also have d−αl�l → Cl

by the assumption (b) and d−αl �̂l
p→ diag{ϕ(n−1C

1/2
l ZlZ

′
lC

1/2
l )} by (5.10). Thus,

we get

‖n−1ZlZ
′
l − C

−1/2
l Pll diag{ϕ(n−1C

1/2
l ZlZ

′
lC

1/2
l )}P ′

llC
−1/2
l ‖F

p−→ 0

as d → ∞.
Also note that since n−1ZlZ

′
l → Ikl

almost surely as n → ∞, we get

n−1C
1/2
l ZlZ

′
lC

1/2
l → Cl and diag{ϕ(n−1C

1/2
l ZlZ

′
lC

1/2
l )} → Cl almost surely

as n → ∞. Using the fact that the Frobenius norm is unitarily invariant and
‖AB‖F ≤ ‖A‖F ‖B‖F for any square matrices A and B , we get

‖P ′
llClPll − Cl‖F

≤ ‖P ′
llClPll − diag{ϕ(n−1C

1/2
l ZlZ

′
lC

1/2
l )}‖F + op(1)

= ‖Cl − Pll diag{ϕ(n−1C
1/2
l ZlZ

′
lC

1/2
l )}P ′

ll‖F + op(1)

≤ ‖n−1C
1/2
l ZlZ

′
lC

1/2
l − Pll diag{ϕ(n−1C

1/2
l ZlZ

′
lC

1/2
l )}P ′

ll‖F + op(1)(5.19)

≤ ‖C1/2
l ‖2

F ‖n−1ZlZ
′
l

− C
−1/2
l Pll diag{ϕ(n−1C

1/2
l ZlZ

′
lC

1/2
l )}P ′

llC
−1/2
l ‖F + op(1)

p−→ 0 as d,n → ∞.

Note that in order to have (5.19), Pll must converge to diag{±1,±1, . . . ,±1}
since diagonal entries of Cl are distinct and a spectral decomposition is unique up

to sign changes. Let l = 1 for simplicity. Now for any m = 2, . . . , k1, p2
m1

p→ 0
since

‖P ′
11C1P11 − C1‖2

F ≥
k1∑

j=1

(c1 − cj )
2p2

j1 ≥ (c1 − cm)2p2
m1.
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This leads to p2
11

p→ 1 as d,n → ∞. By induction, p2
ii

p→ 1 for all i ∈ Jl, l =
1, . . . , p. Therefore, Angle(ûi, ui) = arccos(|pii |) p→ 0 as d,n → ∞.

If the assumptions of Corollary 1 also hold, then every convergence in the proof
is replaced by almost sure convergence, which completes the proof.

5.5. Proof of Corollary 3. With Gaussian assumption, noticing C
1/2
l Zl ×

Z′
lC

1/2
l ∼ Wkl

(n,Cl) gives the first result. When kl = 1, the assumption (b) and

that C
1/2
l ZlZ

′
lC

1/2
l ∼ ciχ

2
n imply that

λ̂i

λi

= λ̂i

cidαl
· cid

αl

λi

�⇒ χ2
n

n
as d → ∞.

Acknowledgments. The authors are very grateful to John T. Kent (University
of Leeds, UK) for the insightful Example 3.1. We also thank anonymous referees
for many valuable suggestions.

REFERENCES

[1] AHN, J., MARRON, J. S., MULLER, K. M. and CHI, Y.-Y. (2007). The high-dimension, low-
sample-size geometric representation holds under mild conditions. Biometrika 94 760–
766. MR2410023

[2] BAIK, J., BEN AROUS, G. and PÉCHÉ, S. (2005). Phase transition of the largest eigenvalue for
nonnull complex sample covariance matrices. Ann. Probab. 33 1643–1697. MR2165575

[3] BAIK, J. and SILVERSTEIN, J. W. (2006). Eigenvalues of large sample covariance matrices of
spiked population models. J. Multivariate Anal. 97 1382–1408. MR2279680

[4] BHATTACHARJEE, A., RICHARDS, W., STAUNTON, J., LI, C., MONTI, S., VASA, P., LADD,
C., BEHESHTI, J., BUENO, R., GILLETTE, M., LODA, M., WEBER, G., MARK, E. J.,
LANDER, E. S., WONG, W., JOHNSON, B. E., GOLUB, T. R., SUGARBAKER, D. J.
and MEYERSON, M. (2001). Classification of human lung carcinomas by mrna expres-
sion profiling reveals distinct adenocarcinoma subclasses. Proc. Natl. Acad. Sci. USA 98
13790–13795.

[5] BRADLEY, R. C. (2005). Basic properties of strong mixing conditions. A survey and some
open questions. Probab. Surv. 2 107–144 (electronic). (Update of, and a supplement to,
the 1986 original.) MR2178042

[6] EATON, M. L. and TYLER, D. E. (1991). On Wielandt’s inequality and its application to the
asymptotic distribution of the eigenvalues of a random symmetric matrix. Ann. Statist. 19
260–271. MR1091849

[7] GAYDOS, T. L. (2008). Data representation and basis selection to understand variation of func-
tion valued traits. Ph.D. thesis, Univ. North Carolina at Chapel Hill.

[8] HALL, P., MARRON, J. S. and NEEMAN, A. (2005). Geometric representation of high dimen-
sion, low sample size data. J. R. Stat. Soc. Ser. B Stat. Methodol. 67 427–444. MR2155347

[9] JOHN, S. (1971). Some optimal multivariate tests. Biometrika 58 123–127. MR0275568
[10] JOHN, S. (1972). The distribution of a statistic used for testing sphericity of normal distribu-

tions. Biometrika 59 169–173. MR0312619
[11] JOHNSTONE, I. M. (2001). On the distribution of the largest eigenvalue in principal compo-

nents analysis. Ann. Statist. 29 295–327. MR1863961

http://www.ams.org/mathscinet-getitem?mr=2410023
http://www.ams.org/mathscinet-getitem?mr=2165575
http://www.ams.org/mathscinet-getitem?mr=2279680
http://www.ams.org/mathscinet-getitem?mr=2178042
http://www.ams.org/mathscinet-getitem?mr=1091849
http://www.ams.org/mathscinet-getitem?mr=2155347
http://www.ams.org/mathscinet-getitem?mr=0275568
http://www.ams.org/mathscinet-getitem?mr=0312619
http://www.ams.org/mathscinet-getitem?mr=1863961


4130 S. JUNG AND J. S. MARRON

[12] JOHNSTONE, I. M. and LU, A. Y. (2004). Sparse principal component analysis. Unpublished
manuscript.

[13] KATO, T. (1995). Perturbation Theory for Linear Operators. Springer, Berlin. (Reprint of the
1980 edition.) MR1335452

[14] KOLMOGOROV, A. N. and ROZANOV, Y. A. (1960). On strong mixing conditions for station-
ary Gaussian processes. Theory Probab. Appl. 5 204–208.

[15] LIU, Y., HAYES, D. N., NOBEL, A. and MARRON, J. S. (2008). Statistical significance of
clustering for high dimension low sample size data. J. Amer. Statist. Assoc. 103 1281–
1293.

[16] PAUL, D. (2007). Asymptotics of sample eigenstructure for a large dimensional spiked covari-
ance model. Statist. Sinica 17 1617–1642. MR2399865

[17] RAO, C. R. (1973). Linear Statistical Inference and Its Applications, 2nd ed. Wiley, New York.
MR0346957

DEPARTMENT OF STATISTICS

AND OPERATIONS RESEARCH

UNIVERSITY OF NORTH CAROLINA

CHAPEL HILL, NORTH CAROLINA 27599
USA
E-MAIL: sungkyu@email.unc.edu

marron@email.unc.edu

http://www.ams.org/mathscinet-getitem?mr=1335452
http://www.ams.org/mathscinet-getitem?mr=2399865
http://www.ams.org/mathscinet-getitem?mr=0346957
mailto:sungkyu@email.unc.edu
mailto:marron@email.unc.edu

	Introduction and summary
	General setting

	HDLSS asymptotic behavior of the sample covariance matrix
	Geometric representation of HDLSS data
	Consistency and strong inconsistency of PC directions
	Criteria for consistency or strong inconsistency of the first PC direction
	Generalizations
	Main theorem
	Corollaries to the main theorem
	Limiting distributions of corresponding eigenvalues

	Proofs
	Proof of Theorem 1
	Proofs of Lemma 1 and Theorem 2
	Proof of Lemma 1
	Proof of Theorem 2

	Proof of Corollary 1
	Proof of Corollary 2
	Proof of Corollary 3

	Acknowledgments
	References
	Author's Addresses

