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We consider the statistical experiment given by a sample y(1), . . . , y(n)

of a stationary Gaussian process with an unknown smooth spectral density f .
Asymptotic equivalence, in the sense of Le Cam’s deficiency �-distance,
to two Gaussian experiments with simpler structure is established. The first
one is given by independent zero mean Gaussians with variance approxi-
mately f (ωi), where ωi is a uniform grid of points in (−π,π) (nonparamet-
ric Gaussian scale regression). This approximation is closely related to well-
known asymptotic independence results for the periodogram and correspond-
ing inference methods. The second asymptotic equivalence is to a Gaussian
white noise model where the drift function is the log-spectral density. This
represents the step from a Gaussian scale model to a location model, and also
has a counterpart in established inference methods, that is, log-periodogram
regression. The problem of simple explicit equivalence maps (Markov ker-
nels), allowing to directly carry over inference, appears in this context but is
not solved here.

1. Introduction and main results. Estimation of the spectral density f (ω),
ω ∈ [−π,π ], of a stationary process is an important and traditional problem of
mathematical statistics. We observe a sample y(n) = (y(1), . . . , y(n))′ from a real
Gaussian stationary sequence y(t) with Ey(t) = 0 and autocovariance function
γ (h) = Ey(t)y(t + h). Consider the spectral density, defined on [−π,π ] by

f (ω) = 1

2π

∞∑
h=−∞

γ (h) exp(ihω),(1.1)

where it is assumed that
∑∞

h=−∞ γ 2(h) < ∞. Let �n be the n × n Toeplitz covari-
ance matrix associated with γ (·), that is, the matrix with entries

(�n)j,k = γ (k−j) =
∫ π

−π
exp

(
i(k−j)ω

)
f (ω)dω, j, k = 1, . . . , n.(1.2)
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Write �n(f ) for the covariance matrix corresponding to spectral density f and
note that y(n) has a multivariate normal distribution Nn(0,�n(f )). Let � be a
nonparametric set of spectral densities to be described below. We are interested in
the approximation of the statistical experiment

En = (Nn(0,�n(f )), f ∈ �),(1.3)

in the sense of Le Cam’s deficiency pseudodistance �(·, ·); see the end of this
section for a precise definition. The statistical interpretation of the Le Cam distance
is as follows. For two experiments E and F having the same parameter space,
�(E , F ) < ε implies that for any decision problem with loss bounded by 1, and
any statistical procedure with the experiment E , there is a (randomized) procedure
with F , the risk of which evaluated in F nearly matches (within ε) the risk of the
original procedure evaluated in E . In this statement the roles of E and F can also
be reversed. Two sequences, En and Fn, are said to be asymptotically equivalent if
�(En, Fn) → 0.

As a guide to what can be expected, consider first the case where fϑ , ϑ ∈ 
, is
a smooth parametric family of spectral densities. Assume that 
 is a real interval;
under some regularity conditions, the model is well known to fulfill the standard
LAN conditions with localization rate n−1/2 and normalized Fisher information
at ϑ ,

1

4π

∫ π

−π

(
∂

∂ϑ
logfϑ(ω)

)2

dω

(Davies [13], Dzhaparidze [15], Chapter I.3, cf. also the discussion in van der
Vaart [32], Example 7.17). Consider the parametric Gaussian white noise model
where the signal is the log-spectral density,

dZω = logfϑ(ω)dω + 2π1/2n−1/2 dWω, ω ∈ [−π,π ],(1.4)

and note that in the family (fϑ,ϑ ∈ 
), this model has the same asymptotic Fisher
information. This is in agreement with the LAN result for the spectral density
model, but it suggests that the above white noise approximation might also be true
for larger (i.e., nonparametric) spectral density classes �.

As a second piece of evidence for the white noise approximation in the nonpara-
metric case, we take known results about the approximate spectral decomposition
of the Toeplitz covariance matrix �n(f ). It is a classical difficulty in time series
analysis that the exact eigenvalues and eigenvectors of �n(f ) cannot easily be
found and used for inference about f ; in particular, the eigenvectors depend on f .
However, for an approximation which is a circulant matrix [denoted �̃n(f ) be-
low], the eigenvectors are independent of f and the eigenvalues are approximately
f (ωj ), where ωj are the points of an equispaced grid of size n in [−π,π ]. If the
approximation by �̃n(f ) were justified, one could apply an orthogonal transfor-
mation to the data y(n) and obtain a Gaussian scale model,

zj = f 1/2(ωj )ξj , j = 1, . . . , n,(1.5)
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where ξj are independent standard normal. For this model, nonparametric asymp-
totic equivalence theory was developed in Grama and Nussbaum [18]. Results
there, for certain smoothness classes f ∈ �, with f bounded away from 0, lead to
the nonparametric version of the white noise model (1.4),

dZω = logf (ω)dω + 2π1/2n−1/2 dWω, ω ∈ [−π,π ], f ∈ �.(1.6)

Our proof of asymptotic equivalence will, in fact, be based on the approximation of
the covariance matrix �n(f ) by the circulant �̃n(f ) (cf. Brockwell and Davis [3],
Section 4.5). However, we shall see that this tool does not enable a straightfor-
ward approximation of the data y(n) in total variation or Hellinger distance. There-
fore, our argument for asymptotic equivalence will be somewhat indirect, involv-
ing “bracketing” of the experiment En by upper and lower bounds (in the sense of
informativity) and also a preliminary localization of the parameter space.

To formulate our main result, define a parameter space � of spectral densities
as follows. For M > 0, define a set of real-valued even functions on [−π,π ],

FM = {f :M−1 ≤ f (ω), f (ω) = f (−ω),ω ∈ [−π,π ]}.(1.7)

Thus our spectral densities are assumed uniformly bounded away from 0. Let
L2(−π,π) be the usual (real) L2-space on [−π,π ]; for any f ∈ L2(−π,π), let
γf (k), k ∈ Z, be the Fourier coefficients according to (1.1). For any α > 0 and
M > 0 let

Wα(M) =
{
f ∈ L2(−π,π) :γ 2

f (0) +
∞∑

k=−∞
|k|2αγ 2

f (k) ≤ M

}
.(1.8)

These sets correspond to balls in the periodic fractional Sobolev scale with smooth-
ness coefficient α. Note that for α > 1/2, by an embedding theorem (Lemma 5.6
in [17]), functions in Wα(M) are also uniformly bounded. Define an a priori set
for given α > 0, M > 0,

�α,M = Wα(M) ∩ FM.

Consider also a Gaussian scale model (1.5), where the values f (ωj ) are replaced
by local averages,

Jj,n(f ) = n

∫ j/n

(j−1)/n
f (2πx − π)dx, j = 1, . . . , n.

THEOREM 1.1. Let � be a set of spectral densities contained in �α,M for
some M > 0 and α > 1/2. Then the experiments given by observations:

y(1), . . . , y(n),a stationary centered Gaussian sequence with spectral density f ;
z1, . . . , zn,where zj are independent N(0, Jj,n(f ));
with f ∈ � are asymptotically equivalent.
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Let ‖·‖Bα
p,q

be the Besov norm on the interval [−π,π ] with smoothness index α

(for a summary of analytical topics, cf. Section 5 in the technical report [17]). For
the second main result, we impose a smoothness condition involving this norm for
the α > 1/2 from above, and p = q = 6.

THEOREM 1.2. Let � be a set of spectral densities as in Theorem 1.1, fulfill-
ing additionally ‖f ‖Bα

6,6
≤ M for all f ∈ �. Then the experiments given, respec-

tively, by observations:

z1, . . . , zn,where zj are independent N(0, Jj,n(f ));
dZω = logf (ω)dω + 2π1/2n−1/2 dWω, ω ∈ [−π,π ];

with f ∈ � are asymptotically equivalent.

The proof of this result is in the thesis of Zhou [33]. The present paper is devoted
to the proof of Theorem 1.1.

In nonparametric asymptotic equivalence theory, some constructive results have
recently been obtained, that is, explicit equivalence maps have been exhibited
which allow to carry over optimal decision functions from one sequence of exper-
iments to the other. Brown and Low [4] and Brown, Low and Zhang [5] obtained
constructive results for white noise with drift and Gaussian regression with nonran-
dom and random design. Brown et al. [6] found such equivalence maps (Markov
kernels) for the i.i.d. model on the unit interval (density estimation) and the model
of Gaussian white noise with drift (cf. also Carter [7]). The theoretical (noncon-
structive) variant of this result had earlier been established in [26], in the sense of
an existence proof for pertaining Markov kernels. This indirect approach relied on
the well-known connection to likelihood processes of experiments (cf. Le Cam and
Yang [23]). In the present paper, the proof of Theorem 1.1 is of nonconstructive
type, using a variety of methods for bounding the �-distance between the time
series experiment and the model of independent zero mean Gaussians. Similarly,
the proof of Theorem 1.2 in Zhou [33] is nonconstructive, but it appears likely in
that a second step, relatively simple “workable” equivalence maps can be found,
at least for the case of Theorem 1.1 which is related to the classical result about
asymptotic independence of discrete Fourier transforms.

To further discuss the context of the main results, we note the following points:
1. Asymptotic independence of discrete Fourier transforms. Let

dn(ω) =
n∑

k=1

exp(−ikω)y(k), ω ∈ (−π,π),

be the discrete Fourier transform of the time series y(1), . . . , y(n). Assume n is
uneven and let ηj be complex standard normal variables. It is well known that for
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the Fourier frequencies ωj = 2πj/n, j = 1, . . . , (n − 1)/2 in (0, π), there is an
asymptotic distribution

(πn)−1/2 dn(ωj ) ≈ exp(iωj )f
1/2(ωj )ηj(1.9)

and the values are asymptotically uncorrelated for distinct ωj , ωk . For a precise
formulation, see relation (2.12) below, or [3], Proposition 4.5.2. This fact is the
basis for many inference methods (cf. Dahlhaus and Janas [11]; see also Lahiri
[21] for an extended discussion of the asymptotic independence). A linear trans-
formation to n − 1 independent real normals, and adding a real normal according
to (2πn)−1/2dn(0) ≈ N(0, f (0)) suggests the Gaussian scale model (1.5).

2. Log-periodogram regression. Consider also the periodogram

In(ω) = 1

2πn
|dn(ω)|2.

Note the equality in distribution |ηj |2 ∼ χ2
2 ∼ 2ej , where ej is standard expo-

nential. As a consequence of the above result about dn(ωj ), we have for j =
1, . . . , (n − 1)/2,

In(ωj ) ≈ f (ωj )ej(1.10)

with asymptotic independence. Assuming this model is exact, taking a logarithm
gives rise to the inference method of log-periodogram regression (for an account,
cf. Fan and Gijbels [16], Section 6.4).

3. The Whittle approximation. This is an approximation to −n−1 times the log-
likelihood of the time series y(1), . . . , y(n). In a parametric model fϑ , ϑ ∈ 
,
with multivariate normal law Nn(0,�n(fϑ)), computation of the MLE involves
inverting the covariance matrix �n(fϑ), which is difficult since both eigenvectors
and eigenvalues depend on ϑ in general. Replacing �−1

n (fϑ) by �n(1/4π2fϑ) and
using an approximation to n−1 log�n(fϑ) leads to an expression LW(f )+ log 2π ,
where

LW(f ) = 1

4π

∫ π

−π

(
logfϑ(ω) + In(ω)

fϑ(ω)

)
dω(1.11)

is the Whittle likelihood (cf. Dahlhaus [10] for a brief exposition and references).
A closely related expression is obtained by assuming the model (1.10) exact: then
−n−1 times the log-likelihood is

LW
n (f ) = n−1

(n−1)/2∑
j=1

(
logfϑ(ωj ) + In(ωj )

fϑ(ωj )

)
,

that is, a discrete approximation to (1.11). For applications of the Whittle likeli-
hood to nonparametric inference, confer Dahlhaus and Polonik [12].
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4. Asymptotics for LW(f ). The accuracy of the Whittle approximation has been
described as follows (Coursol and Dacunha-Castelle [9], Dzhaparidze [15], Theo-
rem 1, page 52): let Ln(f ) be the log-likelihood in the experiment (1.3); then

Ln(f ) = −nLW(f ) − n log 2π + OP (1),(1.12)

uniformly over f ∈ �1/2,M . This justifies use of LW(f ) as a contrast function, for
example, it yields asymptotic efficiency of the Whittle MLE in parametric models
([15], Chapter II), but falls short of providing asymptotic equivalence in the Le
Cam sense. Indeed, if (1.12) were true with oP (1) in place of OP (1) and with
LW(f ) replaced by LW

n (f ) [on a suitable common probability space for Ln(f )

and LW
n (f )], then this would already imply total variation equivalence, up to an

orthogonal transform, of the exact model (1.10) with f ∈ �1/2,M (via the Scheffé
lemma argument of Delattre and Hoffmann [14]). In Section 2 below [cf. relation
(2.18)], we note a corresponding negative result, essentially, that this total variation
approximation over f ∈ �1/2,M does not take place.

Define the Whittle measure as the law of the sample y(n) when (1.9) holds ex-
actly, such that dn(ωj )j=1,...,(n−1)/2 are independent centered Gaussian. Choud-
houri, Ghosal and Roy [8] establish that under some smoothness conditions on f ,
the Whittle measure is contiguous to the original law of y(n), with some decision
theoretic consequences. A further discussion of this result in the present context
can be found at the end of Section 2.

5. Conditions for Theorem 1.2. For a narrower parameter space, that is, a Hölder
ball with smoothness index α > 1/2, the result of Theorem 1.2 has been proved
in [18]. Note that the Sobolev balls Wα(M) figuring in Theorem 1.1 are natural pa-
rameter sets of spectral densities since the smoothness condition is directly stated
in terms of the autocovariance function γf (·). The Besov balls Bα

p,p(M), given in
terms of the norm ‖ ·‖Bα

p,p
, are intermediate between L2-Sobolev and Hölder balls.

For the white noise approximation of the i.i.d. (density estimation) model, Brown
et al. [6] succeeded in weakening the Hölder ball condition in [26] to a condition
that � is compact both in the Besov spaces B

1/2
2,2 and B

1/2
4,4 on the unit interval.

This is immediately implied by � ⊂ Bα
4,4(M) for some α > 1/2. Our condition

for Theorem 1.2 is slightly stronger, that is, � ⊂ Bα
6,6(M) for some α > 1/2. In

Remark 5.8 of the technical report [17], we note a sufficient condition in terms
of the autocovariance function γf (·), that is, we give a description of the periodic
version of the Besov ball.

Throughout this paper, we adopt the notation that C represents a constant inde-
pendent of n and the parameter (spectral density) f ∈ �, and that the value of C

may change at each occurrence, even on the same line.

Relations between experiments. All measurable sample spaces are assumed
to be Polish (complete separable) metric spaces equipped with their Borel sigma
algebra. For measures P, Q on the same sample space, let ‖P −Q‖TV be the total
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variation distance. For the general case, where P, Q are not necessarily on the
same sample space, suppose K is a Markov kernel such that KP is a measure on
the same sample space as Q. In that case, ‖Q − KP‖TV is defined and will be
used as generic notation for a Markov kernel K .

Consider now experiments (families of measures) F = (Qf ,f ∈ �) and E =
(Pf , f ∈ �), with the same parameter space �. All experiments here are assumed
dominated by a sigma-finite measure on their respective sample space. If E and F
are on the same sample space, define their total variation distance,

�0(E , F ) = sup
f ∈�

‖Qf − Pf ‖TV.

In the general case, the deficiency of E with respect to F is defined as

δ(E , F ) = inf
K

sup
f ∈�

‖Qf − KPf ‖TV,

where inf extends over all appropriate Markov kernels. Le Cam’s pseudodistance
�(·, ·) between E and F then is

�(E , F ) = max(δ(E , F ), δ(F , E )).

Furthermore, we will use the following notation involving experiments E , F or
sequences of such En = (Pn,f , f ∈ �) and Fn = (Qn,f , f ∈ �).

Notation.

E � F (F more informative than E ): δ(F , E ) = 0

E ∼ F (equivalent): �(E , F ) = 0

En 
 Fn (asymptotically total variation equivalent): �0(Fn, En) → 0

En � Fn (Fn asymptotically more informative than En): δ(Fn, En) → 0

En ≈ Fn (asymptotically equivalent): �(Fn, En) → 0

Note that “more informative” above is used in the sense of a semi-ordering, that
is, its actual meaning is “at least as informative.” We shall also write the relation

 in a less formal way between data vectors such as x(n) 
 y(n), if it is clear from
the context which experiments the data vectors represent.

2. The periodic Gaussian experiment. From now on, we shall assume that
n is uneven. Our argument for asymptotic equivalence is such that it easily allows
extension to the case of general sequences n → ∞ (cf. Remark 4.10 for details).

Recall that the covariance matrix �n = �n(f ) has the Toeplitz form (�n)j,k =
γ (k − j), j, k = 1, . . . , n, that is,

�n =

⎛
⎜⎜⎜⎜⎝

γ (0) γ (1) · · · γ (n − 2) γ (n − 1)

γ (1) γ (0) · · · · · · γ (n − 2)

· · · · · · · · · · · · · · ·
γ (n − 2) · · · · · · γ (0) γ (1)

γ (n − 1) γ (n − 2) · · · γ (1) γ (0)

⎞
⎟⎟⎟⎟⎠ .
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Following [3], Section 4.5, we shall define a circulant matrix approximation by

�̃n =

⎛
⎜⎜⎜⎜⎝

γ (0) γ (1) · · · γ (2) γ (1)

γ (1) γ (0) · · · · · · γ (2)

· · · · · · · · · · · · · · ·
γ (2) · · · · · · γ (0) γ (1)

γ (1) γ (2) · · · γ (1) γ (0)

⎞
⎟⎟⎟⎟⎠ ,

where in the first row, the central element and the one following it coincide with
γ ((n − 1)/2). More precisely, for given uneven n, define a function on integers h

with |h| < n,

γ̃(n),f (h) =
{

γf (h), |h| ≤ (n − 1)/2,
γf (n − |h|), (n + 1)/2 ≤ |h| ≤ n − 1,

and set

(�̃n)j,k(f ) = γ̃(n),f (k − j), j, k = 1, . . . , n.(2.1)

We shall also write �̃n(f ) for the corresponding n × n matrix, or simply �̃n and
γ̃(n)(h), if the dependence on f is understood. Define

ωj = 2πj

n
, |j | ≤ (n − 1)/2.(2.2)

It is well known (see [3], Relation 4.5.5) that the spectral decomposition of �̃n can
be described as follows. We have

�̃n = ∑
|j |≤(n−1)/2

λj uj u′
j ,(2.3)

where λj are real eigenvalues, and uj are real orthonormal eigenvectors. The
eigenvalues are

λj = ∑
|k|≤(n−1)/2

γ (k) exp(−iωjk), |j | ≤ (n − 1)/2.

Note that λj = λ−j , j �= 0, and that the λj are approximate values of 2πf in the
points ωj . Indeed, define

f̃n(ω) = 1

2π

∑
|k|≤(n−1)/2

γ (k) exp(ikω), ω ∈ [−π,π ],(2.4)

a truncated Fourier series approximation to f ; then f̃n is an even function on
[−π,π ] and

λj = 2πf̃n(ωj ), |j | ≤ (n − 1)/2.(2.5)
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The eigenvectors are:

u′
0 = n−1/2(1, . . . ,1);(2.6)

u′
j = (2/n)1/2(

1, cos(ωj ), cos(2ωj ), . . . , cos
(
(n − 1)ωj

));(2.7)

u′−j = (2/n)1/2(
0, sin(ωj ), sin(2ωj ), . . . , sin

(
(n − 1)ωj

))
,

(2.8)
j = 1, . . . , (n − 1)/2.

In our setting, the circulant matrix �̃n is positive definite for n large enough. In-
deed, Lemma 5.6 in [17] implies that f̃n ≥ M−1/2 uniformly over f ∈ �, for
n large enough, so that �̃n(f ) is a covariance matrix. Define the experiment, in
analogy to (1.3),

Ẽn = (
Nn(0, �̃n(f )), f ∈ �

)
(2.9)

with data ỹ(n), say. The sequence ỹ(n) may be called a “periodic process” since it
can be represented in terms of independent standard Gaussians ξj , as a finite sum

ỹ(n) = ∑
|j |≤(n−1)/2

λ
1/2
j uj ξj ,(2.10)

where the vector uj describes a deterministic oscillation [cf. (2.6)–(2.8)]. Accord-
ingly, Ẽn will be called a periodic Gaussian experiment.

The periodic process ỹ(n) is known to approximate the original time series y(n)

in the following sense. Define the n × n-matrix

Un = (
u−(n−1)/2, . . . ,u(n−1)/2

)
(2.11)

and consider the transforms

z(n) = (2π)−1/2U ′
ny

(n), z̃(n) = (2π)−1/2U ′
nỹ

(n).

Denote Cov(z(n)), the covariance matrix of the random vector z(n). Then we have
([3], Proposition 4.5.2), for given f ∈ �,

sup
1≤i,j≤n

∣∣Cov
(
z(n))

i,j − Cov
(
z̃(n))

i,j

∣∣ → 0 as n → ∞.(2.12)

Since Cov(z̃(n)) is diagonal with diagonal elements λj/2π , this means that the
elements of z(n) are approximately uncorrelated for large n.

Note that z̃(n) can also be written, in accordance with (2.10) and (2.5),

z̃(n) = (f̃ 1/2
n (ωj )ξj )|j |≤(n−1)/2,(2.13)

which is nearly identical with the Gaussian scale model (1.5). Thus the question
appears whether the approximation (2.12) can be strengthened to a total variation
approximation of the respective laws L(z(n)|f ) and L(z̃(n)|f ).
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The answer to that is negative; let us introduce some notation. For n×n matrices
A = (ajk), define the Euclidean norm ‖A‖ by

‖A‖2 := tr[A′A] =
n∑

j=1

n∑
k=1

a2
jk.

If A is symmetric, we denote the largest and smallest eigenvalues by λmax(A),
λmin(A). For later use, we also define the operator norm of (not necessarily sym-
metric) A by

|A| := (λmax(A
′A))1/2.

If A is symmetric nonnegative definite, then |A| = λmax(A). The following lemma
shows that the Hellinger distance between the laws of y(n) and ỹ(n) depends cru-
cially on the total Euclidean distance ‖�n(f ) − �̃n(f )‖ between the covariance
matrices, so that an element-wise convergence as in (2.12) is not enough.

LEMMA 2.1. Let A,B be n × n covariance matrices, and suppose that for
some M > 1,

0 < M−1 ≤ λmin(A) and λmax(A) ≤ M.

Then there exist ε = εM > 0 and K = KM > 1 not depending on A,B and n such
that ‖A − B‖ ≤ ε implies

K−1‖A − B‖2 ≤ H 2(Nn(0,A),Nn(0,B)) ≤ K‖A − B‖2,

where H(·, ·) is the Hellinger distance.

The proof can be found in [17], Section 5. To apply this lemma, set A = �n(f ),
B = �̃n(f ) and note that, since f ∈ � is bounded and bounded away from 0 (both
uniformly over f ∈ �), the condition on the eigenvalues of �n(f ) is fulfilled, also
uniformly over f ∈ � ([3], Proposition 4.5.3). We shall see that the expression
‖�n(f ) − �̃n(f )‖2 is closely related to a Sobolev-type seminorm for smoothness
index 1/2. For any f ∈ L2(−π,π) given by (1.1), set

|f |22,α :=
∞∑

k=−∞
|k|2αγ 2

f (k), ‖f ‖2
2,α := γ 2

f (0) + |f |22,α,(2.14)

provided the right-hand side is finite; the Sobolev ball Wα(M) given by (1.8) is
then described by ‖f ‖2

2,α ≤ M . Also, for any natural m, define a finite-dimensional
linear subspace of L2(−π,π)

Lm =
{
f ∈ L2(−π,π) :

∫
f (ω) exp(ikω)dω = 0, |k| > m

}
.
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LEMMA 2.2. (i) For any f ∈ � we have

‖�n(f ) − �̃n(f )‖2 ≤ 2|f |22,1/2,(2.15)

and for f ∈ � ∩ L(n−1)/2

|f |22,1/2 = ‖�n(f ) − �̃n(f )‖2.

(ii) For any f,f0 ∈ � we have∥∥�n(f ) − �n(f0) − (
�̃n(f ) − �̃n(f0)

)∥∥2 ≤ 2|f − f0|22,1/2.(2.16)

PROOF. (i) From the definition of �n(f ) and �̃n(f ) in terms of γ (·), γ̃(n)(·),
we immediately obtain

‖�n(f ) − �̃n(f )‖2 = ∑
|k|≤n−1

(n − |k|)(γ (k) − γ̃(n)(k)
)2

=
n−1∑

|k|=(n+1)/2

(n − |k|)(γ (k) − γ (n − |k|))2

= 2
(n−1)/2∑

k=1

k
(
γ (k) − γ (n − k)

)2(2.17)

≤ 2
(n−1)/2∑

k=1

2k
(
γ 2(k) + γ 2(n − k)

)

≤ 4
n−1∑
k=1

kγ 2(k) ≤ 2|f |22,1/2.

The first inequality is proved. The second one follows immediately from (2.17).
(ii) Note that for any n, the mapping f → �n(f ) if it is defined by (1.2) for

any f ∈ L2(−π,π) is linear, and the same is true for f → �̃n(f ) defined by (2.1).
Hence

�n(f ) − �n(f0) = �n(f − f0), �̃n(f ) − �̃n(f0) = �̃n(f − f0).

Now the argument is completely analogous to (i), if γ (k) = γf (k) is replaced by
γf −f0(k). �

Our assumption f ∈ �, that is, ‖f ‖2
2,α ≤ M for some α > 1/2, provides an

upper bound M for |f |22,1/2 but does guarantee that this term is uniformly small.

Thus we are not able to utilize Lemma 2.1 to approximate En by Ẽn in Hellinger
distance. In fact, this Hellinger distance approximation does not take place: take a
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fixed m, select f ∈ � ∩ Lm such that ‖f ‖2
2,1/2 < ε with ε from Lemma 2.1 and

use the lower bound in this lemma to show that

H 2(Nn(0,�n(f )),Nn(0, �̃n(f ))) ≥ K−1ε2(2.18)

for all sufficiently large n. Thus the direct approximation of the time series data
y(n) by the periodic process ỹ(n) in total variation distance fails.

However, that does not contradict asymptotic equivalence since the latter al-
lows for a randomization mapping (Markov kernel) applied to ỹ(n) and y(n), re-
spectively, before total variation distance of the laws is taken. We will show the
existence of appropriate Markov kernels in an indirect way, via a bracketing of the
original time series experiment by upper and lower bounds in the sense of infor-
mativity.

Let now En again be the time series experiment (1.3); we shall find an asymp-
totic bracketing, that is, two sequences

◦
El,n,

◦
Eu,n such that

◦
El,n � En �

◦
Eu,n,

and such that both
◦

El,n and
◦

Eu,n are asymptotically equivalent to Ẽn given by (2.9),

and to
◦

En, representing the independent Gaussians z1, . . . , zn in Theorem 1.1.

REMARK (Contiguity of the Whittle measure). Choudhouri, Ghosal and Roy
[8] establish contiguity of the sequence of laws Nn(0,�n(f ) to the sequence
Nn(0, �̃n(f )) as n → ∞. In fact, this is shown for an inessential modification
of the circulant �̃n(f ), where the eigenvalues are 2πf (ωj ) instead of (2.5). Con-
tiguity would be implied by a total variation approximation of the two sequences
of measures, which we have shown to fail in (2.18). On the other hand, contiguity
implies a lack of entire asymptotic separation, which can easily be confirmed by
a Hellinger affinity computation similar to Lemma 2.1. Note that contiguity is a
property of the sequence of binary experiments (Nn(0,�n(f ),Nn(0, �̃n(f ))) for
fixed f (cf. Le Cam and Yang [23], page 20), whereas our result concerns approx-
imation in �-distance of the full nonparametric experiments (Nn(0,�n(f )), f ∈
�) and (Nn(0, �̃n(f )), f ∈ �). Thus neither of these results implies the other.
However, contiguity of the Whittle measure is an interesting fact with possible
application in the problem of simple explicit equivalence maps.

3. Upper informativity bracket. The spectral representation (2.10) of the pe-
riodic sequence ỹ(n) = (ỹ(1), . . . , ỹ(n))′ can be written

ỹ(t) = (2π/n)1/2f̃ 1/2
n (0)ξ0

+ 2(π/n)1/2
(n−1)/2∑

j=1

f̃ 1/2
n (ωj ) cos

(
(t − 1)ωj

)
ξj(3.1)

+ 2(π/n)1/2
1∑

j=−(n−1)/2

f̃ 1/2
n (ωj ) sin

(
(t − 1)ωj

)
ξj , t = 1, . . . , n.
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We see that here, ỹ(n) is a one-to-one function ỹ(n) = Uz̃(n) of the n-vector of
independent Gaussians z̃(n) [cf. (2.13)], but the approximation of ỹ(n) to y(n) is
not in the total variation sense [cf. (2.18)]. Now take a limit in (3.1) for n → ∞
and fixed t , and observe that (heuristically) this yields the spectral representation
of the original stationary sequence y(t),

y(t + 1) =
∫
[0,π ]

√
2f 1/2(ω) cos(tω) dBω

(3.2)
+

∫
[−π,0]

√
2f 1/2(ω) sin(tω) dBω, t = 0,1, . . . ,

where dBω is standard Gaussian white noise on [−π,π ] (cf. [3], Problem 4.31).
Here for any n, the vector y(n) = (y(1), . . . , y(n))′ is represented as a functional
of the continuous time process

dZ∗
ω = f 1/2(ω)dBω, ω ∈ [−π,π ].

Thus a completely observed process Z∗
ω, ω ∈ [−π,π ] would represent an upper

informativity bracket for any sample size n, but this experiment is statistically
trivial since the observation here identifies the parameter f .

Our approach now is to construct an intermediate series ỹ(m,n) of size n in which
the uniform size n grid of points ωj , |j | ≤ (n−1)/2, is replaced by a finer uniform
grid of m > n points in the representation (3.1). Thus ỹ(n,m) is a functional, not of
n independent Gaussians, but of m > n of these; call their vector z̃(m). The random
vector z̃(m) now represents an upper informativity bracket which remains nontrivial
(asymptotically) if m − n → ∞ not too quickly. An equivalent description of that
idea is as follows. Consider m > n and the periodic process ỹ(m) given by (2.10),
where the original sample size n is replaced by m. Then define ỹ(n,m) as the vector
of the first n components of ỹ(m). The law of ỹ(n,m) is Nn(0, �̃n,m(f )), where
�̃n,m(f ) is the upper left n × n submatrix of �̃m(f ).

We now easily observe the improved approximation quality of ỹ(n,m) for y(n).
Assume that m is also uneven. First note that for (m+ 1)/2 ≥ n, we already obtain
�̃n,m(f ) = �n(f ). This follows immediately from the definition of the circular
matrix �̃m(f ) via the autocovariance function γ̃(m)(·). However, we would like
to limit the increase of sample size, that is, require m/n → 1; therefore, in what
follows, we assume m < 2n − 1.

LEMMA 3.1. Assume m is uneven, n < m < 2n − 1. Then for any f ∈ � we
have

‖�n(f ) − �̃n,m(f )‖2 ≤ 4(m − n + 1)1−2α|f |22,α

and hence if m = mn is such that m − n → ∞ as n → ∞ then

sup
f ∈�

H 2(Nn(0,�n(f )),Nn(0, �̃n,m(f ))) → 0.(3.3)
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PROOF. From the definition of �n(f ) and �̃n,m(f ), we immediately obtain

‖�n(f ) − �̃n,m(f )‖2 = ∑
|k|≤n−1

(n − |k|)(γ (k) − γ̃(m)(k)
)2

= 2
n−1∑

k=(m+1)/2

(n − k)
(
γ (k) − γ (m − k)

)2

≤ 4
n−1∑

k=(m+1)/2

(n − k)
(
γ 2(k) + γ 2(m − k)

)
.

Now note that for m > n, the relation (m+1)/2 ≤ k ≤ n−1 implies k ≥ (n+1)/2,
and therefore, n− k < k, and note also, n− k < m− k. We obtain an upper bound,

≤ 4
n−1∑

k=(m+1)/2

kγ 2(k) + 4
n−1∑

k=(m+1)/2

(m − k)γ 2(m − k)

= 4
n−1∑

k=(m+1)/2

kγ 2(k) + 4
(m−1)/2∑

k=m−n+1

kγ 2(k) = 4
n−1∑

k=m−n+1

kγ 2(k)

≤ 4(m − n + 1)1−2α
n−1∑

k=m−n+1

k2αγ 2(k) ≤ 4(m − n + 1)1−2α|f |22,α,

where α > 1/2. This proves the first relation. For the second, recall that |f |22,α ≤ M

for f ∈ �, and invoke Lemma 2.1 together with the subsequent remark on the
eigenvalues of �n(f ). �

Define the experiment

Ẽn,m = (
Nn(0, �̃n,m(f )), f ∈ �

)
,

then (3.3) implies En 
 Ẽn,m if m − n → ∞. Moreover, we have Ẽn,m � Ẽm by
definition, thus

En � Ẽm

in case m − n → ∞. We know that Ẽm is equivalent [via the linear transformation
(2π)−1/2U ′] to observing data z̃(n) given by (2.13). Define

◦
En by

◦
En = (

Nn(0,
◦
�n(f )), f ∈ �

)
,(3.4)

where
◦
�n(f ) = Diag(Jj,n(f ))j=1,...,n.

Note that the data z1, . . . , zn in Theorem 1.1 are represented by
◦

En. We shall also
write

◦
z(n) for their vector, so that L(

◦
z(n)|f ) = Nn(0,

◦
�n(f )).
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PROPOSITION 3.2. We have
◦

En ≈ Ẽn, with corresponding equivalence maps
(Markov kernels) as follows. Let ỹ(n) and

◦
z(n) be data in Ẽn and

◦
En, respectively.

Then, for the orthogonal matrix Un given by (2.11),

(2π)−1/2U ′
nỹ

(n) 
 ◦
z(n) and (2π)1/2Un

◦
z(n) 
 ỹ(n).

PROOF. Note that our first claim can also be written z̃(n) 
 ◦
z(n), where z̃(n) is

from (2.13). To describe L(z̃(n)|f ), define δj = f̃n(ωj−(n+1)/2) for j = 1, . . . , n

and a n × n covariance matrix

�n(f ) = Diag(δj )j=1,...,n.

Then L(z̃(n)|f ) = Nn(0,�n(f )). The conditions on f (see also Lemma 5.6 in the
technical report [17]) imply that uniformly over j = 1, . . . , n,

Jj,n(f ) ≥ C−1, Jj,n(f ) ≤ C

for some C > 0 not depending on f and n. Now apply Lemma 2.1 to obtain

H 2(Nn(0,
◦
�n(f )),Nn(0,�n(f ))) ≤ C‖ ◦

�n(f ) − �n(f )‖2

= C

n∑
j=1

(
Jj,n(f ) − δj

)2
.

By Lemma 5.7 in [17] this is o(1) uniformly in f . This implies the first relation 
.
The second relation is an obvious consequence. �

For a choice m = n+rn, rn = 2[log(n/2)], we immediately obtain the following
result. Define the upper bracket Gaussian scale experiment

◦
Eu,n by

◦
Eu,n := ◦

En+rn .(3.5)

COROLLARY 3.3. Consider experiments En and
◦

Eu,n given, respectively, by
(1.3) and (3.5), (3.4) with parameter space � = �α,M , where M > 0, α > 1/2.
Then as n → ∞,

En �
◦

Eu,n.

4. Lower informativity bracket. The upper bound (2.15) for the Hellinger
distance of y(n) and the periodic process ỹ(n) which does not tend to 0, can be
improved in a certain sense if f is restricted to a shrinking neighborhood, �n(f0)

say, of some f0 ∈ �. At this stage, f0 is assumed known, so the covariance matri-
ces �n(f ) and �̃n(f ) can be used for a linear transformation of y(n) which brings
it closer to the periodic process ỹ(n). The linear transformation of y(n), which de-
pends on f0, can be construed as a Markov kernel mapping which yields asymp-
totic equivalence En(f0) ≈ Ẽn(f0), if these are the versions of En and Ẽn with f

restricted to f ∈ �n(f0).
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Such a local asymptotic equivalence can be globalized in a standard way (cf.
[18, 26]) if sample splitting were available in both global experiments En and Ẽn.
For the original stationary process, that would mean that observing a series of size
n is equivalent to observing two independent series of size approximately n/2. We
will establish an asymptotic version of sample splitting for y(n) which involves
omitting a fraction of the sample in the center of the series, that is, omitting terms
with index near n/2. The ensuing loss of information means that the globaliza-
tion procedure only yields a lower asymptotic informativity bracket for En, that
is, a sequence Ẽ #

3,n such that Ẽ #
3,n � En. The experiment Ẽ #

3,n will be made up of
two independent periodic processes with the same parameter f and with a sam-
ple size m ∼ (n − logn)/2. Each of these is equivalent to a Gaussian scale model
(2.13) with n replaced by m; further arguments show that observing these two is
asymptotically equivalent to a Gaussian scale model

◦
El,n := ◦

E2m with grid size
2m ∼ n − logn.

A crucial step now consists in showing that in the Gaussian scale models
◦

En,
the grid size n can be replaced by n − logn or n + logn. This step is an analog,
for the special regression model, of the well-known reasoning in the i.i.d. case that
additional observations may be asymptotically negligible (cf. Mammen [25] for
parametric i.i.d. models, Low and Zhou [24] for the nonparametric case). Thus it
follows that the lower and upper bracketing experiments

◦
El,n,

◦
Eu,n are both asymp-

totically equivalent to
◦

En, and the relations
◦

El,n � En �
◦

Eu,n,

then imply En ≈ ◦
En, that is, Theorem 1.1.

4.1. Local experiments. Let κn be a sequence κn ↘ 0, fixed in the sequel.
A specific choice of κn will be made in Section 4.4 below [see (4.11)]. Let ‖ · ‖∞
be the sup-norm for real functions defined on [−π,π ], that is,

‖f ‖∞ = sup
ω∈[−π,π ]

|f (ω)|

and for f0 ∈ � define shrinking neighborhoods

�n(f0) = {f ∈ � :‖f − f0‖∞ + ‖f − f0‖2,1/2 ≤ κn}.(4.1)

The restricted experiments are

En(f0) = (
Nn(0,�n(f )), f ∈ �n(f0)

)
,

Ẽn(f0) = (
Nn(0, �̃n(f )), f ∈ �n(f0)

)
.

For shortness write � = �n(f ), �0 = �n(f0) and similarly �̃ = �̃n(f ), �̃0 =
�̃n(f0). Define a matrix

Kn = Kn(f0) = �̃
1/2
0 �

−1/2
0(4.2)
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and in experiment En(f0), consider transformed observations

y̌(n) := Kn(f0)y
(n).

Consider also the experiment E ∗
n(f0) given by the laws of y̌(n), that is,

E ∗
n(f0) = (

Nn(0,Kn(f0)�n(f )K ′
n(f0)), f ∈ �n(f0)

)
.

Clearly En(f0) ∼ E ∗
n(f0); the next result proves that E ∗

n(f0) 
 Ẽn(f0), and thus
En(f0) ≈ Ẽn(f0).

LEMMA 4.1. We have

sup
f0∈�

sup
f ∈�n(f0)

H 2(Nn(0,Kn(f0)�n(f )K ′
n(f0),Nn(0, �̃n(f )) ≤ Cκn.

PROOF. In view of Lemma 2.1, it suffices to show that

sup
f ∈�

(
λmax(�̃n) + λ−1

min(�̃n)
) ≤ C(4.3)

and that

‖Kn�nK
′
n − �̃n‖2 ≤ Cκn.

Note that

λmax(�̃) = max|j |≤(n−1)/2
|f̃n(ωj )|, λmin(�̃) = min|j |≤(n−1)/2

|f̃n(ωj )|

and that Lemma 5.6. in [17] implies

sup
f ∈�

‖f − f̃n‖∞ → 0.

Hence (4.3) follows immediately from f ∈ �, more specifically, the fact that val-
ues of f are uniformly bounded and bounded away from 0. According to Propo-
sition 4.5.3 in [3], the assumption f ∈ � also implies a corresponding property
for �, that is,

sup
f ∈�

(
λmax(�n) + λ−1

min(�n)
) ≤ C.(4.4)

Note that the eigenvalues of �0 and �̃0 share property (4.3) since f0 ∈ �.

Set G = �
−1/2
0 ��

−1/2
0 and G̃ = �̃

−1/2
0 �̃�̃

−1/2
0 . Since

‖Kn�nK
′
n − �̃n‖ ≤ |�̃0|‖G − G̃‖,

it now suffices to show that

‖G − G̃‖ ≤ Cκn.(4.5)
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To establish (4.5), denote � = � − �0, �̃ = �̃ − �̃0 and observe

‖G − G̃‖ = ‖�−1/2
0 ��

−1/2
0 − �̃

−1/2
0 �̃�̃

−1/2
0 ‖

= ‖�−1/2
0 ��

−1/2
0 − �̃

−1/2
0 �̃�̃

−1/2
0 ‖(4.6)

≤ ‖�−1/2
0 (� − �̃)�

−1/2
0 ‖ + ‖�−1/2

0 �̃�
−1/2
0 − �̃

−1/2
0 �̃�̃

−1/2
0 ‖.

We shall now estimate the two terms on the right-hand side separately. By elemen-
tary properties of eigenvalues, we obtain

‖�−1/2
0 (� − �̃)�

−1/2
0 ‖ ≤ |�−1

0 |‖� − �̃‖,
where |�−1

0 | ≤ C, and according to Lemma 2.2(ii),

‖� − �̃‖2 ≤ 2|f − f0|22,1/2.

Furthermore,

‖�−1/2
0 �̃�

−1/2
0 − �̃

−1/2
0 �̃�̃

−1/2
0 ‖

= ‖(�−1/2
0 − �̃

−1/2
0 )�̃�

−1/2
0 + �̃

−1/2
0 �̃(�

−1/2
0 − �̃

−1/2
0 )‖

≤ 2C|�̃|‖�−1/2
0 − �̃

−1/2
0 ‖ = C|�̃|‖�−1/2

0 (�̃
1/2
0 − �

1/2
0 )�̃

−1/2
0 ‖

≤ C|�̃|‖�1/2
0 − �̃

1/2
0 ‖.

Applying Lemma 5.1 (Section 5.2) in the technical report [17] and Lemma 2.2(i),
we obtain

‖�1/2
0 − �̃

1/2
0 ‖2 ≤ C‖�0 − �̃0‖2 ≤ C|f0|22,1/2.

Here |f0|22,1/2 ≤ |f0|22,α ≤ M . Collecting these estimates yields

‖G − G̃‖2 ≤ C(|f − f0|22,1/2 + |�̃|2).

To complete the proof, it suffices to note that, since �̃ and �̃0 have the same set of
eigenvectors [cf. (2.3) and (2.6)–(2.8)],

|�̃|2 = λmax(�̃ − �̃0)
2 = (2π)2 max|j |≤(n−1)/2

(|f̃n(ωj ) − f̃0,n(ωj )|2)
≤ C‖f̃n − f̃0,n‖2∞ ≤ C‖f − f0‖2∞ + Cn1−2α logn‖f − f0‖2

2,α,

where the last inequality is a consequence of Lemma 5.6 in [17]. Hence |�̃| ≤
Cκn, which establishes (4.5). �
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4.2. Sample splitting. Consider sample splitting for a stationary process: take
the observed y(n) = (y(1), . . . , y(n)) and omit r observations in the center of the
series. Recall that n was assumed uneven; assume now also r to be uneven and set
m = (n−r)/2, then the result is the series y(1), . . . , y(m), y(n−m+1), . . . , y(n).
The total covariance matrix for these reduced data is

�
(m)
n,0 (f ) :=

(
�m(f ) An,m

A′
n,m �m(f )

)
,

where the m × m matrix An,m = An,m(f ) contains only covariances γf (r + 1),

γf (r + 2) and of higher order. In fact, A is the upper right m × m submatrix of
�n(f ), that is,

An,m =
⎛
⎝ · · · γ (n − 2) γ (n − 1)

γ (r + 2) · · · γ (n − 2)

γ (r + 1) γ (r + 2) · · ·

⎞
⎠ .

In the sequel, we set rn = 2[logn/2] + 1, and thus rn ∼ logn, m = (n − rn)/2. In
the corresponding experiment, we denote

E #
0,n = (

N2m

(
0,�

(m)
n,0 (f )

)
, f ∈ �

)
.

Consider also the experiment where two independent stationary series of length m

are observed, y
(m)
1 and y

(m)
2 , say. The corresponding experiment is

E #
1,n := (

N2m

(
0,�

(m)
n,1 (f )

)
, f ∈ �

)
,(4.7)

where

�
(m)
n,1 (f ) :=

(
�m(f ) 0m×m

0m×m �m(f )

)
.

Clearly, we have E #
0,n � En.

PROPOSITION 4.2. E #
0,n 
 E #

1,n.

PROOF. Use Lemma 2.1 to compute the Hellinger distance. Take A = �
(m)
n,1 ;

then the eigenvalues of A are those of �m(f ), so that (4.4) can be invoked. The
squared distance of the covariance matrices �

(m)
n,0 and �

(m)
n,1 is

∥∥�(m)
n,0 − �

(m)
n,1

∥∥2 = 2‖An,m‖2 ≤ 2
n−1∑

k=r+1

(k − r)γ 2(k)

≤ 2
n−1∑

k=r+1

kγ 2(k) ≤ (r + 1)1−2α|f |22,α.

Since rn → ∞, the result follows. �



200 G. K. GOLUBEV, M. NUSSBAUM AND H. H. ZHOU

We have shown that two independent stationary sequences of length m = (n −
rn)/2 are asymptotically less informative than one sequence of length n. Having
obtained a method of sample splitting for stationary sequences (with some loss of
information), we can now use a localization argument to complete the proof of the
lower bound.

4.3. Preliminary estimators. For the globalization procedure, we need exis-
tence of an estimator f̂n, in both of the global experiments En and Ẽn (or

◦
En), such

that f̂n takes values in � and

‖f̂n − f ‖∞ + ‖f̂n − f ‖2,1/2 = op(1)

uniformly over f ∈ �. More specifically, a rate op(κn) with κn from (4.1) is
needed in the above result, but κn has not been selected so far, and will be de-
termined based on the results of this section [cf. (4.11) below]. Select β ∈ (1/2, α)

and consider the norm ‖f ‖2,β according to (2.14). Note that ‖f ‖2,1/2 ≤ C‖f ‖2,β

and that according to Lemma 5.6 in [17], we have ‖f ‖∞ ≤ C‖f ‖2,β ; therefore, it
suffices to show

‖f̂n − f ‖2
2,β = op(1).(4.8)

For this, we shall use a standard truncated orthogonal series estimator and then
modify it to take values in �. The empirical autocovariance function is

γ̂n(k) = 1

n − k

n−k∑
j=1

y(j)y(k + j), k = 0, . . . , n − 1.

We have unbiasedness: Eγ̂n(k) = γf (k). The following two lemmas concerning
this spectral density estimator are elementary; proofs can be found in [17] (cf. also
[28], (VI.4.5–6)).

LEMMA 4.3. For any spectral density f ∈ L2(−π,π), and any k = 0, . . . ,

n − 1,

Var γ̂n(k) ≤ 5

n − k

n−1∑
j=0

γ 2
f (j).

For the orthogonal series estimator, define a truncation index ñ = [n1/(2α+1)]
and set

f̂n(ω) = ∑
|k|≤ñ

γ̂n(k) exp(ikω), ω ∈ [−π,π ].(4.9)

LEMMA 4.4. In the experiment En the estimator f̂n fulfills for any β ∈
(1/2, α), and any γ ∈ (0,

α−β
2α+1)

sup
f ∈�

P (‖f̂n − f ‖2
2,β > n−γ ) → 0.(4.10)



ASYMPTOTIC EQUIVALENCE 201

We now turn to preliminary estimation in the periodic experiment Ẽn with data
vector ỹ(n). Note that this data vector can be construed as coming from a station-
ary sequence with autocoviance function γ̃(n)(·) given by (2.1) for |k| ≤ n − 1 and
γ̃(n)(k) = 0 for |k| > n − 1, that is, the stationary sequence having spectral den-
sity f̃n. Thus if γ̂n(k) again denotes the empirical autocoviance function in this
series, then we can apply Lemma 4.3 to obtain

Var γ̂n(k) ≤ 5

n − k

n−1∑
j=0

γ̃ 2
(n),f (j), k = 0, . . . , n − 1.

Obviously,

n−1∑
k=0

γ̃ 2
(n),f (k) =

(n−1)/2∑
k=0

γ 2
f (k) +

(n−1)/2∑
k=1

γ 2
f (k) ≤ 2‖f ‖2

2.

Now use the estimator (4.9) with ñ as above; since ñ = o((n − 1)/2), we have the
unbiasedness

Eγ̂n(k) = γf (k), k = 0, . . . , ñ.

Thus the proof of the following result is entirely analogous to Lemma 4.4; the
estimator f̂n is also formally the same function of the data.

LEMMA 4.5. In the experiment Ẽn, the estimator f̂n fulfills (4.10) for any
β ∈ (1/2, α) and any γ ∈ (0,

α−β
2α+1).

Finally, consider modifications such that the estimator takes values in �α,M .
Consider the space Wβ = {f ∈ L2(−π,π) :‖f ‖2

2,β < ∞}; this is a periodic frac-
tional Sobolev space which is Hilbert under the norm ‖f ‖2,β . There the set �α,M

is compact and convex; hence there exists a (‖ · ‖2,β -continuous) projection oper-
ator � onto �α,M in Wβ (cf. [2], Definition 1.4.1). Then

‖�(f̂n) − f ‖2,β ≤ ‖f̂n − f ‖2,β .

The modified estimators �(f̂n), thus, again fulfill (4.10). A summary of results in
this section is the following.

PROPOSITION 4.6. In both experiments, En and Ẽn, there are estimators f̂n

taking values in � and fulfilling for any γ ∈ (0,
α−1/2
2α+1 ),

sup
f ∈�

P (‖f̂n − f ‖∞ + ‖f̂n − f ‖2,1/2 > n−γ ) → 0.
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4.4. Globalization. In this section, we denote

Pf,n := L
(
y(n)|f ) = Nn(0,�n(f )), P̃f,n := L

(
ỹ(n)|f ) = Nn(0, �̃n(f )).

Consider again the experiment E #
1,n of (4.7), where two independent stationary

series y
(m)
1 and y

(m)
2 of length m = (n − rn)/2 are observed. In modified notation,

we now write

E #
1,n = Em ⊗ Em = (Pf,m ⊗ Pf,m,f ∈ �).

We shall compare this with the experiments

E #
2,n := Em ⊗ Ẽm = (Pf,m ⊗ P̃f,m, f ∈ �),

E #
3,n := Ẽm ⊗ Ẽm = (P̃f,m ⊗ P̃f,m, f ∈ �).

At this point, select the shrinking rate κn of the neighborhoods �n(f0) [cf. (4.1)]
as

κn = n−γ , γ = α − 1/2

2(2α + 1)
.(4.11)

PROPOSITION 4.7. We have E #
2,n � E #

1,n.

PROOF. We shall construct a sequence of Markov kernels Mn such that

sup
f ∈�

H 2(
Pf,m ⊗ P̃f,m,Mn(Pf,m ⊗ Pf,m)

) → 0.

Define Mn as follows: given y
(m)
1 and y

(m)
2 , and A, a measurable subset of R

2m,
set

Mn

(
A,y

(m)
1 , y

(m)
2

) = 1A

(
y

(m)
1 ,Km

(
f̂m

(
y

(m)
1

))
y

(m)
2

)
,

where Km(f ) is the matrix defined by (4.2), that is, for f ∈ � by

Km(f ) = �̃1/2
m (f )�−1/2

m (f )

and f̂m is the estimator in Em of Proposition 4.6 applied to data y
(m)
1 . Thus the

Markov kernel Mn is in fact a deterministic map, that is, given y
(m)
1 , y

(m)
2 , it defines

a one-point measure on R
2m concentrated in (y

(m)
1 ,Km(f̂m(y

(m)
1 ))y

(m)
2 ). Thus the

law Mn(Pf,m ⊗Pf,m) is the joint law of y
(m)
1 and Km(f̂m(y

(m)
1 ))y

(m)
2 under f . The

latter, we split up into the marginal law of y
(m)
1 , that is, Pf,m and the conditional

law of Km(f̂m(y
(m)
1 ))y

(m)
2 given y

(m)
1 ; write P K

f,m|y(m)
1 for the latter. We have

P K
f,m|y(m)

1 = Nn(0,K�m(f )K ′) for K = Km

(
f̂m

(
y

(m)
1

))
.

Now clearly,

H 2(
Pf,m ⊗ P̃f,m,Mn(Pf,m ⊗ Pf,m)

) = Ef H 2(
P̃f,m,P K

f,m|y(m)
1

)
,(4.12)
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where Ef is taken w.r.t. y
(m)
1 under Pf,m. Define

Bf,m := {y ∈ R
m :‖f̂m(y) − f ‖∞ + ‖f̂m(y) − f ‖2,1/2 ≤ κm}.

By definition of �m(f0) [cf. (4.1)], we have f ∈ �m(f̂m(y)) if y ∈ Bf,m. Thus
Lemma 4.1 implies

sup
y∈Bf,m,f ∈�

H 2(P̃f,m,P K
f,m|y) = o(1).

Moreover, by Proposition 4.6,

Pf,m(Bc
f,m) = o(1), uniformly over f ∈ �.(4.13)

Hence

Ef H 2(
P̃f,m,P K

f,m|y(m)
1

) =
∫
Bf,m

H 2(P̃f,m,P K
f,m|y)dPf,m(y) + o(1)

(4.14)
= o(1)Pf,m(Bf,m) + o(1) = o(1)

uniformly over f ∈ �. In conjunction with (4.12), the last relation proves the
claim. �

The next result is entirely analogous if we replace the estimator f̂m based on
data y(m) by the one based on data ỹ(m), and formally reverse the order in the
product Pf,m ⊗ P̃f,m.

PROPOSITION 4.8. We have E #
3,n � E #

2,n.

PROOF. We construct a sequence of Markov kernels M̃n such that

sup
f ∈�

H 2(
P̃f,m ⊗ P̃f,m, M̃n(Pf,m ⊗ P̃f,m)

) → 0.

Define M̃n as follows: given y
(m)
1 and ỹ

(m)
2 , and A, a measurable subset of R

2m,
set

M̃n

(
A,y

(m)
1 , ỹ

(m)
2

) = 1A

(
Km

(
f̂m

(
ỹ

(m)
2

))
y

(m)
1 , ỹ

(m)
2

)
,

where f̂m is the estimator defined in the previous subsection, applied to data ỹ
(m)
2 .

Analogously to (4.13), we have

P̃f,m(Bc
f,m) = o(1), uniformly over f ∈ �.

A reasoning as in (4.14) completes the proof. �

For the experiment E #
3,n which consists of product measures P̃f,m ⊗ P̃f,m, we

can invoke Proposition 3.2, applying the equivalence map given there compo-
nentwise [i.e., to independent components (ỹ

(m)
1 , ỹ

(m)
2 ) in E #

3,n]. A summary of



204 G. K. GOLUBEV, M. NUSSBAUM AND H. H. ZHOU

the lower informativity bound results so far can thus be given as follows. For
rn = 2[log(n/2)] define the lower bracket Gaussian scale experiment

◦
El,n by

◦
El,n := ◦

E(n−rn)/2 ⊗ ◦
E(n−rn)/2.(4.15)

COROLLARY 4.9. Consider experiments En and
◦

El,n given, respectively, by
(1.3) and (4.15), (3.4) with parameter space � = �α,M , where M > 0, α > 1/2.
Then as n → ∞,

◦
El,n � En.

4.5. Bracketing the Gaussian scale model. The proof of Theorem 1.1 is com-
plete if the lower and upper informativity bounds

◦
El,n and

◦
Eu,n coincide in an as-

ymptotic sense. Since we already established the relation
◦

El,n � En �
◦

Eu,n (Corol-

laries 3.3, 4.9), it now suffices to show that
◦

Eu,n �
◦

El,n. This essentially means that

in the special nonparametric regression model
◦

En of Gaussian scale type, having rn
additional observations does not matter asymptotically. “Additional observations”
here refers to an equidistant design of higher grid size. The problem of additional
observations for i.i.d. models has been discussed by Le Cam [22] and Mammen
[25] under parametric assumptions. For nonparametric i.i.d. models, one can use
the approximation by Gaussian white noise or Poisson models to bound the influ-
ence of additional observations. For simplicity, consider a Gaussian white noise
model on [0,1]

dZt = f (t) dt + n−1/2 dWt, t ∈ [0,1], f ∈ �,

with parameter space �. Consider this experiment Fn, say, and also Fn+rn . Multi-
plying the data by n1/2 gives an equivalent experiment

dZ∗
t = n1/2f (t) dt + dWt, t ∈ [0,1], f ∈ �,

and the corresponding one for (n+ rn)
1/2. Now, for given f , the squared Hellinger

distance of the two respective measures is bounded by

C
(
(n + rn)

1/2 − n1/2)2‖f ‖2
2

= C
r2
n

n

(
1 + o(1)

)‖f ‖2,

if rn = o(n). Thus if rn = o(n1/2) and supf ∈� ‖f ‖2 ≤ C, then we have Fn ≈
Fn+rn .

Comparable results can be obtained for nonparametric i.i.d. and regression mod-
els if these can be approximated by Fn. In the present case, conversely, for the
nonparametric Gaussian scale regression

◦
En, a result of type

◦
En ≈ ◦

En+rn is a pre-
requisite for the Gaussian location (white noise) approximation. Note that for a
narrower parameter space, given by a Lipschitz class, the white noise approxima-
tion of

◦
En has been established (cf. [18]).
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REMARK 4.10. The relation
◦

El,n � En �
◦

Eu,n(4.16)

has been proved under the technical assumption that n is uneven. If n is even,
note first that En−1 � En � En+1 (omitting one observation from En+1 and En), and
apply (4.16) to obtain

◦
El,n−1 � En �

◦
Eu,n+1.

The relation Eu,n � El,n, which will be proved for uneven n in the remainder of
this section, is easily seen to extend to Eu,n+2 � El,n. This suffices to establish the
main result Theorem 1.1 for general sample size n → ∞.

4.5.1. First part of the bracketing argument. Denote again m = (n − rn)/2,
where rn = 2[(logn)/2] + 1.

LEMMA 4.11. For
◦

El,n = ◦
Em ⊗ ◦

Em, we have
◦

Em ⊗ ◦
Em ≈ ◦

E2m.

PROOF. Note that the measures in
◦

Em ⊗ ◦
Em are product measures, which can

be described, after a rearrangement of components, as

Q1,m :=
m⊗

j=1

(
N(0, Jj,m(f )) ⊗ N(0, Jj,m(f ))

)
,

whereas the measures in
◦

E2m are

Q2,m :=
m⊗

j=1

(
N(0, J2j−1,2m(f )) ⊗ N(0, J2j,2m(f ))

)
.

Now Lemma 2.1 yields

H 2(Q1,m,Q2,m) ≤ C

m∑
j=1

((
J2j−1,2m(f ) − Jj,m(f )

)2 + (
J2j,2m(f ) − Jj,m(f )

)2)
.

Define a partition of (−π,π) into n intervals Wj,n, j = 1, . . . , n, of equal length,
and for any f ∈ L2(−π,π), let

f̄n =
n∑

j=1

Jj,n(f )1Wj,n
(4.17)

be the L2-projection of f onto piecewise constant functions w.r.t. the partition.
Note that we have

‖f̄2m − f̄m‖2
2 = 2π

m

m∑
j=1

((
J2j−1,2m(f ) − Jj,m(f )

)2 + (
J2j,2m(f ) − Jj,m(f )

)2)
,
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so that

H 2(Q1,m,Q2,m) ≤ Cm‖f̄2m − f̄m‖2
2 ≤ Cm(‖f − f̄2m‖2

2 + ‖f − f̄m‖2
2).

The result now follows from

sup
f ∈�

m‖f − f̄m‖2
2 → 0,(4.18)

which is a consequence of Lemmas 5.3 and 5.5 in [17]. �

4.5.2. Second part of the bracketing argument. In view of
◦

E2m = ◦
En−rn , our

next aim is to show
◦

En−rn ≈ ◦
En,

where rn does not grow too quickly. Previously we defined rn = 2[(logn)/2] + 1,
but we will assume more generally now that rn = o(n1/2).

Consider the gamma density with shape parameter a > 0,

ga(x) = 1

�(a)
xa−1 exp(−x), x ≥ 0,

where �(a) is the gamma function, and more generally, the density with additional
scale parameter s > 0,

ga,s(x) = 1

�(a)
s−axa−1 exp(−xs−1), x ≥ 0.

We will call the respective law the �(a, s) law. Clearly, if X ∼ �(a,1), then sX ∼
�(a, s). It is well known that �(n/2,2) = χ2

n and that the following result holds.
Assume X ∼ �(a, s) and Y ∼ �(b, s); then X + Y , X/(X + Y) are independent
random variables, and X + Y ∼ �(a + b, s) while X/(X + Y) has a Beta(a, b)

distribution ([1], Theorem B.2.3, page 489).
Furthermore, for fixed a > 0, consider the family of laws,(

�(a, s), s > 0
)
.(4.19)

Clearly this is a one parameter exponential family; the shape of this exponential
family implies that in a product family,(

�⊗n(a, s), s > 0
)

with n i.i.d. observations X1, . . . ,Xn, the sum
∑n

i=1 Xi is a sufficient statistic. This
sufficient statistic has law �(na, s); hence for any subset S ⊂ (0,∞), we have the
equivalence of experiments(

�⊗n(a, s), s ∈ S
) ∼ (

�(na, s), s ∈ S
)
.(4.20)

The next two technical results are proved in [17], Lemmas 4.12 and 4.13.
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LEMMA 4.12. For all a > 0 and for s, t > 0

H 2(�(a, s),�(a, t)) = 2
(

1 −
(

1 − (s1/2 − t1/2)2

s + t

)a)
.

LEMMA 4.13. We have, for all s > 0 and a, b > 0

H 2(�(a, s),�(b, s)) = 2
(

1 − �((a + b)/2)

(�(a)�(b))1/2

)
.

Now in
◦

En, we observe [cf. (3.4)]

zj = J
1/2
j,n (f )ξj , j = 1, . . . , n,

for independent standard normals ξj , which by sufficiency is equivalent to observ-

ing z2
j = Jj,n(f )ξ2

j . Thus
◦

En is equivalent to

◦
En,1 :=

(
n⊗

j=1

�
(
1/2,2Jj,n(f )

)
, f ∈ �

)
.(4.21)

Set again m = n−rn. The above experiment in turn is equivalent, by the sufficiency
argument for the scaled gamma law invoked in (4.20), to

◦
En,m :=

(
n⊗

j=1

�⊗m(
1/2m,2Jj,n(f )

)
, f ∈ �

)
.

Analogously, we have

◦
Em ∼ ◦

Em,1 ∼ ◦
Em,n :=

(
m⊗

j=1

�⊗n(
1/2n,2Jj,m(f )

)
, f ∈ �

)
.(4.22)

Introduce an intermediate experiment,

◦
E ∗

m,n :=
(

m⊗
j=1

�⊗n(
1/2m,2Jj,m(f )

)
, f ∈ �

)
.

LEMMA 4.14. We have the total variation asymptotic equivalence,
◦

E ∗
m,n 
 ◦

En,m as n → ∞.

PROOF. Write the measures in
◦

En,m as a product of mn components, that is, as⊗mn
i=1 Q1,i , where the component measures Q1,i are defined as follows. For every

i = 1, . . . ,mn, let j (1, i) be the unique index j ∈ {1, . . . , n} such that there exists
k ∈ {1, . . . ,m} for which i = (j − 1)m + k. Then

Q1,i := �
(
1/2m,2Jj(1,i),n(f )

)
, i = 1, . . . ,mn.
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Analogously, let j (2, i) be the unique index j ∈ {1, . . . ,m} such that there exists
k ∈ {1, . . . , n} for which i = (j −1)n+ k. Then the measures in

◦
E ∗

m,n are a product
of mn components, that is, are

⊗mn
i=1 Q2,i , where

Q2,i = �
(
1/2m,2Jj(2,i),m(f )

)
, i = 1, . . . ,mn.

Then the Hellinger distance between measures in
◦

En,m and
◦

E ∗
m,n is, using Lem-

ma 2.19 in [31] and then Lemma 4.12,

H 2

(
mn⊗
i=1

Q1,i ,

mn⊗
i=1

Q2,i

)

≤ 2
mn∑
i=1

H 2(Q1,i ,Q2,i)(4.23)

= 4
mn∑
i=1

(
1 −

(
1 − (J

1/2
j (1,i),n(f ) − J

1/2
j (2,i),m(f ))2

Jj(1,i),n(f ) + Jj(2,i),m(f )

)1/2m)
.

By using the inequality

(s1/2 − t1/2)2

s + t
= (s − t)2

(s + t)(s1/2 + t1/2)2 ≤ (s − t)2

s2

and observing that for f ∈ �, we have Jj,n(f ) ≥ M−1, we obtain an upper bound
for (4.23),

4
mn∑
i=1

(
1 − (

1 − M2(
Jj(1,i),n(f ) − Jj(2,i),m(f )

)2)1/2m)
.(4.24)

The expression Jj(1,i),n(f ) − Jj(2,i),m(f ) can be described as follows. For any
x ∈ ( i−1

mn
, i

mn
), i = 1, . . . ,mn, we have

Jj(1,i),n(f ) − Jj(2,i),m(f ) = f̄n(x) − f̄m(x),(4.25)

where f̄n is defined by (4.17). Now as a consequence of Lemmas 5.4 and 5.5
in [17],

sup
f ∈�

‖f̄n − f̄m‖∞ ≤ sup
f ∈�

‖f − f̄n‖∞ + sup
f ∈�

‖f − f̄m‖∞ = o(1).(4.26)

Note that for m → ∞ and z → 0 we have

(1 − Cz2)1/2m = exp
(

1

2m
log(1 − Cz2)

)

= exp
(
− 1

2m

(
Cz2 + O(z4)

))

= 1 − 1

2m

(
Cz2 + O(z4)

) + o

(
z2

m

)
.
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Thus from (4.24) we obtain in view of (4.26),

H 2

(
mn⊗
i=1

Q1,i ,

mn⊗
i=1

Q2,i

)
≤ C

mn∑
i=1

1

m

(
Jj(1,i),n(f ) − Jj(2,i),m(f )

)2(
1 + o(1)

)
.

As a consequence of (4.25), we obtain

‖f̄n − f̄m‖2
2 =

mn∑
i=1

1

mn

(
Jj(1,i),n(f ) − Jj(2,i),m(f )

)2
,

which implies

H 2

(
mn⊗
i=1

Q1,i ,

mn⊗
i=1

Q2,i

)
≤ Cn‖f̄n − f̄m‖2

2 ≤ Cn‖f − f̄m‖2
2 + Cn‖f − f̄n‖2

2.

Now as in (4.18), this upper bound is o(1) uniformly over f ∈ �. �

LEMMA 4.15. We have the asymptotic equivalence
◦

E ∗
m,n 
 ◦

Em,n as n → ∞.

PROOF. We know [cf. (4.22), (4.21)] that
◦

Em,n ∼ ◦
Em,1, where

◦
Em,1 =

(
m⊗

j=1

�
(
1/2,2Jj,m(f )

)
, f ∈ �

)
.

Analogously, using (4.20) again, we obtain

◦
E ∗

m,n ∼ E ∗
m,1 :=

(
m⊗

j=1

�
(
n/2m,2Jj,m(f )

)
, f ∈ �

)
.

For given f ∈ �, the Hellinger distance between the two respective product mea-
sures is bounded by (using Lemma 2.19 in [31] and then Lemma 4.13)

2
m∑

j=1

H 2

(
�

(
1/2,2Jj,m(f )

)
,�

(
n/2m,2Jj,m(f )

))

= 4
m∑

j=1

(
1 − �(1/4 + n/4m)

(�(1/2)�(n/2m))1/2

)
.

Note that this bound does not depend on f ∈ �. Write n/m = 1 + δ, where δ =
rn/m; the above is

4
m∑

j=1

(�(1/2)�(1/2 + δ/2))1/2 − �(1/2 + δ/4)

(�(1/2)�(1/2 + δ/2))1/2 .(4.27)
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The Gamma function is infinitely differentiable on (0,∞); by a Taylor expansion
we obtain

�(1/2 + δ/4) = �(1/2) + �′(1/2)
δ

4
+ O(δ2),

�1/2(1/2 + δ/2) = �1/2(1/2) + 1

2
�−1/2(1/2)�′(1/2)

δ

2
+ O(δ2).

Consequently, (
�(1/2)�(1/2 + δ/2)

)1/2 − �(1/2 + δ/4) = O(δ2),

so that (4.27) becomes
m∑

j=1

O(δ2)

�(1/2)(1 + o(1))
= mδ2O(1) ≤ r2

n

m
O(1).

The condition rn = o(n1/2) now implies that this upper bound is o(1). We thus
established total variation asymptotic equivalence

◦
Em,1 
 E ∗

m,1. �

5. An application to hypothesis testing. In this section, we apply asymp-
totic equivalence theory to the problem of adaptive testing for the spectral density
model. The minimax rate of testing for the spectral density model was studied in
Ingster [19, 20], but the adaptive testing rate remains open. Spokoiny [30] obtained
the adaptive minimax rate of testing for the Gaussian white noise model and con-
jectured that his method is applicable to the spectral density model. We will see
that a parallel adaptive result for spectral density testing is just an immediate con-
sequence of the asymptotic equivalence to Gaussian white noise.

For the white noise model,

dZt = f (t) dt + n−1/2 dWt, t ∈ [0,1],
Spokoiny [30] considered the following testing problem:

H0 :f = 0 vs. H1 :f ∈ Fβ,M(ρ) := {f :‖f ‖
B

β
p,q

≤ M,‖f ‖2 ≥ ρ}
and obtained the adaptive minimax testing rate when p,q,β,M are unknown.
Here ‖f ‖

B
β
p,q

is a Besov norm of f (cf. Section 5.3 in [17]); the result represents

an adaptive version of the minimax rate of testing given in Ingster [20]. We will
assume here p = q = 2, and thus limit ourselves to the implied adaptation result
on the Sobolev scale where the smoothness parameter σ := (β,M) is assumed
unknown. Assume that σ is known to vary in a set T , where

T = {(β,M) :βl ≤ β ≤ βu,Ml ≤ M ≤ Mu}(5.1)

for some prescribed 0 < βl < βu, and 0 < Ml < Mu. Let φn denote a (possibly
randomized) test; we use notation En,f for the expectation operator under a given
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f in the white noise model. Denote the supremal error of second kind of the test
over the alternatives of given smoothness σ and distance ρ by

πσ (φn,ρ) = sup
f ∈Fβ,M(ρ)

En,f (1 − φn).

PROPOSITION 5.1. Assume that βl > 1/2, and let

ρσ (n) = n−4β/(4β+1), tn = (log logn)1/4.

(i) For any sequence t ′n = on(tn) one has

inf
φn

[
En,0(φn) + sup

σ∈T
πσ (φn,ρσ (n)t ′n)

]
≥ 1 − on(1).

(ii) There exists a constant c1(βl, βu,Ml,Mu) > 0 and a test φ∗
n such that

En,0(φ
∗
n) + sup

σ∈T
πσ (φ∗

n, c1ρσ (n)tn) = on(1).

Consider now stationary Gaussian observations with spectral density f (as-
sumed to be a function on the unit interval for the present purpose). We wish to test
the null hypothesis H0 :f = 1 against H1 :f �= 1, or equivalently H0 : logf = 0
against H1 : logf �= 0. Let FM and Wβ(M) be function classes as defined in (1.7)
and (1.8), and let for some β > 1/2 and M > 0, ρ > 0

Gβ,M(ρ) := {f ∈ Wβ(M) ∩ FM :‖f − 1‖2 ≥ ρ}.
Note that Wβ(M) is essentially a periodic Besov–Sobolev smoothness class
{f :‖f ‖

B̃
β
2,2

≤ M ′} (cf. Remark 5.8 in [17]) up to equivalence of the norms used.

We will consider adaptation to a class of spectral densities f ∈ Gβ,M(ρ), where
the smoothness parameter σ = (β,M) is unknown. Again we assume that σ varies
in a set T defined in (5.1). In order to apply Theorem 1.2, we have to verify that
the union of all smoothness classes Gβ,M(ρ) considered is in the parameter set �

over which the equivalence holds. Thus for some α > 1/2 and M ′ > 0, we have to
verify ⋃

σ∈T
Gβ,M(ρ) ⊂ FM ′ ∩ Wα(M ′) ∩ {f :‖f ‖Ba

6,6
≤ M ′}(5.2)

(here ρ may be taken 0). Using the standard embedding theorems summarized in
Proposition 5.2 of [17] (which hold analogously on the periodic scale B̃α

p,q ), it is
easy to see that the condition βl > 5/6 guarantees (5.2) for sufficiently large M ′.
Thus Theorem 1.2 on asymptotic equivalence is applicable. We refer to Brown
et al. [6] for a basic discussion of how risk bounds transfer from one model to
another, under asymptotic equivalence.

PROPOSITION 5.2. Assume that βl > 5/6. Then Proposition 5.1 holds in
the spectral density model, with pertaining set T , and with smoothness classes
Fβ,M(ρ) replaced by Gβ,M(ρ).



212 G. K. GOLUBEV, M. NUSSBAUM AND H. H. ZHOU

PROOF. Since f ∈ FM , there are c2 > 0 and M ′ > 0 such that for any ρ > 0,

{f :‖f − 1‖2
2 ≥ c2ρ} ⊂ {f :‖ logf ‖2

2 ≥ c1ρ}
and

Gβ,M(ρ)(c2ρ) ⊂ {f : logf ∈ Fβ,M ′(ρ)(c1ρ)}(5.3)

(cf. Runst [27] and Sickel [29]). Part (ii) of Proposition 5.1 implies that there exists
a test φ∗∗

n in the the spectral density model such that

En,0(φ
∗∗
n ) = oε(1),

sup
σ∈T

sup
f ∈Gβ,M(c2ρσ (n))

En,f (1 − φ∗∗
n ) = oε(1).

For part (i) of Proposition 5.1, Spokoiny ([30], pages 2493–2495) constructs
for a finite subset Tn of T and all (β,M) ∈ Tn, prior measures on the set
Aβ,M := Fβ,M(c1ρσ (n)t ′n). An inessential modification of the prior measures near
the boundaries of the interval [0,1] shows that Aβ,M can be replaced by its subset
of functions with compact support in (0,1), say A0

β,M . Then A0
β,M is a subset of

the periodic Besov space B̃
β
2,2, and similarly to (5.3), it can be shown that for every

M > 0 there exists constant c3 > 0 (depending on the bounds βl, βu, Ml,Mu in
the spectral density model) and M ′′ > 0 such that log(Gβ,M(c3ρσ (n)t ′n)) ⊃ A0

β,M ′′ .
Thus part (i) of Proposition 5.1 implies for the spectral density model,

inf
φn

[
En,0(φn) + sup

σ∈T
sup

f ∈Gβ,M(c3ρσ (n)t ′n)

En,f (1 − φn)
]
≥ 1 − on(1).

�
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