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DETECTION OF SPATIAL CLUSTERING WITH AVERAGE
LIKELIHOOD RATIO TEST STATISTICS

BY HOCK PENG CHAN1

National University of Singapore

Generalized likelihood ratio (GLR) test statistics are often used in the
detection of spatial clustering in case-control and case-population datasets to
check for a significantly large proportion of cases within some scanning win-
dow. The traditional spatial scan test statistic takes the supremum GLR value
over all windows, whereas the average likelihood ratio (ALR) test statistic
that we consider here takes an average of the GLR values. Numerical exper-
iments in the literature and in this paper show that the ALR test statistic has
more power compared to the spatial scan statistic. We develop in this paper
accurate tail probability approximations of the ALR test statistic that allow us
to by-pass computer intensive Monte Carlo procedures to estimate p-values.
In models that adjust for covariates, these Monte Carlo evaluations require an
initial fitting of parameters that can result in very biased p-value estimates.

1. Introduction. The detection of local clustering in spatial point processes is
of interest in epidemiological studies, forestry, geological studies, neural imaging
and astronomy. There are a number of excellent texts and review papers on this,
including [5, 13, 29]. A classical application that will be used here as an illustra-
tive example is the identification of potential sources of environmental pollution
that have contributed to higher rates of disease cases for residents living in their
vicinity.

Let T = {ti : 1 ≤ i ≤ I }, with ti ∈ Rd denoting the location of the ith case. We
are interested in the presence of an unusually large number of cases near an un-
specified location v = (v1, . . . , vd) inside a bounded domain D. If T is generated
from a process with known and constant intensity under the null hypothesis, we
can test for the presence of clusters by computing the maximal number of cases in
the cubic windows

∏d
k=1[vk − w

2 , vk + w
2 ], over all v ∈ D for a fixed window size

w > 0. The question of whether this number is significantly large or may have oc-
curred with reasonable chance under the null hypothesis was addressed in [21, 23],
via asymptotic p-value calculations and p-value bounds. Extensions to weighted
counting using kernel functions were also achieved in [27].

Rather than assuming that the underlying intensity is known and constant, we
can assume instead that a control dataset U = {uj : 1 ≤ j ≤ J − I } is available
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for estimation of the possibly nonconstant intensity function. There has been con-
siderable work done on the use of kernel functions to smooth U to provide an
intensity estimate, and the significance of a cluster of cases is calculated by as-
suming that the estimated intensity is the true intensity (see, e.g., [1, 7, 9] and ref-
erences therein). An alternative approach, as considered in [6, 26], is to merge T
and U into a combined dataset X := {(ti ,1) : 1 ≤ i ≤ I }∪{(uj ,0) : 1 ≤ j ≤ J − I }
and rewrite it as {(xi ,Xi) : 1 ≤ i ≤ J }. The SaTScan software developed by Kull-
dorff and Information Management Services Inc. [16] (see also [17]) considers
merged datasets, with generalized likelihood ratio (GLR) test statistics used to
provide a score for each window, and the spatial scan statistic, the supremum GLR
score used to determine significance. Instead of cubic windows, spherical windows
C(v,w) := {t :

∑d
k=1(vk − tk)

2 ≤ w2} are considered.
In Section 2, we consider the average likelihood ratio (ALR) test statistic, which

uses an average rather than the supremum GLR score as the summary test statis-
tic. Numerical studies in the literature and in this paper show that the ALR test
statistic has more power compared to the spatial scan test statistic. We provide
moderate deviation tail probability approximations in Section 2.1 for the ALR test
statistic and illustrate their extensions to logistic regression models for covariate
adjustments in Section 3. These p-value approximations allow us to avoid the use
of computationally expensive Monte Carlo methods and are especially important
when covariate adjustments are required, as the Monte Carlo method currently in
use requires an initial fitting of parameters that can result in very biased p-value
estimates (see Examples 1 and 2 in Section 3.1). In Section 4, we perform compar-
ison studies on real and simulated datasets. A discussion is provided in Section 5
followed by derivations of the asymptotic formulae in Section 6. The appendices
contain technical details and proofs.

2. The spatial scan and ALR test statistics. Throughout this paper, we shall
use ‖ · ‖ to denote the L2 norm of a vector. For any set A, vector t and real num-
ber b, we shall let t + bA = {t + ba : a ∈ A}. We shall use I to denote the indicator
function and # to denote the number of elements in a finite set. For constants an

and bn, the notation an ∼ bn shall mean an/bn → 1, while for random variables

Y1, Y2, . . . and Z1,Z2, . . . , the notation Yn ∼ Zn shall mean Yn/Zn
p→ 1. We shall

use Z to denote the set of integers and 0 to denote the zero vector. We shall also
adopt the conventions 0 log 0 = 0 and 00 = 1.

Let X = {(xi ,Xi) : 1 ≤ i ≤ J }, where xi denotes the location of the ith sub-
ject, while Xi = 1 if the subject is a case and Xi = 0 otherwise. Conditioned on
x := (x1, . . . ,xJ ), the random vector X := (X1, . . . ,XJ ) consists of independent
Bernoulli random variables. Under the null hypothesis H0 of no clustering, there
exists p0 ∈ (0,1) such that

P0{Xi = 1} = p0 for all 1 ≤ i ≤ J.(2.1)
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Let B be a subset of Rd and H
(1)
B the hypothesis that there exists p1 > p2 such

that

P {Xi = 1|xi ∈ B} = p1,
(2.2)

P {Xi = 1|xi /∈ B} = p2 for all 1 ≤ i ≤ J.

Let p̂0 = I/J be the maximum likelihood estimate (MLE) of p0 under H0 and let

φ(p) = p log
(

p

p̂0

)
+ (1 − p) log

(
1 − p

1 − p̂0

)
.(2.3)

Let mB = ∑J
i=1 I{xi∈B,Xi=1} be the number of cases and nB = ∑J

i=1 I{xi∈B} the

number of subjects in B . The log GLR score for testing H0 against H
(1)
B is

S(1)(B) := log
{

sup
1≥p1>p2≥0

[
p

mB

1 (1 − p1)
nB−mB p

I−mB

2 (1 − p2)
J−I−(nB−mB)]}

− log[p̂I
0(1 − p̂0)

J−I ]
=
[
nBφ

(
mB

nB

)
+ (J − nB)φ

(
I − mB

J − nB

)]
I{mB/nB>p̂0}.

To detect both over- and under-clustering, we compare H0 against the two-sided
alternative hypothesis H

(2)
B that (2.2) holds for some p1 	= p2. The log GLR score

is then

S(2)(B) := nBφ

(
mB

nB

)
+ (J − nB)φ

(
I − mB

J − nB

)
.(2.4)

Let B be a finite class of measurable subsets of Rd , possibly dependent on x but
not on X. The spatial scan statistic for testing H0 vs.

⋃
B∈B H

(k)
B , k = 1 or 2, is

M
(k)
B := sup

B∈B
S(k)(B).(2.5)

The spatial scan statistic has the drawback of not making full use of information
provided by secondary clusters to conclude the presence of local clustering. For
example, if there are scores S(k)(B1) > S(k)(B2) for nonoverlapping windows B1
and B2 both slightly smaller than the critical value, the information provided by
S(k)(B2) is not utilized in the decision not to reject H0. Gangnon and Clayton [12]
introduced the weighted ALR test statistic∑

B∈B

wBeS(2)(B) with wB > 0 for all B ∈ B and
∑
B∈B

wB = 1.

Unlike the spatial scan statistic, significance for the weighted ALR test statistic
can be concluded based on many moderately large scores. The numerical stud-
ies in [12] suggest that the weighted ALR is more powerful than the spatial scan
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statistic in the detection of local clusters. Siegmund [28] also reports a closely re-
lated test statistic that is slightly more powerful, compared to the scan test statistic
in a numerical study on the genome scan. This is in contrast to global clustering
test statistics like (#B)−1∑

B∈B S(2)(B), which are expected to have lower power
compared to the spatial scan statistic when only a few local clusters are present
(see [18] for supporting numerical results). We consider in this paper p-value ap-
proximations for the (log) ALR test statistic

U
(k)
B := 2 log

(
(#B)−1

∑
B∈B

eS(k)(B)

)
.(2.6)

An extension of these approximations to weighted ALR test statistics is given in
the appendices of [4].

2.1. Moderate deviation tail probabilities. In this paper, we provide tail ap-
proximations of the ALR test statistics under the following assumptions.

(A1) The domain D is a compact subset of Rd and satisfies

#{t ∈ (εZ)d : t + [0, ε]d ⊂ D} ∼ #{t ∈ (εZ)d : (t + [0, ε]d) ∩ D 	= ∅} ∼ |D|/εd

as ε → 0.
(A2) The locations x1, . . . ,xJ are independent and identically distributed (i.i.d.)

random vectors generated from λ, a continuous and positive density on D.
(A3) The class of scanning sets B is a sub-class of C := {v + wA : v ∈ D,w0 ≤

w ≤ w1}, where A is a convex, open and bounded subset of Rd , with 0 ∈ A and
0 < w0 ≤ w1 < (|D|/|A|)1/d .

In Theorem 1 below and Theorem 2 in Section 3, B(= Bc) may vary with
the critical value c and constraints are placed only on the growth of J (for The-
orem 1) and #B with respect to c. The class of C of candidate scanning sets is,
however, fixed for all c > 0. The proofs of the theorems use change of measure
arguments and linearization techniques developed by Lai and Siegmund [19, 20]
and Woodroofe [32, 33], to analyze GLR test statistics in sequential analysis and
are given in Section 5. A motivation of the proofs is also given by a simpler The-
orem 3 and its proof in Appendix A. Let χ2

1 denote a chi-square random variable
with one degree of freedom.

THEOREM 1. Assume (A1)–(A3) and let (2.1) hold for some 0 < p0 < 1. Let
log(#B) = o(c1/3) and assume that c ∼ κJ s for some κ > 0 and 0 < s < 1. Then
as c → ∞,

P0
{
U

(k)
B ≥ c|x}∼ kP {χ2

1 ≥ c}/2 for k = 1,2.(2.7)

The assumptions (A2), (A3) and the relation c ∼ κJ s in the statement of Theo-
rem 1 are needed to ensure that the number of subjects in each B ∈ B approaches
infinity fast enough for a chi-square tail probability approximation of S(k)(B) to
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hold. This leads to the chi-square tail probability approximation of U
(k)
B . The uni-

form approximation when conditioning on x in (2.7) ensures that we do not reject
H0 unevenly with respect to the configuration of the locations. However, it is also
important for us to check the actual type I error probability when x is not condi-
tioned on (see Example 2 in Section 3.1).

3. Logistic modeling. To see why (2.7) extends to more complicated mod-
els, it is useful to view it as resulting from two different asymptotics. Let λB =∫
B λ(t) dt, where λ is the density in (A2). Let ω be Gaussian white noise with

ω(B) ∼ N(0, λB) for B ⊂ D and ω(A),ω(B) independent whenever A and B

are disjoint. Let ZB = λ
−1/2
B (1 − λB)−1/2[ω(B) − λBω(D)]. The first asymptotic

is a weak convergence of S(2)(B) to Z2
B/2 uniformly over B ∈ C, and this holds

largely because infB∈C(nB/c) → ∞ when c ∼ κJ s for 0 < s < 1. The second as-
ymptotic is like (2.7) [see (3.2) below], but with ALRs U

(2)
B and U

(1)
B replaced

by

U
(2)
Z := 2 log

(
(#B)−1

∑
B∈B

eZ2
B/2

)
and

(3.1)

U
(1)
Z := 2 log

(
(#B)−1

∑
B∈B

eZ2
B+/2

)
,

respectively, where ZB+ = max{ZB,0}.

THEOREM 2. Assume (A1), (A3) and let log(#B) = o(c1/3). Then as c → ∞,

P
{
U

(k)
Z ≥ c

}∼ kP {χ2
1 ≥ c}/2 for k = 1,2.(3.2)

Since |U(2)
Z − U

(2)
B | ≤ 2 supB∈B |S(2)(B) − Z2

B/2| and |U(1)
Z − U

(1)
B | ≤ 2 ×

supB∈B |S(1)(B) − Z2
B+/2|, the combination of the two asymptotics described

above provides us with chi-square tail approximations for U
(k)
B .

Consider more generally datasets containing additional information like the age,
sex, diet and smoking habits of the subjects. These covariates may influence the
outcome and, hence, we may have to correct for spatial imbalances of these co-
variates when testing for spatial clustering. Let ui = (ui1, . . . , uir )

′ be the covari-
ate vector of the ith subject, with ui1 = 1 denoting the intercept term, and let
pi = P {Xi = 1|xi ,ui}. Consider the logistic model

pi = (1 + e−β ′ui−θi )−1,(3.3)

where β = (β1, . . . , βr)
′ is a nuisance parameter vector. Under the null hypoth-

esis H0 of no clustering, θi = 0 for all i, while under the one-sided alternative
hypothesis H

(1)
B , θi = θI{xi∈B} for some θ > 0. Under the two-sided alternative
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hypothesis H
(2)
B , θi = θI{xi∈B} for some θ 	= 0. Let β̂ be the MLE of β under H0

and (β̂
(k)
B , θ̂

(k)
B ) the MLE of (β, θ) under H0 ∪ H

(k)
B . Define

p̂i = (1 + e−β̂ ′ui )−1, p̂
(k)
iB = (

1 + e−β̂
(k)′
B ui−θ̂

(k)
B I(xi∈B))−1

,
(3.4)

Y
(k)
iB = Xi log

(
p̂

(k)
iB

p̂i

)
+ (1 − Xi) log

(
1 − p̂

(k)
iB

1 − p̂i

)
.

Then the ALR test statistics are

U
(k)
B = 2 log

(
(#B)−1

∑
B∈B

eS(k)(B)

)
where S(k)(B) =

J∑
i=1

Y
(k)
iB .(3.5)

The scores S(k)(B) are asymptotically chi-square, even when β is infinite di-
mensional (see [2, 22] and references therein). The efficient score expansions of
the log profile likelihoods that are used for deriving these chi-square approxima-
tions can also be used to provide the covariance structure of the limiting multi-
variate normal of

√
nθ̂

(2)
B over B ∈ B, and this structure depends on the nuisance

parameter under H0 (see Appendix B for more details). However, the chi-square
approximations of U

(k)
B in the moderate deviations domain do not depend on the

covariance structure of the limiting multivariate normal. In other words,

P(0,β)

{
U

(k)
B ≥ c

}∼ kP {χ2
1 ≥ c}/2 for k = 1,2(3.6)

uniformly over compact sets of β (see Appendix B).
This is desirable because the p-value is in principle computed from the worst-

case scenario under H0. In this respect, the ALR test statistic shares the same uni-
form asymptotics as the GLR test statistic for a composite null hypothesis versus
single composite alternative hypothesis with a dimension difference of one, differ-
ing only in that for the GLR test statistic, the approximation occurs in the central
limit domain as well. The spatial scan test statistic does not have such uniform as-
ymptotics over nuisance parameters. Hence Theorems 1 and 2 are not just devices
for p-value approximations, but also theoretical results that provide understanding
of the asymptotic properties of the ALR test statistic. To reduce computational time
for large datasets, we can avoid searching for a new (β̂

(k)
B , θ̂

(k)
B ) for each B ∈ B

by replacing S(2)(B) by a first-order quadratic approximation (see either (4)–(6)
of [22] or (B.1) in Appendix B).

3.1. Monte Carlo evaluation of conditional p-values. Under (2.1), the condi-
tional p-value P0{M(k)

B ≥ c|I,x} does not depend on p0 and can be evaluated by a
permutation test. Permutation tests are nonparametric tests that compute p-values
from permutations of the observations X1, . . . ,XJ , which are often assumed to
be i.i.d. under the null hypothesis. In principle, the p-value is the fraction of per-
mutations with values of test statistics at least as large as the original test statis-
tic, though in practice the number of permutations is usually too large for direct
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computations, and Monte Carlo methods are used instead to sample a random sub-
set of permutations for p-value estimation (for more details, see [10, 11]). In the
SaTScan software, users are prompted to select L = 99, 999 or 9999 random per-
mutations. For each 1 ≤ 
 ≤ L, compute M

(k)
B,
 from {(xi ,Xi
) : 1 ≤ i ≤ J }, where

(X1
, . . . ,XJ
) is a random permutation of (X1, . . . ,XJ ). Then the estimated con-
ditional p-value is (1 +∑L


=1 I{M(k)
B,
≥c})/(1 + L). The extension of the method to

estimate P0{U(k)
B ≥ c|I,x} is straightforward.

When covariates are present, the SaTScan software uses the following Monte
Carlo procedure, as advocated in [15]. Assume that there are nj subjects at loca-
tion vj for 1 ≤ j ≤ q , with nj large. Fit (3.3) under the null hypothesis H0, that
there are no spatial effects, that is with θi = 0 for all i. The fitted value p̂i , given
in (3.4), is the estimated risk of the ith subject. At each vj , estimate the total risk by
ηj = ∑

i : xi=vj
p̂i . Let mj = ∑

i : xi=vj
Xi , mB = ∑

vj∈B mj and ηB = ∑
vj∈B ηj .

Assume that under H0, m1, . . . ,mq are independent Poisson random variables with
respective means η1, . . . , ηq . Then conditioned on m1 + · + mq = I , the adjusted

spatial scan statistic for testing H0 against
⋃

B∈B H
(2)
B is

M̃
(2)
B := sup

B∈B
S̃(2)(B) where

(3.7)

S̃(2)(B) := mB log
(

mB

ηB

)
+ (I − mB) log

(
I − mB

I − ηB

)
.

To simulate the Monte Carlo p-value for each 1 ≤ 
 ≤ L, where L is the required
number of simulation runs, generate (m1
, . . . ,mq
) from a multinomial distribu-

tion with I trials and success probabilities (η1/I, . . . , ηq/I ), then compute M̃
(2)
B,


using (3.7). The estimated p-value is then(
1 +

L∑

=1

I{M̃(2)
B,
≥M̃

(2)
B }

)/
(1 + L).

EXAMPLE 1. Let D be a union of disjoint sets B1, B2 and B3, each containing
1000 subjects. Generate dummy covariates ui ∼ N(0,1) if xi ∈ B2 ∪ B3 and ui ∼
N(1,1) if xi ∈ B1, then keep them fixed for the remaining part of this exercise. Let
B = {B1,B2,B3} and let

P {Xi = 1|xi , ui} = (
1 + e−β1−θI{xi∈B1})−1

.(3.8)

In our comparison study, we generate X = (X1, . . . ,X3000) from (3.8) with β1 =
−3, θ ≥ 0 and compute the Monte Carlo p-values of M̃

(2)
B with L = 999 simula-

tion runs and also the p-values of U
(2)
B using chi-square tail probability approxima-

tions. The scores S(2)(B) are computed from (3.4)–(3.5) with ui , the only covariate
of the ith subject. For each θ ≥ 0, the above procedure is repeated 1000 times, each
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TABLE 1
Comparison of the type I error probabilities and detection powers of M̃

(2)
B and U

(2)
B at significance

levels α = 0.05 and α = 0.01 with 1000 independent copies of X

α = 0.05 α = 0.01

θ MC: ˜M
(2)
B ALR: U

(2)
B MC: ˜M

(2)
B ALR: U

(2)
B

0 0.026 0.048 0.004 0.008
0.2 0.088 0.158 0.021 0.054
0.4 0.367 0.499 0.137 0.261
0.6 0.740 0.849 0.506 0.676

time with a different copy of X. The estimated type I error probabilities and power
are summarized in Table 1. We see that the Monte Carlo risk adjustment method
provides very conservative p-values (see [3] for alternative strategies to deal with
this drawback).

EXAMPLE 2. We choose a slightly different design here to check the type I
error probability and power P {U(2)

B ≥ c} (without conditioning on x). In each sim-
ulation run, twenty locations v1, . . . ,v20 are generated uniformly and randomly on
the unit square [0,1]2. Let C0 be a circle of radius 0.3, centered at (0.5,0.5). Fifty
subjects are located at each vi , each of them generated as a case with probability
p0 = 0.05 if vi /∈ C0, and generated as a case with probability p1 ≥ p0 if vi ∈ C0.
Each subject at vi is given a dummy covariate distributed as N(0,1) if vi /∈ C0
and distributed as N(1,1) if vi ∈ C0. For each 1 ≤ i ≤ 20, let 0 = ri,1 < · · · < ri,20
be the ordered values of ‖vj − vi‖ for j = 1, . . . ,20. We consider the class of
scanning sets

B = {C(vi , ri,j ) : 1 ≤ i ≤ 20,1 ≤ j ≤ 10},
where C(v, r) is a circle of radius r , centered at v. One thousand simulation runs
are used to estimate each type I error probability and power of the adjusted scan
statistic M̃

(2)
B (using L = 999 permutations) and the ALR test statistic U

(2)
B (using

the chi-square distribution) (see Table 2). We see that the Monte Carlo method
has low type I error probability and corresponding loss of power when compared
against the ALR test statistic.

4. Numerical examples. We analyze a case-control dataset in Section 4.1,
a case-population dataset in Section 4.2 and various simulated datasets in Sec-
tion 4.3.

4.1. Laryngeal cancer dataset. This dataset consists of: (i) the locations of 58
cases of laryngeal cancer occurring in two districts in Lancashire for the period
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TABLE 2
Comparison of the type I error probabilities and detection powers of M̃

(2)
B and U

(2)
B at significance

levels α = 0.05 and α = 0.01 with 1000 simulation runs

α = 0.05 α = 0.01

p1 MC: ˜M
(2)
B ALR: U

(2)
B MC: ˜M

(2)
B ALR: U

(2)
B

0.05 0.026 0.053 0 0.007
0.2 0.054 0.119 0.008 0.026
0.4 0.243 0.395 0.111 0.209
0.6 0.514 0.682 0.327 0.484

1974–1985; and (ii) the locations of 978 control cases of lung cancer for the same
period and districts in the domain D = [34500,36500] × [41100,43100] (see [8]
for more background). A key feature is a cluster of four laryngeal cancer cases (see
the bottom of the left plot of Figure 1) located near an industrial waste incinerator,
which is considered a potential source of the cluster of laryngeal cancer cases. We
want to test for the presence of local clusters without biasing ourselves a priori
with information on the possible sources of the laryngeal cancer cases. As the
location co-ordinates in the datasets are rounded to the nearest tens, we consider
the covering sets

Bw := {
C(v,w) : v ∈ D ∩ (10Z + 5)2, nC(v,w) ≥ 2

}
with radii w = 40, 50, 60 and 70. Hence each circle in Bw contains at least two
subjects and has a center v with co-ordinates ending with 5 and lies inside D.
Express M

(1)
Bw

and U
(1)
Bw

more simply as M
(1)
w and U

(1)
w , respectively.

FIG. 1. Scatter plots of the 58 laryngeal cancer cases (left) and the 978 lung cancer cases (right).
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TABLE 3
Numerical values of the test statistics and Monte Carlo conditional p-value estimates ± standard

error for Bw with 2000 simulation runs for each spatial scan statistic p-value and 10,000
runs for each ALR test statistic p-value

Spatial scan statistic M
(1)
w ALR test statistic U

(1)
w

w Value MC p-val. (cond.) Value MC p-val. (cond.)

40 9.21 0.016 ± 0.003 5.29 0.0104 ± 0.0010
50 7.95 0.090 ± 0.006 4.47 0.0137 ± 0.0012
60 7.95 0.078 ± 0.006 4.07 0.0200 ± 0.0014
70 7.95 0.079 ± 0.006 3.89 0.0213 ± 0.0014

In Table 3, we tabulate Monte Carlo conditional p-values of both M
(1)
w and U

(1)
w

using the permutation method described in Section 3.1. We observe that for both
the spatial scan and ALR test statistics, p-values below 0.02 are obtained when
w = 40. This is in contrast to p-values of 0.08 to 0.8 obtained using kernel-based
methods (see [1]). The choice of window size w affects the p-value substantially
when using M

(1)
w , and this is also true when using kernel-based methods. In con-

trast, the influence of window size on the p-values of U
(1)
w is much smaller. In

this sense, the ALR test statistic is more robust against misspecification of cluster
shape and size, that is, when H

(1)
B is true for some B /∈ B, because under such a

situation there will often be many windows having moderately large scores, and
this will aid the rejection of H0. The construction of Table 3 requires a substantial
amount of computation as there are more than 5000 scanning sets in each Bw .

A numerical power study (see Table 4) indicates that the ALR and spatial scan
test statistics do not dominate each other when there is only one source of spatial
clustering. In this study, we fix the locations x and the total number of cases I = 58.
Consider a circle with radius 40 and let n be the number of points in it. Let p be

TABLE 4
Powers of U

(1)
40 and M

(1)
40 based on 1000 simulation runs for each entry, with estimated 1% critical

values cM,0.01 = 9.49 and cU,0.01 = 5.29. In each row, the n points lying in a circle centered at
(v1, v2) with radius w = 40 are simulated as cases with probability RR times

larger than points lying outside the circle

v1 v2 n RR Power of U
(1)
40 Power of M

(1)
40

35565 41395 6 12 0.49 ± 0.02 0.36 ± 0.02
35195 42745 9 11 0.54 ± 0.02 0.54 ± 0.02
35515 42255 12 10 0.52 ± 0.02 0.68 ± 0.01
35255 42155 15 8 0.45 ± 0.02 0.47 ± 0.02
35595 42745 18 7 0.47 ± 0.02 0.42 ± 0.02
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TABLE 5
Numerical values of the test statistics and Monte Carlo conditional p-value estimates ± standard

error with 2000 simulation runs in each entry for scanning sets with different radii

Spatial scan statistic M(1) ALR test statistic U(1)

j Value MC p-val. (cond.) Value MC p-val. (cond.)

5 9.21 0.016 ± 0.003 5.38 0.012 ± 0.002
6 7.95 0.043 ± 0.005 5.76 0.006 ± 0.002
7 7.04 0.079 ± 0.006 3.70 0.027 ± 0.004

the probability that a point in the circle is simulated as a case and p̃ the probability
that a point outside the circle is simulated as a case. Thus the relative ratio (RR) is
p/p̃. The numbers p and p̃ are determined from the constraint

np + (1036 − n)p̃ = 58.

In the 
th simulation run, 1 ≤ 
 ≤ 1000, we generate {Xi
 : 1 ≤ i ≤ 1036} with
success probabilities p (for xi inside circle) or p̃ (for xi outside circle), and repeat
until a total of 58 cases is observed before proceeding to compute U

(1)
40,
 and M

(1)
40,
.

The estimated power is the proportion of runs in which the critical value is equaled
or exceeded.

We also try out scanning sets with different radii at different centers as suggested
by a referee, and obtain similar p-values for the spatial scan and ALR test statistics
(see Table 5). The classes of scanning sets considered here are of the form

Bj = {C(xi , rij ) : 1 ≤ i ≤ 1036} for j = 5,6,7,

where 0 = ri1 ≤ ri2 ≤ · · · are the ordered values of ‖xi − xk‖ for 1 ≤ k ≤ 1036. It
is interesting to note that even though the largest window score of 9.21, obtained
from a scanning set containing four cases and one control, is missed when j = 6,
the ALR score actually increased.

4.2. New York leukaemia dataset. We use here an updated version of the
dataset presented in [31], which tracks leukaemia occurrences in 281 census tracts
in New York state. Let vj denote the centroid of the j th census tract and let mj

and nj be the number of leukaemia cases and population size, respectively, at vj .
Let mB =∑

vj∈B mj , nB =∑
vj∈B nj , I =∑281

j=1 mj and J =∑281
j=1 nj . Gangnon

and Clayton [12] considered the ALR test statistic U
(2)
B with

B = {C(vi , rij ) : 0 ≤ rij ≤ 20,1 ≤ i ≤ 281,1 ≤ j ≤ 281},
where rij = ‖vi − vj‖. We plot in Figure 2 simulated values of U

(2)
B under the null

hypothesis (2.1) with p0 = 5 × 10−4(
.= I/J ), against quantiles of the chi-square
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FIG. 2. Qq-plots of simulated values of U
(2)
B against the chi-square distribution with one degree of

freedom (left) and the distribution G (right).

distribution with one degree of freedom and also against quantiles of a distribution
function G satisfying

G(x) = 1 −
(

2e−x

πx

)1/2

(4.1)
for x ≥ x0 with x0

.= 0.42 satisfying 2e−x0/(πx0) = 1.

The upper tail probabilities of G are expressions often seen in large deviations
saddlepoint approximations.

Since P {χ2
1 ≥ x} ≤ 1 − G(x) for all x ≥ 0 and P {χ2

1 ≥ x} ∼ 1 − G(x) as

x → ∞, p-value estimates of U
(k)
B obtained by comparing against G instead of

the chi-square distribution are slightly more conservative for small p-values. From
the qq-plots, we see that G provides a good fit over a wider range of values but for
small p-values, which are of primary interest, the p-value estimates are compara-
ble.

4.3. Simulated datasets. The example in Section 4.2 is typical for applica-
tion of cluster detection methodology. More than 20,000 circles were created from
comparisons among the 281 census tracts. For larger number of census tracts, the
number of circles can easily run into the millions. The computational burden is
quite serious if say L = 999 or 9999 Monte Carlo simulation runs are used to
evaluate p-values. Small p-values are of statistical interest, yet it is precisely for
these cases that Monte Carlo methods are less reliable. If a person is looking at
multiple regions, end-points or time-points, nominal p-values much smaller than
0.01 may be required for significance to be declared. For probability 0.05, L = 999
runs will give us relative error of about 0.15, while the corresponding relative error
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is about 0.3 for a probability 0.01. In Example 3 below, we compare the analyti-
cal chi-square and G tail approximations [see (4.1)] of the ALR for two different
arrangements of scanning sets. The key advantage of the analytical approximations
lies in composite null situations for which the usual Monte Carlo methods may not
work well (see Section 3).

EXAMPLE 3. Let v1, . . . ,vn be generated uniformly from the unit square
[0,1]2, and let

B1 = {C(vi , rij ) : 0 ≤ rij ≤ w1,1 ≤ i ≤ n,1 ≤ j ≤ n}
(4.2)

where rij = ‖vi − vj‖.
We shall abuse notation here and denote #{i : vi ∈ C} more simply by #C.

For each 1 ≤ 
 ≤ L with L large, generate independent standard normal random
variables Y1
, . . . , Yn
 and define

ZC
 =
∑

vi∈C(Yi
 − Ȳ
)√
(#C)[1 − (#C)/n] where Ȳ
 = n−1

n∑
i=1

Yi
.

Let U
(2)
Z,
 = 2 log((#B)−1∑

C∈B eZ2
C
/2). In Figure 3, we plot ordered values of

U
(2)
Z,
 against quantiles of both the chi-square and G distributions for w1 = 0.2

and various values of n. Approximately six hours of computer time were taken up
to generate the plot for n = 1000. The plots show the G distribution to be more
suitable for estimating moderately small p-values. For smaller p-values, the chi-
square and G distributions give similar approximations. Similar plots are obtained
when experimenting with w1 = 0.3.

5. Discussion. The New York leukaemia dataset in Section 4.2 is a typical
dataset in which the locations are concentrated on a number of geographical cen-
ters instead of spreading over a domain D, and strictly speaking, the positive den-
sity assumption [see (A2)] does not hold. However, the purpose of the assumption
is to ensure that the number of subjects in each scanning set goes to infinity at a fast
enough rate, and as this is satisfied in this situation, the chi-square approximation
is still valid. Similarly, the restriction that the class of sets in (A3) has to be all of
the same shape can be relaxed in these types of datasets. The relaxation allows us
to deal with the detection of irregular shaped clusters considered in, for example,
[25, 30]. The condition that B be dependent only on the locations xi and not on
the responses Xi is, however, necessary for the chi-square approximation to hold.

The qq-plots in Figures 2 and 3 show that the p-value approximations are inac-
curate for small thresholds. This is consistent with the conditions of Theorem 1,
which says that moderate or larger values of the threshold are needed for the p-
value approximations to be accurate. This is not a problem because when large
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FIG. 3. Qq-plots of U
(2)
Z against the chi-square and G distributions for B1 with n = 10, 100, 1000

locations and maximum radius w1 = 0.2.
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p-values are encountered, it suffices to state that the p-value is larger than a spec-
ified significance level. For very large thresholds, the difference of the approxi-
mated and empirical quantiles is due to the inaccuracy of the Monte Carlo method.
Though Theorem 1 is stated only in terms of approximating unconditional p-
values, a rough calculation shows that the chi-square approximation on the four
conditional p-values of the ALR test statistics in Table 3 has the accuracy of about
4000 simulation runs. The chi-square approximations are also within one standard
error of the Monte Carlo p-values in Table 5.

The overfitting of nuisance parameters when using Monte Carlo methods for
p-value estimation of the spatial scan statistic was mentioned by Neill, Moore
and Cooper [24], and this phenomenon likely contributed to the conservative p-
values seen in Examples 1 and 2. The authors provided convincing arguments for
why quick detection of disease outbreaks is important and cited the need to per-
form time-consuming Monte Carlo or bootstrap replications to provide reliable
p-values of the spatial scan statistic as one justification for developing alternative
methodologies. In this paper, we stick to the method of detection cluster via GLR
values (but taking averages instead of maximums) popularized by the SaTScan
software and address its drawbacks by providing accurate and easy to compute p-
value approximations. These tail probability approximations can be applied even
when nuisance parameters are in the model, and they enhance the attractiveness of
the GLR method by easing its use.

6. Proofs.

6.1. Proof of Theorem 1. Let 0 < γ0 < p0 < γ1 < 1. Then by large deviations,

P0{p̂0 ≤ γ0} + P0{p̂0 ≥ γ1} = o(c−1/2e−c/2),(6.1)

while by the law of large numbers, we may assume that

lim inf
J→∞ inf

B∈B
(nB/J ) > 0.(6.2)

For each Jγ0 ≤ I ≤ Jγ1, let (pB, p̃B) be the roots (p, p̃) of

nBp + (J − nB)p̃ = I,
(6.3)

nBφ(p) + (J − nB)φ(p̃) = c/2 with p > p̂0.

Under (6.2), (pB, p̃B) exists and are unique for all B ∈ B when J is large.
For given values of p̂0 and x, let QB be a probability measure under which

X1, . . . ,XJ are independent Bernoulli random variables satisfying

QB{Xi = 1|xi ∈ B} = pB, QB{Xi = 1|xi /∈ B} = p̃B.(6.4)
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Let θ(p) = log(p/p̂0) − log[(1 − p)/(1 − p̂0)]. Then by (2.3) and (6.3),


(B) := log
[
dQB

dPp̂0

(X)

]

= ∑
xi∈B

{
θ(pB)Xi + log

(
1 − pB

1 − p̂0

)}
(6.5)

+ ∑
xi /∈B

{
θ(p̃B)Xi + log

(
1 − p̃B

1 − p̂0

)}

= c/2 + θ(pB)
∑

xi∈B

(Xi − pB) + θ(p̃B)
∑

xi /∈B

(Xi − p̃B).

The following supporting lemmas hold uniformly over γ0 ≤ p̂0 ≤ γ1 under the
conditions of Theorem 1. The proof of Lemma 1 is given in Appendix C, while
the proof of Lemma 2(a) uses arguments in the proof of (6.11) which is also given
in Appendix C. The proof of Lemma 2(b) is relatively straightforward and thus
omitted.

LEMMA 1. Assume (6.2).
(a) S(1)(B) ≥ 
(B) for all B ∈ B.
(b) There exists ηc → 0 as c → ∞ such that∣∣S(1)(B) − 
(B)

∣∣≤ ηc whenever
∣∣S(1)(B) − c/2

∣∣≤ c1/3.

LEMMA 2. (a) Let

VB = log
{∑

C∈B

(dQC/dQB)(X)

}
= log

(∑
C∈B

e
(C)−
(B)

)
.

Then whenever c ≤ U
(1)
B ≤ c + c1/3,


(B) + VB − log(#B) = log
(
(#B)−1

∑
C∈B

e
(C)

)
= U

(1)
B /2 + o(1).

(b) QB{∑J
i=1 Xi = I |x} ∼ Pp̂0{

∑J
i=1 Xi = I |x} uniformly over B ∈ B.

We shall now provide the key arguments in the proof of Theorem 1. Let Bmax
maximizes

∑
xi∈B(Xi −pB) over B ∈ B, with an arbitrary ordering imposed on B

to break ties. Under QB , conditioned on c ≤ U
(1)
B ≤ c + c1/3 and Bmax = B , 
(B)

has an asymptotic density (2πc)−1/2 on the interval ( c−c1/3

2 , c+c1/3

2 ), and is asymp-
totically independent of both VB and I{Bmax=B}. The random variable VB summa-
rizes information on the local fluctuations of the GLR values for sets near B when
Bmax = B , and its value is determined chiefly by a small set of Xi with xi near the
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boundary of B , because under QB , e
(C)−
(B) is small for C, far from B . Similarly,
I{Bmax=B} is determined by the values of Xi with xi located near the boundary of B .
The test statistic 
(B), on the other hand, is asymptotically N(c/2, c) under QB

and is asymptotically independent of any small set of Xi . We thus obtain formally,
for γ0 ≤ p̂0 ≤ γ1,

Pp̂0

{
U

(1)
B ≥ c|I,x

}
= ∑

B∈B

Pp̂0

{
U

(1)
B ≥ c,Bmax = B|I,x

}
∼ ∑

B∈B

EQ(B)

(
e−
(B)I{U(1)

B ≥c,Bmax=B}|I,x
)

∼ ∑
B∈B

EQ(B)

(
E
[
e−
(B)I{
(B)≥c/2−VB+log(#B),Bmax=B}|VB

]|I,x
)

(6.6)

∼ ∑
B∈B

EQ(B)

(
I{Bmax=B}

∫ ∞
c/2−VB+log(#B)

(2πc)−1/2e−y dy
∣∣∣I,x

)
= (2πc)−1/2e−c/2(#B)−1

∑
B∈B

EQ(B)

(
eVB I{Bmax=B}|I,x

)
= (2πc)−1/2e−c/2(#B)−1

∑
B∈B

∑
C∈B

QC{Bmax = B|I,x}.

We then switch the summation signs in the last line of (6.6) to show that
Pp̂0{U(1)

B ≥ c|I,x} ∼ (2πc)−1/2e−c/2, and (2.7) for k = 1 then follow from (6.1).

By (6.5), Pp̂0(A|x) = EQ(B)(e
−
(B)IA|x), where A = {U(1)

B ≥ c,Bmax = B ,∑J
i=1 Xi = I }, and the relation between the first and second lines of (6.6) follows

from Lemma 2(b). For additional details on (6.6), see Appendix C.
Since S(2)(B) = S(2)(D \ B), and p̂0 lies between mB/nB and mD\B/nD\B , it

follows that

eS(2)(B) = eS(1)(B) + eS(1)(D\B) − 1.(6.7)

Let B̃ = {D \ B :B ∈ B} and U
(1)

B∪B̃
= 2 log([2(#B)]−1∑

B∈B∪B̃ eS(1)(B)). Then
by the arguments leading to (2.7) for k = 1,

P
{
U

(1)

B∪B̃
≥ c − 2 log 2

}∼ [2π(c − 2 log 2)]−1/2e−(c−2 log 2)/2

(6.8)
∼ [2/(πc)]1/2e−c/2.

By (6.7), U
(2)
B = 2 log((#B)−1∑

B∈B eS(2)(B)) = U
(1)

B∪B̃
+ 2 log 2 + o(1) when

U
(2)
B ≥ c, and hence (2.7) for k = 2 follows from (6.8).

6.2. Proof of Theorem 2. Let � = (ρBC)B,C∈B be the covariance matrix of
Z = (ZB)B∈B , a multivariate normal with EZB = 0 and Var(ZB) = 1 for all
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B ∈ B under probability measure P . Hence ρBC = λB∩C − λBλC . Fix c > 0,
B ∈ B and let QB be a probability measure under which ω(A) ∼ N(λ

−1/2
B (1 −

λB)1/2λAc1/2, λA) for A ⊂ B and ω(A) ∼ N(−λ
1/2
B (1 − λB)−1/2λAc1/2, λA) for

A ⊂ D \ B , with ω(A),ω(C) independent when A and C are disjoint sets. Un-
der QB , Z is multivariate normal with covariance matrix � and EQ(B)ZC =
c1/2ρBC for all C ∈ B. Moreover,


(B) := log
[
dQB

dP
(Z)

]
= c1/2ZB − c/2.(6.9)

We next use a linearization argument to justify the replacement of Z2
B+/2 in

the expression of U
(1)
Z by 
(B). By convexity, Z2

B+/2 ≥ 
(B) for all B ∈ B, with
equality when ZB+ = c1/2. By a Taylor expansion,

sup
ZB : |Z2

B+−c|≤2c1/3

|
(B) − Z2
B+/2| = O(c−1/3) as c → ∞.(6.10)

Let VB = log{∑C∈B(dQC/dQB)(Z)} = log(
∑

C∈B e
(C)−
(B)). Then by
(6.10), there exists ζc = O(c−1/3) such that whenever c ≤ U

(1)
Z ≤ c + c1/3,

U
(1)
Z /2 − ζc ≤ 
(B) + VB − log(#B)

[
= log

(
(#B)−1

∑
C∈B

e
(C)

)]
(6.11)

≤ U
(1)
Z /2,

(see Appendix C). We then apply the steps in (6.6), without the conditioning on I

and x, to obtain the tail probabilities of U
(1)
Z . For extensions to the tail probabilities

of U
(2)
Z , apply the arguments in the last paragraph of Section 6.1.

APPENDIX A: THEOREM 3 AND ITS PROOF

THEOREM 3. Let S1c, . . . , Snc be random variables and assume that there
exists a constant K > 0 and random variables Ykj such that P {Ykj = 0} = 0 for
all k 	= j and as c → ∞,

P {Skc ≥ c + y} ∼ Kc−1/2e−c−y,(A.1)

while conditioned on Skc ≥ c + y,

(Skc − S1c, . . . , Skc − Snc) ⇒ (Yk1, . . . , Ykn)(A.2)

for all 1 ≤ k ≤ n and y ∈ R. Then

n−1
n∑

k=1

E

[(
n∑

j=1

e−Ykj

)
I{Ykj≥0 for all j}

]
= 1(A.3)

and

P

{
n−1

n∑
j=1

eSjc ≥ ec

}
∼ Kc−1/2e−c as c → ∞.(A.4)
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PROOF. Let Mc = sup1≤k≤n Skc. For a given ε > 0, let 0 = y1 < · · · < ym be
such that P {Ykj = yr} = 0 for all 1 ≤ r ≤ m, k 	= j and sup1≤r≤m(e−yr −e−yr+1) ≤
ε, where ym+1 = ∞. Then by (A.1) and (A.2), for all k 	= j ,

P {Sjc ≥ c,Mc = Skc}

=
m∑

r=1

P {Sjc ≥ c,Mc = Skc, yr ≤ Skc − Sjc < yr+1}

≤
m∑

r=1

P {Skc ≥ c + yr,Mc = Skc, yr ≤ Skc − Sjc < yr+1}(A.5)

∼ Kc−1/2e−c
m∑

r=1

e−yr P {Yki ≥ 0 for all i, yr ≤ Ykj < yr+1}

≤ Kc−1/2e−cE
[
(e−Ykj + ε)I{Yki≥0 for all i}

]
.

Similarly,

P {Sjc ≥ c,Mc = Skc}

≥ (
K + o(1)

)
c−1/2e−c

m∑
r=1

e−yr+1P {Yki ≥ 0 for all i, yr ≤ Ykj < yr+1}(A.6)

≥ (
K + o(1)

)
c−1/2e−cE

[
(e−Ykj − ε)I{Yki≥0 for all i}

]
.

By selecting ε arbitrarily small, it follows from (A.5) and (A.6) that

P {Sjc ≥ c,Mc = Skc} ∼ Kc−1/2e−cE
(
e−Ykj I{Yki≥0 for all i}

)
.(A.7)

The asymptotic relation (A.7) also holds for k = j by applying (A.1) and (A.2)
for y = 0, noting that Yjj is a zero-valued random variable for all j . We then add
up (A.7) over 1 ≤ j ≤ n, 1 ≤ k ≤ n and compare against the asymptotic relation∑n

j=1 P {Sjc ≥ c} ∼ Knc−1/2e−c, which follows from (A.1), to obtain (A.3).

Since log(n−1∑n
j=1 eSjc−Skc ) ≤ 0 when Mc = Skc, by (A.1) and (A.2),

P

{
n−1

n∑
j=1

eSjc ≥ ec,Mc = Skc

}

= P

{
Skc ≥ c − log

(
n−1

n∑
j=1

eSjc−Skc

)
,Mc = Skc

}
(A.8)

∼ Kc−1/2e−cE

[(
n−1

n∑
j=1

e−Ykj

)
I{Ykj≥0 for all j}

]

and (A.4) follows from (A.3) by adding (A.8) over 1 ≤ k ≤ n. To show the last
relation in (A.8), we use a discretization argument described earlier. Given any
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ε > 0, select 0 = y1 < · · · < ym such that P {− log(n−1∑n
j=1 e−Ykj ) = yr, Ykj ≥

0 for all j} = 0 for all 1 ≤ r ≤ m, 1 ≤ k ≤ n and sup1≤r≤m(e−yr − e−yr+1) ≤ ε,
with ym+1 = ∞. We then express asymptotic upper and lower bounds of

P

{
Skc ≥ c − log

(
n−1

n∑
j=1

eSjc−Skc

)
,

Mc = Skc, yr ≤ − log

(
n−1

n∑
j=1

eSjc−Skc

)
< yr+1

}
,

in terms of ε and expectations involving Yki before letting ε → 0. The details are
omitted. �

APPENDIX B: ASYMPTOTIC EXPANSIONS OF THE LOG
LIKELIHOOD FUNCTION

For a fixed B ∈ B, let zi(θ, β) = β ′ui + θI{xi∈B} and let


i(θ, β) = −Xi log
(
1 + e−zi (θ,β))− (1 − Xi) log

(
1 + ezi(θ,β))

be the log likelihood function corresponding to the ith subject. Since ∂
i/∂zi =
Xi − pi , where pi = (1 + e−zi )−1, evaluated at some parameter β and θ = 0, it
follows that

d
i

dθ
= (Xi − pi)I{xi∈B} and

d
i

dβk

= uik(Xi − pi) for 1 ≤ k ≤ r.

To motivate the form of the limiting distribution of S(k)(B), we use a weighted
Gram–Schmidt orthogonalization procedure, rather than matrix notation, to de-
scribe the first-order quadratic term in a Taylor expansion of S(2)(B). Let wi =
pi(1 − pi) and let weighted dot product (a · b)w = ∑J

i=1 aibiwi and norm
‖a‖w = (a · a)w . Define recursively ũ1 = u1 and ũk = uk − ∑k−1

s=1 aks ũs , where
aks = (uk · ũs)w/‖ũs‖2

w , for 2 ≤ k ≤ r . Then (̃uk · ũs)w = 0 for all k 	= s. Let
ũk = (ũ1k, . . . , ũJ k). Under sufficient regularity conditions, S

(2)
B is equal to, up to

a o(1) term,

(2v2
B)−1

{
J∑

i=1

(
I{xi∈B} −

r∑
k=1

(αB · ũk)wũik

‖ũk‖2
w

)
(Xi − pi)

}2

,

(B.1)
where αB = (

I{x1∈B}, . . . , I{xJ ∈B}
)′

and v2
B =

J∑
i=1

wi

(
I{xi∈B} −

r∑
k=1

(αB · ũk)wũik

‖ũk‖2
w

)2

.

We will next consider a characterization of the limiting distributions of
S(2)(B), B ∈ B. Let η(t) = λ(t)E(w1|x1 = t)/E(w1) and gk(t) = E(u1kw1|x1 =
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t)/E(w1|x1 = t) for 1 ≤ k ≤ r and assume that they are positive and continuous
on D. Let g̃1 = g1(= 1) and define recursively for k ≥ 2,

g̃k(t) = gk(t) −
k−1∑
s=1

μksg̃s(t),

where

μks = b−1
s

∫
D

gk(t)g̃s(t)η(t) dt and bs =
∫
D

g̃2
s (t)η(t) dt.

Then
∫
D g̃k(t)g̃s(t)η(t) dt = 0 for all k 	= s. Let ω be Gaussian white noise on D

with ω(B) ∼ N(0, ηB), where ηB = ∫
B η(t) dt. Then S(2)(B) converges weakly to

Z2
B/2, where

ZB = v−1
B

[
ω(B) −

r∑
k=1

(
b−1
k

∫
B

g̃k(t)η(t) dt
)
ωk(D)

]

with ωk(D) = ∫
D g̃k(t)ω(dt) and vB is a normalizing constant to ensure

Var(ZB) = 1.
The justification behind (3.6) requires arguments used in the proof of Theo-

rem 2. For a given c > 0 and B ∈ B, let QB be a probability measure such that
ω(A) ∼ N(

∫
A μ(t)η(t) dt, ηA), where μ(t) = c1/2v−1

B [I{t∈B} − ∑r
k=1 γkBg̃k(t)]

and γkB = b−1
k

∫
B g̃k(t)η(t) dt. Moreover, under QB , ω(A) and ω(C) are inde-

pendent whenever A and C are disjoint. By Girsanov’s theorem (see Chapter 3.5
of [14]),


(B) := log
[
dQB

dP
(ω)

]
=
∫
D

μ(t)ω(dt) − 1

2

∫
D

μ2(t)η(t) dt = c1/2ZB − c/2.

We can then proceed, as in the proof of Theorem 2 in Section 6.2, by analyzing the
behavior of U

(k)
Z under QB and using a linearization argument to estimate Z2

B/2
by 
(B) when ZB is close to c1/2. The details are omitted.

APPENDIX C: PROOFS OF LEMMA 1, (6.11) AND (6.6)

PROOF OF LEMMA 1. Let αB = nB/J and f (p) = αBφ(p) + (1 − αB) ×
φ((p̂0 − αBp)/(1 − αB)). The tangent of f at p = pB is

g(p) := αB{θ(pB)p + log[(1 − pB)/(1 − p̂0)]}
+ (1 − αB){θ(p̃B)(p̂0 − αBp)/(1 − αB) + log[(1 − p̃B)/(1 − p̂0)]}.

Since S(1)(B) = Jf (mB/nB) and 
(B) = Jg(mB/nB), Lemma 1(a) follows from
the convexity of f .
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Next, let K = [pB,p] if pB ≤ p and K = [p,pB] if pB > p. Since f (pB) =
g(pB) and g is linear,

|f (p) − g(p)| ≤
[

sup
q∈K

f ′′(q)
]
(p − pB)2/2,

(C.1)
|f (p) − f (pB)| ≥

[
inf
q∈K

f ′(q)
]
|p − pB |.

Select p = mB/nB . Since f (p̂0) = f ′(p̂0) = 0 and f (pB) = c(2J )−1 = o(1), it
follows that f ′(pB) is of order (c/J )1/2. If J |f (p) − f (pB)|(= |S(B) − c/2|) ≤
c1/3, then by the first inequality of (C.1), |p − pB | = O(c−1/6J−1/2). Since
|S(1)(B) − 
(B)| = J |f (p) − g(p)| and f ′′ is order 1 in K , Lemma 1(b) follows
from second inequality of (C.1). �

PROOF OF (6.11). The upper bound follows from Z2
C+/2 ≥ 
(C) for all C.

Next, observe that the constraints U
(1)
Z ≤ c + c1/3 and log(#B) = o(c1/3) together

imply that supC∈B Z2
C+ ≤ c + 2c1/3 for all large c. Since

(#B)−1
∑
C∈B

(
eZ2

C+/2I{Z2
C+<c−2c1/3}

)= o(ec/2),

the lower bound follows from applying (6.10) on

(#B)−1
∑
C∈B

(
eZ2

C+/2I{|Z2
C+−c|≤2c1/3}

)
.

�

PROOF OF (6.6). Let ∂B denote the boundary of B and let

∂εB = {t ∈ D :‖t − u‖ ≤ ε for some u ∈ ∂B} with ε = c−3/5.

Let B � C = (B \ C) ∪ (C \ B) and let B1 = {C ∈ B :B � C ⊂ ∂εB}, the class of
C ∈ B that are “close” to B . In Lemma 3(a) below, we show that 
(C)− 
(B) can
be approximated by

hB(C) := ∑
xi∈C\B

[θ(pC)(Xi − pB) − θ(p̃C)(Xi − p̃B)]
(C.2)

− ∑
xi∈B\C

[θ(pC)(Xi − pB) − θ(p̃C)(Xi − p̃B)]

for all C ∈ B1. We show in Lemma 3(b) that
∑

C /∈B1
e
(C)−
(B) is asymptotically

negligible. Hence VB = log(
∑

C∈B1
ehB(C)) + o(1). But log(

∑
C∈B1

ehB(C)) de-
pends only on XB = {(xi ,Xi) : xi ∈ ∂εB} and because ε = o(c−1/2), 
(B) is as-
ymptotically independent of XB . Let

�β1,β2(B) = {x : #(∂εB) ≤ β1Jε and #(B � C) ≥ β2Jε for all C ∈ B \ B1}. �
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LEMMA 3. There exists β1 > 0 large enough and β2 > 0 small enough such
that

1 − P(�β1,β2(B)) = o(e−c1/3
) uniformly over B ∈ B.(C.3)

Moreover, for fixed β1 > 0 and β2 > 0, the following holds uniformly over x ∈
�β1,β2(B).

(a) If c/2 ≤ 
(B) ≤ c/2 + c1/3 and
∑J

i=1 Xi = I , then


(C) − 
(B) = hB(C) + o(1) uniformly over C ∈ B1.(C.4)

(b) Let �(C) = {
(B) ≥ (c/2) and 
(C) ≥ (c/2) − c1/3}. Then

P {�(C)|I,x} = o(e−c/2−c1/3
) uniformly over C ∈ B \ B1.(C.5)

PROOF. Let σd−1(·) denote a (d − 1)-dimensional volume element. By (A2),
#(∂εB) ∼ Bin(J, q), where q ∼ εζB and ζB = 2

∫
∂B λ(t)σ d−1(dt). Then

P {#∂εB ≥ 3ζBεJ } = o(e−ζBεJη0) for some η0 > 0.(C.6)

Similarly, there exists κB > 0 such that for all C ∈ B \B1 and J large, #(B �C) ∼
Bin(J, qC), where qC ≥ εκB . Hence

P {#(B � C) ≤ κBεJ/3} = o(e−κBεJη1) for some η1 > 0.(C.7)

Since εJ/c1/3 → ∞ and log(#B) = o(c1/3), (C.3) follows from (C.6) and (C.7).
(a) By (6.3) and (6.5),


(B) = nBφ(pB) + (J − nB)φ(p̃B)

+ θ(pB)
∑

xi∈B

(Xi − pB) + θ(p̃B)
∑

xi /∈B

(Xi − p̃B),


(C) = nC{pB log(pC/p̂0) + (1 − pB) log[(1 − pC)/(1 − p̂0)]}
+ (J − nC){p̃B log(p̃C/p̂0) + (1 − p̃B) log[(1 − p̃C)/(1 − p̂0)]}
+ θ(pC)

∑
xi∈C

(Xi − pB) − θ(p̃C)
∑

xi /∈C

(Xi − p̃B).

If c/2 ≤ 
(B) ≤ c/2 + c1/3, then by (C.2),


(C) − hB(C) = nC{pB log(pC/p̂0) + (1 − pB) log[(1 − pC)/(1 − p̂0)]}
+ (J − nC){p̃B log(p̃C/p̂0)

+ (1 − p̃B) log[(1 − p̃C)/(1 − p̂0)]}
+ θ(pC)

∑
xi∈B

(Xi − pB) + θ(p̃C)
∑

xi /∈B

(Xi − p̃B)

= 
(B) + O
(
J (pC − pB)2)+ O(c1/3|pC − pB |).
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Under �β1,β2(B), if C ∈ B1, then by (6.3), |pC −pB | = O(c1/2|n−1/2
B −n

−1/2
C |) =

O(c1/2|nB − nC |J−3/2) = O(c1/2J−1/2ε) and we conclude (C.4).
(b) For given p̂0 and x generated according to (A2), let QB,C be a probabil-

ity measure under which X1, . . . ,XJ are independent Bernoulli random variables
satisfying

QB,C{Xi = 1} = (
pBI{xi∈B} + p̃BI{xi /∈B} + pCI{xi∈C} + p̃CI{xi /∈C}

)
/2.

By the AM ≥ GM inequality and (6.4),

QB,C{Xi = a} ≥ (QB{Xi = a}QC{Xi = a})1/2, a = 0,1.(C.8)

By (6.3) and the identity (x + y)/2 − (x1/2y1/2) = (x1/2 − y1/2)2/2, there exists
γ > 0 such that whenever xi ∈ B � C,

QB,C{Xi = a} ≥ ecγ/J (QB{Xi = a}QC{Xi = a})1/2, a = 0,1.(C.9)

Let C ∈ B \ B1. By (C.8), (C.9) and the relation Pp̂0{
∑J

i=1 Xi = I } ∼
QB,C{∑J

i=1 Xi = I },
P {�(C)|I,x} ≤ (

1 + o(1)
)
EQ(B,C)

(
e−[
(B)+
(C)]/2−(cγ /J )(#B�C)I�(C)|I,x

)
and (C.5) holds because under �β1,β2(B), #(B � C) ≥ β2Jε for C ∈ B \ B1. �

To show that the second and fifth lines of (6.6) are asymptotically equiva-
lent, assume without loss of generality that x ∈ [⋂B∈B �β1,β2(B)] for β1 > 0 and
β2 > 0 satisfying (C.3). By (6.3), if

∑
xi∈B(Xi − pB) < 0 for all B ∈ B, then

S(1)(B) < c/2 for all B ∈ B and hence UB < c. The condition UB ≥ c thus en-
sures that

∑
xi∈Bmax

(Xi −pBmax) ≥ 0, and, consequently, 
(Bmax) ≥ c/2 [see (6.5)].
Let �B = {
(B) ≥ c/2 and 
(C) < (c/2) − c1/3 for all C ∈ B \ B1} and WB =

log((#B)−1∑
C∈B e
(C)). By Lemma 2(a) and (C.5), there exists c′ = c + o(1)

such that

EQ(B)

(
e−
(B)I{UB≥c,Bmax=B}|I,x

)
≥ EQ(B)

(
e−
(B)I{c′+c1/3≥2WB≥c′,Bmax=B}|�B, I,x

)
(C.10)

+ o((#B)−1c−1/2e−c/2).

Let XB = {(xi ,Xi) : xi ∈ ∂εB} and assume �B . Then I{Bmax=B} is determined on
knowing XB , and, in addition, by (C.4), VB = log(

∑
C∈B1

ehB(C)) + o(1). More-
over, by (C.2), log(

∑
C∈B1

ehB(C)) is determined on knowing XB and x. Hence
there exists c∗ = c + o(1) such that

EQ(B)

(
e−
(B)I{c′+c1/3≥2WB≥c′,Bmax=B}|�B, I,x,XB

)
≥ (

1 + o(1)
)
I{Bmax=B}(#B)−1eVB(C.11)

× EQ(B)

(
e−WB I{c∗/2+c1/3≥WB≥c∗/2}|�B, I,x,XB

)
.
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It follows from a local limit theorem that under QB , WB conditioned on �B has
an asymptotic density of (2πc)−1/2 uniformly over [c∗/2, c∗/2 + c1/3]. Replace
this asymptotic density into (C.11), take expectation over XB and substitute the
remaining expression into (C.10) to obtain

EQ(B)

(
e−
(B)I{UB≥c,Bmax=B}|I,x

)
≥ (

1 + o(1)
)
(2πc)−1/2e−c/2(C.12)

× (#B)−1EQ(B)

(
eVB I{Bmax=B}|I,x

)+ o
(
(#B)−1c−1/2e−c/2).

Similarly, EQ(B)(e
−
(B)I{UB≥c+c1/3,Bmax=B}|I,x) = o((#B)−1c−1/2e−c/2) and

(C.12) with the inequality reversed can be obtained. Hence the second and fifth
lines of (6.6) are asymptotically equivalent.
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