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DATA SPECTROSCOPY: EIGENSPACES OF CONVOLUTION
OPERATORS AND CLUSTERING
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This paper focuses on obtaining clustering information about a distribu-
tion from its i.i.d. samples. We develop theoretical results to understand and
use clustering information contained in the eigenvectors of data adjacency
matrices based on a radial kernel function with a sufficiently fast tail de-
cay. In particular, we provide population analyses to gain insights into which
eigenvectors should be used and when the clustering information for the dis-
tribution can be recovered from the sample. We learn that a fixed number of
top eigenvectors might at the same time contain redundant clustering infor-
mation and miss relevant clustering information. We use this insight to design
the data spectroscopic clustering (DaSpec) algorithm that utilizes properly
selected eigenvectors to determine the number of clusters automatically and
to group the data accordingly. Our findings extend the intuitions underlying
existing spectral techniques such as spectral clustering and Kernel Principal
Components Analysis, and provide new understanding into their usability and
modes of failure. Simulation studies and experiments on real-world data are
conducted to show the potential of our algorithm. In particular, DaSpec is
found to handle unbalanced groups and recover clusters of different shapes
better than the competing methods.

1. Introduction. Data clustering based on eigenvectors of a proximity or
affinity matrix (or its normalized versions) has become popular in machine learn-
ing, computer vision and many other areas. Given data x1, . . . , xn ∈ R

d , this fam-
ily of algorithms constructs an affinity matrix (Kn)ij = K(xi, xj )/n based on a

kernel function, such as a Gaussian kernel K(x,y) = e−‖x−y‖2/(2ω2). Clustering
information is obtained by taking eigenvectors and eigenvalues of the matrix Kn

or the closely related graph Laplacian matrix Ln = Dn − Kn, where Dn is a di-
agonal matrix with (Dn)ii = ∑

j (Kn)ij . The basic intuition is that when the data
come from several clusters, distances between clusters are typically far larger than
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the distances within the same cluster, and thus Kn and Ln are (close to) block-
diagonal matrices up to a permutation of the points. Eigenvectors of such block-
diagonal matrices keep the same structure. For example, the few top eigenvectors
of Ln can be shown to be constant on each cluster, assuming infinite separation be-
tween clusters, allowing one to distinguish the clusters by looking for data points
corresponding to the same or similar values of the eigenvectors.

In particular, we note the algorithm of Scott and Longuet-Higgins [13] who
proposed to embed data into the space spanned by the top eigenvectors of Kn,
normalize the data in that space and group data by investigating the block structure
of inner product matrix of normalized data. Perona and Freeman [10] suggested to
cluster the data into two groups by directly thresholding the top eigenvector of Kn.

Another important algorithm, the normalized cut, was proposed by Shi and Ma-
lik [14] in the context of image segmentation. It separates data into two groups
by thresholding the second smallest generalized eigenvector of Ln. Assuming k

groups, Malik et al. [6] and Ng, Jordan and Weiss [8] suggested embedding the
data into the span of the bottom k eigenvectors of the normalized graph Lapla-
cian1 In − D

−1/2
n KnD

−1/2
n and applying the k-means algorithm to group the data

in the embedding space. For further discussions on spectral clustering, we refer
the reader to Weiss [20], Dhillon, Guan and Kulis [2] and von Luxburg [18]. An
empirical comparison of various methods is provided in Verma and Meila [17].
A discussion of some limitations of spectral clustering can be found in Nadler
and Galun [7]. A theoretical analysis of statistical consistency of different types of
spectral clustering is provided in von Luxburg, Belkin and Bousquet [19].

Similarly to spectral clustering methods, Kernel Principal Component Analysis
(Schölkopf, Smola and Müller [12]) and spectral dimensionality reduction (e.g.,
Belkin and Niyogi [1]) seek lower dimensional representations of the data by em-
bedding them into the space spanned by the top eigenvectors of Kn or the bottom
eigenvectors of the normalized graph Laplacian with the expectation that this em-
bedding keeps nonlinear structure of the data. Empirical observations have also
been made that KPCA can sometimes capture clusters in the data. The concept of
using eigenvectors of the kernel matrix is also closely connected to other kernel
methods in the machine learning literature, notably Support Vector Machines (cf.
Vapnik [16] and Schölkopf and Smola [11]), which can be viewed as fitting a linear
classifier in the eigenspace of Kn.

Although empirical results and theoretical studies both suggest that the top
eigenvectors contain clustering information, the effectiveness of these algorithms
hinges heavily on the choice of the kernel and its parameters, the number of the
top eigenvectors used, and the number of groups employed. As far as we know,
there are no explicit theoretical results or practical guidelines on how to make these
choices. Instead of tackling these questions regarding to particular data sets, it may

1We assume here that the diagonal terms of Kn are replaced by zeros.
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be more fruitful to investigate them from a population point of view. Williams and
Seeger [21] investigated the dependence of the spectrum of Kn on the data density
function and analyzed this dependence in the context of lower rank matrix approx-
imations to the kernel matrix. To the best of our knowledge, this work was the first
theoretical study of this dependence.

In this paper we aim to understand spectral clustering methods based on a pop-
ulation analysis. We concentrate on exploring the connections between the dis-
tribution P and the eigenvalues and eigenfunctions of the distribution-dependent
convolution operator,

KP f (x) =
∫

K(x,y)f (y) dP (y).(1.1)

The kernels we consider will be positive (semi-)definite radial kernels. Such ker-
nels can be written as K(x,y) = k(‖x − y‖), where k : [0,∞) → [0,∞) is a de-
creasing function. We will use kernels with sufficiently fast tail decay, such as
the Gaussian kernel or the exponential kernel K(x,y) = e−‖x−y‖/ω. The connec-
tions found allow us to gain some insights into when and why these algorithms are
expected to work well. In particular, we learn that a fixed number of top eigenvec-
tors of the kernel matrix do not always contain all of the clustering information.
In fact, when the clusters are not balanced and/or have different shapes, the top
eigenvectors may be inadequate and redundant at the same time. That is, some of
the top eigenvectors may correspond to the same cluster while missing other sig-
nificant clusters. Consequently, we devise a clustering algorithm that selects only
those eigenvectors which have clustering information not represented by the other
eigenvectors already selected.

The rest of the paper is organized as follows. In Section 2, we cover the basic
definitions, notation and mathematical facts about the distribution-dependent con-
volution operator and its spectrum. We point out the strong connection between
KP and its empirical version, the kernel matrix Kn, which allows us to approxi-
mate the spectrum of KP given data.

In Section 3, we characterize the dependence of eigenfunctions of KP on both
the distribution P and the kernel function K(·, ·). We show that the eigenfunctions
of KP decay to zero at the tails of the distribution P and that their decay rates
depends on both the tail decay rate of P and that of the kernel K(·, ·). For dis-
tributions with only one high density component, we provide theoretical analysis.
A discussion of three special cases can be found in the Appendix A. In the first two
examples, the exact form of the eigenfunctions of KP can be found; in the third,
the distribution is concentrated on or around a curve in R

d .
Further, we consider the case when the distribution P contains several separate

high-density components. Through classical results of the perturbation theory, we
show that the top eigenfunctions of KP are approximated by the top eigenfunc-
tions of the corresponding operators defined on some of those components. How-
ever, not every component will contribute to the top few eigenfunctions of KP as
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the eigenvalues are determined by the size and configuration of the corresponding
component. Based on this key property, we show that the top eigenvectors of the
kernel matrix may or may not preserve all clustering information, which explains
some empirical observations of certain spectral clustering methods. A real-world
high-dimensional dataset, the USPS postal code digit data, is also analyzed to il-
lustrate this property.

In Section 4, we utilize our theoretical results to construct the data spectro-
scopic clustering (DaSpec) algorithm that estimates the number of groups data-
dependently, assigns labels to each observation, and provides a classification rule
for unobserved data, all based on the same eigen decomposition. Data-dependent
choices of algorithm parameters are also discussed. In Section 5, the proposed
DaSpec algorithm is tested on two simulations against commonly used k-means
and spectral clustering algorithms. In both situations, the DaSpec algorithm pro-
vides favorable results even when the other two algorithms are provided with the
number of groups in advance. Section 6 contains conclusions and discussion.

2. Notation and mathematical preliminaries.

2.1. Distribution-dependent convolution operator. Given a probability distri-
bution P on R

d , we define L2
P (Rd) to be the space of square integrable func-

tions, f ∈ L2
P (Rd) if

∫
f 2 dP < ∞, and the space is equipped with an inner

product 〈f,g〉 = ∫
fg dP . Given a kernel (symmetric function of two variables)

K(x,y) : Rd ×R
d → R, (1.1) defines the corresponding integral operator KP . Re-

call that an eigenfunction φ : Rd �→ R and the corresponding eigenvalue λ of KP

are defined by the following equations:

KP φ = λφ,(2.1)

and the constraint
∫

φ2 dP = 1. If the kernel satisfies the condition∫ ∫
K2(x, y) dP (x) dP (y) < ∞,(2.2)

the corresponding operator KP is a trace class operator, which, in turn, implies
that it is compact and has a discrete spectrum.

In this paper, we will only consider the case when a positive semi-definite ker-
nel K(x,y) and a distribution P generate a trace class operator KP , so that it
has only countable nonnegative eigenvalues λ0 ≥ λ1 ≥ λ2 ≥ · · · ≥ 0. Moreover,
there is a corresponding orthonormal basis in L2

p of eigenfunctions φi satisfy-
ing (2.1). The dependence of the eigenvalues and eigenfunctions of KP on P

will be one of the main foci of our paper. We note that an eigenfunction φ is
uniquely defined not only on the support of P , but on every point x ∈ R

d through
φ(x) = 1

λ

∫
K(x,y)φ(y) dP (y), assuming that the kernel function K is defined

everywhere on R
d × R

d .
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2.2. Kernel matrix. Let x1, . . . , xn be an i.i.d. sample drawn from distribu-
tion P . The corresponding empirical operator KPn is defined as

KPnf (x) =
∫

K(x,y)f (y) dPn(y) = 1

n

n∑
i=1

K(x, xi)f (xi).

This operator is closely related to the n × n kernel matrix Kn, where

(Kn)ij = K(xi, xj )/n.

Specifically, the eigenvalues of KPn are the same as those of Kn and an eigen-
function φ, with an eigenvalue λ 
= 0 of KPn , is connected with the corresponding
eigenvector v = [v1, v2, . . . , vn]′ of Kn by

φ(x) = 1

nλ

n∑
i=1

K(x, xi)vi ∀x ∈ R
d .

It is easy to verify that KPnφ = λφ. Thus values of φ at locations x1, . . . , xn coin-
cide with the corresponding entries of the eigenvector v. However, unlike v, φ is
defined everywhere in R

d . For the spectrum of KPn and Kn, the only difference is
that the spectrum of KPn contains 0 with infinite multiplicity. The corresponding
eigenspace includes all functions vanishing on the sample points.

It is well known that, under mild conditions and when d is fixed, the eigenvec-
tors and eigenvalues of Kn converge to eigenfunctions and eigenvalues of KP as
n → ∞ (e.g., Koltchinskii and Giné [4]). Therefore, we expect the properties of
the top eigenfunctions and eigenvalues of KP also hold for Kn, assuming that n is
reasonably large.

3. Spectral properties of KP . In this section, we study the spectral proper-
ties of KP and their connection to the data generating distribution P . We start with
several basic properties of the top spectrum of KP and then investigate the case
when the distribution P is a mixture of several high-density components.

3.1. Basic spectral properties of KP . Through Theorem 1 and its corollary,
we obtain an important property of the eigenfunctions of KP , that is, these eigen-
functions decay fast when away from the majority of masses of the distribution
if the tails of K and P have a fast decay. A second theorem offers the important
property that the top eigenfunction has no sign change and multiplicity one. (Three
detailed examples are provided in Appendix A to illustrate these two important
properties.)

THEOREM 1 (Tail decay property of eigenfunctions). An eigenfunction φ with
the corresponding eigenvalue λ > 0 of KP satisfies

|φ(x)| ≤ 1

λ

√∫
[K(x,y)]2 dP (y).
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PROOF. By the Cauchy–Schwarz inequality and the definition of eigenfunc-
tion (2.1), we see that

λ|φ(x)| =
∣∣∣∣
∫

K(x,y)φ(y) dP (y)

∣∣∣∣ ≤
∫

K(x,y)|φ(y)|dP (y)

≤
√∫

[K(x,y)]2 dP (y)

√∫
[φ(y)]2 dP (y) =

√∫
[K(x,y)]2 dP (y).

The conclusion follows. �

We see that the “tails” of eigenfunctions of KP decay to zero and that the decay
rate depends on the tail behaviors of both the kernel K and the distribution P . This
observation will be useful to separate high-density areas in the case of P having
several components. Actually, we have the following corollary immediately:

COROLLARY 1. Let K(x,y) = k(‖x − y‖) and k(·) being nonincreasing. As-
sume that P is supported on a compact set D ⊂ R

d . Then

|φ(x)| ≤ k(dist(x,D))

λ
,

where dist(x,D) = infy∈D ‖x − y‖.

The proof follows from Theorem 1 and the fact that k(·) is a nonincreasing
function. And now we give an important property of the top (corresponding to the
largest eigenvalue) eigenfunction.

THEOREM 2 (Top eigenfunction). Let K(x,y) be a positive semi-definite ker-
nel with full support on R

d . The top eigenfunction φ0(x) of the convolution oper-
ator KP :

1. is the only eigenfunction with no sign change on R
d ;

2. has multiplicity one;
3. is nonzero on the support of P .

The proof is given in Appendix B and these properties will be used later when
we propose our clustering algorithm in Section 4.

3.2. An example: top eigenfunctions of KP for mixture distributions. We now
study the spectrum of KP defined on a mixture distribution

P =
G∑

g=1

πgP g,(3.1)

which is a commonly used model in clustering and classification. To reduce nota-
tion confusion, we use italicized superscript 1,2, . . . , g, . . . ,G as the index of the
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FIG. 1. Eigenvectors of a Gaussian kernel matrix (ω = 0.3) of 1000 data sampled from a mixture
Gaussian distribution 0.5N(2,12) + 0.5N(−2,12). Left panels: histogram of the data (top), first
eigenvector of Kn (middle) and second eigenvector of Kn (bottom). Right panels: histograms of data
from each component (top), first eigenvector of K1

n (middle) and first eigenvector of K2
n (bottom).

mixing component and ordinary superscript for the power of a number. For each
mixing component P g , we define the corresponding operator KP g as

KP gf (x) =
∫

K(x,y)f (y) dP g(y).

We start by a mixture Gaussian example given in Figure 1. Gaussian kernel ma-
trices Kn, K1

n and K2
n (ω = 0.3) are constructed on three batches of 1000 i.i.d. sam-

ples from each of the three distributions: 0.5N(2,12) + 0.5N(−2,12), N(2,12)

and N(−2,12). We observe that the top eigenvectors of Kn are nearly identical to
the top eigenvectors of K1

n or K2
n .

From the point of view of the operator theory, it is easy to understand this
phenomenon: with a properly chosen kernel, the top eigenfunctions of an oper-
ator defined on each mixing component are approximate eigenfunctions of the
operator defined on the mixture distribution. To be explicit, let us consider the
Gaussian convolution operator KP defined by P = π1P 1 + π2P 2, with Gaussian
components P 1 = N(μ1, [σ 1]2) and P 2 = N(μ2, [σ 2]2) and the Gaussian ker-
nel K(x,y) with bandwidth ω. Due to the linearity of convolution operators,
KP = π1KP 1 + π2KP 2 .
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Consider an eigenfunction φ1(x) of KP 1 with the corresponding eigenvalue λ1,
KP 1φ1(x) = λ1φ1(x). We have

KP φ1(x) = π1λ1φ1(x) + π2
∫

K(x,y)φ1(y) dP 2(y).

As shown in Proposition 1 in Appendix A, in the Gaussian case, φ1(x) is centered
at μ1 and its tail decays exponentially. Therefore, assuming enough separation be-
tween μ1 and μ2, π2 ∫

K(x,y)φ1(y) dP 2(y) is close to 0 everywhere, and hence
φ1(x) is an approximate eigenfunction of KP . In the next section, we will show
that a similar approximation holds for general mixture distributions whose com-
ponents may not be Gaussian distributions.

3.3. Perturbation analysis. For KP defined by a mixture distribution (3.1)
and a positive semi-definite kernel K(·, ·), we now study the connection between
its top eigenvalues and eigenfunctions and those of each KP g . Without loss of
generality, let us consider a mixture of two components. We state the following
theorem regarding the top eigenvalue λ0 of KP .

THEOREM 3 (Top eigenvalue of mixture distribution). Let P = π1P 1 +π2P 2

be a mixture distribution on R
d with π1 + π2 = 1. Given a positive semi-definite

kernel K , denote the top eigenvalue of KP , KP 1 and KP 2 as λ0, λ1
0 and λ2

0,
respectively. Then λ0 satisfies

max(π1λ1
0, π

2λ2
0) ≤ λ0 ≤ max(π1λ1

0, π
2λ2

0) + r,

where

r =
(
π1π2

∫ ∫
[K(x,y)]2 dP 1(x) dP 2(y)

)1/2

.(3.2)

The proof is given in Appendix B. As illustrated in Figure 2, the value of r in
(3.2) is small when P 1 and P 2 do not overlap much. Meanwhile, the size of r is
also affected by how fast K(x,y) approaches zero as ‖x − y‖ increases. When r

is small, the top eigenvalue of KP is close to the larger one of π1λ1
0 and π2λ2

0.
Without loss of generality, we assume π1λ1

0 > π2λ2
0 in the rest of this section.

The next lemma is a general perturbation result for the eigenfunctions of KP .
The empirical (matrix) version of this lemma appeared in Diaconis, Goel and
Holmes [3] and more general results can be traced back to Parlett [9].

LEMMA 1. Consider an operator KP with the discrete spectrum λ0 ≥ λ1 ≥
· · · . If

‖KP f − λf ‖L2
P

≤ ε

for some λ, ε > 0, and f ∈ L2
P , then KP has an eigenvalue λk such that |λk −

λ| ≤ ε. If we further assume that s = mini : λi 
=λk
|λi − λk| > ε, then KP has an

eigenfunction fk corresponding to λk such that ‖f − fk‖L2
P

≤ ε
s−ε

.
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FIG. 2. Illustration of separation condition (3.2) in Theorem 3.

The lemma shows that a constant λ must be “close” to an eigenvalue of KP if
the operator “almost” projects a function f to λf . Moreover, the function f must
be “close” to an eigenfunction of KP if the distance between KP f and λf is
smaller than the eigen-gaps between λk and other eigenvalues of KP . We are now
in a position to state the perturbation result for the top eigenfunction of KP . Given
the facts that |λ0 − π1λ1

0| ≤ r and

KP φ1
0 = π1KP 1φ

1
0 + π2KP 2φ

1
0 = (π1λ1

0)φ
1
0 + π2KP 2φ

1
0,

Lemma 1 indicates that φ1
0 is close to φ0 if ‖π2KP 2φ1

0‖L2
P

is small enough. To be
explicit, we formulate the following corollary.

COROLLARY 2 (Top eigenfunction of mixture distribution). Let P = π1P 1 +
π2P 2 be a mixture distribution on R

d with π1 +π2 = 1. Given a semi-positive def-
inite kernel K(·, ·), we denote the top eigenvalues of KP 1 and KP 2 as λ1

0 and λ2
0,

respectively (assuming π1λ1
0 > π2λ2

0) and define t = λ0 − λ1, the eigen-gap of
KP . If the constant r defined in (3.2) satisfies r < t , and∥∥∥∥π2

∫
Rd

K(x, y)φ1
0(y) dP 2(y)

∥∥∥∥
L2

p

≤ ε,(3.3)

such that ε + r < t , then π1λ1
0 is close to KP ’s top eigenvalue λ0,

|π1λ1
0 − λ0| ≤ ε

and φ1
0 is close to KP ’s top eigenfunction φ0 in L2

P sense,

‖φ1
0 − φ0‖L2

P
≤ ε

t − ε
.(3.4)

The proof is trivial, so it is omitted here. Since Theorem 3 leads to |λ1
0 −λ0| ≤ r

and Lemma 1 suggests |λ1
0 −λk| ≤ ε for some k, the condition r + ε < t = λ0 −λ1
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guarantees that φ0 as the only possible choice for φ1
0 to be close to. Therefore, φ1

0
is approximately the top eigenfunction of KP .

It is worth noting that the separable conditions in Theorem 3, Corollary 2 are
mainly based on the overlap of the mixture components, but not on their shapes
or parametric forms. Therefore, clustering methods based on spectral information
are able to deal with more general problems beyond the traditional mixture models
based on a parametric family, such as mixture Gaussians or mixture of exponential
families.

3.4. Top spectrum of KP for mixture distributions. For a mixture distribution
with enough separation between its mixing components, we now extend the pertur-
bation results in Corollary 2 to other top eigenfunctions of KP . With close agree-
ment between (λ0, φ0) and (π1λ1

0, φ
1
0), we observe that the second top eigenvalue

of KP is approximately max(π1λ1
1, π

2λ2
0) by investigating the top eigenvalue of

the operator defined by a new kernel Knew = K(x,y) − λ0φ0(x)φ0(y) and P . Ac-
cordingly, one may also derive the conditions under which the second eigenfunc-
tions of KP is approximated by φ1

1 or φ2
0 , depending on the magnitude of π1λ1

1
and π2λ2

0. By sequentially applying the same argument, we arrive at the following
corollary.

PROPERTY 1 (Mixture property of top spectrum). For a convolution opera-
tor KP , defined by a semi-positive definite kernel with a fast tail decay and a
mixture distribution P = ∑G

g=1 πgP g with enough separations between its mixing
components, the top eigenfunctions of KP are approximately chosen from the top
ones (φg

i ) of KP g , i = 0,1, . . . , n, g = 1, . . . ,G. The ordering of the eigenfunc-
tions is determined by mixture magnitudes πgλ

g
i .

This property suggests that each of the top eigenfunctions of KP corresponds to
exactly one of the separable mixture components. Therefore, we can approximate
the top eigenfunctions of KP g through those of KP when enough separations exist
among mixing components. However, several of the top eigenfunctions of KP can
correspond to the same component and a fixed number of top eigenfunctions may
miss some components entirely, specifically the ones with small mixing weights
πg or small eigenvalue λg .

When there is a large i.i.d. sample from a mixture distribution whose compo-
nents are well separated, we expect the top eigenvalues and eigenfunctions of KP

to be close to those of the empirical operator KPn . As discussed in Section 2.2, the
eigenvalues of KPn are the same as those of the kernel matrix Kn and the eigen-
functions of KPn coincide with the eigenvectors of Kn on the sampled points.
Therefore, assuming good approximation of KPn to KP , the eigenvalues and
eigenvectors of Kn provide us with access to the spectrum of KP .

This understanding sheds light on the algorithms proposed in Scott and
Longuet-Higgins [13] and Perona and Freeman [10], in which the top (several)
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eigenvectors of Kn are used for clustering. While the top eigenvectors may contain
clustering information, smaller or less compact groups may not be identified using
only the very top part of the spectrum. More eigenvectors need to be investigated
to see these clusters. On the other hand, information in the top few eigenvectors
may also be redundant for clustering, as some of these eigenvectors may represent
the same group.

3.5. A real-data example: a USPS digits dataset. Here we use a high-
dimensional U.S. Postal Service (USPS) digit dataset to illustrate the properties
of the top spectrum of KP . The data set contains normalized handwritten digits,
automatically scanned from envelopes by the USPS. The images here have been
rescaled and size-normalized, resulting in 16×16 grayscale images (see Le Cun et
al. [5] for details). Each image is treated as a vector xi in R

256. In this experiment,
658 “3”s, 652 “4”s and 556 “5”s in the training data are pooled together as our
sample (size 1866).

Taking the Gaussian kernel with bandwidth ω = 2, we construct the kernel ma-
trix Kn and compute its eigenvectors v1, v2, . . . ,v1866. We visualize the digits
corresponding to large absolute values of the top eigenvectors. Given an eigenvec-
tor vj , we rank the digits xi , i = 1,2, . . . ,1866, according to the absolute value
|(vj )i |. In each row of Figure 3, we show the 1st, 36th, 71st, . . . ,316th digits ac-
cording to that order for a fixed eigenvector vj , j = 1,2,3,15,16,17,48,49,50.

FIG. 3. Digits ranked by the absolute value of eigenvectors v1, v2, . . . ,v50. The digits in each row
correspond to the 1st, 36th, 71st, . . . ,316th largest absolute value of the selected eigenvector. Three
eigenvectors, v1, v16 and v49, are identified by our DaSpec algorithm.
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FIG. 4. Left: scatter plots of digits embedded in the top three eigenvectors; right: digits embedded
in the 1st, 16th and 49th eigenvectors.

It turns out that the digits with large absolute values of the top 15 eigenvectors,
some shown in Figure 3, all represent number “4.” The 16th eigenvector is the first
one representing “3” and the 49th eigenvector is the first one for “5.”

The plot of the data embedded using the top three eigenvectors shown in the
left panel of Figure 4 suggests no separation of digits. These results are strongly
consistent with our theoretical findings: A fixed number of the top eigenvectors of
Kn may correspond to the same cluster while missing other significant clusters.
This leads to the failure of clustering algorithms only using the top eigenvectors
of Kn. The k-means algorithm based on top eigenvectors (normalized as suggested
in Scott and Longuet-Higgins [13]) produces accuracies below 80% and reaches
the best performance as the 49th eigenvector is included.

Meanwhile, the data embedded in the 1st, 16th and 49th eigenvectors (the right
panel of Figure 4) do present the three groups of digits “3,” “4” and “5” nearly
perfectly. If one can intelligently identify these eigenvectors and cluster data in the
space spanned by them, good performance is expected. In the next section, we uti-
lize our theoretical analysis to construct a clustering algorithm that automatically
selects these most informative eigenvectors and groups the data accordingly.

4. A data spectroscopic clustering (DaSpec) algorithm. In this section, we
propose a data spectroscopic clustering (DaSpec) algorithm based on our theoreti-
cal analyses. We chose the commonly used Gaussian kernel, but it may be replaced
by other positive definite radial kernels with a fast tail decay rate.

4.1. Justification and the DaSpec algorithm. As shown in Property 1 for mix-
ture distributions in Section 3.4, we have access to approximate eigenfunctions of
KP g through those of KP when each mixing component has enough separation
from the others. We know from Theorem 2 that among the eigenfunctions of each
component KP g , the top one is the only eigenfunction with no sign change. When
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the spectrum of KP g is close to that of KP , we expect that there is exactly one
eigenfunction with no sign change over a certain small threshold ε. Therefore, the
number of separable components of P is indicated by the number of eigenfunc-
tions φ(x)’s of KP with no sign change after thresholding.

Meanwhile, the eigenfunctions of each component decay quickly to zero at the
tail of its distribution if there is a good separation of components. At a given loca-
tion x, in the high-density area of a particular component which is at the tails of
other components, we expect the eigenfunctions from all other components to be
close to zero. Among the top eigenfunction |φg

0 (x)| of KP g defined on each com-
ponent pg , g = 1, . . . ,G, the group identity of x corresponds to the eigenfunction
that has the largest absolute value, |φg

0 (x)|. Combining this observation with pre-
vious discussions on the approximation of Kn to KP , we propose the following
clustering algorithm.

Data spectroscopic clustering (DaSpec) Algorithm.

Input: Data x1, . . . , xn ∈ R
d .

Parameters: Gaussian kernel bandwidth ω > 0, thresholds εj > 0.

Output: Estimated number of separable components Ĝ and a cluster label
L̂(xi) for each data point xi , i = 1, . . . , n.

STEP 1. Construct the Gaussian kernel matrix Kn:

(Kn)ij = 1

n
e−‖xi−xj‖2/(2ω2), i, j = 1, . . . , n,

and compute its eigenvalues λ1, λ2, . . . , λn and eigenvectors v1,v2, . . . ,vn.

STEP 2. Estimate the number of clusters:

- Identify all eigenvectors vj that have no sign changes up to precision εj . [We say
that a vector e = (e1, . . . , en)

′ has no sign changes up to ε if either ∀i ei > −ε

or ∀i ei < ε.]
- Estimate the number of groups by Ĝ, the number of such eigenvectors.

- Denote these eigenvectors and the corresponding eigenvalues by v1
0,v2

0, . . . ,vĜ
0

and λ1
0, λ

2
0, . . . , λ

Ĝ
0 , respectively.

STEP 3. Assign a cluster label to each data point xi as

L̂(xi) = arg max
g

{|vg
0i | :g = 1,2, . . . , Ĝ}.

It is obviously important to have data-dependent choices for the parameters
of the DaSpec algorithm: ω and εj ’s. We will discuss some heuristics for those
choices in the next section. Given a DaSpec clustering result, one important feature
of our algorithm is that little adjustment is needed to classify a new data point x.
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Thanks to the connection between the eigenvector v of Kn and the eigenfunction φ

of the empirical operator KPn , we can compute the eigenfunction φ
g
0 correspond-

ing to vg
0 by

φ
g
0 (x) = 1

λ
g
0

n∑
i=1

K(x, xi)v
g
0i , x ∈ R

d .

Therefore, Step 3 of the algorithm can be readily applied to any x by replacing
v

g
0i with φ

g
0 (x). So the algorithm output can serve as a clustering rule that sepa-

rates not only the data, but also the underline distribution, which is aligned with
the motivation behind our Data Spectroscopy algorithm: learning properties of a
distribution though the empirical spectrum of KPn .

4.2. Data-dependent parameter specification. Following the justification of
our DaSpec algorithm, we provide some heuristics on choosing algorithm parame-
ters in a data-dependent way.

Gaussian kernel bandwidth ω. The bandwidth controls both the eigengaps and
the tail decay rates of the eigenfunctions. When ω is too large, the tails of eigen-
functions may not decay fast enough to make condition (3.3) in Corollary 2 hold.
However, if ω is too small, the eigengaps may vanish, in which case each data point
will end up as a separate group. Intuitively, we want to select small ω but still to
keep enough (say, n × 5%) neighbors for most (95% of) data points in the “range”
of the kernel, which we define as a length l that makes P(‖X‖ < l) = 95%. In case

of a Gaussian kernel in R
d , l = ω

√
95% quantile of χ2

d .

Given data x1, . . . , xn or their pairwise L2 distance d(xi, xj ), we can find ω that
satisfies the above criteria by first calculating qi = 5% quantile of {d(xi, xj ), j =
1, . . . , n} for each i = 1, . . . , n, then taking

ω = 95% quantile of {q1, . . . , qn}√
95% quantile of χ2

d

.(4.1)

As shown in the simulation studies in Section 5, this particular choice of ω

works well in low-dimensional case. For high-dimensional data generated from a
lower-dimensional structure, such as an m-manifold, the procedure usually leads
to an ω that is too small. We suggest starting with ω defined in (4.1) and trying
some neighboring values to see if the results are improved, maybe based on some
labeled data, expert opinions, data visualization or trade-off of the between and
within cluster distances.

Threshold εj . When identifying the eigenvectors with no sign changes in
Step 2, a threshold εj is included to deal with the small perturbation introduced
by other well-separable mixture components. Since ‖vj‖2 = 1 and the elements of
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the eigenvector decrease quickly (exponentially) from maxi (|vj (xi)|), we suggest
to threshold vj at εj = maxi (|vj (xi)|)/n (n as the sample size) to accommodate
the perturbation.

We note that the proper selection of algorithm parameters is critical to the
separation of the spectrum and the success of the clustering algorithms hinged
on the separation. Although the described heuristics seem to work well for low-
dimensional datasets (as we will show in the next section), they are still prelim-
inary and more research is needed, especially in high-dimensional data analysis.
We plan to further study the data-adaptive parameter selection procedure in the
future.

5. Simulation studies.

5.1. Gaussian type components. In this simulation, we examine the effective-
ness of the proposed DaSpec algorithm on datasets generated from Gaussian mix-
tures. Each data set (size of 400) is sampled from a mixture of six bivariate Gaus-
sians, while the size of each group follows a Multinomial distribution (n = 400,
and p1 = · · · = p6 = 1/6). The mean and standard deviation of each Gaussian are
randomly drawn from a Uniform on (−5,5) and a Uniform on (0,0.8), respec-
tively. Four data sets generated from this distribution are plotted in the left column
of Figure 5. It is clear that the groups may be highly unbalanced and overlap with
each other. Therefore, rather than trying to separate all six components, we expect
good clustering algorithms to identify groups with reasonable separations between
high density areas.

The DaSpec algorithm is applied with parameters ω and εj chosen by the pro-
cedure described in Section 4.2. Taking the number of groups identified by our
Daspec algorithm, the commonly used k-means algorithm and the spectral clus-
tering algorithms proposed in Ng, Jordan and Weiss [8] (using the same ω as
the DaSpec) are also tested to serve as baselines for comparison. As a common
practice with k-means algorithm, fifty random initializations are used and the fi-
nal results are from the one that minimizes the optimization criterion

∑n
i=1(xi −

yk(i))
2, where xi is assigned to group k(i) and yk = ∑n

i=1 xiI (k(i) = k)/∑n
i=1 I (k(i) = k).
As shown in the second column of Figure 5, the proposed DaSpec algo-

rithm (with data-dependent parameter choices) identifies the number of separa-
ble groups, isolates potential outliers and groups data accordingly. The results are
similar to the k-means algorithm results (the third column), when the groups are
balanced and their shapes are close to round. In these cases, the k-means algorithm
is expected to work well, given that the data in each group is well represented by
its average. The last column shows the results of Ng et al.’s spectral clustering al-
gorithm, which sometimes (see the first row) assigns data to one group even when
they are actually far away.
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FIG. 5. Clustering results on four simulated data sets described in Section 5.1. First column: scatter
plots of data; second column: results the proposed spectroscopic clustering algorithm; third column:
results of the k-means algorithm; fourth column: results of the spectral clustering algorithm (Ng,
Jordan and Weiss [8]).

In summary, for this simulated example, we find that the proposed DaSpec algo-
rithm, with data-adaptively chosen parameters, identifies the number of separable
groups reasonably well and produces good clustering results when the separations
are large enough. It is also interesting to note that the algorithm isolates possible
“outliers” into a separate group so that they do not affect the clustering results on
the majority of data. The proposed algorithm competes well against the commonly
used k-means and spectral clustering algorithms.

5.2. Beyond Gaussian components. We now compare the performance of
the aforementioned clustering algorithms on data sets that contain non-Gaussian
groups, various levels of noise and possible outliers. Data set D1 contains three
well-separable groups and an outlier in R

2. The first group of data is generated by
adding independent Gaussian noise N((0,0)T ,0.152I2×2) to 200 uniform sam-
ples from three fourths of a ring with radius 3, which is from the same dis-
tribution as those plotted in the right panel of Figure 8. The second group in-
cludes 100 data points sampled from a bivariate Gaussian N((3,−3)T ,0.52I2×2),
and the last group has only 5 data points sampled from a bivariate Gaussian
N((0,0)T ,0.32I2×2). Finally, one outlier is located at (5,5)T . Given D1, three
more data sets (D2, D3 and D4) are created by gradually adding independent
Gaussian noise (with standard deviations 0.3, 0.6, 0.9, respectively). The scatter
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FIG. 6. Clustering results on four simulated data sets described in Section 5.2. First column: scat-
ter plots of data; second column: labels of the G identified groups by the proposed spectroscopic
clustering algorithm; third and forth columns: k-means algorithm assuming G − 1 and G groups,
respectively; fifth and sixth columns: spectral clustering algorithm (Ng, Jordan and Weiss [8]) as-
suming G − 1 and G groups, respectively.

plots of the four datasets are shown in the left column of Figure 6. It is clear that
the degree of separation decreases from top to bottom.

Similarly to the previous simulation, we examine the DaSpec algorithm with
data-driven parameters, the k-means and Ng et al.’s spectral clustering algorithms
on these data sets. The latter two algorithms are tested under two different assump-
tions on the number of groups: the number (G) identified by the DaSpec algorithm
or one group less (G − 1). Note that the DaSpec algorithm claims only one group
for D4, so the other two algorithms are not applied to D4.

The DaSpec algorithm (the second column in the right panel of Figure 6) pro-
duces a reasonable number of groups and clustering results. For the perfectly sep-
arable case in D1, three groups are identified and the one outlier is isolated out.
It is worth noting that the incomplete ring is separated from other groups, which
is not a simple task for algorithms based on group centroids. We also see that the
DaSpec algorithm starts to combine inseparable groups as the components become
less separable.

Not surprisingly, the k-means algorithms (the third and fourth columns) do not
perform well because of the presence of the non-Gaussian component, unbalanced
groups and outliers. Given enough separations, the spectral clustering algorithm
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reports reasonable results (the fifth and sixth columns). However, it is sensitive to
outliers and the specification of the number of groups.

6. Conclusions and discussion. Motivated by recent developments in kernel
and spectral methods, we study the connection between a probability distribution
and the associated convolution operator. For a convolution operator defined by a
radial kernel with a fast tail decay, we show that each top eigenfunction of the
convolution operator defined by a mixture distribution is approximated by one of
the top eigenfunctions of the operator corresponding to a mixture component. The
separation condition is mainly based on the overlap between high-density compo-
nents, instead of their explicit parametric forms, and thus is quite general. These
theoretical results explain why the top eigenvectors of kernel matrix may reveal
the clustering information but do not always do so. More importantly, our results
reveal that not every component will contribute to the top few eigenfunctions of
the convolution operator KP because the size and configuration of a component
decides the corresponding eigenvalues. Hence the top eigenvectors of the kernel
matrix may or may not preserve all clustering information, which explains some
empirical observations of certain spectral clustering methods.

Following our theoretical analyses, we propose the data spectroscopic cluster-
ing algorithm based on finding eigenvectors with no sign change. Comparing to
commonly used k-means and spectral clustering algorithms, DaSpec is simple to
implement and provides a natural estimator of the number of separable compo-
nents. We found that DaSpec handles unbalanced groups and outliers better than
the competing algorithms. Importantly, unlike k-means and certain spectral clus-
tering algorithms, DaSpec does not require random initialization, which is a po-
tentially significant advantage in practice. Simulations show favorable results com-
pared to k-means and spectral clustering algorithms. For practical applications, we
also provide some guidelines for choosing the algorithm parameters.

Our analyses and discussions on connections to other spectral or kernel methods
shed light on why radial kernels, such as Gaussian kernels, perform well in many
classification and clustering algorithms. We expect that this line of investigation
would also prove fruitful in understanding other kernel algorithms, such as Support
Vector Machines.

APPENDIX A

Here we provide three concrete examples to illustrate the properties of the eigen-
function of KP shown in Section 3.1.

EXAMPLE 1 (Gaussian kernel, Gaussian density). Let us start with the univari-
ate Gaussian case where the distribution P ∼ N(μ,σ 2) and the kernel function is
also Gaussian. Shi, Belkin and Yu [15] provided the eigenvalues and eigenfunc-
tions of KP , and the result is a slightly refined version of a result in Zhu et al.
[22].



3978 T. SHI, M. BELKIN AND B. YU

PROPOSITION 1. For P ∼ N(μ,σ 2) and a Gaussian kernel K(x,y) =
e−(x−y)2/(2ω2), let β = 2σ 2/ω2 and let Hi(x) be the ith order Hermite polyno-
mial. Then eigenvalues and eigenfunctions of KP for i = 0,1, . . . are given by

λi =
√

2

(1 + β + √
1 + 2β)

(
β

1 + β + √
1 + 2β

)i

,

φi(x) = (1 + 2β)1/8
√

2i i! exp
(
−(x − μ)2

2σ 2

√
1 + 2β − 1

2

)
Hi

((
1

4
+ β

2

)1/4 x − μ

σ

)
.

Here Hk is the kth order Hermite polynomial. Clearly from the explicit expres-
sion and expected from Theorem 2, φ0 is the only positive eigenfunction of KP .
We note that each eigenfunction φi decays quickly (as it is a Gaussian multiplied
by a polynomial) away from the mean μ of the probability distribution. We also
see that the eigenvalues of KP decay exponentially with the rate dependent on the
bandwidth of the Gaussian kernel ω and the variance of the probability distribu-
tion σ 2. These observations can be easily generalized to the multivariate case; see
Shi, Belkin and Yu [15].

EXAMPLE 2 (Exponential kernel, uniform distribution on an interval). To give
another concrete example, consider the exponential kernel K(x,y) = exp(−|x−y|

ω
)

for the uniform distribution on the interval [−1,1] ⊂ R. In Diaconis, Goel and
Holmes [3] it was shown that the eigenfunctions of this kernel can be written as
cos(bx) or sin(bx) inside the interval [−1,1] for appropriately chosen values of
b and decay exponentially away from it. The top eigenfunction can be written
explicitly as follows:

φ(x) = 1

λ

∫
[−1,1]

e−|x−y|/ω cos(by) dy ∀x ∈ R,

where λ is the corresponding eigenvalue. Figure 7 illustrates an example of this
behavior, for ω = 0.5.

FIG. 7. Top two eigenfunctions of the exponential kernel with bandwidth ω = 0.5 and the uniform
distribution on [−1,1].
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EXAMPLE 3 (A curve in R
d ). We now give a brief informal discussion

of the important case when our probability distribution is concentrated on or
around a low-dimensional submanifold in a (potentially high dimensional) am-
bient space. The simplest example of this setting is a Gaussian distribution, which
can be viewed as a zero-dimensional manifold (the mean of the distribution) plus
noise.

A more interesting example of a manifold is a curve in R
d . We observe that

such data is generated by any time-dependent smooth deterministic process, whose
parameters depend continuously on time t . Let ψ(t) : [0,1] → R

d be such a curve.
Consider a restriction of the kernel KP to ψ . Let x, y ∈ ψ and let d(x, y) be
the geodesic distance along the curve. It can be shown that d(x, y) = ‖x − y‖ +
O(‖x − y‖3), when x, y are close, with the remainder term depending on how the
curve is embedded in R

d . Therefore, we see that if the kernel KP is a sufficiently
local radial basis kernel, the restriction of KP to ψ is a perturbation of KP in
a one-dimensional case. For the exponential kernel, the one-dimensional kernel
can be written explicitly (see Example 2), and we have an approximation to the
kernel on the manifold with a decay off the manifold (assuming that the kernel is a
decreasing function of the distance). For the Gaussian kernel, a similar extension
holds, although no explicit formula can be easily obtained.

The behaviors of the top eigenfunction of the Gaussian and exponential kernel,
respectively, are demonstrated in Figure 8. The exponential kernel corresponds to
the bottom left panel. The behavior of the eigenfunction is seen generally con-
sistent with the top eigenfunction of the exponential kernel on [−1,1] shown in
Figure 8. The Gaussian kernel (top left panel) has similar behaviors but produces
level lines more consistent with the data distribution, which may be preferable in
practice. Finally, we observe that the addition of small noise (right top and bottom
panels) does not significantly change the eigenfunctions.

APPENDIX B

PROOF OF THEOREM 2. For a semi-positive definite kernel K(x,y) with full
support on R

d , we first show the top eigenfunction φ0 of KP has no sign change
on the support of the distribution. We define R+ = {x ∈ R

d :φ0(x) > 0}, R− =
{x ∈ R

d :φ0(x) < 0} and φ̄0(x) = |φ0(x)|. It is clear that
∫

φ̄2
0 dP = ∫

φ2
0 dP = 1.

Assuming that P(R+) > 0 and P(R−) > 0, we will show that∫ ∫
K(x,y)φ̄0(x)φ̄0(y) dP (x) dP (y)

>

∫ ∫
K(x,y)φ0(x)φ0(y) dP (x) dP (y),

which contradicts with the assumption that φ0(·) is the eigenfunction associated
with the largest eigenvalue. Denoting g(x, y) = K(x,y)φ0(x)φ0(y) and ḡ(x, y) =
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FIG. 8. Contours of the top eigenfunction of KP for Gaussian (upper panels) and exponential
kernels (lower panels) with bandwidth 0.7. The curve is 3/4 of a ring with radius 3 and independent
noise of standard deviation 0.15 added in the right panels.

K(x, y)φ̄0(x)φ̄0(y), we have∫
R+

∫
R+

ḡ(x, y) dP (x) dP (y)

=
∫
R+

∫
R+

g(x, y) dP (x) dP (y)

and the equation also holds on region R− × R−. However, over the region
{(x, y) :x ∈ R+ and y ∈ R−}, we have∫

R+

∫
R−

ḡ(x, y) dP (x) dP (y)

>

∫
R+

∫
R−

g(x, y) dP (x) dP (y),

since K(x, y) > 0, φ0(x) > 0 and φ0(y) < 0. The inequality holds on {(x, y) :x ∈
R− and y ∈ R+}. Putting four integration regions together, we arrive at the contra-
diction. Therefore, the assumptions P(R+) > 0 and P(R−) > 0 cannot be true at
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the same time, which implies that φ0(·) has no sign changes on the support of the
distribution.

Now consider ∀x ∈ R
d . We have

λ0φ0(x) =
∫

K(x,y)φ0(y) dP (y).

Given the facts that λ0 > 0, K(x,y) > 0, and φ0(y) have the same sign on the
support, it is straightforward to see that φ0(x) has no sign changes and has full
support in R

d . Finally, the isolation of (λ0, φ0) follows. If there exist another φ that
shares the same eigenvalue λ0 with φ0, they both have no sign change and have
full support on R

d . Therefore,
∫

φ0(x)φ(x) dP (x) > 0 and it contradicts with the
orthogonality between eigenfunctions. �

PROOF OF THEOREM 3. By definition, the top eigenvalue of KP satisfies

λ0 = max
f

∫∫
K(x,y)f (x)f (y) dP (x) dP (y)∫ [f (x)]2 dP (x)

.

For any function f ,∫ ∫
K(x,y)f (x)f (y) dP (x) dP (y)

= [π1]2
∫ ∫

K(x,y)f (x)f (y) dP 1(x) dP 1(y)

+ [π2]2
∫ ∫

K(x,y)f (x)f (y) dP 2(x) dP 2(y)

+ 2π1π2
∫ ∫

K(x,y)f (x)f (y) dP 1(x) dP 2(y)

≤ [π1]2λ1
0

∫
[f (x)]2 dP 1(x) + [π2]2λ2

0

∫
[f (x)]2 dP 2(x)

+ 2π1π2
∫ ∫

K(x,y)f (x)f (y) dP 1(x) dP (y)2.

Now we concentrate on the last term,

2π1π2
∫ ∫

K(x,y)f (x)f (y) dP 1(x) dP 2(y)

≤ 2π1π2

√∫ ∫
[K(x,y)]2 dP 1(x) dP 2(y)

×
√∫ ∫

[f (x)]2[f (y)]2 dP 1(x) dP 2(y)

= 2

√
π1π2

∫ ∫
[K(x,y)]2 dP 1(x) dP 2(y)
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×
√

π1
∫

[f (x)]2 dP 1(x)

√
π2

∫
[f (y)]2 dP 2(y)

≤
√

π1π2
∫ ∫

[K(x, y)]2 dP 1(x) dP 2(y)

×
(
π1

∫
[f (x)]2 dP 1(x) + π2

∫
[f (x)]2 dP 2(x)

)

= r

∫
[f (x)]2 dP (x),

where r = (π1π2 ∫∫ [K(x, y)]2 dP 1(x) dP 2(y))1/2. Thus,

λ0 = max
f :

∫
f 2 dP=1

∫ ∫
K(x, y)f (x)f (y) dP (x) dP (y)

≤ max
f :

∫
f 2 dP=1

[
π1λ1

0

∫
[f (x)]2π1 dP 1(x) + π2λ2

0

∫
[f (x)]2π2 ddP 2(x) + r

]

≤ max(π1λ1
0, π

2λ2
0) + r.

The other side of the equality is easier to prove. Assuming π1λ1
0 > π2λ2

0 and
taking the top eigenfunction φ1

0 of KP 1 as f , we derive the following results
by using the same decomposition on

∫∫
K(x, y)φ1

0(x)φ1
0(y) dP (x) dP (y) and

the facts that
∫

K(x, y)φ1
0(x) ddP 1(x) = λ1

0φ
1
0(y) and

∫ [φ1
0]2 dP 1 = 1. Denoting

h(x, y) = K(x, y)φ1
0(x)φ1

0(y), we have

λ0 ≥
∫∫

K(x, y)φ1
0(x)φ1

0(y) dP (x) dP (y)∫ [φ1
0(x)]2 dP (x)

= [π1]2λ1
0 + [π2]2 ∫∫

h(x, y) dP 2(x) dP 2(y) + 2π1π2λ1
0

∫ [φ1
0(x)]2 dP 2(x)

π1 + π2
∫ [φ1

0(x)]2 dP 2(x)

= π1λ1
0

(
π1 + 2π2 ∫ [φ1

0(x)]2 dP 2(x)

π1 + π2
∫ [φ1

0(x)]2 dP 2(x)

)
+ [π2]2 ∫∫

h(x, y) dP 2(x) dP 2(y)

π1 + π2
∫ [φ1

0(x)]2 dP 2(x)

≥ πλ1
0.

This completes the proof. �
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