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ASYMPTOTIC THEORY OF SEMIPARAMETRIC Z-ESTIMATORS
FOR STOCHASTIC PROCESSES WITH APPLICATIONS TO

ERGODIC DIFFUSIONS AND TIME SERIES

BY YOICHI NISHIYAMA

Institute of Statistical Mathematics

This paper generalizes a part of the theory of Z-estimation which has
been developed mainly in the context of modern empirical processes to the
case of stochastic processes, typically, semimartingales. We present a general
theorem to derive the asymptotic behavior of the solution to an estimating
equation θ � �n(θ, ĥn) = 0 with an abstract nuisance parameter h when the
compensator of �n is random. As its application, we consider the estimation
problem in an ergodic diffusion process model where the drift coefficient
contains an unknown, finite-dimensional parameter θ and the diffusion co-
efficient is indexed by a nuisance parameter h from an infinite-dimensional
space. An example for the nuisance parameter space is a class of smooth func-
tions. We establish the asymptotic normality and efficiency of a Z-estimator
for the drift coefficient. As another application, we present a similar result
also in an ergodic time series model.

1. Introduction. Let us begin with stating our motivating example; the details
are presented in Section 4. Consider the one-dimensional ergodic diffusion process
X on I = (l, r) ⊆ R which is a solution to the stochastic differential equation
(SDE) given by

Xt = X0 +
∫ t

0
S(Xs; θ) ds +

∫ t

0
σ(Xs;h)dWs,(1)

where s � Ws is a standard Brownian motion. Here, we consider a d-dimensional
parametric family {S(·; θ); θ ∈ �} for the drift coefficient indexed by a com-
pact subset � of R

d , and a possibly infinite-dimensional “parametric” fam-
ily {σ 2(·;h);h ∈ H } for the diffusion coefficient indexed by a (general) totally
bounded metric space (H,dH ). We denote by (θ0, h0) the true value of (θ, h). Our
aim is to estimate θ0 when the model is perturbed by the unknown nuisance pa-
rameter h. As for the parameter h0, we construct a dH -consistent estimator ĥn.
We prove that the Z-estimator θ̂n, which is a solution to an estimating equation
�n(θ, ĥn) = 0, is asymptotically normal and efficient. [We follow van der Vaart
and Wellner (1996) for the terminology “Z-estimator.”]
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There exist a lot of works which treat the estimation problem for the drift coef-
ficient. It is well known that when the process X = (Xt)t∈[0,∞) is observed con-
tinuously on the time interval [0, T ], the diffusion coefficient may be assumed to
be known without loss of generality. (So, we may put h = h0.) In such cases, the
asymptotic normality and efficiency of the maximum likelihood estimator (MLE)
θ̂T for θ0, as T → ∞, has been already established. See, for example, Kutoyants
(2004). The MLE θ̂T is a solution to the estimating equation �̇T (θ) = 0 with

�̇T (θ) = 1

T

∫ T

0

Ṡ(Xt ; θ)

σ 2(Xt ;h0)
[dXt − S(Xt ; θ) dt],

where Ṡ denotes the derivative of S with respect to θ . On the other hand, when the
process X = (Xt)t∈[0,∞) is observed only at discrete time points {0 = tn0 < tn1 <

· · · < tnn }, the diffusion coefficient has to be estimated, too. Florens-Zmirou (1989),
Yoshida (1992) and Kessler (1997), among others, considered such situations when
H is a finite-dimensional parameter space, and proved the asymptotic efficiency
of some estimators θ̂n for θ0. Our result does not include these works as special
cases, because we assume a condition, which is theoretically strong but practically
reasonable, that

�n = max
1≤i≤n

|tni − tni−1| = o((tnn )−1) and tnn → ∞,

which is almost the same as the assumption n�2
n → 0. For example, Kessler’s

(1997) assumption n�
p
n → 0 for a given p ≥ 2 is weaker than ours. Another dif-

ference is that the preceding works derive not only the consistency of the finite-
dimensional estimator ĥn but also its asymptotic distribution, while we prove only
the dH -consistency. However, our work is the first attempt to propose an asymp-
totically efficient estimator θ̂n for θ0 when the nuisance parameter h belongs to an
infinite-dimensional space (H,dH ). Here, by “asymptotically efficient” we mean
that the rescaled residual

√
tnn (θ̂n − θ0) has the same asymptotic distribution as the

continuous observation case, with h = h0 being known, which has been shown to
be optimal in the framework of local asymptotic normality theory.

We approach this problem by using the approximation of �̇T (θ) given by

�n(θ,h) = 1

tnn

n∑
i=1

Ṡ(Xtni−1
; θ)

σ 2(Xtni−1
;h)

[Xtni
− Xtni−1

− S(Xtni−1
; θ)|tni − tni−1|],

where h0 has been replaced by the unknown parameter h. Its “compensator” is

�̃n(θ, h) = 1

tnn

n∑
i=1

Ṡ(Xtni−1
; θ)

σ 2(Xtni−1
;h)

[∫ tni

tni−1

S(Xt ; θ0) dt − S(Xtni−1
; θ)|tni − tni−1|

]
,

in the sense that the difference �n(θ,h) − �̃n(θ, h) is the terminal variable of a
martingale. The key points are to show the weak convergence of the rescaled ran-
dom fields (θ, h) � rn(�n(θ,h) − �̃n(θ, h)) for some constant rn tending to ∞,
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and to show the differentiability of (θ, h) � �̃n(θ, h) around (θ0, h0). Roughly
speaking, our main result asserts that if we assume h �→ σ 2(·;h) is Lipschitz con-
tinuous with respect to dH , that the metric entropy condition is satisfied,∫ 1

0

√
logN(H,dH , ε) dε < ∞,

where N(H,dH , ε) is ε-covering number of H with respect to dH , and that we
have a dH -consistent estimator ĥn for h0, then we can derive the asymptotic dis-
tribution of rn(θ̂n − θ0). The consistency of ĥn should be established separately.

This approach is based on a new theory for general Z-estimators with infinite-
dimensional nuisance parameters presented in Section 2, although its proof is just
an adaptation of that of Chapter 3.3 of van der Vaart and Wellner (1996) who
considered the case where the compensator �̃n is neither random nor depending
on n. Hopefully, this extension considerably enlarges the application fields of van
der Vaart and Wellner’s theory to various stochastic process models. Indeed, we
also present a result for time series in Section 5, which is briefly introduced below.
Kosorok’s (2008) new book does not seem to cover our examples.

In Section 5, we will consider an ergodic time series model of the form

Xi = S(Xi−1, . . . ,Xi−p; θ) + σ(Xi−1, . . . ,Xi−q;h)wi,

where E[wi |Fi−1] = 0 and E[w2
i |Fi−1] = 1. Here, θ is an estimated parameter

which belongs to a compact subset of R
d , while h is a nuisance parameter from

a totally bounded metric space (H,dH ). In the same way as the diffusion process
case, we present a general result to derive the asymptotic normality (and efficiency
in some cases) of a Z-estimator for θ0. Although there are vast literatures in time
series analysis [see, e.g., Taniguchi and Kakizawa (2000)] apparently, our result is
new.

The crucial point of our approach is how to show the weak convergence of
the random fields (θ, h) � rn(�n(θ,h) − �̃n(θ, h)). For this purpose, we use
the general weak convergence theory for �∞-valued martingales established by
Nishiyama (1996, 1997, 1999, 2000a, 2000b, 2007). The theory is a good mar-
riage between the martingale theory which has a long history [see, e.g., Jacod and
Shiryaev (1987)] and the modern theory of empirical processes [see, e.g., van der
Vaart and Wellner (1996)].

The organization of the paper is as follows. In Section 2, we present a gen-
eral theory for Z-estimation with infinite-dimensional nuisance parameter. In Sec-
tion 3, we prepare a uniform law of large numbers for random fields with abstract
parameter, which is often used in the course of our work. The results for the er-
godic diffusion process models are presented in Section 4, while those for the
ergodic time series models are given in Section 5.

We refer to van der Vaart and Wellner (1996) for the weak convergence theory
in �∞(T )-space, where �∞(T ) is the space of bounded functions on a set T . We
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denote by Cρ(T ) the space of functions on T which are continuous with respect to
the metric ρ. We equip both spaces with the uniform metric. Given a probability
measure P , we denote by P ∗ the corresponding outer probability; see van der Vaart
and Wellner (1996) for the stochastic convergence theory which does not assume

the measurability. We denote by
p→ and

d→ the convergence in (outer) probability
and the weak convergence. The limit notation mean in principle that we take the
limit as n → ∞. The Euclidean metric on R

d is denoted by ‖ · ‖.

2. General theory for semiparametric Z-estimation. Let two sets � and H

be given. Let

�n :� × H → R
d and �̃n :� × H → R

d

be random maps. The latter should be a random “compensator” of the former,
and in the i.i.d. case it is not random and not depending on n. Compare the above
setting with that in Chapter 3.3 of van der Vaart and Wellner (1996) where �̃n ≡ � .

We present a way to derive the asymptotic behaviour of the estimator θ̂n for
the parameter θ ∈ � of interest, with help of the estimator ĥn for the nuisance
parameter h ∈ H , which are solutions to the estimating equation

�n(θ̂n, ĥn) ≈ 0.

Here, the true values θ0 ∈ � and h0 ∈ H are supposed to satisfy

�̃n(θ0, h0) ≈ 0.

The following theorem extends a special case of Theorem 3.3.1 of van der Vaart
and Wellner (1996). See also Theorem 5.21 of van der Vaart (1998).

THEOREM 2.1. Let � be a subset of R
d with the Euclidean metric ‖ · ‖. Let

(H,dH ) be a semimetric space. Let �n :� × H → R
d and �̃n :� × H → R

d

be random maps defined on a probability space (
n,Fn,Pn). (We do not assume
any measurability.) Suppose that there exist a sequence of constants rn ↑ ∞, some
fixed point (θ0, h0) and an invertible matrix Vθ0,h0 which satisfy the following (i)
and (ii).

(i) There exists a neighborhood U ⊂ � × H of (θ0, h0) such that

rn(�n − �̃n)
d→ Z in �∞(U),

where almost all paths (θ, h) � Z(θ,h) are continuous with respect to ρ = ‖ · ‖∨
dH .

(ii) For given random sequence (θ̂n, ĥn), it holds that

�̃n(θ̂n, ĥn) − �̃n(θ0, h0) − Vθ0,h0(θ̂n − θ0) = oP ∗
n
(r−1

n + ‖θ̂n − θ0‖)
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and that

‖θ̂n − θ0‖ ∨ dH (ĥn, h0) = oP ∗
n
(1), �n(θ̂n, ĥn) = oP ∗

n
(r−1

n ),

�̃n(θ0, h0) = oP ∗
n
(r−1

n ).

Then it holds that

rn(θ̂n − θ0)
d→ −V −1

θ0,h0
Z(θ0, h0).

To prove the above theorem, we need the following lemma, which is a slight
generalization of Lemma 19.24 of van der Vaart (1998).

LEMMA 2.2. Let (T ,ρ) be a semimetric space. Suppose that Zn
d→ Z in

�∞(T ) and that almost all paths of Z are continuous with respect to ρ. If T -valued
random sequence t̂n satisfies ρ(̂tn, t0) = oP ∗

n
(1) for some nonrandom t0 ∈ T , then

Zn(̂tn) − Zn(t0) = oP ∗
n
(1).

PROOF. Let us equip the space �∞(T ) × T with the metric ‖ · ‖T + ρ, where
‖ · ‖T denotes the uniform metric on �∞(T ). Define the function g :�∞(T )×T →
R by g(z, t) = z(t) − z(t0). Then for any z ∈ Cρ(T ) and t ∈ T , the function g

is continuous at (z, t). Indeed, if (zn, tn) → (z, t), then ‖zn − z‖T → 0, and thus
zn(tn) = z(tn) + o(1) → z(t), while zn(t0) → z(t0) is trivial.

By assumption, we have (Zn, t̂n)
d→ (Z, t0) in �∞(T ) × T [see, e.g., Theo-

rem 18.10(v) of van der Vaart (1998)]. Since almost all paths of Z belong to
Cρ(T ), by the continuous mapping theorem,

Zn(̂tn) − Zn(t0) = g(Zn, t̂n)
d→ g(Z, t0) = Z(t0) − Z(t0) = 0.

The proof is finished. �

PROOF OF THEOREM 2.1. Applying Lemma 2.2 to the �∞(U)-valued random
element Zn = rn(�n − �̃n), we have

rn
(
�n(θ̂n, ĥn) − �̃n(θ̂n, ĥn)

) − rn
(
�n(θ0, h0) − �̃n(θ0, h0)

) = oP ∗
n
(1).

Since rn�n(θ̂n, ĥn) = oP ∗
n
(1), we have

rn
(
�̃n(θ̂n, ĥn) − �̃n(θ0, h0)

) = −rn�n(θ0, h0) + oP ∗
n
(1).

By the assumption (ii), it holds that

rnVθ0,h0(θ̂n − θ0) = −rn�n(θ0, h0) + oP ∗
n
(1 + rn‖θ̂n − θ0‖).(2)

Now, since

rn‖θ̂n − θ0‖ ≤ ‖V −1
θ0,h0

‖rn‖Vθ0,h0(θ̂n − θ0)‖
≤ OPn(1) + oP ∗

n
(1 + rn‖θ̂n − θ0‖) by (2),
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it holds that rn‖θ̂n − θ0‖ = OP ∗
n
(1). Inserting this to (2), we have

rnVθ0,h0(θ̂n − θ0) = −rn�n(θ0, h0) + oP ∗
n
(1)

= −rn
(
�n(θ0, h0) − �̃n(θ0, h0)

) + oP ∗
n
(1)

d→ −Z(θ0, h0),

which implies the conclusion. �

In Theorem 2.1, both “‖θ̂n − θ0‖ = oP ∗
n
(1)” and “dH (ĥn, h0) = oP ∗

n
(1)” are

assumed. Under some conditions, the former automatically follows from the latter,
as it is seen in the following theorem.

THEOREM 2.3. Let (�,d�) and (H,dH ) be two semimetric spaces. Let
�n :� × H → R

d be a random map defined on a probability space (
n,Fn,Pn).
(We do not assume any measurability.) Let � :� × H → R

d be a nonrandom
function. Suppose that

sup
(θ,h)∈�×H

‖�n(θ,h) − �(θ,h)‖ = oP ∗
n
(1).

Suppose also that for some (θ0, h0) ∈ � × H

inf
θ : d�(θ,θ0)>ε

‖�(θ,h0)‖ > 0 ∀ε > 0,

and h � �(θ,h) is continuous at h0 uniformly in θ . Then for any random se-
quence (θ̂n, ĥn) such that �n(θ̂n, ĥn) = oP ∗

n
(1) and that dH (ĥn, h0) = oP ∗

n
(1), it

holds that d�(θ̂n, θ0) = oP ∗
n
(1).

PROOF. Observe that

‖�(θ̂n, ĥn)‖ ≤ ‖�(θ̂n, ĥn) − �n(θ̂n, ĥn)‖ + ‖�n(θ̂n, ĥn)‖
≤ sup

θ,h

‖�(θ,h) − �n(θ,h)‖ + ‖�n(θ̂n, ĥn)‖

= oP ∗
n
(1).

Now, for every ε > 0, there exist δ, η > 0 such that ‖�(θ,h)‖ > η for every θ with
d�(θ, θ0) > ε and every h with dH (h,h0) < δ. Thus, the event {d�(θ̂n, θ0) > ε} is
contained in the event {‖�(θ̂n, ĥn)‖ > η}∪{dH (ĥn, h0) ≥ δ}. The outer probability
of the latter event converges to 0. �

3. Uniform law of large numbers. In this section, we give a uniform law of
large numbers for ergodic processes, under a smoothness assumption. The proof is
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standard, so it is omitted. [See, e.g., Theorem 2.4.1 of van der Vaart and Wellner
(1996) for the idea, or see Nishiyama (2009).]

THEOREM 3.1. Let (E,E) be a measurable space. Let � be a set which is
totally bounded with respect to the semimetric ρ. Let a family {f (·; θ); θ ∈ �}
of measurable functions on E be given. Suppose that there exists a measurable
function K such that

|f (x; θ) − f (x; θ ′)| ≤ K(x)ρ(θ, θ ′) ∀θ, θ ′ ∈ �.(3)

(i) Suppose that the E-valued random process {Xt }t∈[0,∞) is ergodic with the
invariant law μ, that is, for any μ-integrable function g

1

T

∫ T

0
g(Xt) dt

p→
∫
E

g(x)μ(dx).

If all f (·; θ) and K are μ-integrable, then

sup
θ∈�

∣∣∣∣ 1

T

∫ T

0
f (Xt ; θ) dt −

∫
E

f (x; θ)μ(dx)

∣∣∣∣ = oP ∗(1).

(ii) Suppose that the E-valued random process {Xi}i=1,2,... is ergodic with the
invariant law μ, that is, for any μ-integrable function g,

1

n

n∑
i=1

g(Xi)
p→

∫
E

g(x)μ(dx).

If all f (·; θ) and K are μ-integrable, then

sup
θ∈�

∣∣∣∣∣1

n

n∑
i=1

f (Xi; θ) −
∫
E

f (x; θ)μ(dx)

∣∣∣∣∣ = oP ∗(1).

REMARK. The smoothness assumption (3) can be replaced by “bracketing.”
See Theorem 2.4.1 of van der Vaart and Wellner (1996).

4. Ergodic diffusion processes.

4.1. Regularity conditions. Let us consider the diffusion process model in-
troduced in the first paragraph of Section 1. We shall list up some conditions.
We suppose that there exists a parametric family of d-dimensional vector-valued
functions {Ṡ(·; θ); θ ∈ �} on I which satisfies the following conditions. Typically,
they may be considered to be the derivatives of S(·; θ) with respect to θ , that is,
Ṡ(·; θ) = ( ∂

∂θ1
S(·; θ), . . . , ∂

∂θd
S(·; θ))T . The function � appearing in A1 and A3

may be chosen to be common without loss of generality.
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A1. � is a compact subset of R
d . There exists a measurable function � on I

such that at the true θ0 ∈ �,

S(x; θ) − S(x; θ0) = Ṡ(x; θ0)
T (θ − θ0) + �(x)ε(x; θ, θ0),

where supx∈I |ε(x; θ, θ0)| = o(‖θ − θ0‖) as θ → θ0.
A2. There exists a constant K > 0 such that

sup
θ∈�

|S(x; θ) − S(x′; θ)| ≤ K|x − x′|;

sup
θ∈�

‖Ṡ(x; θ) − Ṡ(x′; θ)‖ ≤ K|x − x′|;

sup
h∈H

|σ 2(x;h) − σ 2(x′;h)| ≤ K|x − x′|.

A3. There exists a measurable function � on I such that

sup
θ∈�

|S(x; θ)| ≤ �(x);

sup
θ∈�

‖Ṡ(x; θ)‖ ≤ �(x);

c := inf
h∈H

inf
x∈I

σ 2(x;h) > 0;
‖Ṡ(x; θ) − Ṡ(x; θ)‖ ≤ �(x)‖θ − θ ′‖ ∀θ, θ ′ ∈ �;

|σ 2(x;h) − σ 2(x;h′)| ≤ �(x)dH (h,h′) ∀h,h′ ∈ H.

A4. supt∈R E(�(Xt)
8 + |Xt |4) < ∞.

A5. The process X = (Xt)t∈[0,∞) is ergodic. We denote by μ the invariant
measure under the true (θ0, h0), and we assume that it satisfies

∫
I �(x)2(1 +

|x|)μ(dx) < ∞.
A6. The matrix

I (θ0, h0) =
∫
I

Ṡ(x; θ0)Ṡ(x; θ0)
T

σ 2(x;h0)
μ(dx)

is invertible.
A7. The metric entropy condition for (H,dH ) is satisfied:∫ 1

0

√
logN(H,dH , ε) dε < ∞.

A8. For every ε > 0,

inf
θ : ‖θ−θ0‖>ε

∥∥∥∥
∫
I

Ṡ(x; θ)

σ 2(x;h0)
[S(x; θ0) − S(x; θ)]μ(dx)

∥∥∥∥ > 0.

REMARK. The last assumption in A2 implies that σ 2(x;h0) ≤ C(1 + |x|) for
a constant C > 0.
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To close this subsection, let us discuss the possibility of the choice of the nui-
sance parameter space (H,dH ).

EXAMPLE 1 (Parametric model). When (H,dH ) is a compact subset of a
finite-dimensional Euclidean space, the metric entropy condition A7 is indeed sat-
isfied. So the main restriction is the Lipschitz continuity of h �→ σ 2(·;h) in A3.
This situation is more general than that in Yoshida (1992) and Kessler (1997),
although, as announced in Section 1, our result does not include theirs.

EXAMPLE 2 (The class of smooth functions). Let us consider the parame-
trization σ(x;h) = h(x) where h is an element of the class H = Cα

M(I) defined
below. We equip the function space H with the uniform metric ‖ · ‖∞ for which
the last requirement in A3 is always fulfilled. To check A7, first we consider the
case where I is a bounded subset of R, and next we give some remarks for the
general case.

We take the material below from Section 2.7.1 of van der Vaart and Wellner
(1996). Let I be a bounded, convex subset of R

q . (In the current example of one-
dimensional diffusions, we are considering the case q = 1, but for the generality
we set q to be a general positive integer; see Section 5.) Let α > 0 and M > 0
be given, and let α be the greatest integer smaller than α. For any vector k =
(k1, . . . , kq) of q integers, we define

Dk = ∂k·

∂x
k1
1 · · · ∂x

kq
q

,

where k· = ∑q
i=1 ki . We denote by Cα

M(I) the class of functions defined on I such
that

max
k·≤α

sup
x

|Dkh(x)| + max
k·=α

sup
x,y

|Dkh(x) − Dkh(y)|
‖x − y‖α−α

≤ M,

where the sumprema are taken over all x,y in the interior of I with x �= y. Then
there exists a constant K > 0 depending only on α and q , such that

logN(Cα
M(I),‖ · ‖∞, ε) ≤ Kλ(I 1)

(
M

ε

)q/α

,

where λ(I 1) is the Lebesgue measure of the set {x :‖x−I‖ < 1}. Hence, the metric
entropy condition A7 is satisfied if q/(2α) < 1, and therefore our theory works.

When I = R
q , we shall restrict out attention, for example, to the following class

H of functions on R
q . Let I0 be a bounded, convex subset of R

q , and we suppose
that the restriction of h ∈ H to I0 belongs to CM(I0) and that

sup
x∈Rq

|h(x) − h′(x)| ≤ L sup
x∈I0

|h(x) − h′(x)| ∀h,h′ ∈ H,(4)
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for a constant L > 0. Then both the last condition of A3 and A7 are satisfied. The
condition (4) is satisfied if we assume, for example, either of the following:

(i) h is known on I c
0 ;

(ii) when q = 1 and I0 = [l0, r0], each h is constant on (−∞, l0] and on
[r0,∞).

Although the examples (i) and (ii) might look restrictive, it should be noted that
in practice we can choose an arbitrary large I0.

Another way to deal with the unbounded case I = R
q is to consider the para-

metrization

σ(x;h) = h(u(x)), h ∈ Cα
M(I0),

where I0 being a bounded, convex subset of R
q ′

and u : Rq → I0 is a fixed func-
tion. If q ′/(2α) < 1, then both the last requirement in A3 and the metric entropy
condition A7 are satisfied for the uniform metric dH = ‖ · ‖∞.

Instead of Cα
M(I), another possibility of the choice of H which satisfies the

metric entropy condition for the uniform metric is the Sobolev class; see Exam-
ple 19.10 of van der Vaart (1998).

4.2. Results. As announced in Section 1, we propose to use the estimating
function

�n(θ,h) = 1

tnn

n∑
i=1

Ṡ(Xtni−1
; θ)

σ 2(Xtni−1
;h)

[Xtni
− Xtni−1

− S(Xtni−1
; θ)|tni − tni−1|],

whose compensator is

�̃n(θ, h) = 1

tnn

n∑
i=1

Ṡ(Xtni−1
; θ)

σ 2(Xtni−1
;h)

[∫ tni

tni−1

S(Xt , θ0) dt − S(Xtni−1
; θ)|tni − tni−1|

]
.

Then we have the following two lemmas.

LEMMA 4.1. Assume �n → 0 and tnn → ∞. Equip the space � × H with the
metric ρ = ‖ · ‖ ∨ dH . Under A1–A5 and A7,

√
tnn (�n − �̃n) converges weakly in

Cρ(� × H) to a zero-mean Gaussian process Z with the covariance

EZ(θ,h)Z(θ ′, h′)T =
∫
I

Ṡ(x; θ)Ṡ(x; θ ′)T

σ 2(x;h)σ 2(x;h′)
σ 2(x;h0)μ(dx).

In particular, the random variable Z(θ0, h0) is distributed with N (0, I (θ0, h0)).

LEMMA 4.2. Assume �n = o((tnn )−1) and tnn → ∞. Under A1–A6, for any
random sequence (θn, hn) such that ‖θn − θ0‖∨dH (hn,h0) = oP ∗(1), it holds that

�̃n(θn, hn) − �̃n(θ0, h0) − (−I (θ0, h0))(θn − θ0) = oP ∗
(
(tnn )−1/2 + ‖θn − θ0‖)

.



SEMIPARAMETRIC Z-ESTIMATION 3565

Combining these lemmas with Theorem 2.1, and noting also �̃n(θ0, h0) =
OP (�

1/2
n ) which will be proved by using Lemma 4.5 below, we can conclude

the following theorem.

THEOREM 4.3. Assume �n = o((tnn )−1) and tnn → ∞. Under A1–A7, for any
random sequence (θ̂n, ĥn), such that

‖θ̂n − θ0‖ = oP ∗(1), dH (ĥn, h0) = oP ∗(1)

and

�n(θ̂n, ĥn) = oP ∗((tnn )−1/2),

the estimator θ̂n is asymptotically normal and efficient:√
tnn (θ̂n − θ0)

d→ N (0, I (θ0, h0)
−1).

When A8 is also satisfied, the assumption “‖θ̂n − θ0‖ = oP ∗(1)” is automatically
satisfied.

In the above theorem, the only assumption which we cannot check in the course
of computing the data is the consistency “dH (ĥn, h0) = oP ∗(1),” because it in-
volves the true value h0 of the unknown parameter h ∈ H . When {σ 2(·;h);h ∈ H }
is a class of functions σ 2(·;h) = h(·) where H is a class of smooth functions, one
may think that a kernel estimator is a candidate for ĥn. As stated above, in view of
the Lipschitz condition of h �→ σ 2(·;h) (the last condition in A3), it is convenient
to consider the consistency with respect to the uniform metric. However, to show
the consistency of the kernel estimator with respect to the uniform metric is a task.
Generally speaking, showing the consistency for infinite-dimensional parameter
is not a trivial problem, which should be solved by independent articles. See, for
example, Hoffmann (2001). Below, we give a general way to show the consistency
of a least square estimator.

THEOREM 4.4. Assume �n → 0 and tnn → ∞. Assume A2–A5 and A7. Sup-
pose that

inf
h : dH (h,h0)>ε

∫
I
|σ 2(x;h) − σ 2(x;h0)|2μ(dx) > 0 ∀ε > 0

is satisfied. If the random element ĥn satisfies An(ĥn) ≤ infh∈H An(h) + oP ∗(1)

where

An(h) = 1

tnn

n∑
i=1

∣∣∣∣ |Xtni
− Xtni−1

|2
|tni − tni−1|

− σ 2(Xtni−1
, h)

∣∣∣∣2|tni − tni−1|,

then it holds that dH (ĥn, h0) = oP ∗(1).
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4.3. Proofs. Before the proofs, we state a lemma which is well known.

LEMMA 4.5. Let X be a solution to the SDE (1) for (θ, h) = (θ0, h0). Assume
|tni − tni−1| ≤ 1.

(i) For any k ≥ 2, there exists a constant Ck > 0, depending only on k, such
that

E sup
t∈[tni−1,t

n
i ]

|Xt − Xtni−1
|k ≤ Ck sup

s∈R

E{|S(Xs; θ0)|k + |σ(Xs;h0)|k}|tni − tni−1|k/2

=: Dk|tni − tni−1|k/2,

provided the right-hand side is finite.
(ii) For any k ≥ 2 and any measurable function f , g, it holds that

sup
t∈[tni−1,t

n
i ]

E
(|Xt − Xtni−1

|k/2|f (Xtni−1
)||g(Xt)|)

≤ (Dk|tni − tni−1|k/2)1/2 sup
s∈R

(E|f (Xs)|4)1/4 sup
s∈R

(E|g(Xs)|4)1/4,

provided the right-hand side is finite.

PROOF. The assertion (i) is well known. (Use Hölder’s inequality

and Burkholder–Davis–Gundy’s inequality for
∫ tni
tni−1

|S(Xs; θ0)|ds and

supt∈[tni−1,t
n
i ] |

∫ t
tni−1

σ(Xs;h0) dWs |.) The assertion (ii) follows from Hölder’s in-
equality and (i). �

During the proofs, we write

ψ(x; θ,h) = Ṡ(x; θ)

σ 2(x;h)
,

which is a d-dimensional vector-valued function. For each component ψ(j)(x; θ,

h) (j = 1, . . . , d), it holds that∣∣ψ(j)(x; θ,h) − ψ(j)(x′; θ,h)
∣∣

≤ |Ṡ(j)(x; θ) − Ṡ(j)(x′; θ)|
σ 2(x;h)

(5)

+ ∣∣Ṡ(j)(x′; θ)
∣∣∣∣∣∣ 1

σ 2(x;h)
− 1

σ 2(x′;h)

∣∣∣∣
≤

{
1

c
+ �(x)

c2

}
K|x − x′|
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and that∣∣ψ(j)(x; θ,h) − ψ(j)(x; θ ′, h′)
∣∣

≤ |Ṡ(j)(x; θ) − Ṡ(j)(x; θ ′)|
σ 2(x;h)

+ ∣∣Ṡ(j)(x; θ ′)
∣∣∣∣∣∣ 1

σ 2(x;h)
− 1

σ 2(x;h′)

∣∣∣∣
(6)

≤ |Ṡ(j)(x; θ) − Ṡ(j)(x; θ ′)|
c

+ ∣∣Ṡ(j)(x; θ ′)
∣∣ |σ 2(x;h) − σ 2(x;h′)|

c2

≤
{
�(x)

c
+ |�(x)|2

c2

}(‖θ − θ ′‖ ∨ dH (h,h′)
)
.

PROOF OF LEMMA 4.1. We apply Theorem 3.4.2 of Nishiyama (2000b) [or,
see Theorem 3.3 of van der Vaart and van Zanten (2005)] to the terminals M

n,θ,h
tnn

of the continuous martingales t � M
n,θ,h
t given by

M
n,θ,h
t = 1√

tnn

n∑
i=1

ψ(Xtni−1
; θ,h)

∫ tni ∧t

tni−1∧t
σ (Xs;h0) dWs.

For the finite-dimensional convergence, it is sufficient to show the convergence of
predictable covariation. This is done as follows.

〈Mn,θ,h,Mn,θ ′,h′ 〉tnn
= 1

tnn

n∑
i=1

ψ(Xtni−1
; θ,h)ψ(Xtni−1

; θ ′, h′)T
∫ tni

tni−1

σ 2(Xs;h0) ds

= 1

tnn

∫ tnn

0
ψ(Xt ; θ,h)ψ(Xt ; θ ′, h′)T σ 2(Xt ;h0) dt + oP (1)

(7)
p→

∫
I
ψ(x; θ,h)ψ(x; θ ′, h′)T σ 2(x;h0)μ(dx)

=
∫
I

Ṡ(x; θ)Ṡ(x; θ ′)T

σ 2(x;h)σ 2(x;h′)
σ 2(x;h0)μ(dx)

= I (θ0, h0) if (θ, h) = (θ ′, h′) = (θ0, h0).

Here, to show (7), we have used the bound (5) and Lemma 4.5(ii) twice.
To establish Nishiyama’s condition [ME], let us observe the following fact to

check the metric entropy condition for the product space � × H .
In general, if (D,d) and (E, e) are two semimetric spaces, then the covering

number of the product space D × E with respect to the maximum semimetric
d ∨ e, namely N(D × E,d ∨ e, ε), is bounded by N(D,d, ε) · N(E, e, ε). To see
this claim, let Bi , i = 1, . . . ,N(D,d, ε) be an ε-covering of D, and let Cj , j =
1, . . . ,N(E, e, ε) be an ε-covering of E. Then the diameters of the sets Bi ×Cj ⊂



3568 Y. NISHIYAMA

D × E with respect to d ∨ e are smaller than ε, thus these sets form an ε-covering
of D × E. The claim has been proved. Consequently, the metric entropy condition∫ 1

0

√
logN(D × E,d ∨ e, ε) dε < ∞

is satisfied if∫ 1

0

√
logN(D,d, ε) dε < ∞ and

∫ 1

0

√
logN(E, e, ε) dε < ∞.

Now, since � is compact with respect to the Euclidean metric, the metric en-
tropy condition for � is satisfied. So, with A7 in hands, the metric entropy condi-
tion for the product space � × H is satisfied, and it remains only to show that the
quadratic modulus is bounded in probability; that is, the claim that each compo-
nent of the matrix

sup
(θ,h) �=(θ ′,h′)

〈Mn,θ,h − Mn,θ ′,h′ 〉tnn
(‖θ − θ ′‖ ∨ d(h,h′))2

is bounded in probability. In view of (6), the absolute value of each component of
this matrix is bounded by

1

tnn

n∑
i=1

∫ tni

tni−1

∣∣∣∣�(Xtni−1
)

c
+ |�(Xtni−1

)|2
c2

∣∣∣∣2σ 2(Xs;h0) ds.

The expectation of this random valuable is bounded by

sup
i

√√√√
E

∣∣∣∣�(Xtni−1
)

c
+ |�(Xtni−1

)|2
c2

∣∣∣∣4 · sup
s

√
Eσ 4(Xs;h0),

which is O(1) by A4. Thus, the quadratic modulus is bounded in probability. �

PROOF OF LEMMA 4.2. It follows from Lemma 4.5 that uniformly in θ,h,

�̃n(θ, h) − �̃n(θ0, h0)

= 1

tnn

n∑
i=1

ψ(Xtni−1
; θ,h)

∫ tni

tni−1

[S(Xt ; θ0) − S(Xt ; θ)]dt + OP (�1/2
n )

= 1

tnn

∫ tn

0
ψ(Xt ; θ,h)[S(Xt ; θ0) − S(Xt ; θ)]dt + OP (�1/2

n ).

The remainder term of this approximation is actually oP ((tnn )−1/2). Furthermore, it
holds for any (possibly random) sequence (θn, hn) converging in outer probability
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to (θ0, h0) that

1

tnn

∫ tnn

0
ψ(Xt ; θn,hn)[S(Xt ; θ0) − S(Xt ; θn)]dt

= 1

tnn

∫ tnn

0
ψ(Xt ; θn,hn)Ṡ(Xt ; θ0)

T dt (θ0 − θn) + oP ∗(‖θn − θ0‖)

= 1

tnn

∫ tnn

0
ψ(Xt ; θ0, h0)Ṡ(Xt ; θ0)

T dt (θ0 − θn) + oP ∗(‖θn − θ0‖)(8)

=
∫
I
ψ(x; θ0, h0)Ṡ(x; θ0)

T μ(dx)(θ0 − θn) + oP ∗(‖θn − θ0‖)
= −I (θ0, h0)(θn − θ0) + oP ∗(‖θn − θ0‖).

To prove (8) in the above computation, use (6) to show that for every j, k =
1, . . . , d∣∣∣∣ 1

tnn

∫ tnn

0
ψ(j)(Xt ; θn,hn)Ṡ

(k)(Xt ; θ0) dt − 1

tnn

∫ tnn

0
ψ(j)(Xt ; θ0, h0)Ṡ

(k)(Xt ; θ0) dt

∣∣∣∣
≤ 1

tnn

∫ tnn

0

{
�(Xt)

c
+ |�(Xt)|2

c2

}∣∣Ṡ(k)(Xt ; θ0)
∣∣dt · ‖θn − θ0‖ ∨ dH (hn,h0)

= OP (1) · oP ∗(1)

= oP ∗(1).

The proof is complete. �

PROOF OF THEOREM 4.3. By Lemma 4.5, it is easy to see that �̃n(θ0, h0) =
OP (�

1/2
n ) = oP ((tnn )−1/2). So the main assertion follows from Theorem 2.1

with help from Lemmas 4.1 and 4.2. On the other hand, since it follows from
Lemma 4.5(ii) and Theorem 3.1(i) that supθ,h ‖�n(θ,h) − �(θ,h)‖ = oP ∗(1),
where

�(θ,h) =
∫
I

Ṡ(x; θ)

σ 2(x;h)
[S(x; θ0) − S(x; θ)]μ(dx),

the assertion that the consistency “‖θ̂n − θ0‖ = oP ∗(1)” automatically follows
from A8 is immediate from Theorem 2.3. �

PROOF OF THEOREM 4.4. Put

Mn(h) = 1

tnn

n∑
i=1

|σ 2(Xtni−1
;h) − σ 2(Xtni−1

;h0)|2|tni − tni−1|,

M(h) =
∫
I
|σ 2(x;h) − σ 2(x;h0)|2μ(dx).
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Let us apply Corollary 3.2.3 of van der Vaart and Wellner (1996) to the above
Mn and M for the given ĥn which is the solution of An(ĥn) ≤ infh∈H An(h) +
oP ∗(1). By Lemma 4.5(ii) and Theorem 3.1(i), it is not difficult to see that
suph∈H |Mn(h) − M(h)| = oP ∗(1), so it is sufficient to show that Mn(ĥn) =
oP ∗(1).

Observe that

1

tnn

n∑
i=1

∣∣∣∣ |Xtni
− Xtni−1

|2
|tni − tni−1|

− σ 2(Xtni−1
;h)

∣∣∣∣2|tni − tni−1|

= 1

tnn

n∑
i=1

∣∣∣∣ |Xtni
− Xtni−1

|2
|tni − tni−1|

− σ 2(Xtni−1
;h0)

∣∣∣∣2|tni − tni−1|

+ 2

tnn

n∑
i=1

( |Xtni
− Xtni−1

|2
|tni − tni−1|

− σ 2(Xtni−1
;h0)

)

× (
σ 2(Xtni−1

;h0) − σ 2(Xtni−1
;h)

)|tni − tni−1|

+ 1

tnn

n∑
i=1

|σ 2(Xtni−1
;h0) − σ 2(Xtni−1

;h)|2|tni − tni−1|.

Let us prove that the supremum with respect to h of the absolute value of the
second term on the right-hand side converges in outer probability to zero [say, the
claim (a)].

Since we have from Itô’s formula that

|Xtni
− Xtni−1

|2 = 2
∫ tni

tni−1

(Xs − Xtni−1
)S(Xs; θ0) ds

+ 2
∫ tni

tni−1

(Xs − Xtni−1
)σ (Xs;h0) dWs +

∫ tni

tni−1

σ 2(Xs;h0) ds,

it is sufficient to show that C1,n = oP (1), suph∈H |C2,n(h)| = oP ∗(1) and C3,n =
oP (1), where

C1,n = 1

tnn

n∑
i=1

∣∣∣∣
∫ tni

tni−1

(Xs − Xtni−1
)S(Xs; θ0) ds

∣∣∣∣�(Xtni−1
),

C2,n(h) = 1

tnn

n∑
i=1

∫ tni

tni−1

(Xs − Xtni−1
)σ (Xs;h0) dWs

(
σ 2(Xtni−1

;h0) − σ 2(Xtni−1
;h)

)
,

C3,n = 1

tnn

n∑
i=1

∫ tni

tni−1

|σ 2(Xs;h0) − σ 2(Xtni−1
;h0)|ds�(Xtni−1

).

By using Lemma 4.5(ii), we easily have EC1,n → 0 and EC3,n → 0. On the other
hand, by using Theorem 3.4.2 of Nishiyama (2000b), it holds that C2,n converges
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weakly to zero in CdH
(H) (recall the argument in the proof of Lemma 4.1). There-

fore, we have suph∈H |C2,n(h)| = oP ∗(1).
Hence, the claim (a) is true, and we have that An(ĥn) ≤ infh∈H An(h)+ oP ∗(1)

implies that Mn(ĥn) = oP ∗(1). The proof is finished. �

5. Ergodic time series.

5.1. Model and regularity conditions. Let us consider the time series model
given by

Xi = S̃(Xi−1, . . . ,Xi−q1; θ) + σ̃ (Xi−1, . . . ,Xi−q2;h)wi.

By putting q = q1 ∨q2 and changing the domains of the functions S̃ and σ̃ , without
loss of generality, we can write

Xi = S(Xi; θ) + σ(Xi;h)wi,

where Xi = (Xi−1, . . . ,Xi−q) and S(·; θ) and σ(·;h) are some measurable func-
tions on R

q . For simplicity, we assume that the initial values (X0, . . . ,X1−q) =
(x0, . . . , x1−q) are fixed.

As for the noise {wi}, we consider the following two cases:

CASE G (Gaussian). {wi} are independently, identically distributed with
N (0,1).

CASE M (Martingale). E[wi |Fi−1] = 0 and E[w2
i |Fi−1] = 1 almost surely,

where Fi = σ {Xj : j ≤ i}.

Clearly, the Case G is a special case of the Case M. When we do not especially
declare the restriction to the Case G, we consider the Case M in principle.

Let us list up some conditions which have the same fashion as those in Sec-
tion 4.1. We suppose that there exists a parametric family of d-dimensional vector-
valued functions {Ṡ(·; θ); θ ∈ �} on R

q which satisfies the following conditions.
Typically, they may be considered to be the derivatives of S(·; θ) with respect to θ ,
that is, Ṡ(·; θ) = ( ∂

∂θ1
S(·; θ), . . . , ∂

∂θd
S(·; θ))T . The function � appearing in B1

and B2 may be chosen to be common without loss of generality.

B1. � is a compact subset of R
d . There exists a measurable function � on R

q

such that at the true θ0 ∈ �,

S(x; θ) − S(x; θ0) = Ṡ(x; θ0)
T (θ − θ0) + �(x)ε(x; θ, θ0),

where supx∈Rq |ε(x; θ, θ0)| = o(‖θ − θ0‖) as θ → θ0.
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B2. There exists a measurable function � on R
q such that

sup
θ∈�

|S(x; θ)| ≤ �(x);

sup
θ∈�

‖Ṡ(x; θ)‖ ≤ �(x);

σ 2(x;h0) ≤ �(x), c := inf
h∈H

inf
x∈Rq

σ 2(x;h) > 0;
‖Ṡ(x; θ) − Ṡ(x; θ)‖ ≤ �(x)‖θ − θ ′‖ ∀θ, θ ′ ∈ �;

|σ 2(x;h) − σ 2(x;h′)| ≤ �(x) dH (h,h′) ∀h,h′ ∈ H.

B3. The process {Xi}i=1,2,... is ergodic under the true (θ0, h0) in the sense that
for q ′ = q and q + 1 there exists the invariant measure μq ′ such that for every
μq ′ -integrable function f

1

n

n∑
i=1

f (Xi−1, . . . ,Xi−q ′)
p→

∫
Rq′ f (x1, . . . , xq ′)μq ′(dx1 · · ·dxq ′).

We also assume that ∫
Rq

�(x)5μq(dx) < ∞,

∫
Rq+1

∣∣|x0| + �(x1, . . . , xq)
∣∣4μq+1(dx0 dx1 · · ·dxq) < ∞.

B4. The matrix

I (θ0, h0) =
∫

Rq

Ṡ(x; θ0)Ṡ(x; θ0)
T

σ 2(x;h0)
μq(dx)

is invertible.
B5. The metric entropy condition for (H,dH ) is satisfied:∫ 1

0

√
logN(H,dH , ε) dε < ∞.

B6. For every ε > 0,

inf
θ : ‖θ−θ0‖>ε

∥∥∥∥
∫

Rq

Ṡ(x; θ)

σ 2(x;h0)
[S(x; θ0) − S(x; θ)]μq(dx)

∥∥∥∥ > 0.

See the end of Section 4.1 for the discussion of the choice of (H,dH ).

5.2. Results. In order to explain the idea of our estimating function, let us first
consider the Case G. We denote by Pn,u the distribution of {X1, . . . ,Xn} under
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θ = θ0 + n−1/2u and h = h0, where u ∈ R
d . By an easy computation, the log-

likelihood ratio is given by

log
dPn,u

dPn,0
(X1, . . . ,Xn)

= −
n∑

i=1

1

2σ 2(Xi;h0)

(9)
× {|Xi − S(Xi; θ0 + n−1/2u)|2 − |Xi − S(Xi; θ0)|2}

= �n,u − Bn,u,

where

�n,u =
n∑

i=1

1

σ 2(Xi;h0)
{Xi − S(Xi; θ0)}{S(Xi; θ0 + n−1/2u) − S(Xi; θ0)}

and

Bn,u =
n∑

i=1

1

2σ 2(Xi;h0)
{S(Xi; θ0 + n−1/2u) − S(Xi; θ0)}2.

Under the above regularity conditions, we have

�n,u
d→ N (0, uT I (θ0, h0)u) and Bn,u

p→ 1
2uT I (θ0, h0)u.

So it follows from the theory of the local asymptotic normality that the distrib-
ution of the asymptotically efficient bound in the Case G when h0 is known is
N (0, I (θ0, h0)

−1). That is, if we obtain an estimator θ̃n such that
√

n(θ̃n − θ0)
d→

N (0, I (θ0, h0)
−1), it is asymptotically efficient in the sense of the local asymptotic

minimax theorem. [See, e.g., Chapter 3.11 of van der Vaart and Wellner (1996).]
If the parameter h is unknown, then the estimation problem for θ becomes more
difficult. So if we have an estimator which asymptotically behaves as stated above,
then we may say that it is asymptotically efficient with the nuisance parameter h.
This argument is not true in the Case M where the log-likelihood does not equal
the formula (9), but we propose to use it for deriving an estimating equation which
yields the same asymptotic distribution as the Case G.

Not only in the Case G but also in the case M, differentiating (9) formally,
and replacing the true h0 by the unknown parameter h, we propose the estimating
function

�n(θ,h) = 1

n

n∑
i=1

Ṡ(Xi; θ)

σ 2(Xi;h)

(
Xi − S(Xi; θ)

)
.

Its compensator is

�̃n(θ, h) = 1

n

n∑
i=1

Ṡ(Xi; θ)

σ 2(Xi;h)

(
S(Xi; θ0) − S(Xi; θ)

)
.
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Thus, it holds that

√
n
(
�n(θ,h) − �̃n(θ, h)

) = 1√
n

n∑
i=1

Ṡ(Xi; θ)

σ 2(Xi;h)
σ(Xi;h0)wi,

which is the summation of a Cρ(�×H)-valued martingale difference array where
ρ = ‖ · ‖ ∨ dH . By using Jain–Marcus’ central limit theorem for martingales given
by Nishiyama (1996, 2000a, 2000b), we have the following lemma which plays a
key role in our approach.

LEMMA 5.1. Under B1–B3 and B5, the sequence of random fields
√

n(�n −
�̃n), with parameter (θ, h), converges weakly in Cρ(� × H) to a zero-mean
Gaussian random field Z with the covariance

EZ(θ,h)Z(θ ′, h′)T =
∫

Rq

Ṡ(x; θ)Ṡ(x; θ ′)T

σ 2(x;h)σ 2(x;h′)
σ 2(x;h0)μq(dx).

In particular, the random variable Z(θ0, h0) is distributed with N (0, I (θ0, h0)).

Another lemma which is necessary to apply Theorem 2.1 is the following.

LEMMA 5.2. Under B1–B4, for any random sequence (θn, hn) such that
‖θn − θ0‖ ∨ dH (hn,h0) = oP ∗(1), it holds that

�̃n(θn, hn) − �̃n(θ0, h0) − (−I (θ0, h0))(θ̂n − θ0) = oP ∗(‖θn − θ0‖).

Noting also that �̃n(θ0, h0) = 0, we can apply Theorem 2.1 to conclude the
following theorem.

THEOREM 5.3. Under B1–B5, for any random sequence (θ̂n, ĥn) such that

‖θ̂n − θ0‖ = oP ∗(1), dH (ĥn, h0) = oP ∗(1) and �n(θ̂n, ĥn) = oP ∗(n−1/2),

the estimator θ̂n is asymptotically normal:

√
n(θ̂n − θ0)

d→ N (0, I (θ0, h0)
−1).

In particular, in the Case G, the estimator θ̂n is asymptotically efficient. When B6
is also satisfied, the assumption “‖θ̂n − θ0‖ = oP ∗(1)” is automatically satisfied.

By the same reason as in Section 4, it is necessary to develop a procedure to con-
struct a consistent estimator ĥn for the nuisance parameter h ∈ H . The following
theorem gives us an answer.
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THEOREM 5.4. Assume B2, B3 and B5.
(First step: initial estimator for θ0.) Suppose the identifiability condition

inf
θ : ‖θ−θ0‖>ε

∫
Rq

|S(x; θ) − S(x; θ0)|2μq(dx) > 0 ∀ε > 0

is satisfied. If a random sequence θLS
n satisfies An(θ

LS
n ) ≤ infθ∈� An(θ)+oP ∗(1),

where

An(θ) = 1

n

n∑
i=1

|Xi − S(Xi; θ)|2,

then it holds that ‖θLS
n − θ0‖ = oP ∗(1).

(Second step: consistent estimator for h0.) Suppose the identifiability condition

inf
h : dH (h,h0)>ε

∫
Rq

|σ 2(x;h) − σ 2(x;h0)|2μq(dx) > 0 ∀ε > 0

is satisfied. Merely by a technical reason, assume that there exists a constant
L4 > 0 such that E[w4

i |Fi−1] < L4 almost surely for all i. Using θLS
n as above,

we define

Bn(h) = 1

n

n∑
i=1

∣∣|Xi − S(Xi; θLS
n )|2 − σ 2(Xi;h)

∣∣2.
If a random sequence ĥn satisfies Bn(ĥn) ≤ infh∈H Bn(h) + oP ∗(1), then it holds
that dH (ĥn, h0) = oP ∗(1).

5.3. Proofs.

PROOF OF LEMMA 5.1. To show the finite-dimensional convergence is easy.
Notice that∣∣∣∣ Ṡ(x; θ)

σ 2(x;h)
− Ṡ(x; θ ′)

σ 2(x;h′)

∣∣∣∣
≤ |Ṡ(x; θ) − Ṡ(x; θ ′)|

σ 2(x;h)
+ Ṡ(xi; θ ′)

∣∣∣∣ 1

σ 2(x;h)
− 1

σ 2(x;h′)

∣∣∣∣
(10)

≤ �(x)

c
‖θ − θ ′‖ + �(x)2

c2 dH (h,h′)

≤
{
�(x)

c
+ �(x)2

c2

}(‖θ − θ ′‖ ∨ dH (h,h′)
)
.

The assertion follows from Proposition 4.5 of Nishiyama (2000a). [Or, see
Nishiyama (1996) which is easier to read.] �
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PROOF OF LEMMA 5.2. Notice that �̃n(θ0, h0) = 0. For any (possibly ran-
dom) sequence (θn, hn) converging in outer probability to (θ0, h0), it holds that

�̃n(θn, hn) − �̃n(θ0, h0)

= 1

n

n∑
i=1

Ṡ(Xi; θn)

σ 2(Xi;hn)
[S(Xi; θ0) − S(Xi; θn)]

= 1

n

n∑
i=1

Ṡ(Xi; θn)

σ 2(Xi;hn)
Ṡ(Xi; θ0)(θ0 − θn) + oP ∗(‖θn − θ0‖)(11)

= 1

n

n∑
i=1

Ṡ(Xi; θ0)

σ 2(Xi;h0)
Ṡ(Xi; θ0)(θ0 − θn) + oP ∗(‖θn − θ0‖)

= −I (θ0, h0)(θn − θ0) + oP ∗(‖θn − θ0‖).
To show (11) above, do the same argument as the proof of Lemma 4.2 using (10)
instead of (6). �

PROOF OF THEOREM 5.3. The assertions follow from Theorems 2.1 and 2.3
by using also Lemmas 5.1 and 5.2, and Theorem 3.1(ii), respectively. �

PROOF OF THEOREM 5.4. To prove the first step, we will apply Corollary
3.2.3 of van der Vaart and Wellner (1996). We can write An(θ) = T1,n +T2,n(θ)+
T3,n(θ) where

T1,n = 1

n

n∑
i=1

|Xi − S(Xi; θ0)|2,

T2,n(θ) = 1

n

n∑
i=1

(
S(Xi; θ0) − S(Xi; θ)

)
σ(Xi;h0)wi,

T3,n(θ) = 1

n

n∑
i=1

|S(Xi; θ0) − S(Xi; θ)|2.

The term T1,n converges in probability to a constant C1. On the other hand, by us-
ing Proposition 4.5 of Nishiyama (2000a), we have that

√
nT2,n converges weakly

in C(�) to a tight law, thus, supθ∈� |T2,n(θ)| converges in outer probability to zero.
Finally, by Theorem 3.1, it holds that supθ∈� |T3,n(θ) − T3(θ)| = oP ∗(1) where

T3(θ) =
∫

Rq
|S(x; θ0) − S(x; θ)|2μ(dx).

Hence, we have supθ∈� |An(θ) − (C1 + T3(θ))| = oP ∗(1), and van der Vaart and
Wellner’s (1996) consistency theorem yields the assertion of the first step.
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To prove the second step, we shall apply Corollary 3.2.3 of van der Vaart and
Wellner (1996) again. Let us first see that suph∈H |Bn(h) − B̃n(h)| = oP ∗(1)

where

B̃n(h) = 1

n

n∑
i=1

∣∣|Xi − S(Xi; θ0)|2 − σ 2(Xi;h)
∣∣2.

Now, notice that∣∣∣∣|Xi − S(Xi; θLS
n )|2 − σ 2(Xi;h)

∣∣2 − ∣∣|Xi − S(Xi; θ0)|2 − σ 2(Xi;h)
∣∣2∣∣

≤ ∣∣|Xi − S(Xi; θLS
n )|2 + |Xi − S(Xi; θ0)|2 − 2σ 2(Xi;h)

∣∣
× ∣∣|Xi − S(Xi; θLS

n )|2 − |Xi − S(Xi; θ0)|2
∣∣

≤ ∣∣|Xi − S(Xi; θLS
n )|2 + |Xi − S(Xi; θ0)|2 − 2σ 2(Xi;h)

∣∣
× |2Xi − S(Xi; θLS

n ) − S(Xi; θ0)|
× |S(Xi; θLS

n ) − S(Xi; θ0)|
≤ L(Xi,Xi)‖θLS

n − θ0‖,
where L(x0, x1, . . . , xq) = C‖x0| + �(x1, . . . , xq)|4 for a constant C. Given any
ε > 0 choose M > 0 such that

∫
Rq+1 L(x0, x1, . . . , xq)1{L(x0,x1,...,xq )>M}μq+1(dx0,

dx1, . . . , dxq) < ε. Then we can write

sup
h∈H

|Bn(h) − B̃n(h)| ≤ M‖θLS
n − θ0‖ + 1

n

n∑
i=1

L(Xi,Xi)1{L(Xi,Xi )>M} diam(�).

The second term of the right-hand side converges to a positive constant which
is smaller than ε · diam(�). Since the choice of ε > 0 is arbitrary, we have
suph∈H |Bn(h) − B̃n(h)| = oP ∗(1).

Now, we can write B̃n(h) = T1,n + T2,n(h) + T3,n(h), where

T1,n = 1

n

n∑
i=1

∣∣|Xi − S(Xi; θ0)|2 − σ 2(Xi;h0)
∣∣2,

T2,n(h) = 2

n

n∑
i=1

σ 2(Xi , h0)(w
2
i − 1)

(
σ 2(Xi , h0) − σ 2(Xi;h)

)
,

T3,n(h) = 1

n

n∑
i=1

|σ 2(Xi;h0) − σ 2(Xi;h)|2.

The term T1,n converges in probability to a constant C1 by assumption. By
Jain–Marcus’ CLT for martingale difference arrays, it is easy to show that
suph∈H |T2,n(h)| = oP ∗(1) (here, we use the technical assumption that E[w4

i |Fi−1]
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is bounded). Finally, by Theorem 3.1, it holds that suph∈H |T3,n(h) − T3(h)| =
oP ∗(1) where

T3(h) =
∫

Rq
|σ 2(x;h0) − σ 2(x;h)|2μq(dx).

Consequently, we have suph∈H |Bn(h) − (C1 + T3(h))| = oP ∗(1). Therefore, the
claim of the second step follows form van der Vaart and Wellner’s (1996) consis-
tency theorem. �
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