CONSTRUCTION OF NESTED SPACE-FILLING DESIGNS

By Peter Z. G. Qian ${ }^{1}$, Mingyao Ai ${ }^{2}$ and C. F. Jeff Wu ${ }^{3}$
University of Wisconsin-Madison, Peking University and Georgia Institute of Technology

Abstract

New types of designs called nested space-filling designs have been proposed for conducting multiple computer experiments with different levels of accuracy. In this article, we develop several approaches to constructing such designs. The development of these methods also leads to the introduction of several new discrete mathematics concepts, including nested orthogonal arrays and nested difference matrices.

1. Introduction. Computer models are widely used in business, engineering and sciences to study complex real-world systems. The corresponding physical experimentation might otherwise be time-consuming, costly or even infeasible to conduct. Space-filling designs [Fang, Li and Sudjianto (2006) and Santner, Williams and Notz (2003)] have been widely used for conducting computer experiments. They include Latin hypercube designs [McKay, Conover and Beckman (1979)] and their improvements and variants [Butler (2001), Owen (1992, 1994b), Steinberg and Lin (2006), Tang (1993, 1998) and Ye (1998)]. Statistical properties of such designs have been studied in Loh (1996a, 1996b, 2008), Owen (1994a) and Stein (1987). Other types of space-filling designs are uniform designs [Fang et al. (2000)], quasi-Monte Carlo sequences [Niederreiter (1992)] and designs with uniform coverage [Dalal and Mallows (1998) and Lam, Welch and Young (2002)].

A large computer code, like a finite element analysis model, is often run at variable degrees of sophistication, resulting in multiple computer experiments with different levels of accuracy and varying computational times. In this article, we consider the situation in which two such experiments are available, and one source is generally more accurate than the other but also more expensive to run. As in Qian and Wu (2008), the two experiments considered are called the high-accuracy experiment (HE) and low-accuracy experiment (LE). The problem of modeling data from HE and LE has attracted a recent surge of interests. Related work includes Goldstein and Rougier (2004), Higdon et al. (2004), Kennedy and O’Hagan (2000,

[^0]2001), Reese et al. (2004), Qian et al. (2006) and Qian and Wu (2008), among others. Most of these methods are based on flexible Gaussian process models [Fang, Li and Sudjianto (2006), Sacks et al. (1989), Santner, Williams and Notz (2003) and Welch et al. (1992)].

The sets of design points for LE and HE are denoted by D_{l} and D_{h}. Throughout the paper, LE and HE are assumed to share the same set of factors and the design region, for both D_{l} and D_{h}, are assumed to be the unit hypercube. As a suitable choice for D_{l} and D_{h}, the notion of nested space-filling designs (NSFDs) was introduced in Qian, Tang and Wu (2009) (referred to as QTW hereinafter). The basic idea is to construct a special orthogonal array A_{1} and use it to obtain an OA-based Latin hypercube design [Tang (1993)] for D_{l}. Take A_{2} to be a subset of A_{1} that becomes an orthogonal array itself after some level-collapsing, then obtain D_{h} as the subarray of D_{l} corresponding to A_{2}. The constructed D_{l} and D_{h} achieve low-dimensional uniformity. The nested relationship $D_{h} \subset D_{l}$ is appealing, which is also adopted in Kennedy and O'Hagan (2000), Qian et al. (2006) and Qian and Wu (2008). It implies that the size of D_{h} is smaller than that of D_{l} which is desirable because LE is cheaper than HE, and more LE runs can be afforded. From the modeling standpoint, this structure ensures that for every point in D_{h}, the outputs from both HE and LE are available, thus making it easier to model the differences of outputs between the two sources, and perform model adjustment.

We call the above special orthogonal array nested orthogonal array (NOA). Its formal definition will be given in the next section. A family of NOAs with fixed levels was constructed in QTW based on the Rao-Hamming method which will be reviewed in Section 2.3. In this article, we propose a new approach to constructing such arrays. The principal idea is to first construct nested difference matrices and then take the Kronecker product of a nested difference matrix and a standard orthogonal array to obtain an NOA. This method is motivated by the fact that constructing a nested difference matrix is probably easier than the direct construction of its corresponding NOA. Similar considerations have been used in constructing orthogonal arrays from difference matrices [Hedayat, Sloane and Stufken (1999), referred to as HSS hereinafter]. As a modification of this approach, we provide another method that uses existing NOAs to obtain new ones. These methods can produce many new NOAs and therefore new NSFDs. Several approaches for constructing NOAs with mixed levels will also be discussed.

The remainder of the article will unfold as follows. In Section 2, some notation and definitions are introduced. In Section 3, an approach based on multiplication tables of Galois fields to constructing nested difference matrices is proposed. In Section 4, a general approach to constructing NOAs with Kronecker product is presented. In Section 5, a method is introduced for constructing new NOAs from existing ones. In Section 6, construction of NOAs with nonprime power number of levels is considered. Construction of NOAs with mixed levels is given in Section 7. In Section 8, the problem of using NOAs to obtain NSFDs is discussed. Some discussions and concluding remarks are provided in Section 9.

2. Notation and definitions.

2.1. Preliminaries. Let $A=\left(a_{i j}\right)$ be a Latin hypercube of n runs for m factors that is an $n \times m$ matrix where each column is a permutation of $1, \ldots, n$. Following McKay, Conover and Beckman (1979), a Latin hypercube design of n runs in m factors in the unit cube $[0,1)^{m}$ is generated through $x_{i j}=\left(a_{i j}-u_{i j}\right) / n, 1 \leq i \leq$ $n, 1 \leq j \leq m$, where $u_{i j}$'s are independent $U(0,1]$ random variables, and the n design points are given by $\left(x_{i 1}, \ldots, x_{i m}\right), i=1, \ldots, n$. When such a design is projected onto each of the m factors, one and only one of the n points falls within each of the n small intervals defined by $[0,1 / n),[1 / n, 2 / n), \ldots,[(n-1) / n, 1)$.

A symmetrical orthogonal array (OA) of size n, m constraints, s levels, and strength $t \geq 2$, is an $n \times m$ matrix with entries from a set of s levels, usually taken as $1, \ldots, s$, such that for every $n \times t$ submatrix, the s^{t} level combinations occurs equally often. Regular fractional factorial designs, as discussed in Wu and Hamada (2000), are the most familiar examples of orthogonal arrays. In the article, we consider only OAs with strength two, denoted by $\mathrm{OA}(n, m, s)$. Asymmetrical OAs will be discussed in Section 7.

Let A be an $\mathrm{OA}(n, m, s)$ with its s levels denoted by $1, \ldots, s$. Then in every column of A, each level occurs $q=n / s$ times. For each column of A, if we replace the q ones by a permutation of $1, \ldots, q$, replace the q twos by a permutation of $q+1, \ldots, 2 q$, and so on, we obtain an OA-based Latin hypercube [Tang (1993)]. In addition to achieving maximum stratification in one dimension, OA-based Latin hypercubes have attractive space-filling properties when projected onto 2 dimensions.

A difference matrix (DM) is a $b \times c$ array with entries from a finite abelian group \mathscr{A} with g elements, such that every element of \mathcal{A} appears equally often in the vector difference between any two columns of the array [Bose and Bush (1952)]. We will denote such an array by $D(b, c, g)$. If \mathcal{A} is the additive group associated with a Galois field, we simply say its elements come from the associated field. For any $D(b, c, g)$, a column is defined to be uniform in \mathcal{A} if it contains each element of \mathscr{A} equally often. By subtracting the first column from all columns, any $D(b, c, g)$ can always be converted to a difference matrix of the form

$$
\left[\begin{array}{ll}
0_{b} & D^{(0)} \tag{1}
\end{array}\right]
$$

where 0_{b} is the b-dimensional zero vector and every column of $D^{(0)}$ is uniform in \mathcal{A}.

Let $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ be, respectively, $m \times n$ and $u \times v$ matrices with entries from an abelian group \mathscr{A} with binary operation $*$ (usually addition or multiplication). The Kronecker product of A and B [Shrikhande (1964)], denoted by $A \otimes B$, is defined to be the $m u \times n v$ matrix

$$
A \otimes B=\left[\begin{array}{ccc}
a_{11} * B & \cdots & a_{1 n} * B \\
\vdots & & \vdots \\
a_{m 1} * B & \cdots & a_{m n} * B
\end{array}\right]
$$

where $a_{i j} * B$ denotes the $u \times v$ matrix with entries $a_{i j} * b_{r s}, 1 \leq r \leq u, 1 \leq s \leq v$. Throughout this article $*$ always denotes addition.
2.2. Galois field projections. For every prime p and every integer $u \geq 1$, there exists a Galois field (or finite field) $\operatorname{GF}\left(p^{u}\right)$ of order p^{u}. The additive group $\operatorname{GF}\left(p^{u}\right)$ is cyclic, and the multiplicative group $\operatorname{GF}\left(p^{u}\right) /\{0\}$ is cyclic, allowing easy calculations under multiplication. Throughout, the elements of any Galois field or any subset of a Galois field are arranged in lexicographical order.

Unless stated otherwise, let $s_{1}=p^{u_{1}}$ and $s_{2}=p^{u_{2}}$ be powers of the same prime p with integers $u_{1}>u_{2} \geq 1$. Throughout, let F denote $\mathrm{GF}\left(s_{1}\right)$ with an irreducible polynomial $p_{1}(x)$, and G denote $\mathrm{GF}\left(s_{2}\right)$ with an irreducible polynomial $p_{2}(x)$. Let $f(x)$ denote the elements of F and $g(x)$ the elements of G, respectively. In condensed notation, let $\alpha_{0}, \ldots, \alpha_{s_{1}-1}$ denote the elements of F and $\beta_{0}, \ldots, \beta_{s_{2}-1}$ the elements of G with $\alpha_{0}=0$ and $\beta_{0}=0$. Next, we discuss two projections from F to G, serving as a basis for later development.

The first projection, denoted by ϕ, is taken from Bose and Bush (1952). For any $f(x)=a_{0}+a_{1} x+\cdots+a_{u_{2}-1} x^{u_{2}-1}+\cdots+a_{u_{1}-1} x^{u_{1}-1} \in F, \phi(f(x))$ is defined by

$$
\begin{equation*}
\phi(f(x))=a_{0}+a_{1} x+\cdots+a_{u_{2}-1} x^{u_{2}-1} . \tag{2}
\end{equation*}
$$

Because ϕ works by truncating all x powers of degree u_{2} or higher, we call it the truncation projection.

The second projection, denoted by φ, is proposed in QTW. For any $f(x) \in F$, $\varphi(f(x))$ is defined by

$$
\begin{equation*}
\varphi(f(x))=f(x)\left(\bmod p_{2}(x)\right) \tag{3}
\end{equation*}
$$

Because φ works by taking modulus residues, we call it the modulus projection.
EXAMPLE 1. Let $p=2, u_{1}=3$ and $u_{2}=2$, giving $s_{1}=8$ and $s_{2}=4$. Use $p_{1}(x)=x^{3}+x+1$ for $\mathrm{GF}(8)$ and $p_{2}(x)=x^{2}+x+1$ for $\mathrm{GF}(4)$. Then the projection φ is given as $\left\{0, x^{2}+x+1\right\} \rightarrow 0,\left\{1, x^{2}+x\right\} \rightarrow 1,\left\{x, x^{2}+1\right\} \rightarrow x$, $\left\{x+1, x^{2}\right\} \rightarrow x+1$.

Let δ be either of the projections described above. For an array D with entries from $F, \delta(D)$ denotes the array obtained from D after the levels of its entries are collapsed according to δ. Clearly, the entries of $\delta(D)$ take values in G.

Notice that for any $\alpha_{i}, \alpha_{j} \in F$,

$$
\begin{equation*}
\delta\left(\alpha_{i}+\alpha_{j}\right)=\delta\left(\alpha_{i}\right)+\delta\left(\alpha_{j}\right) \tag{4}
\end{equation*}
$$

This means that the two operations δ and + are interchangeable, which is critical to the constructions in Sections 4, 5 and 7.
2.3. Nested space-filling designs and nested orthogonal arrays. Now we give a formal definition of NOAs, which underly the construction of NSFDs in QTW. Let A_{1} be an $\mathrm{OA}\left(n_{1}, k, s_{1}\right)$. Suppose there is a subarray of A_{1} with size n_{2}, denoted by A_{2}, and there is a projection δ that collapses the s_{1} levels of A_{1} into s_{2} levels. Further suppose A_{2} becomes an $\mathrm{OA}\left(n_{2}, k, s_{2}\right)$ after the levels of its entries are collapsed according to δ. Then A_{1}, or more precisely $\left(A_{1}, A_{2}\right)$, is an NOA, denoted by $\operatorname{NOA}\left(A_{1}, A_{2}\right)$ or $\operatorname{NOA}\left(A_{1}, A_{2}, \delta\right)$. To be emphatic about a small OA being nested within a larger OA, we say A_{1} "contains" $\delta\left(A_{2}\right)$.

Let $\left(A_{1}, A_{2}\right)$ be an NOA defined above. Construction of an NSFD is done as follows. The array A_{1} is used to generate an OA-based Latin hypercube design D_{l}. Let D_{h} denote the subset of D_{l} corresponding to A_{2}. Then D_{l}, or more precisely $\left(D_{l}, D_{h}\right)$, is an NSFD, where both D_{l} and D_{h} achieve uniformity in low dimensions.

The family of $\operatorname{NOA}\left(A_{1}, A_{2}\right)$, constructed in QTW by using the Rao-Hamming method, has the following set of parameters:
(i) A_{1} is an $\mathrm{OA}\left(n_{1}, m_{2}, s_{1}\right)$, where $n_{1}=s_{1}^{k}, m_{2}=\left(s_{2}^{k}-1\right) /\left(s_{2}-1\right)$ and $k \geq 2$ is an integer;
(ii) A_{2} is a subarray of A_{1} and $\varphi\left(A_{2}\right)$ is an $\mathrm{OA}\left(n_{2}, m_{2}, s_{2}\right)$ with $n_{2}=s_{2}^{k}$.

This construction works for $2 u_{2} \leq u_{1}+1$.
2.4. Nested difference matrices. Let D_{1} be a $D\left(b_{1}, c, s_{1}\right)$ with entries from F. Suppose there is a subarray of D_{1} with b_{2} rows denoted by D_{2}, and a projection δ that collapses the s_{1} levels of D_{1} into the s_{2} levels of G. Further suppose D_{2} is a $D\left(b_{2}, c, s_{2}\right)$ if the levels of its entries are collapsed according to δ. Then D_{1}, or more precisely (D_{1}, D_{2}), is called a nested difference matrix (NDM), denoted by $\operatorname{NDM}\left(D_{1}, D_{2}\right)$ or $\operatorname{NDM}\left(D_{1}, D_{2}, \delta\right)$. To be emphatic about a smaller DM being nested within a larger DM, we say D_{1} "contains" $\delta\left(D_{2}\right)$.
3. Construction of nested difference matrices. In this section, we propose an approach based on multiplication tables of Galois fields to constructing NDMs. It works for any $u_{1}>u_{2} \geq 1$. Here the projection ϕ in (2) is used. For a scalar a and a vector $c=\left(c_{1}, \ldots, c_{m}\right)^{\prime}, a+c$ denotes $\left(a+c_{1}, \ldots, a+c_{m}\right)^{\prime}$, where ${ }^{\prime}$ stands for vector transpose. Similarly, $a+A$ denotes the element-wise sum of a scalar a and a matrix A. We focus on the case of $p=2$ and briefly discuss the case of $p=3$ in the end of the section. Two sets or vectors are defined to be disjoint if they have no element in common. Because the constructions in Section 4 can use a small NDM and a standard OA to generate a larger NOA, here we construct NDMs with up to 16 columns. Throughout, we use the irreducible polynomial $p(x)=x^{u}+x+1$ for any $\mathrm{GF}\left(2^{u}\right), u \geq 1$. Unless stated otherwise, let $r_{-1}=(0)$, $r_{0}=(0,1)^{\prime}, r_{m}=\left(0,1, x, x+1, \ldots, x^{m}+\cdots+x+1\right)^{\prime}, m \geq 1$. Note that r_{m} has 2^{m+1} elements.

A $D\left(s_{1}, s_{1}, s_{1}\right)$ can be obtained by constructing the $s_{1} \times s_{1}$ multiplication table of $\mathrm{GF}\left(s_{1}\right)$, where the rows and columns are labeled by all distinct elements of
$\mathrm{GF}\left(s_{1}\right)$. Hereinafter, in describing such a table, we call a row (or column) labeled with an element $f(x) \in \mathrm{GF}\left(s_{1}\right)$ as "row (or column) $f(x)$."
3.1. $A D\left(2^{m+1}, 2^{2}, 2^{m+1}\right)$ containing a $D\left(2^{m}, 2^{2}, 2^{m}\right)$ with $m \geq 2$. Let $F=$ $\operatorname{GF}\left(2^{u_{1}}\right)$ and $G=\operatorname{GF}\left(2^{u_{2}}\right)$ with $u_{1}=m+1, u_{2}=m$ and $m \geq 2$. Let D_{0} be the multiplication table of F. By taking columns r_{1} of D_{0}, obtain a matrix D_{1}.

Collect the elements of F into two vectors:

$$
\begin{equation*}
g_{1}=\left(r_{m-2}^{\prime}, x^{m-1}+r_{m-2}^{\prime}\right)^{\prime} \quad \text { and } \quad g_{2}=x^{m}+g_{1} \tag{5}
\end{equation*}
$$

where the i th element in g_{2} equals its counterpart in g_{1} plus x^{m}. Now place the rows of D_{1} in two clusters: the top one comprising those labeled with r_{m-2} and $x^{m}+r_{m-2}$, and the bottom one with $x^{m-1}+r_{m-2}$ and $x^{m}+x^{m-1}+r_{m-2}$. This arrangement may look abstract at this moment but will become clear after Theorem 1. Table 1 gives $\phi\left(D_{1}\right)$, where, for $m=2$, the entries need to be taken modulo $p_{1}(x)=x^{u_{1}}+x+1$ and then collapsed according to ϕ.

Take D_{2} to be the submatrix of D_{1} consisting of the rows labeled with r_{m-2} and $x^{m}+x^{m-1}+r_{m-2}$. Because r_{m-2} is the set of polynomials of order at most $m-2$, r_{m-2} and $x^{m-1}+r_{m-2}$ are disjoint and their union is $G F\left(2^{m}\right)$. The following is a simple result regarding columns x and $x+1$ of $\phi\left(D_{1}\right)$.

Lemma 1. (i) The vectors $(x+1) r_{m-2}$ and $x^{m-1}+(x+1) r_{m-2}$ are disjoint and their union is $\mathrm{GF}\left(2^{m}\right)$;
(ii) the vectors $(x+1) r_{m-2}$ and $\left(x^{m-1}+x+1\right)+(x+1) r_{m-2}$ are disjoint and their union is $\mathrm{GF}\left(2^{m}\right)$.
(iii) the vectors $x r_{m-2}$ and $(x+1)+x r_{m-2}$ are disjoint and their union is $G F\left(2^{m}\right)$.

Proof. (i) It suffices to show that $(x+1) r_{m-2}$ and $x^{m-1}+(x+1) r_{m-2}$ are disjoint. Assuming the contrary, then there are two elements α_{1} and α_{2} from r_{m-2} such that $(x+1) \alpha_{1}=x^{m-1}+(x+1) \alpha_{2}$, implying $(x+1)\left(\alpha_{1}-\alpha_{2}\right)=x^{m-1}$. This is impossible because $x+1$ does not divide x^{m-1}.
(ii) It follows from (i) by noting that $(x+1)+(x+1) r_{m-2}$ has the same set of elements as $(x+1) r_{m-2}$.

TABLE 1
The matrix $\phi\left(D_{1}\right)$ obtained from D_{1} in Theorem 1

	$\mathbf{0}$	$\mathbf{1}$	\boldsymbol{x}	$\boldsymbol{x}+\mathbf{1}$
r_{m-2}	0	r_{m-2}	$x r_{m-2}$	$(x+1) r_{m-2}$
$x^{m}+r_{m-2}$	0	r_{m-2}	$(x+1)+x r_{m-2}$	$(x+1)+(x+1) r_{m-2}$
$x^{m-1}+r_{m-2}$	0	$x^{m-1}+r_{m-2}$	$x r_{m-2}$	$x^{m-1}+(x+1) r_{m-2}$
$x^{m}+x^{m-1}+r_{m-2}$	0	$x^{m-1}+r_{m-2}$	$(x+1)+x r_{m-2}$	$\left(x^{m-1}+x+1\right)+(x+1) r_{m-2}$

(iii) Assuming the contrary, then there are two elements α_{1} and α_{2} from r_{m-2} such that $\alpha_{1}-\alpha_{2}-1=x^{-1}$, a contradiction.

THEOREM 1. Consider D_{1} and D_{2} constructed above. For $m \geq 2$, we have:
(i) the matrix D_{1} is a $D\left(2^{m+1}, 2^{2}, 2^{m+1}\right)$;
(ii) the matrix $\phi\left(D_{2}\right)$ is a $D\left(2^{m}, 2^{2}, 2^{m}\right)$.

Proof. Only (ii) needs a proof. Because the elements $\{0,1, x, x+1\}$, used to label the columns of D_{1}, form an additive group, it suffices to show that columns $1, x, x+1$ of $\phi\left(D_{2}\right)$ are uniform in $\mathrm{GF}\left(2^{m}\right)$. Note that, due to the grouping scheme in (5), columns 1 and x of $\phi\left(D_{2}\right)$ in Table 1 are exactly an half fraction of those of $\phi\left(D_{1}\right)$. Then it remains to show that column $x+1$ of $\phi\left(D_{2}\right)$ is uniform in $\mathrm{GF}\left(2^{m}\right)$. This follows from Lemma 1 as $(x+1)+(x+1) r_{m-2}$ and $(x+1) r_{m-2}$ have the same set of elements.

EXAMPLE 2 [A $D\left(2^{2}, 2,2^{2}\right)$ containing a $D(2,2,2)$]. Although this example has only two columns, we include it here because its construction is similar to those in Theorem 1. Let $F=\operatorname{GF}\left(2^{2}\right)$ and $G=\mathrm{GF}(2)$. Let D_{0} be the multiplication table of F given by

	$\mathbf{0}$	$\mathbf{1}$	\boldsymbol{x}	$\boldsymbol{x}+\mathbf{1}$
0	0	0	0	0
1	0	1	x	$x+1$
x	0	x	$x+1$	1
$x+1$	0	$x+1$	1	x

Take D_{1} be the first two columns of D_{0}. Obtain D_{2} as the submatrix of D_{1} consisting of rows 0 and 1 . The matrix D_{1} is a $D\left(2^{2}, 2,2^{2}\right)$, and $\phi\left(D_{2}\right)$ is a $D(2,2,2)$ given by

$$
\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] .
$$

Example 3 [A $D\left(2^{3}, 2^{2}, 2^{3}\right)$ containing a $\left.D\left(2^{2}, 2^{2}, 2^{2}\right)\right]$. Let $F=\operatorname{GF}\left(2^{3}\right)$ and $G=\operatorname{GF}\left(2^{2}\right)$. Take D_{1} to be the columns of the multiplication table of F labeled with r_{1} given by

	$\mathbf{0}$	$\mathbf{1}$	\boldsymbol{x}	$\boldsymbol{x}+\mathbf{1}$
0	0	0	0	0
1	0	1	x	$x+1$
x^{2}	0	x^{2}	$x+1$	$x^{2}+x+1$
$x^{2}+1$	0	$x^{2}+1$	1	x^{2}
x	0	x	x^{2}	$x^{2}+x$
$x+1$	0	$x+1$	$x^{2}+x$	$x^{2}+1$
$x^{2}+x$	0	$x^{2}+x$	$x^{2}+x+1$	1
$x^{2}+x+1$	0	$x^{2}+x+1$	$x^{2}+1$	x

From Theorem $1, D_{1}$ is a $D\left(2^{3}, 2^{2}, 2^{3}\right), D_{2}$ is the submatrix of D_{1} consisting of rows $0,1, x^{2}+x, x^{2}+x+1$, and $\phi\left(D_{2}\right)$ is a $D\left(2^{2}, 2^{2}, 2^{2}\right)$ given by

	$\mathbf{0}$	$\mathbf{1}$	\boldsymbol{x}	$\boldsymbol{x}+\mathbf{1}$
0	0	0	0	0
1	0	1	x	$x+1$
$x^{2}+x$	0	x	$x+1$	1
$x^{2}+x+1$	0	$x+1$	1	x

3.2. $A D\left(2^{m+2}, 2^{2}, 2^{m+2}\right)$ containing a $D\left(2^{m}, 2^{2}, 2^{m}\right)$ with $m \geq 2$. Let $F=$ $\operatorname{GF}\left(2^{u_{1}}\right)$ and $G=\operatorname{GF}\left(2^{u_{2}}\right)$ with $u_{1}=m+2, u_{2}=m$ and $m \geq 2$. Let D_{0} be the multiplication table of F. By taking columns r_{1} of D_{0}, obtain a matrix D_{1}.

Collect the elements of F into two vectors:

$$
\begin{align*}
& g_{1}=\left(r_{m-2}^{\prime}, x^{m-1}+r_{m-2}^{\prime}, x^{m+1}+r_{m-2}^{\prime}, x^{m+1}+x^{m-1}+r_{m-2}^{\prime}\right)^{\prime} \quad \text { and } \\
& g_{2}=x^{m}+g_{1} \tag{6}
\end{align*}
$$

Now place the rows of D_{1} in four clusters. From top to bottom, their row labels are: cluster 1 with r_{m-2} and $x^{m}+r_{m-2}$; cluster 2 with $x^{m-1}+r_{m-2}$ and $x^{m}+$ $x^{m-1}+r_{m-2}$; cluster 3 with $x^{m+1}+r_{m-2}$ and $x^{m+1}+x^{m}+r_{m-2}$; and cluster 4 with $x^{m+1}+x^{m-1}+r_{m-2}$ and $x^{m+1}+x^{m}+x^{m-1}+r_{m-2}$. Table 2 gives $\phi\left(D_{1}\right)$, where for $m=2$ or 3 , the entries need to be taken modulo $p_{1}(x)=x^{u_{1}}+x+1$ and then collapsed according to ϕ.

Take D_{2} to be the submatrix of D_{1} consisting of the rows labeled with r_{m-2} and $x^{m+1}+x^{m}+x^{m-1}+r_{m-2}$.

THEOREM 2. Consider D_{1} and D_{2} constructed above. For $m \geq 2$, we have:

TABLE 2
The matrix $\phi\left(D_{1}\right)$ obtained from D_{1} in Theorem 2

	$\mathbf{0}$	$\mathbf{1}$	\boldsymbol{x}	$\boldsymbol{x}+\mathbf{1}$
r_{m-2}	0	r_{m-2}	$x r_{m-2}$	$(x+1) r_{m-2}$
$x^{m}+r_{m-2}$	0	r_{m-2}	$x r_{m-2}$	$(x+1) r_{m-2}$
$x^{m-1}+r_{m-2}$	0	$x^{m-1}+r_{m-2}$	$x r_{m-2}$	$x^{m-1}+(x+1) r_{m-2}$
$x^{m}+x^{m-1}+r_{m-2}$	0	$x^{m-1}+r_{m-2}$	$x r_{m-2}$	$x^{m-1}+(x+1) r_{m-2}$
$x^{m+1}+r_{m-2}$	0	r_{m-2}	$(x+1)+x r_{m-2}$	$(x+1)+(x+1) r_{m-2}$
$x^{m+1}+x^{m}+r_{m-2}$	0	r_{m-2}	$(x+1)+x r_{m-2}$	$(x+1)+(x+1) r_{m-2}$
$x^{m+1}+x^{m-1}+r_{m-2}$	0	$x^{m-1}+r_{m-2}$	$(x+1)+x r_{m-2}$	$\left(x^{m-1}+x+1\right)+(x+1) r_{m-2}$
$x^{m+1}+x^{m}+x^{m-1}+r_{m-2}$	0	$x^{m-1}+r_{m-2}$	$(x+1)+x r_{m-2}$	$\left(x^{m-1}+x+1\right)+(x+1) r_{m-2}$

(i) the matrix D_{1} is a $D\left(2^{m+2}, 2^{2}, 2^{m+2}\right)$;
(ii) the matrix $\phi\left(D_{2}\right)$ is a $D\left(2^{m}, 2^{2}, 2^{m}\right)$.

The proof of this theorem is similar to that of Theorem 1 and therefore omitted.

Example 4 [A $D\left(2^{4}, 2^{2}, 2^{4}\right)$ containing a $D\left(2^{2}, 2^{2}, 2^{2}\right)$]. Let $F=\mathrm{GF}\left(2^{4}\right)$ and $G=\operatorname{GF}\left(2^{2}\right)$. From Theorem $2, D_{1}$ is a $D\left(2^{4}, 2^{2}, 2^{4}\right), D_{2}$ is the submatrix of D_{1} consisting of the rows labeled with $\left(0,1, x^{3}+x^{2}+x, x^{3}+x^{2}+x+1\right)^{\prime}$, and $\phi\left(D_{2}\right)$ is a $D\left(2^{2}, 2^{2}, 2^{2}\right)$ given by

	$\mathbf{0}$	$\mathbf{1}$	\boldsymbol{x}	$\boldsymbol{x + 1}$
0	0	0	0	0
1	0	1	x	$x+1$
$x^{3}+x^{2}+x$	0	x	$x+1$	1
$x^{3}+x^{2}+x+1$	0	$x+1$	1	x

3.3. A $D\left(2^{m+2}, 2^{3}, 2^{m+2}\right)$ containing a $D\left(2^{m+1}, 2^{3}, 2^{m}\right)$ with $m \geq 2$. Let $F=\operatorname{GF}\left(2^{u_{1}}\right)$ and $G=\operatorname{GF}\left(2^{u_{2}}\right)$ with $u_{1}=m+2, u_{2}=m$ and $m \geq 2$. Let D_{0} denote the multiplication table of F. By taking columns r_{2} of D_{0}, obtain a matrix D_{1}.

Collect the elements of F into two vectors:

$$
\begin{align*}
& g_{1}=\left(r_{m-2}^{\prime}, x^{m-1}+r_{m-2}^{\prime}, x^{m+1}+r_{m-2}^{\prime}, x^{m+1}+x^{m-1}+r_{m-2}^{\prime}\right)^{\prime} \quad \text { and } \tag{7}\\
& g_{2}=x^{m}+g_{1}
\end{align*}
$$

Now place the rows of D_{1} in four clusters. From top to bottom, their row labels are: cluster 1 with r_{m-2} and $x^{m}+r_{m-2}$; cluster 2 with $x^{m-1}+r_{m-2}$ and $x^{m}+$ $x^{m-1}+r_{m-2}$; cluster 3 with $x^{m+1}+r_{m-2}$ and $x^{m+1}+x^{m}+r_{m-2}$; and cluster 4 with $x^{m+1}+x^{m-1}+r_{m-2}$ and $x^{m+1}+x^{m}+x^{m-1}+r_{m-2}$. Table 3 gives columns $x^{2}+r_{1}$ of $\phi\left(D_{1}\right)$, where, for $m=2$ or 3 , the entries need to be taken modulus $p_{1}(x)$ and then collapsed according to ϕ, and

$$
\begin{aligned}
& \alpha_{1}=x^{2}\left(r_{m-3}^{\prime}, r_{m-3}^{\prime}\right)^{\prime}, \\
& \alpha_{2}=\left(\left(x^{2}+1\right) r_{m-3}^{\prime}, x^{m-2}+\left(x^{2}+1\right) r_{m-3}^{\prime}\right)^{\prime}, \\
& \alpha_{3}=\left(\left(x^{2}+x\right) r_{m-3}^{\prime}, x^{m-1}+\left(x^{2}+x\right) r_{m-3}^{\prime}\right)^{\prime}, \\
& \alpha_{4}=\left(\left(x^{2}+x+1\right) r_{m-3}^{\prime}, x^{m-1}+x^{m-2}+\left(x^{2}+x+1\right) r_{m-3}^{\prime}\right)^{\prime} .
\end{aligned}
$$

Take D_{2} to be the submatrix of D_{1} consisting of rows $r_{m-2}, x^{m}+x^{m-1}+r_{m-2}$, $x^{m+1}+r_{m-2}, x^{m+1}+x^{m}+x^{m-1}+r_{m-2}$.

Table 3
Columns $x^{2}+r_{1}$ of $\phi\left(D_{1}\right)$ obtained from D_{1} in Theorem 3

	$\boldsymbol{x}^{\mathbf{2}}$	$\boldsymbol{x}^{\mathbf{2}+\mathbf{1}}$	$\boldsymbol{x}^{\mathbf{2}+\boldsymbol{x}}$	$\boldsymbol{x}^{\mathbf{2}+\boldsymbol{x}+\mathbf{1}}$
r_{m-2}	α_{1}	α_{2}	α_{3}	α_{4}
$x^{m}+r_{m-2}$	$(x+1)+\alpha_{1}$	$(x+1)+\alpha_{2}$	$(x+1)+\alpha_{3}$	$(x+1)+\alpha_{4}$
$x^{m-1}+r_{m-2}$	α_{1}	$x^{m-1}+\alpha_{2}$	α_{3}	$x^{m-1}+\alpha_{4}$
$x^{m}+x^{m-1}+r_{m-2}$	$(x+1)+\alpha_{1}$	$\left(x^{m-1}+x+1\right)+\alpha_{2}$	$(x+1)+\alpha_{3}$	$\left(x^{m-1}+x+1\right)+\alpha_{4}$
$x^{m+1}+r_{m-2}$	$\left(x^{2}+x\right)+\alpha_{1}$	$\left(x^{2}+x\right)+\alpha_{2}$	$\left(x^{2}+1\right)+\alpha_{3}$	$\left(x^{2}+1\right)+\alpha_{4}$
$x^{m+1}+x^{m}+r_{m-2}$	$\left(x^{2}+1\right)+\alpha_{1}$	$\left(x^{2}+1\right)+\alpha_{2}$	$\left(x^{2}+x\right)+\alpha_{3}$	$\left(x^{2}+x\right)+\alpha_{4}$
$x^{m+1}+x^{m-1}+r_{m-2}$	$\left(x^{2}+x\right)+\alpha_{1}$	$\left(x^{m-1}+x^{2}+x\right)+\alpha_{2}$	$\left(x^{2}+1\right)+\alpha_{3}$	$\left(x^{m-1}+x^{2}+1\right)+\alpha_{4}$
$x^{m+1}+x^{m}+x^{m-1}+r_{m-2}$	$\left(x^{2}+1\right)+\alpha_{1}$	$\left(x^{m-1}+x^{2}+x\right)+\alpha_{2}$	$\left(x^{2}+x\right)+\alpha_{3}$	$\left(x^{m-1}+x^{2}+1\right)+\alpha_{4}$

Theorem 3. Consider D_{1} and D_{2} constructed above. For $m \geq 2$, we have:
(i) the matrix D_{1} is a $D\left(2^{m+2}, 2^{3}, 2^{m+2}\right)$;
(ii) the matrix $\phi\left(D_{2}\right)$ is a $D\left(2^{m+1}, 2^{3}, 2^{m}\right)$.

Its proof is similar to that of Theorem 1 and therefore omitted.

Example 5 [A $D\left(2^{5}, 2^{3}, 2^{5}\right)$ containing a $D\left(2^{4}, 2^{3}, 2^{3}\right)$]. Let $F=\mathrm{GF}\left(2^{5}\right)$ and $G=\operatorname{GF}\left(2^{3}\right)$. We have $g_{1}=\left(0,1, x, x+1, x^{2}, x^{2}+1, x^{2}+x, x^{2}+x+\right.$ $\left.1, x^{4}, x^{4}+1, x^{4}+x, x^{4}+x+1, x^{4}+x^{2}, x^{4}+x^{2}+1, x^{4}+x^{2}+x, x^{4}+x^{2}+x+1\right)^{\prime}$ and $\alpha_{1}=\left(0, x^{2}, 0, x^{2}\right)^{\prime}, \alpha_{2}=\left(0, x^{2}+1, x, x^{2}+x+1\right)^{\prime}, \alpha_{3}=\left(0, x^{2}+x, x^{2}, x\right)^{\prime}$, $\alpha_{4}=\left(0, x^{2}+x+1, x^{2}+x, 1\right)^{\prime}$. From Theorem $3, D_{1}$ is a $D\left(2^{5}, 2^{3}, 2^{5}\right), D_{2}$ is the submatrix of D_{1} consisting of rows $0,1, x, x+1, x^{3}+x^{2}, x^{3}+x^{2}+1, x^{3}+$ $x^{2}+x, x^{3}+x^{2}+x+1, x^{4}, x^{4}+1, x^{4}+x, x^{4}+x+1, x^{4}+x^{3}+x^{2}, x^{4}+x^{3}+$ $x^{2}+1, x^{4}+x^{3}+x^{2}+x, x^{4}+x^{3}+x^{2}+x+1$, and $\phi\left(D_{2}\right)$ is a $D\left(2^{4}, 2^{3}, 2^{3}\right)$, with columns $x^{2}+r_{1}$ of $\phi\left(D_{2}\right)$ given by

	$\boldsymbol{x}^{\mathbf{2}}$	$\boldsymbol{x}^{\mathbf{2}+\mathbf{1}}$	$\boldsymbol{x}^{\mathbf{2}+\boldsymbol{x}}$	$\boldsymbol{x}^{\mathbf{2}+\boldsymbol{x}+\mathbf{1}}$
0	0	0	0	0
1	x^{2}	$x^{2}+1$	$x^{2}+x$	$x^{2}+x+1$
x	0	x	x^{2}	$x^{2}+x$
$x+1$	x^{2}	$x^{2}+x+1$	x	1
$x^{3}+x^{2}$	$x+1$	$x^{2}+x+1$	$x+1$	$x^{2}+x+1$
$x^{3}+x^{2}+1$	$x^{2}+x+1$	x	$x^{2}+1$	0
$x^{3}+x^{2}+x$	$x+1$	$x^{2}+1$	$x^{2}+x+1$	1
$x^{3}+x^{2}+x+1$	$x^{2}+x+1$	0	1	$x^{2}+x$
x^{4}	$x^{2}+x$	$x^{2}+x$	$x^{2}+1$	$x^{2}+1$
$x^{4}+1$	x	$x+1$	$x+1$	x
$x^{4}+x$	$x^{2}+x$	x^{2}	1	$x+1$
$x^{4}+x+1$	x	1	$x^{2}+x+1$	x^{2}
$x^{4}+x^{3}+x^{2}$	$x^{2}+1$	1	$x^{2}+x$	x
$x^{4}+x^{3}+x^{2}+1$	1	x^{2}	0	$x^{2}+1$
$x^{4}+x^{3}++x^{2}+x$	$x^{2}+1$	$x+1$	x	x^{2}
$x^{4}+x^{3}+x^{2}+x+1$	1	$x^{2}+x$	x^{2}	$x+1$

3.4. Some extensions. Some extensions of the proposed method are considered here. Similar to Sections 3.1-3.3, we can construct the following two families of NDMs: (a) a $D\left(2^{m+3}, 2^{3}, 2^{m+3}\right)$ containing a $D\left(2^{m+1}, 2^{3}, 2^{m}\right)$ and (b) a $D\left(2^{m+3}, 2^{4}, 2^{m+3}\right)$ containing a $D\left(2^{m+2}, 2^{4}, 2^{m}\right)$ with $m \geq 2$. For brevity we present the case with $m=2$, where $F=\operatorname{GF}\left(2^{5}\right)$ and $G=\operatorname{GF}\left(2^{2}\right)$. By taking columns r_{3} of the multiplication table of F, we obtain a matrix D_{1}. Clearly, D_{1} is a $D\left(2^{5}, 2^{4}, 2^{5}\right)$.

Collect the elements of F into

$$
\begin{array}{r}
g_{1}=\left(r_{0}^{\prime}, x+r_{0}^{\prime}, x^{3}+r_{0}^{\prime}, x^{3}+x+r_{0}^{\prime}, x^{4}+r_{0}^{\prime}, x^{4}+x+r_{0}^{\prime}\right. \\
\left.x^{4}+x^{3}+r_{0}^{\prime}, x^{4}+x^{3}+x+r_{0}^{\prime}\right)^{\prime}
\end{array}
$$

and $g_{2}=x^{2}+g_{1}$. Note that, for the columns labeled with r_{2}, the i th row in g_{1} is the same as its counterpart in g_{2}. Let D_{2} be the submatrix of D_{1} consisting of rows $\left(0,1, x^{3}+x, x^{3}+x+1, x^{4}, x^{4}+1, x^{4}+x^{3}+x, x^{4}+x^{3}+x+1\right)$. It is easy to see that $\phi\left(D_{2}\right)$ is a $D\left(2^{3}, 2^{3}, 2^{2}\right)$ given by

	$\mathbf{0}$	$\mathbf{1}$	\boldsymbol{x}	$\boldsymbol{x}+\mathbf{1}$	$\boldsymbol{x}^{\mathbf{2}}$	$\boldsymbol{x}^{\mathbf{2}+\mathbf{1}}$	$\boldsymbol{x}^{\mathbf{2}+\boldsymbol{x}}$	$\boldsymbol{x}^{\mathbf{2}+\boldsymbol{x}+\mathbf{1}}$
0	0	0	0	0	0	0	0	0
1	0	1	x	$x+1$	0	1	x	$x+1$
$x^{3}+x$	0	x	0	x	$x+1$	1	$x+1$	1
$x^{3}+x+1$	0	$x+1$	x	1	$x+1$	0	1	x
x^{4}	0	0	$x+1$	$x+1$	x	x	1	1
$x^{4}+1$	0	1	1	0	x	$x+1$	$x+1$	x
$x^{4}+x^{3}+x$	0	x	$x+1$	1	1	$x+1$	x	0
$x^{4}+x^{3}+x+1$	0	$x+1$	1	x	1	x	0	$x+1$

Take D_{3} to be the submatrix of D_{1} consisting of rows $(0,1), x^{2}+(x, x+1), x^{2}+$ $\left(x^{3}, x^{3}+1\right),\left(x^{3}+x, x^{3}+x+1\right), x^{2}+\left(x^{4}, x^{4}+1\right),\left(x^{4}+x, x^{4}+x+1\right),\left(x^{4}+\right.$ $\left.x^{3}, x^{4}+x^{3}+1\right), x^{2}+\left(x^{4}+x^{3}+x, x^{4}+x^{3}+x+1\right)$ of D_{1}. It is easy to verify that $\phi\left(D_{3}\right)$ is a $D\left(2^{4}, 2^{4}, 2^{2}\right)$ with columns $x^{3}+r_{2}$ of $\phi\left(D_{3}\right)$ given by

	$\boldsymbol{x}^{\mathbf{3}}$	$\boldsymbol{x}^{\mathbf{3}}+\mathbf{1}$	$\boldsymbol{x}^{\mathbf{3}}+\boldsymbol{x}$	$\boldsymbol{x}^{\mathbf{3}}+\boldsymbol{x + \mathbf { 1 }}$	$\boldsymbol{x}^{\mathbf{3}}+\boldsymbol{x}^{\mathbf{2}}$	$\boldsymbol{x}^{\mathbf{3}}+\boldsymbol{x}^{\mathbf{2}}+\mathbf{1}$	$\boldsymbol{x}^{\mathbf{3}}+\boldsymbol{x}^{\mathbf{2}}+\boldsymbol{x}$	$\boldsymbol{x}^{\mathbf{3}+\boldsymbol{x}^{\mathbf{2}}} \mathbf{+ \boldsymbol { x } + \mathbf { 1 }}$
0	0	0	0	0	0	0	0	0
1	0	1	x	$x+1$	0	1	x	$x+1$
$x^{2}+x$	$x+1$	1	$x+1$	1	$x+1$	1	$x+1$	1
$x^{2}+x+1$	$x+1$	0	1	x	$x+1$	0	1	x
$x^{2}+x^{3}$	1	1	1	1	x	x	x	x
$x^{2}+x^{3}+1$	1	0	$x+1$	x	x	$x+1$	0	1
$x^{3}+x$	x	0	x	0	1	$x+1$	1	$x+1$
$x^{3}+x+1$	x	1	0	$x+1$	1	x	$x+1$	0
$x^{2}+x^{4}$	$x+1$	$x+1$	0	0	1	1	x	x
$x^{2}+x^{4}+1$	$x+1$	x	x	$x+1$	1	0	0	1
$x^{4}+x$	0	x	$x+1$	1	x	0	1	$x+1$
$x^{4}+x+1$	0	$x+1$	1	x	x	1	$x+1$	0
$x^{4}+x^{3}$	x	x	1	1	$x+1$	$x+1$	0	0
$x^{4}+x^{3}+1$	x	$x+1$	$x+1$	x	$x+1$	x	x	$x+1$
$x^{2}+x^{4}$	1	$x+1$	x	0	0	x	$x+1$	1
$\quad+x^{3}+x$		x	0	$x+1$	0	$x+1$	1	x
$x^{2}+x^{4}+x^{3}$	1	x	0					
$\quad+x+1$								

The proposed method can be extended to construct NDMs with $p=3$. Note that the presentation of this extension is more involved because the irreducible polynomials for $\operatorname{GF}\left(3^{u}\right), u \geq 1$, do not have a unified form. [In contrast, we can use $p(x)=x^{u}+x+1$ for any $\mathrm{GF}\left(2^{u}\right), u \geq 1$.] For brevity we provide examples from a useful family: a $D\left(3^{m+1}, 3^{2}, 3^{m+1}\right)$ containing a $D\left(3^{m}, 3^{2}, 3^{m}\right)$ with $m \geq 1$.

Here let $r_{-1}=(0), r_{0}=(0,1,2)^{\prime}, r_{m}=\left(0,1,2, x, x+1, x+2, \ldots, 2 x^{m}, 2 x^{m}+\right.$ $\left.1, \ldots, 2 x^{m}+2 x^{m-1}+\cdots+2 x+2\right)^{\prime}$ with $m \geq 1$. Note that here r_{m} has 3^{m+1} elements. Let $F=\mathrm{GF}\left(3^{u_{1}}\right)$ with an irreducible polynomial $p_{1}(x)$ and $G=\mathrm{GF}\left(3^{u_{2}}\right)$ with an irreducible polynomial $p_{2}(x)$, where $u_{1}=m+1, u_{2}=m$ and $m \geq 1$. Let D_{0} be the multiplication table of F. By taking columns r_{1} of D_{0}, obtain a matrix D_{1}. Clearly, D_{1} is a $D\left(3^{m+1}, 3^{2}, 3^{m+1}\right)$.

Collect the elements of F into three vectors:

$$
\begin{align*}
& g_{1}=\left(r_{m-2}^{\prime}, x^{m-1}+r_{m-2}^{\prime}, 2 x^{m-1}+r_{m-2}^{\prime}\right)^{\prime}, \\
& g_{2}=x^{m}+g_{1} \quad \text { and } \quad g_{3}=2 x^{m}+g_{1} . \tag{8}
\end{align*}
$$

As a consequence of this grouping scheme, for any column labeled with r_{0} in $\phi\left(D_{1}\right)$, the rows labeled with g_{1} are the same as those labeled with g_{2} or those labeled with g_{3}. This convenient structure implies that we only need to focus on columns $x+r_{0}$ and $2 x+r_{0}$ in the construction. The key is to find a subset of D_{1} in which these columns are uniform in G. Some examples are given.

Example 6 [A $D\left(3^{3}, 3^{2}, 3^{3}\right)$ containing a $D\left(3^{2}, 3^{2}, 3^{2}\right)$]. Let $F=\operatorname{GF}\left(3^{3}\right)$ with $p_{1}(x)=x^{3}+2 x+1$ and $G=\mathrm{GF}\left(3^{2}\right)$ with $p_{2}(x)=x^{2}+x+2$. Let D_{0} be the multiplication table of F. By taking columns r_{1} of D_{0}, obtain a matrix D_{1} which is a $D\left(3^{3}, 3^{2}, 3^{3}\right)$. Let D_{2} be the submatrix of D_{1} consisting of rows $r_{0}, 2 x^{2}+x+r_{0}$ and $x^{2}+2 x+r_{0}$. It is easy to see that $\phi\left(D_{2}\right)$ is a $D\left(2^{3}, 2^{2}, 2^{3}\right)$ with columns $x, x+1, x+2,2 x, 2 x+1,2 x+2$ given by

	\boldsymbol{x}	$\boldsymbol{x}+\mathbf{1}$	$\boldsymbol{x}+\mathbf{2}$	$\mathbf{2 x}$	$\mathbf{2 x}+\mathbf{1}$	$\mathbf{2 x}+\mathbf{2}$
0	0	0	0	0	0	0
1	x	$x+1$	$x+2$	$2 x$	$2 x+1$	$2 x+2$
2	$2 x$	$2 x+2$	$2 x+1$	x	$x+2$	$x+1$
$2 x^{2}+x$	$2 x+1$	1	$x+1$	$x+2$	$2 x+2$	2
$2 x^{2}+x+1$	1	$x+2$	$2 x$	2	x	$2 x+1$
$2 x^{2}+x+2$	$x+1$	$2 x$	2	$2 x+2$	1	x
$x^{2}+2 x$	$x+2$	2	$2 x+2$	$2 x+1$	$x+1$	1
$x^{2}+2 x+1$	$2 x+2$	x	1	$x+1$	2	$2 x$
$x^{2}+2 x+2$	2	$2 x+1$	x	1	$2 x$	$x+2$

EXAMPLE 7 [A $D\left(3^{4}, 3^{2}, 3^{4}\right)$ containing a $\left.D\left(3^{3}, 3^{2}, 3^{3}\right)\right]$. Let $F=\operatorname{GF}\left(3^{4}\right)$ with $p_{1}(x)=x^{4}+x+2$ and $G=\operatorname{GF}\left(3^{3}\right)$ with $p_{2}(x)=x^{3}+2 x+1$. Let D_{0} be the
multiplication table of F. By taking columns r_{1} of D_{0}, obtain a matrix D_{1}, which is a $D\left(3^{4}, 3^{2}, 3^{4}\right)$. Let D_{2} be the submatrix of D_{1} consisting of rows $r_{1}, 2 x^{3}+x^{2}+r_{1}$ and $x^{3}+2 x^{2}+r_{1}$. Columns $x, x+1, x+2,2 x, 2 x+1,2 x+2$ of $\phi\left(D_{2}\right)$ are given by

	\boldsymbol{x}	$\boldsymbol{x} \boldsymbol{+ 1}$	$\boldsymbol{x}+\mathbf{2}$
r_{1}	$x r_{1}$	$(x+1) r_{1}$	$(x+2) r_{1}$
$2 x^{3}+x^{2}+r_{1}$	$(x+2)+x r_{1}$	$\left(x^{2}+x+2\right)+(x+1) r_{1}$	$\left(2 x^{2}+x+2\right)+(x+2) r_{1}$
$x^{3}+2 x^{2}+r_{1}$	$(2 x+1)+x r_{1}$	$\left(2 x^{2}+2 x+1\right)+(x+1) r_{1}$	$\left(x^{2}+2 x+1\right)+(x+2) r_{1}$
	$2 x$	$2 x+1$	$2 x+2$
r_{1}	$2 x r_{1}$	$(2 x+1) r_{1}$	$(2 x+2) r_{1}$
$2 x^{3}+x^{2}+r_{1}$	$(2 x+1)+2 x r_{1}$	$\left(x^{2}+2 x+1\right)+(2 x+1) r_{1}$	$\left(2 x^{2}+2 x+1\right)+(2 x+2) r_{1}$
$x^{3}+2 x^{2}+r_{1}$	$(x+2)+2 x r_{1}$	$\left(2 x^{2}+x+2\right)+(2 x+1) r_{1}$	$\left(x^{2}+x+2\right)+(2 x+2) r_{1}$

Similar to Lemma 1 it is easy to show that any two of $(x+1) r_{1},(x+2) r_{1}$ and $(2 x+1) r_{1}$ are disjoint and the union of the three is r_{2}. Hence the columns of $\phi\left(D_{2}\right)$ are uniform in r_{2} and $\phi\left(D_{2}\right)$ is a $D\left(3^{3}, 3^{2}, 3^{3}\right)$.
4. Constructing nested orthogonal arrays with Kronecker products. In this section we present a general approach to constructing NOAs. It generates an NOA by taking the Kronecker product of an NDM and a standard OA. Let δ be either ϕ in (2) or φ in (3) unless stated otherwise.

The following lemma [Bose and Bush (1952)] says that taking the Kronecker product of an OA and a DM gives a larger OA.

Lemma 2. If D is a $D(b, c, s)$ and A is an $\mathrm{OA}(n, k, s)$, and both are based on the same abelian group \mathcal{A}, then the array $H=A \otimes D$ is an $\mathrm{OA}(n b, k c, s)$.

For $\delta(A \otimes D)$, we have:

Lemma 3. If D is a $D(b, c, s)$ and A is an $\mathrm{OA}(n, k, s)$, and both are based on $\mathrm{GF}(s)$, then

$$
\begin{equation*}
\delta(A \otimes D)=\delta(A) \otimes \delta(D) \tag{9}
\end{equation*}
$$

This lemma can be readily verified by using the definition of δ and (4). It basically says the two operations δ and \otimes in (9) are interchangeable, which is key to the constructions to be proposed later.

Now recall a classical result from Addleman and Kempthorne (1961).

Lemma 4. If a factor in an OA has s_{1} levels and $s_{2} \mid s_{1}$, then it can be replaced by a new factor with s_{2} levels by partitioning the s_{1} symbols into s_{2} groups of size
s_{1} / s_{2} and by replacing the symbols in the same group with a common symbol. The resulting array is still an $O A$.

Note that if the s_{1} and s_{2} levels in this lemma come from $\operatorname{GF}\left(s_{1}\right)$ and $\operatorname{GF}\left(s_{2}\right)$, respectively, the condition $s_{2} \mid s_{1}$ clearly holds and the required level collapsing can be done through using δ.

Here is a similar result for difference matrices.

Lemma 5. If D is a $D\left(b, c, s_{1}\right)$ based on $\operatorname{GF}\left(s_{1}\right)$, then $\delta(D)$ is a $D\left(b, c, s_{2}\right)$.

This lemma can be readily proved by following the definitions of difference matrices and δ.

Now we are ready to present the details of the proposed construction. Let A be an $\operatorname{OA}\left(n, m, s_{1}\right)$ based on $\operatorname{GF}\left(s_{1}\right)$. Let $\left(D_{1}, D_{2}, \delta\right)$ be an NDM constructed in Section 3, where D_{1} is a $D\left(b_{1}, c, s_{1}\right)$ based on $\operatorname{GF}\left(s_{1}\right)$ and D_{2} is a submatrix of D_{1}, and $\delta\left(D_{2}\right)$ is a $D\left(b_{2}, c, s_{2}\right)$ based on $\mathrm{GF}\left(s_{2}\right)$. Put

$$
\begin{equation*}
H_{1}=A \otimes D_{1} \quad \text { and } \quad H_{2}=A \otimes D_{2} . \tag{10}
\end{equation*}
$$

THEOREM 4. For H_{1} and H_{2} in (10), the array $\left(H_{1}, H_{2}, \delta\right)$ is an NOA, where H_{1} is an $\mathrm{OA}\left(n r_{1}, m c, s_{1}\right), H_{2}$ is a submatrix of H_{1} and $\delta\left(H_{2}\right)$ is an $\mathrm{OA}\left(n r_{2}, m c, s_{2}\right)$.

This theorem can be readily verified by following Lemmas $2-5$.
EXAmple 8. Let $p=2, u_{1}=3, u_{2}=2$, giving $s_{1}=8$ and $s_{2}=4$. Take an $\operatorname{NDM}\left(D_{1}, D_{2}, \phi\right)$ from Example 3, where D_{1} is a $D(8,4,8)$ and $\phi\left(D_{2}\right)$ is a $D(4,4,4)$. The projection ϕ is as follows: $\left\{0, x^{2}\right\} \rightarrow 0,\left\{1, x^{2}+1\right\} \rightarrow 1,\left\{x, x^{2}+\right.$ $x\} \rightarrow x,\left\{x+1, x^{2}+x+1\right\} \rightarrow x+1$. Let A be a trivial orthogonal array $\mathrm{OA}(8,1,8)$, the column vector listing all elements of $\mathrm{GF}(8)$. From Theorem 4, H_{1} is an $\mathrm{OA}(64,4,8), H_{2}$ is a submatrix of H_{1}, and $\phi\left(H_{2}\right)$ is an $\mathrm{OA}(32,4,4)$.

Note that the construction (10) is not restricted to use NDMs from Section 3. Here is an example.

Example 9. Let D_{0} be the $D(12,12,4)$ [Seberry (1979)] given in the Appendix. Take D_{1} to be the submatrix of D_{0} consisting of columns $1,3,4$ and 5 . It can be verified that D_{1} is a $D(12,4,4)$. Take D_{2} to be the submatrix of D_{1} consisting of rows $1,2,4,5$. Let δ be a projection by deleting the first digits of the entries in D_{2}. Clearly, $\delta\left(D_{2}\right)$ is a $D(4,4,2)$. Let A be the $\mathrm{OA}(64,21,4)$ constructed by using the Rao-Hamming method (HSS). Put $H_{1}=A \otimes D_{1}$ and $H_{2}=A \otimes D_{2}$.

Then the array $\left(H_{1}, H_{2}, \delta\right)$ is an NOA, where H_{1} is an $\mathrm{OA}(768,84,4), H_{2}$ is a submatrix of H_{1} and $\delta\left(H_{2}\right)$ is an $\mathrm{OA}(256,84,2)$.
5. Obtaining new nested orthogonal arrays from existing ones. As a modification of the method in the previous section, we discuss here a procedure for obtaining new NOAs from existing ones. Let $\left(A_{1}, A_{2}, \varphi\right)$ be an arbitrary NOA constructed in QTW, where A_{1} is an $\mathrm{OA}\left(n_{1}, m, s_{1}\right), A_{2}$ is a submatrix of A_{1} and $\varphi\left(A_{2}\right)$ is an $\mathrm{OA}\left(n_{2}, m, s_{2}\right)$. Let D be a $D\left(b, c, s_{1}\right)$ based on $\operatorname{GF}\left(s_{1}\right)$. Put

$$
\begin{equation*}
H_{1}=A_{1} \otimes D \quad \text { and } \quad H_{2}=A_{2} \otimes D \tag{11}
\end{equation*}
$$

THEOREM 5. For H_{1} and H_{2} in (11), we have:
(i) the matrix H_{1} is an $\mathrm{OA}\left(n_{1} b, m c, s_{1}\right)$;
(ii) the matrix H_{2} is a submatrix of H_{1} and $\varphi\left(H_{2}\right)$ is an $\mathrm{OA}\left(n_{2} b, m c, s_{2}\right)$.

This theorem can be readily verified by following Lemmas 2, 3 and 5.

Example 10. Let $p=2, u_{1}=3, u_{2}=2$, giving $s_{1}=8$ and $s_{2}=4$. We use $p_{1}(x)=x^{3}+x+1$ for $\mathrm{GF}(8)$ and $p_{2}(x)=x^{2}+x+1$ for $\mathrm{GF}(4)$. The condition $2 u_{2} \leq u_{1}+1$ is satisfied and the projection φ is as follows. $\left\{0, x^{2}+x+1\right\} \rightarrow$ $0,\left\{1, x^{2}+x\right\} \rightarrow 1,\left\{x, x^{2}+1\right\} \rightarrow x,\left\{x+1, x^{2}\right\} \rightarrow x+1$. Take an $\operatorname{NOA}\left(A_{1}, A_{2}, \varphi\right)$ from Section 2.3, where A_{1} is an $\operatorname{OA}(64,5,8)$ and A_{2} is the following submatrix of A_{1}

$$
\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & x & x+1 \\
x & 0 & x & x^{2} & x^{2}+x \\
x+1 & 0 & x+1 & x^{2}+x & x^{2}+1 \\
0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & x+1 & x \\
x & 1 & x+1 & x^{2}+1 & x^{2}+x+1 \\
x+1 & 1 & x & x^{2}+x+1 & x^{2} \\
0 & x & x & x & x \\
1 & x & x+1 & 0 & 1 \\
x & x & 0 & x^{2}+x & x^{2} \\
x+1 & x & 1 & x^{2} & x^{2}+x+1 \\
0 & x+1 & x+1 & x+1 & x+1 \\
1 & x+1 & x & 1 & 0 \\
x & x+1 & 1 & x^{2}+x+1 & x^{2}+1 \\
x+1 & x+1 & 0 & x^{2}+1 & x^{2}+x
\end{array}\right]
$$

We have $\varphi\left(A_{2}\right)$ is an $\mathrm{OA}(16,5,4)$. Let D be the multiplication table of $\operatorname{GF}(8)$. Then D is a $D\left(2^{3}, 2^{3}, 2^{3}\right)$ and $\varphi(D)$ is a $D\left(2^{3}, 2^{3}, 2^{2}\right)$ given by

	$\mathbf{0}$	$\mathbf{1}$	\boldsymbol{x}	$\boldsymbol{x}+\mathbf{1}$	$\boldsymbol{x}^{\mathbf{2}}$	$\boldsymbol{x}^{\mathbf{2}+\mathbf{1}}$	$\boldsymbol{x}^{\mathbf{2}}+\boldsymbol{x}$	$\boldsymbol{x}^{\mathbf{2}+\boldsymbol{x}+\mathbf{1}}$
0	0	0	0	0	0	0	0	0
1	0	1	x	$x+1$	0	1	x	$x+1$
x	0	x	0	x	$x+1$	1	$x+1$	1
$x+1$	0	$x+1$	x	1	$x+1$	0	1	x
x^{2}	0	0	$x+1$	$x+1$	x	x	1	1
$x^{2}+1$	0	1	1	0	x	$x+1$	$x+1$	x
$x^{2}+x$	0	x	$x+1$	1	1	$x+1$	x	0
$x^{2}+x+1$	0	$x+1$	1	x	1	x	0	$x+1$

From Theorem 5, H_{1} is an $\mathrm{OA}(512,40,8), H_{2}$ is a submatrix of H_{1}, and $\varphi\left(H_{2}\right)$ is an $\mathrm{OA}(128,40,8)$.

6. Construction of nested orthogonal arrays with nonprime power num-

 ber of levels. In this section, we construct NOAs with nonprime power number of levels. This construction complements the methods in the previous two sections, where NOAs with prime power number of levels are constructed. First we introduce a simple projection, denoted by ρ_{a}, for any integer $a \geq 1$, to be$$
\begin{equation*}
\rho_{a}(u)=u(\bmod a) . \tag{12}
\end{equation*}
$$

The following lemma gives some properties of ρ_{a} :
LEMMA 6. (i) If $a, b \geq 1$ are integers with $b \mid a$, then $\rho_{b}\left(\rho_{a}(u)\right)=\rho_{b}(u)$;
(ii) for any integer $a \geq 1, \rho_{a}\left(u_{1}+u_{2}\right)=\rho_{a}\left(\rho_{a}\left(u_{1}\right)+\rho_{a}\left(u_{2}\right)\right)$.

We now use this projection to construct a family of NOAs based on the zerosum array (HSS). For an integer s, let \mathbb{Z} denote the residue classes modulo s. Let $s_{1}, s_{2} \geq 1$ be integers with $s_{2} \mid s_{1}$. Let F denote $\mathbb{Z}_{s_{1}}$ and G denote $\mathbb{Z}_{s_{2}}$. Obtain an $s_{1}^{2} \times 3$ matrix A_{1}, where the first two columns have each of the s_{1}^{2} possible 2-tuples from $F \times F$ as a row, and for row (i, j) in the first two columns, its corresponding entry in the third column is taken as $-(i+j)\left(\bmod s_{1}\right)$. Take A_{2} to be the submatrix of A_{1} consisting of rows $(i, j), 0 \leq i, j \leq s_{2}-1$, in the first two columns.

TheOrem 6. For A_{1} and A_{2} constructed above, we have:
(i) the matrix A_{1} is an $\mathrm{OA}\left(s_{1}^{2}, 3, s_{1}\right)$;
(ii) the matrix A_{2} is a submatrix of A_{1} and $\rho_{s_{2}}\left(A_{2}\right)$ is an $\mathrm{OA}\left(s_{2}^{2}, 3, s_{2}\right)$.

This theorem can be readily verified by following Lemma 6.
As a straightforward extension of Theorem 5, we can take the Kronecker product of an NOA from Theorem 6 and a standard DM to obtain a new NOA. By extending Theorem 4, we can take the Kronecker product of an NDM with non-
prime power number of levels and a standard OA to obtain an NOA. Here is an example.

Example 11. Obtain a matrix D_{1} by suppressing the first digits of all entries of the $D(12,6,12)$ in the Appendix. It can be verified that D_{1} is a $D(12,6,6)$. Let D_{2} be the submatrix of D_{1} consisting of rows $1,4,5,6,8$ and 12 . Clearly, $\rho_{3}\left(D_{2}\right)$ is a $D(6,6,3)$. Let A be the $\mathrm{OA}(36,3,6)$ obtained by taking the first three columns of Table 7C. 8 in Wu and Hamada (2000). Put $H_{1}=A \otimes D_{1}$ and $H_{2}=A \otimes D_{2}$. The array $\left(H_{1}, H_{2}, \rho_{3}\right)$ is an NOA, where H_{1} is an $\mathrm{OA}(432,18,6), H_{2}$ is a submatrix of H_{1} and $\rho_{3}\left(H_{2}\right)$ is an $\operatorname{OA}(216,18,3)$.
7. Construction of nested orthogonal arrays with mixed levels. In this section, we discuss the issue of constructing NOAs with mixed levels. The key here is to embed nested structures in the constructions of asymmetrical (mixed) OAs, like those in Wang and Wu (1991) (referred to as WW hereinafter) and Wang (1996). Such an embedding can be done in various ways as described in the remainder of the section. We use $\operatorname{OA}\left(n, s_{1}^{\gamma_{1}} \cdots s_{k}^{\gamma_{k}}\right)$ to denote an asymmetrical OA.
7.1. Using nested orthogonal arrays and Wang-Wu method. This construction makes use of the Kronecker products in (11) and the Wang-Wu method in WW. For $1 \leq j \leq v$, let $s_{j 1}$ and $s_{j 2}$ be powers of the same prime p_{j} with integers $u_{j 1}>u_{j 2} \geq 1$. The primes p_{j} 's are assumed to be all distinct. Suppose A_{1} is an $\mathrm{OA}\left(n_{1}, s_{11}^{k_{1}} \cdots s_{v 1}^{k_{v}}\right)$ and can be partitioned as

$$
A_{1}=\left[\begin{array}{lll}
A_{11} & \cdots & A_{v 1}
\end{array}\right],
$$

where each $A_{j 1}$ comes from an $\operatorname{NOA}\left(A_{j 1}, A_{j 2}, \delta_{j}\right), A_{j 1}$ is an $\mathrm{OA}\left(n_{1}, k_{j}, s_{j 1}\right)$ based on $\mathrm{GF}\left(s_{j 1}\right), A_{j 2}$ is a submatrix of $A_{j 1}$ and $\delta_{j}\left(A_{j 2}\right)$ is an $\mathrm{OA}\left(n_{2}, k_{j}, s_{j 2}\right)$ based on $\mathrm{GF}\left(s_{j 2}\right)$.

For $1 \leq j \leq v$, let $D(j)$ denote a $D\left(b, c_{j}, s_{j 1}\right)$ with entries from $\mathrm{GF}\left(s_{j 1}\right)$. Put

$$
H_{1}=\left[A_{11} \otimes D(1) \cdots A_{v 1} \otimes D(v) B_{1}\right]
$$

and

$$
H_{2}=\left[A_{12} \otimes D(1) \cdots A_{v 2} \otimes D(v) B_{2}\right]
$$

where $C=(0, \ldots, b-1)^{\prime}, B_{1}=\left(C^{\prime}, \ldots, C^{\prime}\right)^{\prime}$ represents a b-level factor with C appearing n_{1} times and $B_{2}=\left(C^{\prime}, \ldots, C^{\prime}\right)^{\prime}$ represents a b-level factor with C appearing n_{2} times.

THEOREM 7. For H_{1} and H_{2} constructed above, we have:
(i) the matrix H_{1} is an $\mathrm{OA}\left(b n_{1}, b^{1} s_{11}^{k_{1} c_{1}} \ldots s_{v 1}^{k_{v} c_{v}}\right)$;
(ii) the matrix H_{2} is a submatrix of H_{1} and H_{2} is an $\mathrm{OA}\left(b n_{2}, b^{1} s_{12}^{k_{1} c_{1}} \cdots s_{v 2}^{k_{v} c_{v}}\right)$ after the levels of the $s_{j 1}$-level factors are collapsed according to δ_{j} for $j=$ $1, \ldots, v$.

This theorem can be readily verified by following the result on the generalized Kronecker product in WW and the definition of δ_{j}.

EXAMPLE 12 [An $\mathrm{OA}\left(288,6^{6} 4^{12}\right)$ containing an $\mathrm{OA}\left(72,3^{6} 2^{12}\right)$]. Let A_{1} be an $\mathrm{OA}\left(24,6^{1} 4^{1}\right)$ formed by taking all level combinations of a factor at six levels, $0,1,2,3,4,5$, and a factor at four levels, $00,01,10,11$. Take A_{2} to be the subarray of A_{1} consisting of all level combinations of $0,1,2$ and 00,01 . Let D_{1} be the $D(12,6,6)$ and D_{2} the $D(12,12,4)$ from the Appendix. Put $H_{1}=$ $\left[A_{11} \otimes D_{1}, A_{21} \otimes D_{2}\right]$ and $H_{2}=\left[A_{12} \otimes D_{1}, A_{22} \otimes D_{2}\right]$. From Theorem 7, H_{1} is an $\mathrm{OA}\left(288,6^{6} 4^{12}\right)$ and H_{2} becomes an $\mathrm{OA}\left(72,3^{6} 2^{12}\right)$ after the following level collapsing: for the 6 -level factors, using $\{0,3\} \rightarrow 0,\{1,4\} \rightarrow 1,\{2,5\} \rightarrow 2$; for the 4 -level factors, deleting the first digit and retaining the second, for example, both 01 and 11 are projected to 1 .
7.2. Using nested difference matrices and Wang-Wu method. This construction makes use of the Kronecker products in (10) and the Wang-Wu method in WW.

For $1 \leq j \leq v$, let $s_{j 1}$ and $s_{j 2}$ be powers of the same prime p_{j} with integers $u_{j 1}>u_{j 2} \geq 1$. The primes p_{j} 's are assumed to be all different. Suppose A is an $\mathrm{OA}\left(n, s_{11}^{k_{1}} \cdots s_{v 1}^{k_{v}}\right)$ and can be partitioned as

$$
A=\left[\begin{array}{lll}
A_{1} & \cdots & A_{v}
\end{array}\right],
$$

where A_{j} is an $\mathrm{OA}\left(n, k_{j}, s_{j 1}\right)$ based on $\mathrm{GF}\left(s_{j 1}\right)$. Let D be a partitioned matrix

$$
\left[\begin{array}{lll}
D_{1}(1) & \cdots & D_{1}(v)
\end{array}\right]
$$

where $D_{1}(j)$ comes from an $\operatorname{NDM}\left(D_{1}(j), D_{2}(j), \delta_{j}\right), D_{1}(j)$ is a $D\left(b_{1}, c_{j}, s_{j 1}\right)$ based on $\operatorname{GF}\left(s_{j 1}\right), D_{2}(j)$ is a submatrix of $D_{1}(j)$, and $\delta_{j}\left(D_{2}(j)\right)$ is a $D\left(b_{2}, c_{j}\right.$, $\left.s_{j 2}\right)$ based on $\mathrm{GF}\left(s_{j 2}\right)$.

Put

$$
H_{1}=\left[A_{1} \otimes D_{1}(1) \cdots A_{v} \otimes D_{1}(v) B_{1}\right]
$$

and

$$
H_{2}=\left[A_{1} \otimes D_{2}(1) \cdots A_{v} \otimes D_{2}(v) B_{2}\right],
$$

where $C_{1}=\left(0, \ldots, b_{1}-1\right)^{\prime}, B_{1}=\left(C_{1}^{\prime}, \ldots, C_{1}^{\prime}\right)^{\prime}$ represents a b_{1}-level factor with C_{1} appearing n times, $C_{2}=\left(0, \ldots, b_{2}-1\right)^{\prime}$ is a subvector of C_{1} with b_{2} elements and $B_{2}=\left(C_{2}^{\prime}, \ldots, C_{2}^{\prime}\right)^{\prime}$ represents a b_{2}-level factor with C_{2} appearing n times.

THEOREM 8. For H_{1} and H_{2} constructed above, we have:
(i) the matrix H_{1} is an $\mathrm{OA}\left(b_{1} n, b_{1}^{1} s_{11}^{k_{1} c_{1}} \cdots s_{v 1}^{k_{v} c_{v}}\right)$;
(ii) the matrix H_{2} is a submatrix of H_{1} and H_{2} becomes an $\mathrm{OA}\left(b_{2} n, b_{2}^{1} s_{12}^{k_{1} c_{1}}\right.$ $\cdots s_{v 2}^{k_{v} c_{v}}$) after the levels of the $s_{j 1}$-level factors are collapsed according to δ_{j} for $j=1, \ldots, v$.

This theorem can be readily verified by following the result on the generalized Kronecker product in WW and the definition of δ_{j}.
7.3. Using a nested nonorthogonal mixed matrix and a special mixed difference matrix. Wang (1996) constructs an asymmetrical OA using a mixed DM and a nonorthogonal matrix with mixed levels. Unlike the Wang-Wu method, this construction does not use OAs and therefore can give asymmetrical OAs with more flexible run sizes. Here we modify it to construct NOAs with mixed levels.

For $j=1,2$, let $s_{j 1}$ and $s_{j 2}$ be powers of the same prime p_{j} with integers $u_{j 1}>u_{j 2} \geq 1$. For $j=1,2$, choose an $\operatorname{NDM}\left(D_{j 1}, D_{j 2}, \delta_{j}\right)$, where $D_{j 1}$ is a $D\left(n_{1}, k_{j}, s_{j 1}\right)$ based on $\mathrm{GF}\left(s_{j 1}\right), D_{j 2}$ is a submatrix of $D_{j 1}$ and $\delta_{j}\left(D_{j 2}\right)$ is a $D\left(n_{2}, k_{j}, s_{j 2}\right)$ with entries from $\operatorname{GF}\left(s_{j 2}\right)$. Construct an $\operatorname{NDM}\left(D_{01}, D_{02}, \delta_{0}\right)$, where $\delta_{0}=\delta_{1} \times \delta_{2}, D_{01}$ is a $D\left(n_{1}, k_{0}, s_{11} s_{21}\right)$ based on $\operatorname{GF}\left(s_{11}\right) \times \mathrm{GF}\left(s_{21}\right), D_{02}$ is a submatrix of D_{01} and $\delta_{0}\left(D_{02}\right)$ is a $D\left(n_{2}, k_{0}, s_{12} s_{22}\right)$ based on $\operatorname{GF}\left(s_{12}\right) \times \operatorname{GF}\left(s_{22}\right)$. For $j=1,2$, let $\sigma_{j}(\cdot)$ denote the operation of taking the j th component of every entry in a matrix whose entries are represented by two digits. For $j=1$, 2, further assume the augmented matrix $\left[\sigma_{j}\left(D_{01}\right), D_{j 1}\right.$] is a $D\left(n_{1}, k_{0}+k_{j}, s_{j 1}\right)$ and $\delta_{j}\left[\sigma_{j}\left(D_{02}\right), D_{j 2}\right]$ is a $D\left(n_{2}, k_{0}+k_{j}, s_{j 2}\right)$. For $j=1,2$, let C_{j} be the column vector comprising all level combinations of $\mathrm{GF}\left(s_{1 j}\right)$ and $\mathrm{GF}\left(s_{2 j}\right)$.

Put

$$
\begin{align*}
& H_{1}=\left[C_{1} \otimes D_{01}, \sigma_{1}\left(C_{1}\right) \otimes D_{11}, \sigma_{2}\left(C_{1}\right) \otimes D_{21}\right] \quad \text { and } \\
& H_{2}=\left[C_{2} \otimes D_{02}, \sigma_{1}\left(C_{2}\right) \otimes D_{12}, \sigma_{2}\left(C_{2}\right) \otimes D_{22}\right] . \tag{13}
\end{align*}
$$

THEOREM 9. For H_{1} and H_{2} in (13), we have:
(i) the matrix H_{1} is an $\mathrm{OA}\left(n_{1} s_{11} s_{21},\left(s_{11} s_{21}\right)^{k_{0}} s_{11}^{k_{1}} s_{21}^{k_{2}}\right)$;
(ii) the matrix H_{2} becomes an $\mathrm{OA}\left(n_{2} s_{12} s_{22},\left(s_{12} s_{22}\right)^{k_{0}} s_{12}^{k_{1}} s_{22}^{k_{2}}\right)$ after the levels of the $s_{11} s_{21}$-level factors are collapsed according to δ_{0} and the levels of $s_{j 1}$-level factors are collapsed according to δ_{j} for $j=1,2$.

This theorem can be readily verified by following the theorem in Wang (1996) and the definition of δ_{j}.

We now give a simple method for constructing a type of matrix $D=\left[D_{0}\right.$, D_{1}, D_{2}] required by the preceding theorem. (As a side note, this construction is related to Problem 6.17 in HSS, page 144.) For $j=1,2$, take D_{j} to be a $D\left(b_{j}, c_{j}, s_{j}\right)$ based on $\operatorname{GF}\left(s_{j}\right)$. Let c_{0} be any integer between 1 and $\min \left(c_{1}, c_{2}\right)$. For $j=1,2$, partition D_{j} as $D_{j}=\left[D_{j 0}, D_{j 1}\right]$, where both D_{10} and D_{20} have c_{0} columns. Let $\alpha_{i, k}$ denote the (i, k) th entry of D_{1} and $\beta_{j, k}$ the (j, k) th entry of D_{2}. Construct a
$b_{1} b_{2} \times c_{0}$ matrix D_{0} whose entry in the $\left((i-1) b_{2}+j\right)$ th row and k th column is $\left(\alpha_{i, k}, \beta_{j, k}\right), 1 \leq i \leq b_{1}, 1 \leq j \leq b_{2}, 1 \leq k \leq c_{0}$. Define $D=\left[D_{0}, D_{11}^{*}, D_{21}^{*}\right]$, where the $\left((i-1) b_{2}+j\right)$ th row of D_{11}^{*} is the i th row of D_{11} and the $\left((i-1) b_{2}+j\right)$ th row of D_{21}^{*} is the j th row of D_{21}.

Lemma 7. For D constructed above, we have:
(i) the matrix D_{0} is a difference matrix $D\left(b_{1} b_{2}, c_{0}, s_{1} s_{2}\right)$;
(ii) for $j=1$, 2, the matrix $D_{j 1}^{*}$ is a difference matrix $D\left(b_{1} b_{2}, c_{j}-c_{0}, s_{j}\right)$;
(iii) for $j=1,2,\left[\sigma_{j}\left(D_{0}\right), D_{j 1}^{*}\right]$ is a difference matrix $D\left(b_{1} b_{2}, c_{j}, s_{j}\right)$.

EXAMPLE 13 [An $\mathrm{OA}\left(144,12^{2} 4^{2} 3^{1}\right)$ containing an $\left.\mathrm{OA}\left(72,6^{2} 2^{2} 3^{1}\right)\right]$. Let C_{10} be the vector listing all level combinations of GF(4) and GF(3). Denote by $0,1, x, x+1$ the elements of $\mathrm{GF}(4)$ are $0,1,2$ the elements of $\mathrm{GF}(3)$. For $j=1,2$, let $C_{1 j}$ be the column vector listing all j th digits of C_{10}. The transpose of the matrix $C_{1}=\left(C_{10}, C_{11}, C_{12}\right)$ is given by

$$
\left[\begin{array}{cccccccccccc}
00 & 01 & 02 & 10 & 11 & 12 & x 0 & x 1 & x 2 & (x+1) 0 & (x+1) 1 & (x+1) 2 \\
0 & 0 & 0 & 1 & 1 & 1 & x & x & x & x+1 & x+1 & x+1 \\
0 & 1 & 2 & 0 & 1 & 2 & 0 & 1 & 2 & 0 & 1 & 2
\end{array}\right] .
$$

Let $C_{2}=\left(C_{20}, C_{21}, C_{22}\right)$ be the submatrix of C_{1} consisting of the first six rows. Take D_{1} to be the following $D(4,4,4)$

$$
\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & x & x+1 \\
0 & x & x+1 & 1 \\
0 & x+1 & 1 & x
\end{array}\right]
$$

and D_{2} to be the following $D(3,3,3)$

$$
\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 2 \\
0 & 2 & 1
\end{array}\right] .
$$

From Lemma 7, $D=\left[D_{0}, D_{1}, D_{2}\right]$ is

$$
\left[\begin{array}{ccccc}
00 & 00 & 0 & 0 & 0 \\
00 & 01 & 0 & 0 & 2 \\
00 & 02 & 0 & 0 & 1 \\
00 & 10 & x & x+1 & 0 \\
00 & 11 & x & x+1 & 2 \\
00 & 12 & x & x+1 & 1 \\
00 & x 0 & x+1 & 1 & 0 \\
00 & x 1 & x+1 & 1 & 2 \\
00 & x 2 & x+1 & 1 & 1 \\
00 & (x+1) 0 & 1 & x & 0 \\
00 & (x+1) 1 & 1 & x & 2 \\
00 & (x+1) 2 & 1 & x & 1
\end{array}\right] .
$$

Put $H_{1}=\left[C_{10} \otimes D_{0}, C_{11} \otimes D_{1}, C_{12} \otimes D_{2}\right]$ and $H_{2}=\left[C_{20} \otimes D_{0}, C_{21} \otimes D_{1}, C_{22} \otimes\right.$ D_{2}. From Theorem $9, H_{1}$ is an $\mathrm{OA}\left(144,12^{2} 4^{2} 3^{1}\right)$ and H_{2} becomes an $\mathrm{OA}(72$, $6^{2} 2^{2} 3^{1}$) after the following level collapsing: for the 12 -level factors, using $\{00, x 0\} \rightarrow 00,\{10,(x+1) 0\} \rightarrow 10,\{01, x 1\} \rightarrow 01,\{11,(x+1) 1\} \rightarrow 11$, $\{02, x 2\} \rightarrow 02,\{12,(x+1) 2\} \rightarrow 12$; for the 4-level factors, using $\{0,2\} \rightarrow 0$ and $\{1,3\} \rightarrow 1$.
8. Generation of nested space-filling designs. In this section, we discuss the problem of using NOAs to generate NSFDs. Throughout, we assume the factors are quantitative and each of them takes values in the interval [0,1 . When we say that a design is space-filling or achieves uniformity in low dimensions, we mean that, when projected onto low dimensions, the design points are evenly scattered in the design region. For this problem, we present an approach following the procedure in QTW used for the same problem. Unlike QTW, the present approach covers both NOAs with equal levels and with mixed levels. Consider an $\operatorname{NOA}\left(H_{1}, H_{2}\right)$, where H_{1} is an $\operatorname{OA}\left(n_{1}, s_{11}^{\gamma_{1}} \cdots s_{k 1}^{\gamma_{k}}\right)$ with $m=\sum_{i=1}^{k} \gamma_{i}, H_{2}$ is a submatrix of H_{1} and H_{2} becomes an $\mathrm{OA}\left(n_{2}, s_{12}^{\gamma_{1}} \cdots s_{k 2}^{\gamma_{k}}\right)$ after the levels of the $s_{j 1}$-level factors are collapsed into $s_{j 2}$ levels according to a projection δ_{j}. If $k=1$, this array reduces to an NOA with equal levels.

The first step in constructing an OA-based Latin hypercube design D_{l} using H_{1} is to relabel the $s_{j 1}$ levels of H_{1}, currently represented by the elements of a Galois field (or other mathematical structures), as $1, \ldots, s_{j 1}$. Note that the projection δ_{j} divides the $s_{j 1}$ levels into $s_{j 2}$ groups, each of size $e_{j}=s_{j 1} / s_{j 2}$, and two levels belong to the same group if their projected values match. To ensure that the subset of D_{l} corresponding to H_{2} has good space-filling properties, we label the $s_{j 1}$ levels of any $s_{j 1}$-level factor in H_{1} in such a way that the group of levels that are mapped to the same level should form a consecutive subset of $\left\{1, \ldots, s_{j 1}\right\}$. The $s_{j 2}$ groups are arbitrarily labeled as groups $1, \ldots, s_{j 2}$, and the e_{j} levels within the i th group are arbitrarily labeled as $(i-1) e_{j}+1, \ldots,(i-1) e_{j}+e_{j}$ for $i=1, \ldots, s_{j 2}$.

After labeling the levels of the s_{j}-level factors of H_{1} as $1, \ldots, s_{j 1}, j=1, \ldots, k$, as discussed above, we now use this array to obtain an OA-based Latin hypercube design as described in Section 2.1. Let D_{l} denote the set of points and D_{h} be the subset of D_{l} corresponding to H_{2}. Then (i) D_{l} achieves maximum uniformity in one dimension and, when D_{l} is projected onto the dimensions of an $s_{j 1}$-level factor and an $s_{k 1}$-level factor, the points achieve uniformity on $s_{j 1} \times s_{k 1}$ grids; and (ii) D_{h} is a subset of D_{l} and, when D_{l} is projected onto the dimensions of an $s_{j 1}$-level factor and an $s_{k 1}$-level factor, the points achieve uniformity on $s_{j 2} \times s_{k 2}$ grids.

An example is given to illustrate the above procedure.
Example 14. Consider the NOA in Example 8, where H_{1} is an OA(64, $4,8), H_{2}$ is a submatrix of H_{1} and $\phi\left(H_{2}\right)$ is an $\mathrm{OA}(32,4,4)$. The four groups of levels of H_{1} are $\left\{0, x^{2}\right\},\left\{1, x^{2}+1\right\},\left\{x, x^{2}+x\right\}$ and $\left\{x+1, x^{2}+x+1\right\}$. We label $\left\{0, x^{2}\right\}$ as levels 1 and $2,\left\{1, x^{2}+1\right\}$ as levels 3 and $4,\left\{x, x^{2}+x\right\}$ as levels

TABLE 4
The H_{1} matrix in Example 14

Run \#	x_{1}	x_{2}	x_{3}	x_{4}	Run \#	x_{1}	x_{2}	x_{3}	x_{4}
1	1	1	1	1	33	2	2	2	2
2	1	3	5	7	34	2	4	6	8
3	1	2	7	8	35	2	1	8	7
4	1	4	3	2	36	2	3	4	1
5	1	5	2	6	37	2	6	1	5
6	1	7	6	4	38	2	8	5	3
7	1	6	8	3	39	2	5	7	4
8	1	8	4	5	40	2	7	3	6
9	3	3	3	3	41	4	4	4	4
10	3	1	7	5	42	4	2	8	6
11	3	4	5	6	43	4	3	6	5
12	3	2	1	4	44	4	1	2	3
13	3	7	4	8	45	4	8	3	7
14	3	5	8	2	46	4	6	7	1
15	3	8	6	1	47	4	7	5	2
16	3	6	2	7	48	4	5	1	8
17	5	5	5	5	49	6	6	6	6
18	5	7	1	3	50	6	8	2	4
19	5	6	3	4	51	6	5	4	3
20	5	8	7	6	52	6	7	8	5
21	5	1	6	2	53	6	2	5	1
22	5	3	2	8	54	6	4	1	7
23	5	2	4	7	55	6	1	3	8
24	5	4	8	1	56	6	3	7	2
25	7	7	7	7	57	8	8	8	8
26	7	5	3	1	58	8	6	4	2
27	7	8	1	2	59	8	7	2	1
28	7	6	5	8	60	8	5	6	7
29	7	3	8	4	61	8	4	7	3
30	7	1	4	6	62	8	2	3	5
31	7	4	2	5	63	8	3	1	6
32	7	2	6	3	64	8	1	5	4

5 and 6 and $\left\{x+1, x^{2}+x+1\right\}$ as levels 7 and 8 . Table 4 presents the array H_{1} after using such labeling, where H_{2} correspond to runs $1,2,7-10,15-18,23-26$, $31-34,39-42,47-50,55-58,63-64$. We then use H_{1} to construct an OA-based Latin hypercube design D_{l} for x_{1} to x_{4}. Now choose D_{h} to be the subset of D_{l} corresponding to H_{2}. The points in any bivariate projection of D_{h} achieve uniformity on the 4×4 grids in two dimensions. The points in the bivariate projections of D_{l} also achieve similar uniformity.
9. Discussions and concluding remarks. Multiple computer experiments with different levels of accuracy have become prevalent in business, engineering
and science for studying complex real world systems. NSFDs are attractive for such experiments. Several methods are proposed for constructing various families of NOAs, which can be used to generate many new NSFD. In the development of these methods, two new discrete mathematics concepts, called nested orthogonal arrays and nested difference matrices, are introduced. These concepts should be further studied in their own right.

NSFDs can also be used in validation of computer models, that is, testing the accuracy of a computer model against some field data [Bayarri et al. (2007), Kennedy and O'Hagan (2001) and Oberkampf and Trucano (2007)]. Let D_{c} denote the set of design points for the computer model and D_{f} denote the set of design points for the corresponding physical experiment used as a benchmark in the validation. Unlike the situation of D_{l} and D_{h}, D_{c} should have more columns than D_{f} because of the need of accommodating calibration (tuning) parameters that appear in the computer model only. Precisely, construction of D_{c} and D_{f} is guided by the following requirements:
(i) D_{c} contains all factors of D_{f} and has additional columns to accommodate the calibration parameters.
(ii) When restricted to the shared factors, $D_{f} \subset D_{c}$.
(iii) Both D_{c} and D_{f} have good space-filling properties.

With slight modifications, our construction methods for D_{h} and D_{l} can give D_{f} and D_{c} that satisfy the above requirements. For illustration, we modify the construction in Section 3.1, where $F=\mathrm{GF}\left(2^{m+1}\right), G=\mathrm{GF}\left(2^{m}\right), m \geq 2, D_{0}$ is a $D\left(2^{m+1}, 2^{m+1}, 2^{m+1}\right)$ and D_{1} is a $D\left(2^{m+1}, 2^{4}, 2^{m+1}\right)$. Take D_{1}^{*} to be D_{0}. Then D_{1}^{*} has more columns than D_{1}. Next replace D_{1} by D_{1}^{*} and follow through the steps in Section 3.1 and the construction in (10). Let A be the OA $\left(n, c, s_{1}\right)$ used in Theorem 4. Then we have the following results: for $m \geq 2$,
(i) the matrix D_{1}^{*} is a $D\left(2^{m+1}, 2^{m+1}, 2^{m+1}\right)$;
(ii) the matrix $\phi\left(D_{2}\right)$ is a $D\left(2^{m}, 2^{2}, 2^{m}\right)$;
(iii) the matrix $H_{1}^{*}=A \otimes D_{1}^{*}$ is an $\mathrm{OA}\left(n 2^{m+1}, 2^{m+1} c, 2^{m+1}\right)$;
(iv) for the shared $4 m_{2}$ factors, $H_{2}=A \otimes D_{2}$ is a submatrix of H_{1}^{*} and $\delta\left(H_{2}\right)$ is an $\mathrm{OA}\left(n 2^{m}, 4 c, 2^{m}\right)$.

As in Section 8, we use $\left(H_{1}^{*}, H_{2}\right)$ to generate a pair of nested designs for D_{c} and D_{f}, where D_{c} has $2^{m+1} c$ columns and D_{f} has $4 c$ columns and both have good space-filling properties.

Extensions of the present work can be made in several directions. First, similar to the construction of OA-based Latin hypercubes designs [Tang $(1993,1994)$ and Leary, Bhaskar and Keane (2003)], it is possible to produce multiple NSFDs based on a given NOA. In a separate article, we plan to use both distance and correlation criteria to construct optimal NSFDs. Second, the constructed NOAs in this article have strength 2 that can guarantee uniformity in two dimensions only.

The proposed methods can be extended to produce NOAs with higher-dimensional stratification by exploring nesting in difference matrices with strength 3 or higher [Hedayat, Stufken and Su (1996)]. Another possibility is to use quasi-Monte Carlo sequences, like nets [Niederreiter (1992)]. A paper in preparation will address the issue of constructing nested nets. Third, it is worth studying the sampling properties of NSFDs. Fourth, a natural extension of the present work is to construct NSFDs for experiments with more than two levels of accuracy. One way to achieve this is to extend the method in QTW to directly construct NOAs with more sophisticated nesting, that is, a 32 -run OA contains a 16 -run OA that contains an 8 -run OA. Another possibility is to modify the method in Section 3 to obtain NDMs with nesting at more than two levels and then use them to produce the desired NOAs. Finally, given the close connections between OAs and coding theory, it should be possible to use coding-theoretical techniques to construct new NOAs. We are currently exploring this issue.

APPENDIX

$D(12,12,4)$ from Seberry (1979)

00	00	00	00	00	00	00	00	00	00	00	00
00	00	00	01	01	01	11	11	11	10	10	10
00	00	00	11	11	11	10	10	10	01	01	01
00	11	01	10	01	11	01	10	00	11	00	00
00	11	01	11	10	01	00	01	10	10	11	00
00	11	01	01	11	10	10	00	01	00	10	11
00	01	10	11	00	10	01	00	11	01	11	10
00	01	10	10	11	00	11	01	00	10	01	11
00	01	10	00	10	11	00	11	01	11	10	01
00	10	11	01	10	00	01	11	10	01	00	11
00	10	11	00	01	10	10	01	11	11	01	00
00	10	11	10	00	01	11	10	01	00	11	01

$D(12,6,12)$ based on $\left(\mathbb{Z}_{2} \oplus \mathbb{Z}_{6},+\right)$ [Dulmage, Johnson and Mendelsohn (1961)]

00	00	00	00	00	00
00	01	03	12	04	10
00	02	10	01	15	12
00	03	01	15	14	02
00	04	13	05	02	11
00	05	15	13	11	01
00	10	02	03	12	13
00	11	12	14	10	15
00	12	05	02	13	04
00	13	04	11	01	14
00	14	11	10	03	05
00	15	14	04	05	03

Acknowledgments. The authors thank the Editor, the Associate Editors, and two referees for their valuable comments and suggestions that improved the presentation of this article.

REFERENCES

Addelman, S. and Kempthorne, O. (1961). Some main-effect plans and orthogonal arrays of strength two. Ann. Math. Statist. 32 1167-1176. MR0137244
Bayarri, M. J., Berger, J. O., Cafeo, J., Garcia-Donato, G., Liu, F., Palomo, J., Parthasarathy, R. J., Paulo, R., Sacks, J. and Walsh, D. (2007). Computer model validation with functional output. Ann. Statist. 35 1874-1906. MR2363956
Bose, R. C. and Bush, K. A. (1952). Orthogonal arrays of strength two and three. Ann. Math. Statist. 23 508-524. MR0051204
BUTLER, N. A. (2001). Optimal and orthogonal Latin hypercube designs for computer experiments. Biometrika 88 847-857. MR1859414
Dalal, S. R. and Mallows, C. L. (1998). Factor-covering designs for testing software. Technometrics 40 234-243.
Fang, K. T., Li, R. Z. and Sudjianto, A. (2006). Design and Modeling for Computer Experiments. Chapman \& Hall, New York. MR2223960
Fang, K. T., Lin, D. K. J., Winker, P. and Zhang, Y. (2000). Uniform design: Theory and application. Technometrics 42 237-248. MR1801031
Goldstein, M. and Rougier, J. (2004). Probabilistic formulations for transferring inferences from mathematical models to physical systems. SIAM J. Sci. Comput. 26 467-487. MR2116356
Hedayat, A. S., Sloane, N. J. A. and Stufken, J. (1999). Orthogonal Arrays: Theory and Applications. Springer, New York. MR1693498
Hedayat, A. S., Stufken, J. and Su, G. (1996). On difference schemes and orthogonal arrays of strength t. J. Statist. Plann. Inference 56 307-324. MR1436014
Higdon, D., Kennedy, M. C., Cavendish, J. C., Cafeo, J. A. and Ryne, R. D. (2004). Combining field data and computer simulations for calibration and prediction. SIAM J. Sci. Comput. 26 448-466. MR2116355
Johnson, D. M., Dulmage, A. L. and Mendelsohn, N. S. (1961). Orthomorphisms of groups and orthogonal Latin squares. I. Canad. J. Math. 13 356-372. MR0124229
Kennedy, M. C. and O'HAGAN, A. (2000). Predicting the output from a complex computer code when fast approximations are available. Biometrika 87 1-13. MR1766824
Kennedy, M. C. and O’Hagan, A. (2001). Bayesian calibration of computer models. J. R. Stat. Soc. Ser. B Stat. Methodol. 63 425-464. MR1858398
Lam, R. L. H., Welch, W. J. and Young, S. S. (2002). Uniform coverage designs for molecule selection. Technometrics 44 99-109. MR1951721
Leary, S., Bhaskar, A. and Keane, A. (2003). Optimal orthogonal-array-based Latin hypercubes. J. Appl. Statist. 30 585-598. MR1969503
LOH, W. L. (1996a). A combinatorial central limit theorem for randomized orthogonal array sampling designs. Ann. Statist. 24 1209-1224. MR1401845
LOH, W. L. (1996b). On Latin hypercube sampling. Ann. Statist. 24 2058-2080. MR1421161
LOH, W. L. (2008). A multivariate central limit theorem for randomized orthogonal array sampling designs in computer experiments. Ann. Statist. 36 1983-2023. MR2435462

McKay, M. D., Beckman, R. J. and Conover, W. J. (1979). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21 239-245. MR0533252
Niederreiter, H. (1992). Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia, PA. MR1172997
Oberkampf, W.L. and Trucano, T. (2007). Verification and Validation Benchmarks. Sandia National Laboratories (SAND 2007-0853), Albuquerque, New Mexico.
OwEn, A. B. (1992). Orthogonal arrays for computer experiments, integration and visualization. Statist. Sinica 2 439-452. MR1187952
OWEN, A. B. (1994a). Lattice sampling revisited: Monte Carlo variance of means over randomized orthogonal arrays. Ann. Statist. 22 930-945. MR1292549
Owen, A. B. (1994b). Controlling correlations in Latin hypercube samples. J. Amer. Statist. Assoc. 88 1517-1522.
Qian, Z., Seepersad, C. C., Roshan, V. R., Allen, J. K. and Wu, C. F. J. (2006). Building surrogate models based on detailed and approximate simulations. ASME Transactions: J. Mechanical Design 128 668-677.
Qian, P. Z. G., Tang, B. and Wu, C. F. J. (2009). Nested space-filling designs for computer experiments with two levels of accuracy. Statist. Sinica 19 287-300. MR2487890
Qian, P. Z. G. and WU, C. F. J. (2008). Bayesian hierarchical modeling for integrating lowaccuracy and high-accuracy experiments. Technometrics 50 192-204.
Reese, C. S., Wilson, A. G., Hamada, M., Martz, H. F. and Ryan, K. J. (2004). Integrated analysis of computer and physical experiments. Technometrics 46 153-164. MR2060014
Sacks, J., Welch, W. J., Mitchell, T. J. and Wynn, H. P. (1989). Design and analysis of computer experiments. Statist. Sci. 4 409-435. MR1041765
Santner, T. J., Williams, B. J. and Notz, W. I. (2003). The Design and Analysis of Computer Experiments. Springer, New York. MR2160708
Seberry, J. (1979). Some remarks on generalised Hadamard matrices and theorems of Rajkundlia on SBIBD's. In Combinatorial Mathematics. VI (A. F. Horadam and W. D. Wallis, eds.) 154 164. Springer, Berlin. MR0558043

Shrikhande, S. S. (1964). Generalized Hadamard matrices and orthogonal arrays of strength two. Canad. J. Math. 16 736-740. MR0166889
Stein, M. (1987). Large sample properties of simulations using Latin hypercube sampling. Technometrics 29 143-151. MR0887702
Steinberg, D. M. and Lin, D. K. J. (2006). A construction method for orthogonal Latin hypercube designs. Biometrika 93 279-288. MR2278083
TANG, B. (1993). Orthogonal array-based Latin hypercubes. J. Amer. Statist. Assoc. 88 1392-1397. MR1245375
TANG, B. (1994). A theorem for selecting OA-based Latin hypercubes using a distance criterion. Comm. Statist. Theory Methods 23 2047-2058. MR1281902
TANG, B. (1998). Selecting Latin hypercubes using correlation criteria. Statist. Sinica 8 409-435. MR1651518
WANG, J. C. (1996). Mixed difference matrices and the construction of orthogonal arrays. Statist. Probab. Lett. 28 121-126. MR1394662
WANG, J. C. and WU, C. F. J. (1991). An approach to the construction of asymmetrical orthogonal arrays. J. Amer. Statist. Assoc. 86 450-455. MR1137129
Welch, W. J., Buck, R. J., Sacks, J., Wynn, H. P., Mitchell, T. J. and Morris, M. D. (1992). Screening, predicting and computer experiments. Technometrics 34 15-25.

Wu, C. F. J. and Hamada, M. (2000). Experiments: Planning, Analysis, and Parameter Design Optimization. Wiley, New York. MR1780411

YE, K. Q. (1998). Orthogonal column Latin hypercubes and their application in computer experiments. J. Amer. Statist. Assoc. 88 1392-1397. MR1666638

P. Z. G. Qian

Department of Statistics
University of Wisconsin-Madison
MADISON, WISCONSIN 53706 USA
E-MAIL: peterq@stat.wisc.edu
M. AI

LMAM, School of Mathematical Sciences Peking University
Beijing 100871
China
E-MAIL: myai@math.pku.edu.cn
C. F. J. WU
H. Milton Stewart School of Industrial
and Systems Engineering
Georgia Institute of Technology
755 Ferst Drive NW, Atlanta
Georgia 30332-0205
USA
E-MAIL: jeffwu@isye.gatech.edu

[^0]: Received June 2008; revised November 2008.
 ${ }^{1}$ Supported by NSF Grant DMS-07-05206 and a faculty award from IBM.
 ${ }^{2}$ Supported by NNSF of China Grant 10671007 and NBRP of China Grant 2007CB512605.
 ${ }^{3}$ Supported by NSF Grant DMS-07-05261.
 AMS 2000 subject classifications. Primary 62 K 15 ; secondary 62K20.
 Key words and phrases. Computer experiments, design of experiments, difference matrices, orthogonal arrays, OA-based Latin hypercubes, randomized orthogonal arrays, Wang-Wu method.

