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INVARIANCE PRINCIPLES FOR LOCAL TIMES AT THE
MAXIMUM OF RANDOM WALKS AND LÉVY PROCESSES

BY L. CHAUMONT AND R. A. DONEY

University of Angers and University of Manchester

We prove that when a sequence of Lévy processes X(n) or a normed
sequence of random walks S(n) converges a.s. on the Skorokhod space to-
ward a Lévy process X, the sequence L(n) of local times at the supremum
of X(n) converges uniformly on compact sets in probability toward the lo-
cal time at the supremum of X. A consequence of this result is that the se-
quence of (quadrivariate) ladder processes (both ascending and descending)
converges jointly in law toward the ladder processes of X. As an application,
we show that in general, the sequence S(n) conditioned to stay positive con-
verges weakly, jointly with its local time at the future minimum, toward the
corresponding functional for the limiting process X. From this we deduce an
invariance principle for the meander which extends known results for the case
of attraction to a stable law.

1. Introduction. It is well known that if a sequence of Lévy processes X(n)

converges a.s. on the Skorokhod space to a limiting Lévy process X, then the
corresponding sequence of local times at a fixed level of X(n) do not necessarily
converge to the local time of X, whatever the definition of the local times of X(n)

is: occupation time, crossing times, . . . . However, in the fluctuation theory of Lévy
processes, it is the local times at extrema which play a major role, not the local
times at fixed levels, so a natural and important question is whether these local
times converge. A similar question can be posed about the local times at extrema
of a sequence of normed random walks which converge to a Lévy process.

To our knowledge, the only known results in this vein can be found in Green-
wood, Omey and Teugels [17] and in Duquesne and Le Gall [15]. The first paper
deals with the “classical” case where S(n) is obtained by norming a fixed random
walk S, the assumption being that for some norming sequence cn (S[nt]/cn, t ≥ 0)

converges in law to X, necessarily stable, and the conclusion being that a normed
version of the bivariate ladder process of S converges in law to the bivariate ladder
process of X. One can easily derive that a normed version of the local time at the
maximum of S converges in law to the local time at the supremum of X. (A dif-
ferent proof of this result and a converse result can be found in Doney and Green-
wood [13].) The second paper considers a more general scenario where each S(n) is
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obtained by norming a different random walk, but restricts itself to the case where
each random walk is downward skip-free so that the limiting Lévy process is au-
tomatically spectrally positive. (This is because the result, Theorem 2.2.1 of [15],
is a tool for the study of the height process of the sequence of Galton–Watson
processes related to S(n).) Again, convergence in law is assumed and the conclu-
sion is again convergence in law of a normed version of the local time.

In this paper, we provide three major extensions of these results. In Theorem 1,
we show that whenever S(n) converges in law to X, a normed version of the bi-
variate ladder process of S converges in law to the bivariate ladder process of X.
Again, we can deduce that a normed version of the local time at the maximum of
S converges in law to the local time at the supremum of X. (Our only assump-
tion on X is that it has a continuous local time L at the supremum, but if this
were to fail, a similar result could be formulated.) Next, in Theorem 2, we show
that if the assumption is strengthened to a.s. convergence, then the normed se-
quence of local times converges to L in probability, uniformly on compacts. This
result allows us to deduce, in Theorem 3, an analogous result when a sequence
X(n) of Lévy processes converges a.s. to X. [We stress that for such a result to
hold, we have to remove the ambiguity inherent in the definition of local times for
Lévy processes by insisting on a standard normalization for the local times of X(n)

and X; see (2.1).] An important corollary of these results is the convergence in
law of the quadrivariate process of upgoing and downgoing ladder processes; see
Corollary 2.

In the last section, we show that if a sequence (S
(n)
[nt], t ≥ 0) of continuous-time

random walks converges in law toward a Lévy process X, then the sequence of
these processes conditioned to stay positive on the whole time interval [0,∞) con-
verges in law toward X conditioned to stay positive. We illustrate the usefulness
of the results of Section 3 by showing that this convergence also holds jointly with
the local time at the future infimum. Finally, we obtain an invariance principle for
the meander, that is, we show that the sequence (S

(n)
[nt], t ≥ 0) conditioned to stay

positive over [0,1] converges in law toward X conditioned to stay positive over
[0,1]. These results extend the “classical” case studied by Bolthausen [5], Doney
[10] and Caravenna and Chaumont [6].

2. Preliminaries. Let X be any Lévy process for which 0 is regular for the
open half-line (0,∞). Then 0 is also regular for itself for the reflected process
R := M −X, where Mt = sup0≤s≤t Xs , and so there exists a continuous local time
for R at 0. This local time L is only specified up to multiplication by a constant,
but we will assume throughout that its normalization is fixed by the requirement
that

E

(∫ ∞
0

e−t dLt

)
= 1.(2.1)
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The process L will be called the local time of X at its supremum. It satisfies L∞ <

∞ a.s. if and only if X drifts to −∞.
Let us introduce the ascending bivariate ladder process (τ,H): the ladder time

process is τt = inf{s :Ls > t}, with the convention that inf ∅ = +∞, and the lad-
der height process is Ht = X(τt ), if τt < ∞, and Ht = ∞, if τt = ∞. The process
(τ,H) is a (possibly killed) bivariate subordinator whose Laplace exponent is
given by Fridstedt’s formula:

κ(α,β) = − log E
(
e−(ατ1+βH1)

)
= exp

(∫ ∞
0

∫ ∞
0

(e−t − e−αt−βx)t−1
P{Xt ∈ dx}dt

)
for α,β ≥ 0, with the convention that e−∞ = 0; see Chapter VI of [2] or Chapter 4
of [11] and note that (2.1) squares with κ(1,0) = 1. We write qH , δH and πH ,
respectively, for the killing rate, the drift coefficient and the Lévy measure of H .
In particular, the Laplace exponent of H is given by

κ(0, β) = qH + δHβ +
∫ ∞

0
(1 − e−βx)πH (dx).

Note that our assumptions imply that if δH = 0, then πH(0,∞) = ∞ since, other-
wise, 0 would be irregular for the open half-line (0,∞) for X.

A random walk is a discrete-time process S = (Sk, k = 0,1, . . .) such that
S0 = 0 and, for k ≥ 1, Sk = ∑k

1 Yr , where Y1, Y2, . . . are independent and iden-
tically distributed. We define the local time at its maximum of any random walk S

by �0 = 0 and, for all k ≥ 1,

�k = #
{
j ∈ {1, . . . , k} :Sj > max

i≤j−1
Si

}
.(2.2)

As in continuous time, �∞ < ∞, a.s. if and only if S drifts to −∞. We also
introduce the strict ascending ladder processes for S. The strict ascending ladder
time process T of S is defined by T0 = 0 and, for all k ≥ 0,

Tk+1 = min{j > Tk :Sj > STk
}

with min ∅ = ∞. The strict ascending ladder height process is given by

Hk = S(Tk) if Tk < ∞ and Hk = ∞ if Tk = ∞.

Note that T is the inverse of �, that is, �Tk
= k for all k ≤ �∞. We should point

out that all of the results of this paper are still valid if, in the statements, one
replaces the strict ladder process and the strict local time, respectively, by the weak
ladder process, that is, T0 = 0 and, for all k ≥ 0, Tk+1 = min{j > Tk :Sj ≥ STk

},
and the weak local time, that is, �k = #{j ∈ {1, . . . , k} :Sj ≥ maxi≤j−1 Si}.

In the sections which follow, S(n) will denote a random walk whose distribu-
tion can depend on n and �(n), T (n) and H(n) will denote the corresponding local
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time, ladder time and ladder height process, respectively. We will say that the se-
quence of random walks S(n) converges in law (resp., almost surely) toward the
Lévy process X if the sequence of continuous-time processes (S

(n)
[nt], t ≥ 0) con-

verges in law (resp., almost surely) toward X on the Skorokhod space D([0,∞))

of càdlàg paths. Note that, according to Theorem 2.7 of Skorokhod [18], if the
process (S

(n)
[nt], t ≥ 0) converges in the sense of finite-dimensional distributions,

then it converges in law. If a stochastic process Y has lifetime ζ and if the Y (n)’s
have lifetimes ζ (n), then we say that the sequence Y (n) converges toward Y in
some sense if the sequence of processes (Y

(n)
t 1{t<ζ (n)}+Y

(n)

ζ (n)−1{t≥ζ (n)}, t ≥ 0) con-
verges toward the process (Yt1{t<ζ } + Yζ−1{t≥ζ }, t ≥ 0) in this sense on the space
D([0,∞)). Also, note that convergence in law (resp., almost sure convergence) of
stochastic processes on the space D([0,∞)) is equivalent to convergence in law
(resp., almost sure convergence) on the space D([0, t]) for all t > 0; see Theo-
rem 16.7 in [4]. Convergence in law or almost sure convergence of a sequence of

stochastic processes Y (n) toward Y will be denoted, respectively, by Y (n) (law)−→ Y

and Y (n) (a.s.)−→ Y .

3. Main results. The following result extends Theorem 3.2 in [17] and is the
random walk counterpart of Lemma 3.4.2, page 54 in [20].

THEOREM 1. Let X be any Lévy process such that 0 is regular for the open
half-line (0,∞) and assume that some sequence of random walks S(n) converges
in law toward X. We then have the following convergence in law:[(

n−1T
(n)
[ant],H

(n)
[ant]

)
, t ≥ 0

] (law)−→ (τ,H)

as n → ∞, where

an = exp

( ∞∑
k=1

1

k
e−k/n

P
(
S

(n)
k > 0

))
.(3.1)

REMARK 1. Under the hypothesis of Theorem 1, that is, when 0 is regular for
(0,∞), Rogozin’s criterion asserts that

∫ 1
0 t−1

P(Xt > 0) dt = ∞; see [2] Proposi-
tion VI.3.11. It follows from this result and weak convergence of S(n) toward X

that in Theorem 1, we necessarily have limn→∞ an = ∞.

REMARK 2. The sequence S(n) could also be written in the form

S(n) = 1

cn

S̃(n)

and we would then recover the standard formulation for triangular arrays. How-
ever, in this case, using obvious notation, the result of Theorem 1 would become[(

n−1T̃
(n)
[ant], cn

−1H̃
(n)
[ant]

)
, t ≥ 0

] (law)−→ (τ,H),
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which reduces to Theorem 3.2 of [17] if the distribution of S̃(n) does not depend
on n.

PROOF OF THEOREM 1. We first recall Fristedt’s formula for random walks;
see [11], page 26. For every α > 0 and β > 0, we have

1 − E
(
e−αT

(n)
1 −βH

(n)
1

) = exp

(
−

∞∑
k=1

e−αk

k
E

(
e−βS

(n)
k :S(n)

k > 0
))

.

From this formula, we have

E
(
e
−αn−1T

(n)
[an]−βH

(n)
[an])

= E
(
e−αn−1T

(n)
1 −βH

(n)
1

)[an]

=
(

1 − exp

[
−

∞∑
k=1

1

k
e−αn−1k

E
(
e−βS

(n)
k :S(n)

k > 0
)])[an]

=
(

1 − exp
[
−

∫ ∞
1

1

[s]e
−αn−1[s]

E
(
e
−βS

(n)
[s] :S(n)

[s] > 0
)
ds

])[an]

=
(

1 − exp
[
−

∫ ∞
1/n

n

[nt]e
−αn−1[nt]

E
(
e
−βS

(n)
[nt] :S(n)

[nt] > 0
)
dt

])[an]
.

From the assumptions and Rogozin’s criterion recalled in Remark 1, we have

lim
n→+∞

∫ ∞
1/n

n

[nt]e
−αn−1[nt]

E
(
e
−βS

(n)
[nt] :S(n)

[nt] > 0
)
dt

=
∫ ∞

0

e−αt

t
E(e−βXt :Xt > 0) dt

= ∞,

hence

− log E
(
e
−αn−1T

(n)
[an]−βH

(n)
[an])

∼ [an] exp−
∫ ∞

1/n

n

[nt]e
−αn−1[nt]

E
(
e
−βS

(n)
[nt] :S(n)

[nt] > 0
)
dt.

From the expression of an which is given in the statement of this theorem, the
right-hand side of the above expression is

exp

(
−

∫ ∞
1/n

n

[nt]e
−αn−1[nt]

E
(
e
−βS

(n)
[nt] :S(n)

[nt] > 0
)
dt +

∞∑
k=1

1

k
e−k/n

P
(
S

(n)
k > 0

))

= exp
∫ ∞

1/n

n

[nt]E
(
e−n−1[nt] − e

−αn−1[nt]−βS
(n)
[nt] :S(n)

[nt] > 0
)
dt,
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which, as n goes to ∞, converges toward

exp
∫ ∞

0

1

t
E(e−t − e−αt−βXt :Xt > 0) dt = κ(α,β)

since Xt �= 0 a.s. It is clear that the process X drifts to −∞ if and only if S(n) drifts
to −∞ for all n sufficiently large. First, suppose that X does not drift to −∞. The
above convergence proves that the sequence [(n−1T

(n)
[ant],H

(n)
[ant]), t ≥ 0] converges,

in the sense of finite-dimensional distributions, toward (τ,H). We conclude that it
converges weakly by applying Theorem 2.7 of Skorokhod [18].

If X drifts to −∞, then the sequence (T (n),H (n)) and the process (τ,H)

are obtained, respectively, from a sequence of bivariate renewal processes, say
(T (n),H (n)), and a bivariate subordinator, say (τ ,H), all with infinite lifetime, by
killing them, respectively, at independent random times. It readily follows from
the convergence of the Laplace exponents which is proved above that[(

n−1T
(n)
[ant],H

(n)
[ant]

)
, t ≥ 0

] (law)−→ (τ ,H)

and that the independent killing times of (n−1T
(n)
[ant],H

(n)
[ant]) converge in law to the

one of (τ ,H). As a straightforward consequence, the sequence of killed processes
(n−1T

(n)
[ant],H

(n)
[ant]) converges to (τ,H), in the sense which is defined in the prelim-

inary section. �

Since τ is an increasing process, we derive from Theorem 1 and Theorem 7.2
of [22] that when S(n) converges in law to X, the renormed process (a−1

n �
(n)
[nt], t ≥

0) converges in law to (Lt , t ≥ 0). We actually establish the following, stronger,
result.

THEOREM 2. Let X be as in Theorem 1 and assume that(
S

(n)
[nt], t ≥ 0

) (a.s.)−→ (Xt , t ≥ 0).(3.2)

Let �(n) be the local time at its maximum of S(n). A normed version of �(n) then
converges uniformly in probability on compacts sets toward L. More specifically,
for all t ≥ 0 and ε > 0,

lim
n→∞ P

(
sup

s∈[0,t]
∣∣a−1

n �
(n)
[ns] − Ls

∣∣ > ε
)

= 0,(3.3)

where an is defined by expression (3.1).

The proof of this theorem requires the two following lemmas. We denote by πτ

and πH the Lévy measures of τ and H , respectively.
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LEMMA 1. The Lévy measure πH has no atom whenever X is not a compound
Poisson process. If, moreover, 0 is regular for (−∞,0), then the Lévy measure πτ

has a density with respect to the Lebesgue measure.

PROOF. Let us introduce some notation: we call (τ̂ , Ĥ ) the ladder process
associated to X̂ = −X and we call Û the renewal measure of this bivariate subor-
dinator. The renewal measure of Ĥ is denoted by UĤ and the Lévy measure of X

is denoted by �.
From Vigon’s “équation amicale inversée” (see Vigon [21] or [20], page 71),

we have that for all x > 0 and 0 < h < x,

πH(x − h,x] =
∫ ∞

0
UĤ (dy)�(x + y − h,x + y].

By monotone convergence, we get

πH({x}) =
∫ ∞

0
UĤ (dy)�({x + y})

and this is zero because there are countably many atoms of � and UĤ is diffuse
when X is not a compound Poisson process; see Proposition 1.15, [2]. This proves
the first assertion.

Corollary 6, page 50 of [11], asserts that whenever X is not a compound Poisson
process, the Lévy measure π of (τ,H) is given by

π(dt, dh) =
∫
[0,∞)

Û (dt, dx)�(dh + x).

Then, from Theorem 5 of [1], under the additional assumption that 0 is regular for
(−∞,0), we have, for all t > 0, that

qt (dx) dt = cÛ(dt, dx),

where c is a constant and qt (dx) is the entrance law of the measure of the excur-
sions away from 0 of the process X reflected at its supremum. The second assertion
is thus proved. �

The second lemma follows from Theorem 1, Lemma 1 and a standard criterion
on convergence of sums of independent random variables (see, e.g., [16]), so we
omit its proof.

LEMMA 2. Define, for 0 < a < b ≤ ∞, 0 < c < ∞ and n ≥ 1,

πa,b
n = P

(
H

(n)
1 ∈ (a, b]), m

n,a
1 = E

(
H

(n)
1 :H(n)

1 ≤ a
)
,

m
n,a
2 = E

((
H

(n)
1

)2 :H(n)
1 ≤ a

)
, νc

n = P
(
n−1T

(n)
1 > c

)
.



LOCAL TIMES AT THE SUPREMUM 1375

Under the assumptions of Theorem 1, the following asymptotics hold:

lim
n→∞anπ

a,b
n = πH(a, b], lim

n→∞anm
n,a
1 = δH +

∫ a

0
xπH (dx)

and

lim
n→∞anm

n,a
2 =

∫ a

0
x2πH (dx).

If, moreover, 0 is regular for (−∞,0), then

lim
n→+∞anν

c
n = πτ (c,∞).

PROOF OF THEOREM 2. We first observe that since (a−1
n �

(n)
[nt], t ≥ 0) is

a sequence of nondecreasing processes which converges toward the continuous
process L, in order to prove the uniform convergence in (3.3), it suffices to estab-
lish pointwise convergence in probability, that is, for all t ≥ 0,

lim
n→∞ P

(∣∣a−1
n �

(n)
[nt] − Lt

∣∣ > ε
) = 0.(3.4)

We first treat the case where πH [0,∞) < ∞. Since we have assumed that 0 is
regular for (0,∞), we necessarily have δH > 0 and then

δHLt = λ(Ms : s ≤ t),(3.5)

where λ is the Lebesgue measure. Let M
(n)
k = max0≤j≤k S

(n)
j , k ≥ 0, and for a > 0,

define the truncated past maxima of S(n) and X, respectively, as

M
n,a
[nt] = M

(n)
[nt]−

∑
s∈[0,t]

�M(n)
s 1{�M

(n)
s >a} and Ma

t = Mt −
∑

s∈[0,t]
�Ms1{�Ms>a}.

Since, in this case, M has only a finite number of jumps in each interval [0, t], we
have the almost sure convergence

lim
n→∞M

n,a
[nt] = Ma

t a.s.(3.6)

Moreover, for the same reason and by (3.5), for all a small enough, we have

δHLt = Ma
t .(3.7)

From (3.6) and (3.7), it then suffices to prove that

lim
a↓0

lim sup
n→∞

P

(∣∣∣∣Mn,a
[nt] − δH

an

�
(n)
[nt]

∣∣∣∣ > ε

)
= 0.(3.8)

Note that for all k, Mn,a(T
(n)
k ) is the sum of k i.i.d. random variables with mean

m
n,a
1 and second moment m

n,a
2 defined in Lemma 2. Hence, for all K > 0 and

ε > 0, from Kolmogorov’s inequality,

P

(
max

0≤j≤T
(n)
[Kan]

∣∣Mn,a
j − m

n,a
1 �

(n)
j

∣∣ > ε
)

≤ Kanm
n,a
2

ε2 .
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Now, write the inequality

P

(
max

0≤j≤T
(n)
[Kan]

∣∣∣∣Mn,a
j − δH

an

�
(n)
j

∣∣∣∣ > 2ε

)

≤ P

(
max

0≤j≤T
(n)
[Kan]

∣∣∣∣δH

an

�
(n)
j − m

n,a
1 �

(n)
j

∣∣∣∣ > ε

)
+ Kanm

n,a
2

ε2 .

Then observe that the first term on the right-hand side is nothing but
1{|KδH −m

n,a
1 Kan|>ε} and, from Lemma 2, lima→0 limn→∞ 1{|KδH −m

a,n
1 Kan|>ε} = 0.

From the same lemma, we have, for the second term, lima→0 limn→∞ anm
n,a
2 = 0.

Hence,

lim
a→0

lim
n→∞P

(
max

0≤j≤T
(n)
[Kan]

∣∣∣∣Mn,a
j − δH

an

�
(n)
j

∣∣∣∣ > 2ε

)
= 0.

Finally, write

P

(∣∣∣∣Mn,a
n − δH

an

�(n)
n

∣∣∣∣ > ε

)

≤ P

(
max

0≤j≤T
(n)
[Kan]

∣∣∣∣Mn,a
j − δH

an

�
(n)
j

∣∣∣∣ > ε

)
+ P

(
T

(n)
[Kan] < n

)
.

But, from Theorem 1, we have limK→+∞ limn→∞ P(T
(n)
[Kan] < n) = 0 and (3.8)

follows for t = 1. (This proof can readily be extended to any time t ≥ 0.) So, we
have proven (3.4) in the case πH [0,∞) < ∞.

Now, let us suppose that πH [0,∞) = ∞ and, for 0 < a < b < ∞, define the
following approximations of the local times L and �(n):

L
a,b
t = #{s ≤ t :�Ms ∈ (a, b]}

and

�
n,a,b
k = #

{
j ≤ k :M(n)

j + a < S
(n)
j+1 ≤ M

(n)
j + b

}
.

Since L
a,b
t is a finite integer, it readily follows from the almost sure convergence

of S
(n)
[n·] toward X that

lim
n→+∞�

n,a,b
[nt] = L

a,b
t a.s.(3.9)

On the other hand, observe that (La,b
τt

, t ≥ 0) is a Poisson process with in-
tensity πH(a, b]. Moreover, from the hypothesis, we have lima↓0 πH (a, b] =
+∞. It therefore follows from the law of large numbers that for all t > 0,
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lima→0 πH (a, b]−1La,b
τt

= t a.s. From monotonicity, this convergence can be
strengthened to uniform convergence: for all u > 0,

lim
a→0

sup
t∈[0,u]

|πH (a, b]−1La,b
τt

− t | = 0 a.s.

Fix ε > 0. For all η > 0, we can choose u sufficiently large that P(τu < 1) < η/2
and a sufficiently small that P(supt∈[0,u] |πH(a, b]−1La,b

τt
− t | > ε) < η/2. The

inequality

P

(
sup

t∈[0,1]
|πH (a, b]−1L

a,b
t − Lt | > ε

)
≤ P

(
sup

t∈[0,τu]
|πH(a, b]−1L

a,b
t − Lt | > ε

)
+ P(τu < 1),

then allows us to obtain

lim
a→0

P

(
sup

t∈[0,1]
|πH(a, b]−1L

a,b
t − Lt | > ε

)
= 0.(3.10)

Note that, for all k, �n,a,b(T
(n)
k ) is the sum of k independent Bernoulli random

variables with mean πa,b
n defined in Lemma 2. Hence, for all K > 0, from Kol-

mogorov’s inequality, we have

P

(
max

0≤j≤T
(n)
[Kan]

1

πH (a, b]
∣∣�a,b,n

j − πa,b
n �

(n)
j

∣∣ > ε

)
≤ Kanπ

a,b
n

πH (a, b]2ε2 .

Now, write the inequality

P

(
max

0≤j≤T
(n)
[Kan]

∣∣∣∣ 1

πH(a, b]�
a,b,n
j − 1

an

�
(n)
j

∣∣∣∣ > 2ε

)

≤ P

(
max

0≤j≤T
(n)
[Kan]

∣∣∣∣ 1

an

�
(n)
j − πa,b

n

πH (a, b]�
(n)
j

∣∣∣∣ > ε

)
+ Kanπ

a,b
n

πH (a, b]2ε2 .

The first term of the right-hand side is 1{|K−Kanπ
a,b
n /πH (a,b]|>ε} and from Lemma 2,

limn→∞ anπ
a,b
n = πH (a, b], so this term converges to 0 for all a and b. The second

term converges to K/ε2πH (a, b] as n tends to ∞. Since, from the hypothesis, we
have lima→0 πH (a, b] = ∞ for all b, we conclude that

lim
a→0

lim
n→∞P

(
max

0≤j≤T
(n)
[Kan]

∣∣∣∣ 1

πH (a, b]�
a,b,n
j − 1

an

�
(n)
j

∣∣∣∣ > 2ε

)
= 0.

Finally, we write

P

(
sup

t∈[0,1]

∣∣∣∣ 1

πH(a, b]�
a,b,n
[nt] − 1

an

�
(n)
[nt]

∣∣∣∣ > ε

)

≤ P

(
max

0≤j≤T
(n)
[Kan]

∣∣∣∣ 1

πH(a, b]�
a,b,n
j − 1

an

�
(n)
j

∣∣∣∣ > ε

)
+ P

(
T

(n)
[Kan] < n

)
.
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Therefore, (3.4) for t = 1 follows from (3.9), (3.10) and the fact that

lim
K→∞ lim

n→∞P
(
T

(n)
[Kan] < n

) = 0,

which is a consequence of Theorem 1. Again, the proof can readily be extended to
any time t . Hence, (3.4) is proved in this case. �

When 0 is regular for (−∞,0), we may also define the local time at the infimum
of X to be the local time at the supremum of −X. Let us denote this process by L̂

and denote by �̂(n) the local time at the maximum of the approximating sequence
−S(n). A straightforward consequence of the previous theorem is the following
result.

COROLLARY 1. Under the hypotheses of Theorem 2, the sequence[(
S

(n)
[nt],

1

an

�
(n)
[nt]

)
, t ≥ 0

]
converges in probability to [(Xt ,Lt ), t ≥ 0]. If, in addition, 0 is regular for
(−∞,0), then the sequence[(

S
(n)
[nt],

1

an

�
(n)
[nt],

1

ân

�̂
(n)
[nt]

)
, t ≥ 0

]
converges in probability to [(Xt ,Lt , L̂t ), t ≥ 0], where ân = exp(

∑∞
k=1

1
k
e−k/n ×

P(S
(n)
k < 0)).

In Corollary 1, convergence in probability means that each coordinate converges
in probability with respect to some distance which generates the Skorokhod topol-
ogy on the space D([0,∞)). But, more particularly, the first coordinate converges
almost surely, whereas the second coordinate converges uniformly in probability
on compact sets, in the sense which was defined in Theorem 2.

When 0 is regular for (−∞,0), we denote by (τ̂ , Ĥ ) the strict ascending lad-
der process of −X and, for the sequence of random walks S(n), we denote by
(T̂ (n), Ĥ (n)) the strict ascending ladder height process of −S. Another conse-
quence of Theorem 2 is the following invariance principle for both the ascending
and descending ladder processes jointly.

COROLLARY 2. Let X be any Lévy process such that 0 is regular for both
of the open half-lines (0,∞) and (−∞,0), and assume that some sequence of
random walks S(n) converges in law toward X. The process[(

n−1T
(n)
[ant],H

(n)
[ant], n

−1T̂
(n)
[̂ant], Ĥ

(n)
[̂ant]

)
, t ≥ 0

]
then converges toward the process

[(τt ,Ht , τ̂t , Ĥt ), t ≥ 0]
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in the sense of finite-dimensional distributions, as n → ∞, where an and ân are
defined, respectively, in Theorem 1 and Corollary 1.

REMARK 3. Note that, in this case, we cannot conclude that weak conver-
gence holds by using Skorokhod’s theorem as in Theorem 1 since the quadrivariate
processes which are involved in Corollary 2 do not have independent increments.

PROOF OF COROLLARY 2. By virtue of the Skorokhod representation the-
orem, there exists a sequence S̃(n) (possibly defined on an enlarged probability

space) such that for each n, S̃(n) (d)= S(n) and such that S̃(n) converges almost surely
toward X. Let (T (n), H(n)) and (T̂ (n), Ĥ(n)) be, respectively, the strict ascending
and the strict descending ladder processes of S̃(n).

Recall that if a sequence of stochastic processes converges almost surely on the
Skorokhod space, then the sequence defined by the first passage time processes
converges at all continuity points of the limit process; see the remark after Theo-
rem 7.1 in [22]. Moreover, it is clear that the subordinators τ and τ̂ are a.s. contin-
uous at each t ≥ 0. Therefore, from Theorem 2 applied to S̃(n) and −S̃(n), for fixed
t ≥ 0, there exists a subsequence (kn) such that k−1

n T (kn)
[akn t] and k−1

n T̂ (kn)
[̂akn t] converge

almost surely toward τt and τ̂t , respectively.
Since τt and τ̂t are announceable stopping times in the filtration generated by X,

it follows from the quasi-left continuity of X that this process is a.s. continuous at
times τt and τ̂t ; see Example 3, Chapter I in [2].

We deduce from the almost sure convergence of S̃(kn) toward X that for every
(possibly random) continuity point u of X, S̃

(kn)
[knu] converges almost surely to Xu;

see [4], page 112. Therefore, the sequence(
k−1
n T (kn)

[akn t], H(kn)
[akn t], k

−1
n T̂ (kn)

[̂akn t], Ĥ(kn)
[̂akn t]

)
= (

k−1
n T (kn)

[akn t], S̃
(kn)(T (kn)

[akn t]
)
, k−1

n T̂ (kn)
[̂akn t],−S̃(kn)(T̂ (kn)

[̂akn t]
))

converges almost surely toward (τt ,X(τt ), τ̂t ,−X(τ̂t )) = (τt ,Ht , τ̂t , Ĥt ) as n →
∞. This almost sure convergence is easily extended to the multidimensional
case, that is, there is a subsequence (k′

n) such that it holds simultaneously
at any sequence of times t1, . . . , tj . So, we have proven that the variables

{n−1T (n)
[anti ], H(n)

[anti ], n
−1T̂ (n)

[̂anti ], Ĥ(n)
[̂anti ], i = 1, . . . , j} converge in probability and

we conclude the proof using the identity in law(
T (n), H(n), T̂ (n), Ĥ(n)) (d)= (

T (n),H (n), T̂ (n), Ĥ (n)),
which holds for each n, as a consequence of the identity S̃(n) (d)= S(n). �

We now suppose that there is a sequence of Lévy processes X(n), all of which
satisfy the same hypothesis as X, that is, 0 is regular for (0,∞). Call L(n) the
version of the local time of X(n) at its supremum, as defined in Section 2.
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THEOREM 3. Suppose that, as n tends to ∞,

X(n) a.s.−→ X.

The sequence of local times L(n) then converges uniformly on compact sets in
probability toward L, that is, for all t > 0 and ε > 0,

lim
n→∞ P

(
sup

s∈[0,t]
∣∣L(n)

t − Lt

∣∣ > ε
)

= 0.

PROOF. For each n, we define a sequence of random walks (Sn,k, k ≥ 0)

whose paths are embedded in those of X(n) as follows:

S
n,k
j = X

(n)
j/k, j ≥ 0.

We may then readily check that for each n, as k tends to ∞,(
S

n,k
[kt], t ≥ 0

) a.s.−→ X(n).

We will call �n,k the local time at its maximum of Sn,k , as defined for S(n) in (2.2).
From Theorem 2, we have, for all n ≥ 1, t ≥ 0 and ε > 0,

lim
k→∞P

(
sup

s∈[0,t]

∣∣∣∣ 1

an
k

�
n,k
[ns] − L(n)

s

∣∣∣∣ > ε

)
= 0,

where logan
k = ∑∞

j=1
1
j
e−j/k

P(S
n,k
j > 0). We can choose a sequence of integers

(kn)n≥1 such that

lim
n→∞ P

(
sup

s∈[0,t]

∣∣∣∣ 1

an
kn

�
n,kn[ns] − L(n)

s

∣∣∣∣ > ε

)
= 0

and, as n goes to ∞, (
S

n,kn[knt], t ≥ 0
) a.s.−→ X.

Hence by again applying Theorem 2, we have

lim
n→∞ P

(
sup

s∈[0,t]

∣∣∣∣ 1

an
kn

�
n,kn[ns] − Ls

∣∣∣∣ > ε

)
= 0,

which allows us to conclude the proof. �

It is clear that the equivalent results to Corollaries 1 and 2 are also valid in the
setting of Theorem 3, that is, replacing the approximating sequence S(n) by the
sequence X(n).
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4. Applications to conditioned processes. In this section, we will prove that
if a sequence S(n) of random walks converges weakly toward a Lévy process X,
then the sequence S(n) conditioned to stay positive also converges weakly toward
X conditioned to stay positive. For simplicity, in the statements and proofs, we
will always suppose that S(n) and X do not drift to −∞ and that for X, the state 0
is regular for both (−∞,0) and (0,∞).

We first define S(n) and X conditioned to stay positive on the whole time interval
[0,∞). Let V (n)(x) = ∑

k≥0 P(Ĥ
(n)
k ≤ x), x ≥ 0, be the renewal function of Ĥ (n)

and let S(n)∗ be the process S(n) killed when it enters the negative half-line. The
Markovian transition function, which is given by

q↑(x, dy) = V (n)(y)

V (n)(x)
P

(
S

(n)∗
k+1 ∈ dy|S(n)∗

k = x
)

for x > 0, y > 0 if k ≥ 1, and for x ≥ 0, y > 0 if k = 0, characterizes the law of an
h-process of S(n)∗, which is called the law of S(n) conditioned to stay positive. If
we suppose that 0 is regular for (−∞,0) and let h(x) be the renewal function of the
subordinator Ĥ , that is, h(x) = E(

∫ ∞
0 1{Ĥt≤x} dt), then the Markovian semigroup

p
↑
t (x, dy) = h(y)

h(x)
P(X∗

t+s ∈ dy|X∗
s = x) for x, y > 0 and s, t > 0

is that of the Lévy process X conditioned to stay positive. For x = 0, this semi-
group admits a unique entrance law which is specified in terms of the measure of
the excursions above the infimum of the process X. We refer to [3, 7] and [8] for a
more complete account on random walks and Lévy processes conditioned to stay
positive.

The proof of our invariance principle makes use of a pathwise construction of
S(n) and X conditioned to stay positive which is due to Tanaka and Doney; see
[12, 19] and [11], page 91. Let us briefly recall it, both in discrete time and in con-
tinuous time. For k ≥ 0, denote by e(k) the kth excursion of the reflected process
M(n) − S(n),

e
(k)
i = (

M(n) − S(n))
T

(n)
k +i

, 0 ≤ i ≤ T
(n)
k+1 − T

(n)
k ,

and denote by ê(k) the time reversal of e(k), that is,

ê
(k)
i = H

(n)
k+1 − S(n)(T (n)

k+1 − i
)
, 0 ≤ i ≤ T

(n)
k+1 − T

(n)
k .

The process S(n)↑, which is obtained from the concatenation of ê(0), ê(1), . . . , that
is,

S
(n)↑
i = H

(n)
k + ê

(k)

i−T
(n)
k

if T
(n)
k ≤ i ≤ T

(n)
k+1(4.1)

has the law of S(n) conditioned to stay positive. A similar construction in continu-
ous time was obtained in [11]: for t > 0, if we let

g(t) = sup{s < t :Xs = Ms} and d(t) = inf{s > t :Xs = Ms},
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then the process defined by

X
↑
0 = 0 and

(4.2)
X

↑
t = Md(t) + 1{d(t)>g(t)}(M − X)(d(t)+g(t)−t)−, t > 0,

has the law of X conditioned to stay positive.
Let us also define the local time at the future minimum of S(n)↑ and X↑. The

first of these processes is simply the counting process defined by �(n)
0

= 0 and, for
k ≥ 1,

�(n)

k
= #

{
j ∈ {1, . . . , k} :S(n)↑

j−1 < min
i≥j

S
(n)↑
i

}
.

Recall that in continuous time, the set {t :X↑
t = infs≥t X

↑
s } is regenerative so that

we may define on this set a local time L; see [7], page 44. This local time is unique
up to a normalizing constant and we will normalize it by E(

∫ ∞
0 e−t dL

t
) = 1. One

easily derives from the above pathwise constructions the identities{
j ≥ 1 :S(n)↑

j−1 < min
i≥j

S
(n)↑
i

}
=

{
j ≥ 1 :Sj > max

i≤j−1
Si

}
and {t :X↑

t = infs≥t X
↑
s } = {t :Xt = sups≤t Xs}. In particular, we have

�(n) = �(n) and L = L a.s.(4.3)

The following theorem has been partially obtained in the particular setting of
stable processes in [6]; see Theorem 1.1.

THEOREM 4. Suppose that some sequence of random walks S(n) converges
almost surely toward X. Recall the definition of an from Theorem 1. Then:

1. the sequence of processes (S
(n)↑
[nt] , t ≥ 0) converges almost surely toward X↑;

2. the sequence [(S(n)↑
[nt] , a−1

n �(n)
[nt]), t ≥ 0] converges in probability toward (X↑,

L).

Consequently, if some sequence of random walks S(n) converges weakly to-
ward X, then the sequence [(S(n)↑

[nt] , a−1
n �(n)

[nt]), t ≥ 0] converges weakly toward

(X↑,L).

Actually, the result displayed in Theorem 4 holds in the very general case, al-
though, as stated at the beginning of this section, for simplicity in its statement and
proof, we restrict ourself to the case where 0 is regular for both half-lines (−∞,0)

and (0,∞).
The time-reversal relationships between X and X↑ and between S(n) and S(n)↑

which are presented below, in Theorem 5 and Lemma 3, are required for the proof
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of Theorem 4. Let us denote by U(n) and σ , respectively, the inverses of �(n)

and L, that is,

U
(n)
k = min

{
i :�(n)

i = k
}
, k ≥ 0 and σt = inf{s :L

s
> t}, t ≥ 0.

We also set

G
(n)↑
k = max

{
j ≤ k :S(n)↑

j = inf
i≥j

S
(n)↑
i

}
, g

↑
t = sup

{
s ≤ t :X↑

s = inf
u≥s

X↑
u

}
and G

(n)
k = max{j ≤ k :M(n)

j = S
(n)
j }.

THEOREM 5. The following time-reversal relationships hold between X and
X↑:

1. for all t > 0, the law of the process [(Xτt − X(τt−s)−,Lτt − Lτt−s),0 ≤ s < τt ]
is the same as that of the process [(X↑

s ,L
s
),0 ≤ s < σt ];

2. for all t > 0, the law of the process [(Xg(t) − X(g(t)−s)−,Lg(t) − Lg(t)−s),0 ≤
s ≤ g(t)] (with the convention that X0− = X0) is the same as that of the process
[(X↑

s ,L
s
),0 ≤ s ≤ g

↑
t ].

Note that in the above statement, we have Xg(t) = Mt and Lτt = t almost surely.
Part 1 of this theorem is Lemma 4.3 of Duquesne [14]. The case where these
processes have no positive jumps is treated in Theorem VII.18 of [2]. It generalizes
a well-known transformation between Brownian motion and the three-dimensional
Bessel process due to Williams. Here, we show that this result can easily be de-
rived from simple arguments involving the Tanaka–Doney transformation. Our
next lemma states the discrete-time counterpart of Theorem 5. Its proof is very
similar to that of Theorem 5, hence we will only prove the discrete-time case.

LEMMA 3. For any k ≥ 1:

1. the law of the process [(S(n)

T
(n)
k

− S
(n)

T
(n)
k −i

, k − �(n)(T
(n)
k − i)),0 ≤ i ≤ T

(n)
k ] is

the same as that of the process [(S(n)↑
i ,�(n)

i
),0 ≤ i ≤ U

(n)
k )];

2. the law of the process [(S(n)

G
(n)
k

− S
(n)

G
(n)
k −i

,�
(n)

G
(n)
k

− �
(n)

G
(n)
k −i

),0 ≤ i ≤ G
(n)
k ] is the

same as that of the process [(S(n)↑
i ,�(n)

i
),0 ≤ i ≤ G

(n)↑
k ].

PROOF. From the transformation which is recalled in (4.1), the process S(n)↑
is the concatenation of the time-reversed excursions ê(0), ê(1), . . . . It is clear that
the times where this process reaches its future minimum occur at the end of each
of these reversed excursions. Therefore, T

(n)
k = U

(n)
k a.s. and the concatenation of

the k excursions ê(0), ê(1), . . . , ê(k) is the process (S
(n)↑
i ,0 ≤ i ≤ U

(n)
k ).



1384 L. CHAUMONT AND R. A. DONEY

From the Markov property, these excursions are i.i.d. so that the concatenation
of ê(0), ê(1), . . . , ê(k) has the same law as the concatenation of ê(k), ê(k−1), . . . , ê(1).
However, the latter concatenation is precisely the process (S

(n)

T
(n)
k

−S
(n)

T
(n)
k −i

,0 ≤ i ≤
T

(n)
k ). The same reasoning justifies the identity on the second coordinate.

The second part of the statement follows from the same arguments, together
with the identity G

(n)
k = G

(n)↑
k which holds for all k ≥ 0. �

Actually, in the proof of Theorem 4, we will only use the second part of Theo-
rem 5, which says that the returned pre-supremum part of X before time t has the
same law as X↑ up to its last passage time at the future infimum before t . However,
in order to avoid the need to justify an invariance principle for returned processes,
we will reformulate this identity in law in terms of the post-infimum process.

PROOF OF THEOREM 4. From identity (4.3) and Theorem 2, we only have to
prove part 1 of Theorem 4. Define

K
(n)
j = max

{
i ≤ j :S(n)

i = min
l≤i

S
(n)
l

}
and k(t) = sup

{
s ≤ t :Xs = inf

u≤s
Xu

}
.

From time-reversal properties of S(n) and X, we have(
S

(n)

K
(n)
k +i

− S
(n)

K
(n)
k

,0 ≤ i ≤ k − K
(n)
k

) (d)= (
S

(n)

G
(n)
k

− S
(n)

G
(n)
k −i

,0 ≤ i ≤ G
(n)
k

)
and (

Xk(t)+s − Xk(t),0 ≤ s ≤ t − k(t)
) (d)= (

Xg(t) − X(g(t)−s)−,0 ≤ s ≤ g(t)
)
.

(Recall the convention that X0− = X0.) Since 0 is regular for both (−∞,0) and
(0,∞), the time k(t) is a continuity point of X, hence the almost sure convergence
of S(n) toward X implies that limn n−1K

(n)
[nt] = k(t), a.s. for all t ≥ 0. Then recall

from the preliminary section our definition of the a.s. convergence of stochastic
processes with finite lifetime. We clearly have the almost sure convergence of the
sequence of processes

Y (n) = (
S

(n)

K
(n)
[nt]+[ns] − S

(n)

K
(n)
[nt]

,0 ≤ s ≤ n−1([nt] − K
(n)
[nt]

))
toward the process (Xk(t)+s,0 ≤ s ≤ t − k(t)). From Lemma 3 and the time-
reversal property of S(n), the sequence Y (n), n ≥ 0, has the same law as the se-
quence (

S
(n)↑
[ns] ,0 ≤ s ≤ n−1G

(n)↑
[nt]

)
.

Therefore, the sequence (S
(n)↑
[ns] ,0 ≤ s ≤ n−1G

(n)↑
[nt] ) converges almost surely toward

the process (X
↑
s ,0 ≤ s ≤ g

↑
t ).
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Let (tk) be an increasing sequence of positive reals which tends to ∞. We de-
duce from the above convergence that for each k, limn→∞ n−1G

(n)↑
[ntk] = g↑(tk) a.s.

and, more generally,(
S

(n)↑
[ns] 1{n−1G

(n)↑
[ntk ]≤1<n−1G

(n)↑
[ntk+1]},0 ≤ s ≤ 1

)
converges a.s. toward (X

↑
s 1{g↑(tk)≤1<g↑(tk+1)},0 ≤ s ≤ 1). Since all processes S(n)↑

and X↑ drift to +∞, we have limk→∞ G
(n)↑
[ntk] = ∞ and limk→∞ g↑(tk) = +∞ a.s.

so that, with t0 = 0, we have(
S

(n)↑
[ns] ,0 ≤ s ≤ 1

) =
(∑

k≥0

S
(n)↑
[ns] 1{n−1G

(n)↑
[ntk ]≤1<n−1G

(n)↑
[ntk+1]},0 ≤ s ≤ 1

)
and (

X↑
s ,0 ≤ s ≤ 1

) =
(∑

k≥0

X↑
s 1{g↑(tk)≤1<g↑(tk+1)},0 ≤ s ≤ 1

)
.

However, almost surely there exist k and n0 such that for all n ≥ n0, the processes
on the right-hand sides of the two equalities above are, respectively, equal to(

S
(n)↑
[ns] 1{n−1G

(n)↑
[ntk ]≤1<n−1G

(n)↑
[ntk+1]},0 ≤ s ≤ 1

)
and (X

↑
s 1{g↑(tk)≤1<g↑(tk+1)},0 ≤ s ≤ 1). Therefore, (S

(n)↑
[ns] ,0 ≤ s ≤ 1) converges

toward (X
↑
s ,0 ≤ s ≤ 1) on the space D([0,1]). The same argument holds on each

space D([0, t]), t > 0, so we deduce the convergence on D([0,∞)) from Theo-
rem 16.7 in [4], as recalled in Section 2. �

We now define S(n) and X conditioned to stay positive, respectively, on
{0,1, . . . , k} and [0, t], where k and t are deterministic. Letting C(n)

k = {S(n)
1 ≥ 0,

. . . , S
(n)
k ≥ 0}, we denote by S(n,k) a process whose law is defined on {0,1, . . . , k}

by S
(n,k)
0 = 0 and

P
(
S

(n,k)
1 ∈ dx1, . . . , S

(n,k)
k ∈ dxk

)
= P

(
S

(n)
1 ∈ dx1, . . . , S

(n)
k ∈ dxk|C(n)

k

)
.

It clearly follows from the definitions that this law is absolutely continuous with
respect to the law of S(n)↑: for x1 > 0, . . . , xk > 0,

P
(
S

(n,k)
1 ∈ dx1, . . . , S

(n,k)
k ∈ dxk

)
(4.4)

= 1

P(C(n)
k )V (n)(xk)

P
(
S

(n)↑
1 ∈ dx1, . . . , S

(n)↑
k ∈ dxk

);
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see also (3.2) in [6]. The process S(n,k) is called the (discrete-time) meander with
length k.

The definition of the analogous conditional law in continuous time requires
some care since the set {Xt ≥ 0 : t ∈ [0,1]} always has probability 0 when 0 is
regular for (−∞,0).

LEMMA 4. For x1 > 0, . . . , xj > 0 and t1, . . . , tj ∈ [0,1], we have

lim
x↓0

Px(Xt1 ∈ dx1, . . . ,Xtj ∈ dxj |Xt > 0, t ∈ [0,1])

= 1

βh(xj )
P(X

↑
t1

∈ dx1, . . . ,X
↑
tj

∈ dxj ),

where β = E(h(X
↑
1 )−1).

PROOF. This is a direct application of Corollary 1 in [8]; see also [9]. �

Clearly, the weak limit obtained in this lemma defines a unique probability mea-
sure on the space D([0,1]). We will denote by X+ a process with this law, that is,
for x1 > 0, . . . , xj > 0 and t1, . . . , tj ∈ [0,1],

P(X+
t1

∈ dx1, . . . ,X
+
tj

∈ xj ) = 1

βh(xj )
P(X

↑
t1

∈ dx1, . . . ,X
↑
tj

∈ dxj ).(4.5)

This process is called the meander with length 1.

LEMMA 5. Assume that S(n) converges weakly to X. Recall the definition of
the renewal function V (n)(x) = ∑

k≥0 P(Ĥ
(n)
k ≤ x) for x ≥ 0.

1. If we let πτ̂ denote the Lévy measure of the ladder time process τ̂ , then

lim
n→+∞ ânP

(
C(n)

n

) = πτ̂ (1,∞).

2. The sequence of functions P(C(n)
n )V (n)(x) converges uniformly on compact sets

toward γ h(x) = γ E(
∫ ∞

0 1{Ĥt≤x} dt) with γ = πτ̂ (1,∞).

PROOF. To prove the first part, it suffices to note that P(C(n)
n ) = P(n−1T̂

(n)
1 >

1) and to apply Lemma 2. To prove the second part, observe that from the hypoth-
esis, Theorem 1 and dominated convergence, we have, for every x ≥ 0,

lim
n→∞

∫ ∞
0

P
(
Ĥ

(n)
[̂ant] ≤ x

)
dt = lim

n→∞ â−1
n V (n)(x) = h(x).

The result then follows from part 1, the fact that V (n)(x) is a sequence of increasing
functions and the continuity of h. �
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The following invariance principle for the meander has been obtained in the
case where all S(n) have the same law (in particular, X is stable) in [5] and [10].

THEOREM 6. Suppose that some sequence of random walks S(n) converges
weakly toward X. The sequence of discrete meanders (S

(n,n)
[nt] ,0 ≤ t ≤ 1) then con-

verges weakly toward the meander X+.

PROOF. We will prove that for all continuous and bounded functionals F on
D([0,1]),

E
(
F

(
S

(n,n)
[nt] ,0 ≤ t ≤ 1

)) −→ E
(
F(X+

t ,0 ≤ t ≤ 1)
)

as n → ∞.

From the absolute continuity relations (4.4) and (4.5), it suffices to prove that

E

(
1

P(C(n)
n )V (n)(S

(n)↑
n )

F
(
S

(n)↑
[nt] ,0 ≤ t ≤ 1

))

−→ E

(
1

βh(X
↑
1 )

F (X
↑
t ,0 ≤ t ≤ 1)

)
as n → ∞.

For η > 0, we write∣∣∣∣E(
1

P(C(n)
n )V (n)(S

(n)↑
n )

F
(
S

(n)↑
[nt] ,0 ≤ t ≤ 1

)) − E

(
1

γ h(X
↑
1 )

F (X
↑
t ,0 ≤ t ≤ 1)

)∣∣∣∣
≤

∣∣∣∣E(
1

P(C(n)
n )V (n)(S

(n)↑
n )

1{S(n)↑
n ≥η}F

(
S

(n)↑
[nt] ,0 ≤ t ≤ 1

))

− E

(
1

γ h(X
↑
1 )

1{X↑
1 ≥η}F(X

↑
t ,0 ≤ t ≤ 1)

)∣∣∣∣
+ E

(
1

P(C(n)
n )V (n)(S

(n)↑
n )

1{S(n)↑
n <η}F

(
S

(n)↑
[nt] ,0 ≤ t ≤ 1

))

+ E

(
1

γ h(X
↑
1 )

1{X↑
1 <η}F(X

↑
t ,0 ≤ t ≤ 1)

)
.

Since F is bounded by a constant, say B and

E

(
1

P(C(n)
n )V (n)(S

(n)↑
n )

)
= 1 and E

(
1

γ h(X
↑
1 )

)
= β/γ,(4.6)

it follows from Hölder’s inequality that the two last terms of the right-hand
side of the above inequality are bounded above by, respectively, BP(S

(n)↑
n < η)

and BP(X
↑
1 < η)β/γ . From the assumption of convergence and the fact that

P(X
↑
1 > 0) = 1, for every ε > 0, there exist n0 and η > 0 such that for all n ≥ n0,
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BP(S
(n)↑
n < η) < ε and BP(X

↑
1 < η)β/γ < ε. Finally, note that from the hypoth-

esis of convergence and Lemma 5, we easily derive that for all η > 0,

E

(
1

P(C(n)
n )V (n)(S

(n)↑
n )

1{S(n)↑
n ≥η}F

(
S

(n)↑
[nt] ,0 ≤ t ≤ 1

))

−→ E

(
1

γ h(X
↑
1 )

1{X↑
1 ≥η}F(X

↑
t ,0 ≤ t ≤ 1)

)
as n → ∞.

We have then proven that

E

(
1

P(C(n)
n )V (n)(S

(n)↑
n )

F
(
S

(n)↑
[nt] ,0 ≤ t ≤ 1

))

−→ E

(
1

γ h(X
↑
1 )

F (X
↑
t ,0 ≤ t ≤ 1)

)
as n → ∞.

Taking F ≡ 1 in this relation and comparing with (4.6), we obtain β = γ , which
proves the result. �
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