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We consider a class of backward stochastic differential equations
(BSDEs) driven by Brownian motion and Poisson random measure, and
subject to constraints on the jump component. We prove the existence and
uniqueness of the minimal solution for the BSDEs by using a penalization
approach. Moreover, we show that under mild conditions the minimal solu-
tions to these constrained BSDEs can be characterized as the unique viscosity
solution of quasi-variational inequalities (QVIs), which leads to a probabilis-
tic representation for solutions to QVIs. Such a representation in particular
gives a new stochastic formula for value functions of a class of impulse con-
trol problems. As a direct consequence, this suggests a numerical scheme for
the solution of such QVIs via the simulation of the penalized BSDEs.

1. Introduction and summary. Consider a parabolic quasi-variational in-
equality (QVI for short) of the following form:⎧⎨

⎩min
[
−∂v

∂t
− Lv − f, v − Hv

]
= 0, on [0, T ) × R

d ,

v(T , ·) = g, on R
d ,

(1.1)

where L is the second-order local operator

Lv(t, x) = 〈b(x),Dxv(t, x)〉 + 1
2 tr(σσ ᵀ(x)D2

xv(t, x))(1.2)

and H is the nonlocal operator

Hv(t, x) = sup
e∈E

[
v
(
t, x + γ (x, e)

)+ c(x, e)
]
.(1.3)

In the above, Dxv and D2
xv are the partial gradient and the Hessian matrix of v

with respect to its second variable x, respectively; ᵀ stands for the transpose; 〈·, ·〉
denotes the scalar product in R

d ; S
d is the set of all symmetric d ×d matrices; and

E is some compact subset of R
q .
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It is well known (see, e.g., [3]) that the QVI (1.1) is the dynamic programming
equation associated to the impulse control problems whose value function is de-
fined by

v(t, x) = sup
α=(τi ,ξi )i

E
[
g(X

t,x,α
T ) +

∫ T

t
f (Xt,x,α

s ) ds + ∑
t<τi≤T

c(X
t,x,α

τ−
i

, ξi)

]
.(1.4)

More precisely, given a filtered probability space (�, F ,P,F) where F = {Ft }t ,
we define an impulse control α as a double sequence (τi, ξi)i in which {τi} is an
increasing sequence of F-stopping times, and each ξi is an Fτi

-measurable random
variable taking values in E. For each impulse control α = (τi, ξi)i , the controlled
dynamics starting from x at time t , denoted by Xt,x,α , is a càdlàg process satisfying
the following SDE:

Xt,x,α
s = x +

∫ s

t
b(Xt,x,α

u ) du +
∫ s

t
σ (Xt,x,α

u ) dWu + ∑
t<τi≤s

γ (X
t,x,α

τ−
i

, ξi),(1.5)

where W is a d-dimensional F-Brownian motion. In other words, the controlled
process Xt,x,α evolves according to a diffusion process between two successive
intervention times τi and τi+1, and at each decided intervention time τi , the process
jumps with size 	Xt,x,α

τi
:= Xt,x,α

τi
− X

t,x,α

τ−
i

= γ (X
t,x,α

τ−
i

, ξi).

We note that the impulse control problem (1.4) may be viewed as a sequence of
optimal stopping problems combined with jumps in state due to impulse values.
Moreover, the QVI (1.1) is the infinitesimal derivation of the dynamic program-
ming principle, which means that at each time, the controller may decide either to
do nothing and let the state process diffuse, or to make an intervention on the sys-
tem via some impulse value. The former is characterized by the linear PDE in (1.1),
while the latter is expressed by the obstacle (or reflected) part in (1.1). From the
theoretical and numerical point of view, the main difficulty of the QVI (1.1) lies in
that the obstacle contains the solution itself, and it is nonlocal [see (1.3)] due to the
jumps induced by the impulse control. These features make the classical approach
of numerically solving such impulse control problems particular challenging.

An alternative method to attack the QVI (1.1) is to find the probabilistic repre-
sentation of the solution using the backward stochastic differential equations (BS-
DEs), namely the so-called nonlinear Feynman–Kac formula. One can then hope
to use such a representation to derive a direct numerical procedure for the solution
of QVIs, whence the impulse control problems. The idea is the following. We con-
sider a Poisson random measure μ(dt, de) on R+ ×E associated to a marked point
process (Ti, ζi)i . Assume that μ is independent of W and has intensity λ(de) dt ,
where λ is a finite measure on E. Consider a (uncontrolled) jump-diffusion process

Xs = X0 +
∫ s

0
b(Xu)du +

∫ s

0
σ(Xu)dWu + ∑

Ti≤s

γ (XT −
i

, ζi).(1.6)
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Assume that v is a “smooth” solution to (1.1), and define Yt = v(t,Xt). Then, by
Itô’s formula, we have

Yt = g(XT ) +
∫ T

t
f (Xs) ds + KT − Kt −

∫ T

t
〈Zs, dWs〉

(1.7)

−
∫ T

t

∫
E

(
Us(e) − c(Xs−, e)

)
μ(ds, de),

where Zt = σ ᵀ(Xt−)Dxv(t,Xt−), Ut(e) = v(t,Xt− + γ (Xt−, e)) − v(t,Xt−) +
c(Xt−, e) and Kt = ∫ t

0 (− ∂v
∂t

− Lv − f )(s,Xs) ds. Since v satisfies (1.1), we see
that K is a continuous (hence, predictable), nondecreasing process and U satisfies
the constraint

−Ut(e) ≥ 0.(1.8)

The idea is then to view (1.7) and (1.8) as a BSDE with jump constraints, and we
expect to retrieve v(t,Xt ) by solving the “minimal” solution (Y,Z,U,K) to this
constrained BSDE.

We can also look at the BSDE above slightly differently. Let us denote dK̄t =
dKt − ∫

E Us(e)μ(dt, de), t ≥ 0. Then K̄ is still a nondecreasing process, and
equation (1.7) can now be rewritten as

Yt = g(XT ) +
∫ T

t
f (Xs) ds +

∫ T

t

∫
E

c(Xs−, e)μ(ds, de)

(1.9)

−
∫ T

t
〈Zs, dWs〉 + K̄T − K̄t .

We shall prove that v(t,Xt ) can also be retrieved by looking at the minimal solu-
tion (Y,Z, K̄) to this BSDE. In fact, the following relation holds (assuming t = 0):

v(0,X0) = inf
{
y ∈ R :∃Z,y +

∫ T

0
〈Zs, dWs〉

≥ g(XT ) +
∫ T

0
f (Xs) ds(1.10)

+
∫ T

0

∫
E

c(Xs−, e)μ(ds, de)

}
.

Notice that (1.10) also has a financial interpretation. That is, v(0, x) is the mini-
mal capital allowing to superhedge the payoff �T (X) = g(XT ) + ∫ T

0 f (Xs) ds +∫ T
0 c(Xs−, e)μ(ds, de) by trading only the asset W . Here, the market is obviously

incomplete, since the jump part of the underlying asset X is not hedgeable. This
connection between the impulse control problem (1.4) and the stochastic target
problem defined by the r.h.s. of (1.10) was originally proved in Bouchard [4].
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Inspired by the above discussion, we now introduce the following general
BSDE:

Yt = g(XT ) +
∫ T

t
f (Xs,Ys,Zs) ds + KT − Kt −

∫ T

t
〈Zs, dWs〉

(1.11)

−
∫ T

t

∫
E

(
Us(e) − c(Xs−, Ys−,Zs, e)

)
μ(ds, de), 0 ≤ t ≤ T ,

with constraints on the jump component in the form

h(Ut(e)) ≥ 0, ∀e ∈ E,0 ≤ t ≤ T ,(1.12)

where h is a given nonincreasing function. The solution to the BSDE is a quadruple
(Y,Z,U,K) where, besides the usual component (Y,Z,U), the fourth component
K is a nondecreasing, càdlàg, adapted process, null at zero, which makes the con-
straint (1.12) possible. We note that without the constraint (1.12), the BSDE with
K = 0 was studied by Tang and Li [21] and Barles, Buckdahn and Pardoux [2].
However, with the presence of the constraint, we may not have the uniqueness of
the solution. We thus look only for the minimal solution (Y,Z,U,K), in the sense
that for any other solution (Ỹ , Z̃, Ũ , K̃) satisfying (1.11) and (1.12), it must hold
that Y ≤ Ỹ . Clearly, this BSDE is a generalized version of (1.7) and (1.8), where
the functions f and c are independent of y and z, and h(u) = −u.

We can also consider the counterpart of (1.9), namely finding the minimal solu-
tion (Y,Z,K) of the BSDE

Yt = g(XT ) +
∫ T

t
f (Xs,Ys,Zs) ds

+
∫ T

t

∫
E

c(Xs−, Ys−,Zs, e)μ(ds, de)(1.13)

−
∫ T

t
〈Zs, dWs〉 + KT − Kt, 0 ≤ t ≤ T .

It is then conceivable, as we shall prove, that this problem is a special case of (1.11)
and (1.12) with h(u) = −u.

It is worth noting that if the generator f and the cost function c do not depend
on y, z, which we refer to as the impulse control case, the existence of a minimal
solution to the constrained BSDEs (1.7) and (1.8) may be directly obtained by
supermartingale decomposition method in the spirit of El Karoui and Quenez [11]
for the dual representation of the super-replication cost of �T (X). In fact, the
results could be extended easily to the case where f is linear in z, via a simple
application of the Girsanov transformation. In our general case, however, we shall
follow a penalization method, as was done in El Karoui et al. [10]. Namely, we
construct a suitable sequence (Y n,Zn,Un,Kn) of BSDEs with jumps, and prove
that it converges to the minimal solution that we are looking for. This is achieved
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as follows. We first show the convergence of the sequence (Y n) by relying on
comparison results for BSDEs with jumps, see [20]. The proof of convergence of
the components (Zn,Un,Kn) is more delicate, and is obtained by using a weak
compactness argument due to Peng [18].

Our next task of this paper is to relate the minimal solution to the BSDE with
constrained jumps to the viscosity solutions to the following general QVI:

min
[
−∂v

∂t
− Lv − f (·, v, σ ᵀDxv),h(Hv − v)

]
= 0,(1.14)

where H is the nonlocal semilinear operator

Hv(t, x) = sup
e∈E

[
v
(
t, x + γ (x, e)

)+ c(x, v(t, x), σ ᵀ(x)Dxv(t, x), e)
]
.

Under suitable assumptions, we shall also prove the uniqueness of the viscosity
solution, leading to a new probabilistic representation for this parabolic QVI.

We should point out that BSDEs with constraints have been studied by many
authors. For example, El Karoui et al. [10] studied the reflected BSDEs, in which
the component Y is forced to stay above a given obstacle; Cvitanic, Karatzas and
Soner [7], and Buckdahn and Hu [5] considered the case where the constraints
are imposed on the component Z. Recently, Peng [18] (see also [19]) studied the
the general case where constraints are given on both Y and Z, which relates these
constrained BSDEs to variational inequalities. The main feature of this work is to
consider constraints on the jump component (U ) of the solution, and to relate these
jump-constrained BSDEs to quasi-variational inequalities. On the other hand, the
classical approach in the theory and numerical approximation of impulse control
problems and QVIs is to consider them as obstacle problems and iterated opti-
mal stopping problems. However, our penalization procedure for jump-constrained
BSDEs suggests a noniterative approximation scheme for QVIs, based on the sim-
ulation of the BSDEs, which, to our best knowledge, is new.

The rest of the paper is organized as follows: in Section 2, we give a detailed
formulation of BSDEs with constrained jumps, and show how it includes problem
(1.13) as special case. Moreover, in the special case of impulse control, we directly
construct and show the existence of a minimal solution. In Section 3, we develop
the penalization approach for studying the existence of a minimal solution to our
constrained BSDE for general f , c and h. We show in Section 4 that the minimal
solution to this constrained BSDE provides a probabilistic representation for the
unique viscosity solution to a parabolic QVI. Finally, in Section 5, we provide
some examples of sufficient conditions under which our general assumptions are
satisfied.

2. BSDEs with constrained jumps.

2.1. General formulation. Throughout this paper, we assume that (�, F ,P)

is a complete probability space on which are defined a d-dimensional standard
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Brownian motion W = (Wt)t≥0, and a Poisson random measure μ on R+ × E,
where E is a compact set of R

q , endowed with its Borel field E . We assume that
the Poisson random measure μ is independent of W , and has the intensity measure
λ(de) dt for some finite measure λ on (E, E ). We set μ̃(dt, de) = μ(dt, de) −
λ(de) dt , the compensated measure associated to μ; and denote by F = (Ft )t≥0
the augmentation of the natural filtration generated by W and μ, and by P the
σ -algebra of predictable subsets of � × [0, T ].

Given Lipschitz functions b : Rd → R
d , σ : Rd → R

d×d , and a measurable map
γ : Rd × E → R

d , satisfying for some positive constants C and kγ ,

sup
e∈E

|γ (x, e)| ≤ C and sup
e∈E

|γ (x, e) − γ (x′, e)| ≤ kγ |x − x′|, x, x′ ∈ R
d,

we consider the forward SDE:

dXs = b(Xs) ds + σ(Xs) dWs +
∫
E

γ (Xs−, e)μ(ds, de).(2.1)

Existence and uniqueness of (2.1) given an initial condition X0 ∈ R
d , is well

known under the above assumptions, and for any 0 ≤ T < ∞, we have the standard
estimate

E
[

sup
0≤t≤T

|Xt |2
]
< ∞.(2.2)

In what follows, we fix a finite time duration [0, T ]. Let us introduce some
additional notation. We denote by:

• S2 the set of real-valued càdlàg adapted processes Y = (Yt )0≤t≤T such that
‖Y‖S2 := (E[sup0≤t≤T |Yt |2])1/2 < ∞.

• Lp(0,T), p ≥ 1, the set of real-valued processes (φt )0≤t≤T such that
E[∫ T

0 |φt |p dt] < ∞; and Lp
F
(0,T) is the subset of Lp(0,T) consisting of

adapted processes.
• Lp(W), p ≥ 1, the set of R

d -valued P -measurable processes Z = (Zt )0≤t≤T

such that ‖Z‖Lp(W) := (E[∫ T
0 |Zt |p dt])1/p < ∞.

• Lp(μ̃), p ≥ 1, the set of P ⊗ E -measurable maps U :� × [0, T ] × E → R such
that ‖U‖Lp(μ̃) := (E[∫ T

0
∫
E |Ut(e)|pλ(de) dt])1/p < ∞.

• A2 the closed subset of S2 consisting of nondecreasing processes K =
(Kt)0≤t≤T with K0 = 0.

We are given four objects: (i) a terminal function, which is a measurable func-
tion g : Rd �→ R satisfying a growth sublinear condition

sup
x∈Rd

|g(x)|
1 + |x| < ∞;(2.3)

(ii) a generator function f , which is a measurable function f : Rd ×R×R
d → R

satisfying a growth sublinear condition

sup
(x,y,z)∈Rd×R×Rd

|f (x, y, z)|
1 + |x| + |y| + |z| < ∞(2.4)
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and a uniform Lipschitz condition on (y, z), that is, there exists a constant kf such
that for all x ∈ R

d , y, y′ ∈ R, z, z′ ∈ R
d ,

|f (x, y, z) − f (x, y′, z′)| ≤ kf (|y − y′| + |z − z′|);(2.5)

(iii) a cost function, which is a measurable function c : Rd × R × R
d × E → R

satisfying a growth sublinear condition

sup
(x,y,z,e)∈Rd×R×Rd×E

|c(x, y, z, e)|
1 + |x| + |y| + |z| < ∞(2.6)

and a uniform Lipschitz condition on (y, z), that is, there exists a constant kc such
that for all x ∈ R

d , y, y′ ∈ R, z, z′ ∈ R
d , e ∈ E,

|c(x, y, z, e) − c(x, y′, z′, e)| ≤ kc(|y − y′| + |z − z′|);(2.7)

(iv) a constraint function, which is a measurable map h : R × E → R s.t. for all
e ∈ E,

u �−→ h(u, e) is nonincreasing,(2.8)

satisfying a Lipschitz condition on u, that is, there exists a constant kh such that
for all u,u′ ∈ R, e ∈ E,

|h(u, e) − h(u′, e)| ≤ kh|u − u′|(2.9)

and such that
∫
E |h(0, e)|λ(de) < +∞.

Let us now introduce our BSDE with constrained jumps: find a quadruple
(Y,Z,U,K) ∈ S2 × L2(W) × L2(μ̃) × A2 satisfying

Yt = g(XT ) +
∫ T

t
f (Xs,Ys,Zs) ds + KT − Kt −

∫ T

t
〈Zs, dWs〉

(2.10)

−
∫ T

t

∫
E

(
Us(e) − c(Xs−, Ys−,Zs, e)

)
μ(ds, de), 0 ≤ t ≤ T , a.s.,

with

h(Ut(e), e) ≥ 0, dP ⊗ dt ⊗ λ(de), a.e.,(2.11)

and such that for any other quadruple (Ỹ , Z̃, Ũ , K̃) ∈ S2 × L2(W) × L2(μ̃) × A2

satisfying (2.10) and (2.11), we have

Yt ≤ Ỹt , 0 ≤ t ≤ T , a.s.

We say that Y is the minimal solution to (2.10) and (2.11). In the formulation of
Peng [18], one may sometimes say that Y is the smallest supersolution to (2.10)
and (2.11). We shall also say that (Y,Z,U,K) is a minimal solution to (2.10)
and (2.11), and we discuss later the uniqueness of such quadruple.
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REMARK 2.1. Since we are originally motivated by probabilistic representa-
tion of QVIs, we put the BSDE with constrained jumps in a Markovian frame-
work. But all the results of Section 3 about the existence and approximation of
a minimal solution hold true in a general non-Markovian framework with the
following standard modifications: the terminal condition g(XT ) is replaced by a
square integrable random variable ξ ∈ L2(�,FT), the generator is a map f from
� × [0, T ] × R × R

d into R, satisfying a uniform Lipschitz condition in (y, z),
and f (·, y, z) ∈ L2

F
(0,T) for all (y, z) ∈ R × R

d , and the cost coefficient is a map
c from � × [0, T ] × R × R

d × E into R, satisfying a uniform Lipschitz condition
in (y, z), and c(·, y, z, e) ∈ L2

F
(0,T) for all (y, z, e) ∈ R × R

d × E.

REMARK 2.2. Without the h-constraint condition (2.11) on jumps, we have
existence and uniqueness of a solution (Y,Z,U,K) with K = 0 to (2.10), from
results on BSDE with jumps in [21] and [2]. Here, under (2.11) on jumps, it is
not possible in general to have equality in (2.10) with K = 0, and as usual in the
BSDE literature with constraint, we consider a nondecreasing process K to have
more freedom. The problem is then to find a minimal solution to this constrained
BSDE, and the nondecreasing condition (2.8) on h is crucial for stating comparison
principles needed in the penalization approach. The primary example of constraint
function is h(u, e) = −u, that is, nonpositive jumps constraint, which is actually
equivalent to consider minimal solution to BSDE (1.13), as showed later.

2.2. The case of nonpositive jump constraint. Let us recall the BSDE defined
in the Introduction: find a triplet (Y,Z,K) ∈ S2 × L2(W) × A2 such that

Yt = g(XT ) +
∫ T

t
f (Xs,Ys,Zs) ds + KT − Kt −

∫ T

t
〈Zs, dWs〉

(2.12)

+
∫ T

t

∫
E

c(Xs−, Ys−,Zs, e)μ(ds, de), 0 ≤ t ≤ T , a.s.,

such that for any other triplet (Ỹ , Z̃, K̃) ∈ S2 × L2(W) × A2 satisfying (2.12), it
holds that

Yt ≤ Ỹt , 0 ≤ t ≤ T , a.s.

We will call such Y [and, by a slight abuse of notation, (Y,Z,K)] the minimal
solution to (2.12). We claim that this problem is actually equivalent to problem
(2.10) and (2.11) in the case h(u, e) = −u, corresponding to nonpositive jump
constraint condition

Ut(e) ≤ 0, dP ⊗ dt ⊗ λ(de), a.e.(2.13)

Indeed, let (Y,Z,U,K) be any solution of (2.10) and (2.13). Define a process K̄

by dK̄t = dKt − ∫E Us(e)μ(dt, de), 0 ≤ t ≤ T , then K̄ is nondecreasing, and the
triplet (Y,Z, K̄) satisfies (2.12). It follows that the minimal solution to (2.12) is
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smaller than the minimal solution to (2.10) and (2.13). We shall see in the next
section, by using comparison principles and penalization approach, that equality
holds, that is,

minimal solution Y to (2.12) = minimal solution Y to (2.10), (2.13).

We shall illustrate this result by considering a special case: when the functions
f and c do not depend on y, z (i.e., the impulse control case). In this case, one
can obtain directly the existence of a minimal solution to (2.10)–(2.13) and (2.12)
by duality methods involving the following set of probability measures. Let V be
the set of P ⊗ E -measurable essentially bounded processes valued in (0,∞), and
given ν ∈ V , consider the probability measure Pν equivalent to P on (�, FT ) with
Radon–Nikodym density

dPν

dP
= ET

(∫ ·
0

∫
E

(
νt (e) − 1

)
μ̃(dt, de)

)
,(2.14)

where Et (·) is the Doléans–Dade exponential. Notice that the Brownian motion W

remains a Brownian motion under Pν , which can then be interpreted as an equiva-
lent martingale measure for the “asset” price process W . The effect of the proba-
bility measure Pν , by Girsanov’s theorem, is to change the compensator λ(de) dt

of μ under P to νt (e)λ(de) dt under Pν .
In order to ensure that the problem is well defined, we need to assume:

There exists a triple (Ỹ , Z̃, K̃) ∈ S2 × L2(W) × A2 satisfying (2.12).(H1)

This assumption is standard and natural in the literature on BSDE with constraints,
and means equivalently here (when f and c do not depend on y, z) that one can
find some constant ỹ ∈ R, and Z̃ ∈ L2(W) such that

ỹ +
∫ T

0
〈Z̃s, dWs〉 ≥ g(XT ) +

∫ T

0
f (Xs) ds +

∫ T

0

∫
E

c(Xs−, e)μ(ds, de), a.s.

This equivalency can be proved by same arguments as in [7]. Notice that assump-
tion (H1) may be not satisfied as shown in Remark 3.1, in which case the problem
(2.12) is ill posed.

THEOREM 2.1. Suppose that f and c do not depend on y, z and (H1) holds.
Then, there exists a unique minimal solution (Y,Z,K,U) ∈ S2 × L2(W) ×
L2(μ̃) × A2, with K predictable, to (2.10)–(2.13). Moreover, (Y,Z, K̄) is the
unique minimal solution to (2.12) with K̄t = Kt − ∫ t

0
∫
E Us(e)μ(ds, de), and Y

has the explicit functional representation

Yt = ess sup
ν∈V

Eν

[
g(XT ) +

∫ T

t
f (Xs) ds +

∫ T

t

∫
E

c(Xs−, e)μ(ds, de)
∣∣∣Ft

]
,

for all t ∈ [0, T ].
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PROOF. First, observe that for any (Ỹ , Z̃, Ũ , K̃) ∈ S2 ×L2(W)×L2(μ̃)×A2

[resp., (Ỹ , Z̃, K̃) ∈ S2 × L2(W) × A2] satisfying (2.10)–(2.13) [resp., (2.12)], the
process

Q̃t := Ỹt +
∫ t

0
f (Xs) ds +

∫ t

0

∫
E

c(Xs−, e)μ(ds, de), 0 ≤ t ≤ T ,

is a Pν -supermartingale, for all ν ∈ V , where the probability measure Pν was de-
fined in (2.14). Indeed, from (2.10)–(2.13) [resp., (2.12)], we have

Q̃t = Q̃0 +
∫ t

0
〈Z̃s, dWs〉 − K̄t with K̄t = K̃t −

∫ t

0
Us(e)μ(ds, de),

(
resp., Q̃t = Q̃0 +

∫ t

0
〈Z̃s, dWs〉 − K̃t

)
, 0 ≤ t ≤ T .

Now, by Girsanov’s theorem, W remains a Brownian motion under Pν , while from
the boundedness of ν ∈ V , the density dPν/dP lies in L2(P). Hence, from Cauchy–
Schwarz inequality, the condition Z̃ ∈ L2(W), and Burkholder–Davis–Gundy in-
equality, we get the Pν-martingale property of the stochastic integral

∫ 〈Z̃, dW 〉,
and so the Pν-supermartingale property of Q̃ since K̄ (resp., K̃) is nondecreasing.
This implies

Ỹt ≥ Eν

[
ỸT +

∫ T

t
f (Xs) ds +

∫ T

t

∫
E

c(Xs−, e)μ(ds, de)
∣∣∣Ft

]

and thereby, from the arbitrariness of Pν , ν ∈ V , and since ỸT = g(XT ),

Yt := ess sup
ν∈V

Eν

[
g(XT ) +

∫ T

t
f (Xs) ds

(2.15)

+
∫ T

t

∫
E

c(Xs−, e)μ(ds, de)
∣∣∣Ft

]
≤ Ỹt .

To show the converse, let us consider the process Y defined in (2.15). By stan-
dard arguments as in [11], the process Y can be considered in its càdlàg mod-
ification, and we also notice that Y ∈ S2. Indeed, by observing that the choice
of ν = 1 corresponds to the probability Pν = P, we have Ŷ ≤ Y ≤ Ỹ , where
(Ỹ , Z̃, K̃) ∈ S2 × L2(W) × A2 is a solution to (2.12), and

Ŷt = E
[
g(XT ) +

∫ T

t
f (Xs) ds +

∫ T

t

∫
E

c(Xs−, e)μ(ds, de)
∣∣∣Ft

]
.

Thus, since Ŷ lies in S2 from the linear growth conditions on g, f and c, and
the estimate (2.2), we deduce that Y ∈ S2. Now, by similar dynamic programming
arguments as in [11], we see that the process

Qt = Yt +
∫ t

0
f (Xs) ds +

∫ t

0

∫
E

c(Xs−, e)μ(ds, de), 0 ≤ t ≤ T ,(2.16)
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lies in S2, and is a Pν -supermartingale, for all ν ∈ V . Then, from the Doob–Meyer
decomposition of Q under each Pν , ν ∈ V , we obtain

Qt = Y0 + Mν − Kν,(2.17)

where Mν is a Pν-martingale, Mν
0 = 0, and Kν is a Pν nondecreasing predictable

càdlàg process with Kν
0 = 0. Recalling that W is a Pν -Brownian motion, and since

μ̃ν(ds, de) := μ(ds, de) − νs(e)λ(de) ds is the compensated measure of μ un-
der Pν , the martingale representation theorem for each Mν , ν ∈ V , gives the exis-
tence of predictable processes Zν and Uν such that

Qt = Y0 +
∫ t

0
〈Zν

s , dWs〉
(2.18)

+
∫ t

0

∫
E

Uν
s (e)μ̃ν(ds, de) − Kν

t , 0 ≤ t ≤ T .

By comparing the decomposition (2.18) under Pν and P corresponding to ν = 1,
and identifying the martingale parts and the predictable finite variation parts, we
obtain that Zν = Z1 =: Z, Uν = U1 =: U for all ν ∈ V , and

Kν
t = K1

t −
∫ t

0

∫
E

Us(e)
(
νs(e) − 1

)
λ(de) ds, 0 ≤ t ≤ T .(2.19)

Now, by writing the relation (2.18) with ν = ε > 0, substituting the definition of
Q in (2.16), and since YT = g(XT ), we obtain

Yt = g(XT ) +
∫ T

t
f (Xs) ds −

∫ T

t
〈Zs, dWs〉

−
∫ T

t

∫
E

(
Us(e) − c(Xs−, e)

)
μ(ds, de)(2.20)

+
∫ T

t

∫
E

Us(e)ελ(de) ds + Kε
T − Kε

t , 0 ≤ t ≤ T .

From (2.19), the process Kε has a limit as ε goes to zero, which is equal to
K0 = K1 + ∫ ·

0
∫
E Us(e)λ(de) ds, and inherits from Kε , the nondecreasing path

and predictability properties. Moreover, since Q ∈ S2, in the decomposition (2.17)
of Q under P = Pν for ν = 1, the process M1 lies in S2 and K1 ∈ A2. This im-
plies that Z ∈ L2(W), U ∈ L2(μ̃) and also that K0 ∈ A2. By sending ε to zero
into (2.20), we obtain that (Y,Z,U,K0) ∈ S2 × L2(W) × L2(μ̃) × A2 is a solu-
tion to (2.10). Let us finally check that U satisfies the constraint

Ut(e) ≤ 0, dP ⊗ dt ⊗ λ(de).(2.21)

We argue by contradiction by assuming that the set F = {(ω, t, e) ∈ � × [0, T ] ×
E :Ut(e) > 0} has a strictly positive measure for dP × dt × λ(de). For any k > 0,
consider the process νk = 1Fc + (k + 1)1F , which lies in V . From (2.19), we have

E[Kνk

T ] = E[K1
T ] − kE

[∫ T

0

∫
E

1F Ut(e)λ(de) dt

]
< 0
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for k large enough. This contradicts the fact that K
νk

T ≥ 0, and so (2.21) is satisfied.
Therefore, (Y,Z,U,K0) is a solution to (2.10)–(2.13), and it is a minimal solution
from (2.15). Y is unique by definition. The uniqueness of Z follows by identifying
the Brownian parts and the finite variation parts, and the uniqueness of (U,K0) is
obtained by identifying the predictable parts by recalling that the jumps of μ are
inaccessible. By denoting K̄0 = K0 − ∫ t

0
∫
E Us(e)μ(ds, de), which lies in A2, we

see that (Y,Z, K̄0) is a solution to (2.12), and it is minimal by (2.15). Uniqueness
follows by identifying the Brownian parts and the finite variation parts. �

REMARK 2.3. In Section 4, we shall relate rigorously the constrained BSDEs
(2.10) and (2.11) to QVIs. In particular, the minimal solution Yt to (2.10)–(2.13)
or (2.12) is Yt = v(t,Xt ) where v is the value function of the impulse control
problem (1.4). Together with the functional representation of Y in Theorem 2.1,
we then have the following relation at time t = 0:

v(0,X0) = sup
ν∈V

Eν

[
g(XT ) +

∫ T

0
f (Xs) ds

(2.22)

+
∫ T

0

∫
E

c(Xs−, e)μ(ds, de)

]
.

We then recover a recent result obtained by Bouchard [4], who related impulse
controls to stochastic target problems in the case of a finite set E. We may also
interpret this result as follows. Recall that the effect of the probability measure Pν

is to change the compensator λ(de) dt of μ under P to νt (e)λ(de) dt under Pν .
Hence, by taking the supremum over all Pν , we formally expect to retrieve in
distribution law all the dynamics of the controlled process in (1.5) when varying
the impulse controls α, which is confirmed by the equality (2.22).

Finally, we mention that the above duality and martingale methods may be ex-
tended when the generator function f is linear in z by using Girsanov’s transfor-
mation. Our main purpose is now to study the general case of h-constraints on
jumps, and nonlinear functions f and c depending on y, z.

3. Existence and approximation by penalization. In this section, we prove
the existence of a minimal solution to (2.10) and (2.11), based on approximation
via penalization. For each n ∈ N, we introduce the penalized BSDE with jumps

Yn
t = g(XT ) +

∫ T

t
f (Xs,Y

n
s ,Zn

s ) ds

+ n

∫ T

t

∫
E

h−(Un
s (e), e)λ(de) ds −

∫ T

t
〈Zn

s , dWs〉(3.1)

−
∫ T

t

∫
E

(
Un

s (e) − c(Xs−, Y n
s−,Zn

s , e)
)
μ(ds, de), 0 ≤ t ≤ T ,
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where h−(u, e) = max(−h(u, e),0) is the negative part of the function h. Under
the Lipschitz and growth conditions on the coefficients f , c and h, we know from
the theory of BSDEs with jumps, see [21] and [2], that there exists a unique solu-
tion (Y n,Zn,Un) ∈ S2 × L2(W) × L2(μ̃) to (3.1). We define for each n ∈ N,

Kn
t = n

∫ t

0

∫
E

h−(Un
s (e), e)λ(de) ds, 0 ≤ t ≤ T ,

which is a nondecreasing process in A2. The rest of this section is devoted to the
convergence of the sequence (Y n,Zn,Un,Kn)n to the minimal solution in which
we are interested.

3.1. Comparison results. We first state that the sequence (Y n)n is nondecreas-
ing. This follows from a comparison theorem for BSDEs with jumps whose gener-
ator is of the form f̃ (x, y, z, u) = f (x, y, z)+ ∫E h̃(u(e), e)λ(de) for some nonde-
creasing function h̃, which covers our situation from the nonincreasing condition
on the constraint function h.

LEMMA 3.1. The sequence (Y n)n is nondecreasing, that is, for all n ∈ N,
Yn

t ≤ Yn+1
t , 0 ≤ t ≤ T , a.s.

PROOF. Define the sequence (V n)n of P ⊗ E -measurable processes by

V n
t (e) = Un

t (e) − c(Xt−, Y n
t−,Zn

t , e), (t, e) ∈ (0, T ] × E,

and

V n
0 (e) = Un

0 (e) − c(X0, Y
n
0 ,Zn

0 , e), e ∈ E.

From (3.1) and recalling that X and Y are càdlàg, we see that (Y n,Zn,V n) is the
unique solution in S2 × L2(W) × L2(μ̃) of the BSDE with jumps:

Yn
t = g(XT ) +

∫ T

t
Fn(Xs,Y

n
s ,Zn

s ,V n
s ) ds

−
∫ T

t
〈Zn

s , dWs〉 −
∫ T

t

∫
E

V n
s (e)μ̃(ds, de)

with Fn(x, y, z, v) = f (x, y, z) + ∫
E(nh−(v(e) + c(x, y, z, e), e) − v(e))λ(de).

Since h− is nondecreasing, we have

Fn(t, x, y, z, v) − Fn(t, x, y, z, v′)

=
∫
E

{(
v′(e) − v(e)

)+ n
[
h−(v(e) + c(x, y, z, e), e

)
− h−(v′(e) + c(x, y, z, e), e

)]}
λ(de)

≤
∫
E

{(−1 + 1{v(e)≥v′(e)}nkh

)(
v(e) − v′(e)

)}
λ(de).
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Moreover, since Fn+1 ≥ Fn, we can apply the comparison Theorem 2.5 of [20],
and obtain that Yn

t ≤ Yn+1
t , 0 ≤ t ≤ T , a.s. �

The next result shows that the sequence (Y n)n is upper-bounded by any solu-
tion to the constrained BSDE. Arguments in the proof involve suitable change of
probability measures Pν , ν ∈ V , introduced in (2.14).

LEMMA 3.2. For any quadruple (Ỹ , Z̃, Ũ , K̃) ∈ S2 × L2(W) × L2(μ̃) × A2

satisfying (2.10) and (2.11), and for all n ∈ N, we have

Yn
t ≤ Ỹt , 0 ≤ t ≤ T , a.s.(3.2)

Moreover, in the case: h(u, e) = −u, the inequality (3.2) also holds for any triple
(Ỹ , Z̃, K̃) ∈ S2 × L2(W) × A2 satisfying (2.12).

PROOF. We state the proof for quadruple (Ỹ , Z̃, Ũ , K̃) satisfying (2.10) and
(2.11). Same arguments are used in the case: h(u, e) = −u and (Ỹ , Z̃, K̃) ∈ S2 ×
L2(W) × A2 satisfying (2.12).

Denote Ȳ = Ỹ − Yn, Z̄ = Z̃ − Zn, f̄ = f (X, Ỹ , Z̃) − f (X,Y n,Zn) and c̄ =
c(X.−, Ỹ.−, Z̃, e) − c(X.−, Y n

.−,Zn, e). Fix some ν ∈ V (to be chosen later). We
then have

Ȳt =
∫ T

t
f̄s ds +

∫ T

t

∫
E

c̄sμ(ds, de) −
∫ T

t
〈Z̄s, dWs〉

−
∫ T

t

∫
E
{Ũs(e) − Un

s (e)}μ̃ν(ds, de)

−
∫ T

t

∫
E
{Ũs(e) − Un

s (e)}νs(e)λ(de) ds

− n

∫ T

t

∫
E

h−(Un
s (e), e)λ(de) ds + K̃T − K̃t ,

where μ̃ν(dt, de) = μ(dt, de) − νt (e)λ(de) dt denotes the compensated measure
of μ under Pν . Let us then define the following adapted processes:

at = f (Xt , Ỹt , Z̃t ) − f (Xt , Y
n
t , Z̃t )

Ȳt

1{Ȳt �=0}

and b the R
d -valued process defined by its ith components, i = 1, . . . , d:

bi
t = f (Xt , Y

n
t ,Z

(i−1)
t ) − f (Xt , Y

n
t ,Z

(i)
t )

V i
t

1{V i
t �=0},

where Z
(i)
t is the R

d -valued random vector whose i first components are those
of Z̃ and whose (d − i) lasts are those of Zn, and V i

t is the ith component of
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Z
(i−1)
t − Z

(i)
t . Let us also define the P ⊗ E -measurable processes δ in R and � in

R
d by

δt (e) = c(Xt−, Ỹt−, Z̃t , e) − c(Xt−, Y n
t−, Z̃t , e)

Ȳr

1{Ȳt− �=0}

and

�i
r (e) = c(Xt−, Y n

t−,Z
(i−1)
t , e) − c(Xt−, Y n

t−,Z
(i)
t , e)

V i
t

1{V i
t �=0}.

Notice that the processes a, b, δ and � are bounded by the Lipschitz conditions on
f and c. Define also αν

t = at + ∫E δt (e)νt (e)λ(de), βν
t = bt + ∫E �t (e)νt (e)λ(de),

which are bounded processes since a, b, δ, � are bounded and λ is a finite measure
on E, and denote V n

t (e) = Ũt (e) − Un
t (e) − δt (e)Ȳt − �t (e) · Z̄t . With this nota-

tion, and recalling that h−(Ũs(e), e) = 0 from the constraint condition (2.11), we
rewrite the BSDE for Ȳ as

Ȳt =
∫ T

t
(αν

s Ȳs + βν
s.Z̄s) ds −

∫ T

t
〈Z̄s, dWs〉

−
∫ T

t

∫
E

V n
s (e)μ̃ν(ds, de) + K̃T − K̃t

+
∫ T

t

∫
E
{n[h−(Ũs(e), e) − h−(Un

s (e), e)]

− νs(e)[Ũs(e) − Un
s (e)]}λ(de) ds.

Consider now the positive process �ν solution to the s.d.e.

d�ν
t = �ν

t (αν
t dt + 〈βν

t , dWt 〉), �ν
0 = 1,(3.3)

and notice that �ν lies in S 2 from the boundeness condition on αν and βν . By Itô’s
formula, we have

d�ν
t Ȳt = −�ν

t

∫
E
{n[h−(Ũt (e), e) − h−(Un

t (e), e)]

− νt (e)[Ũt (e) − Un
t (e)]}λ(de) ds

− �ν
t dK̃t + �ν

t 〈Z̄t , dWt 〉 + �ν
t Ȳt−〈βt , dWt 〉 + �ν

t

∫
E

V n
t (e)μ̃ν(dt, de),

which shows that the process

�ν
t Ȳt +

∫ t

0
�ν

s

∫
E
{n[h−(Ũs(e), e) − h−(Un

s (e), e)]

− νs(e)[Ũs(e) − Un
s (e)]}λ(de) ds
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is a Pν -supermartingale and so

�ν
t Ȳt ≥ Eν

[∫ T

t
�ν

s

∫
E
{n[h−(Ũs(e), e) − h−(Un

s (e), e)]

− νε
s (e)[Ũs(e) − Un

s (e)]}λ(de) ds
∣∣∣Ft

]
.

Now, from the Lipschitz condition on h, we see that the process νε defined by

νε
t (e) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n[h−(Ũt (e), e) − h−(Un
t (e), e)]

Ũt (e) − Un
t (e)

, if Un
t (e) > Ũt (e),

and h−(Un
t (e), e) > 0,

ε, else,
is bounded and so lies in V , and therefore by taking ν = νε , we obtain

�νε

t Ȳt ≥ −εEνε
[∫ T

t
�νε

s

∫
E
[Ũs(e) − Un

s (e)]

× 1{Ũs (e)≥Un
s (e)}∪{h−(Un

s (e),e)=0}λ(de) ds
∣∣∣Ft

]
(3.4)

=: −εRε
t , 0 ≤ t ≤ T .

From the conditional Cauchy–Schwarz inequality and Bayes formula we have for
all t ∈ [0, T ], ε > 0,

|Rε
t | ≤

√√√√E
[
Zνε

T

Zνε

t

∫ T

t
|�νε

s |2 ds
∣∣∣Ft

]

×
(

E
[
Zνε

T

Zνε

t

∫ T

t

(∫
E
[Ũs(e) − Un

s (e)]

× 1{Ũs (e)≥Un
s (e)}∪{h−(Un

s (e),e)=0}λ(de)

)2

ds
∣∣∣Ft

])1/2

=: R1,ε
t R

2,ε
t .

By definition of νε , we have for ε ≤ nkh

Zνε

T

Zνε

t

≤ Zn
T

Zn
t

exp
(∫ T

t

∫
E

nkhλ(de) ds

)
,

where Zn is the solution to dZn
t = Zn

t−
∫
E(nkh − 1)μ̃(dt, de), Zn

0 = 1. It follows

that for all t ∈ [0, T ], (R
2,ε
t )ε is uniformly bounded for ε in a neighborhood of 0+.

Similarly, using also the boundedness of the coefficients ανε
and βνε

in the dy-
namics (3.3) of �ν,ε , we deduce that (R

1,ε
t )ε and thus (Rε

t )ε is uniformly bounded

for ε in a neighborhood of 0+. Finally, since limε→0 �νε

t = �ν0

t > 0, by sending ε

to zero into (3.4), we conclude that Ȳt ≥ 0. �



810 KHARROUBI, MA, PHAM AND ZHANG

3.2. Convergence of the penalized BSDEs. We impose the following analogue
of assumption (H1):

(H2) There exists a quadruple (Ỹ , Z̃, K̃, Ũ) ∈ S2 × L2(W) × L2(μ̃) × A2 satis-
fying (2.10) and (2.11).

Assumption (H2) ensures that the problem (2.10) and (2.11) is well posed. As
indicated in Section 2.2, assumption (H2) in the case h(u, e) = −u, implies as-
sumption (H1). Since (H1) is obviously stronger than (H2), these two assumptions
are equivalent in the case h(u, e) = −u. We provide in Section 5 some discussion
and sufficient conditions under which (H2) holds.

REMARK 3.1. The following example shows that conditions (H1) and (H2)
may be not satisfied: consider the BSDEs

Yt = −
∫ T

t
〈Zs, dWs〉 +

∫ T

t

∫
E

cμ(ds, de) + KT − Kt(3.5)

and ⎧⎨
⎩Yt = −

∫ T

t
〈Zs, dWs〉 −

∫ T

t

∫
E
[Us(e) − c]μ(ds, de) + KT − Kt,

−Us(e) ≥ 0,

(3.6)

where c is a strictly positive constant, c > 0. Then, there does not exist any solution
to (3.5) or (3.6) with component Y ∈ S2. On the contrary, we would have

Y0 ≥ −
∫ T

0
〈Zs, dWs〉 + cμ([0, T ] × E) a.s.,

which implies that for all n ∈ N
∗, ν ≡ n ∈ V ,

Y0 ≥ Eν

[
−
∫ T

0
〈Zs, dWs〉 + cμ([0, T ] × E)

]
= cnλ(E)T .

By sending n to infinity, we get the contradiction: ‖Y‖S 2 = ∞.

We now establish a priori estimates, uniform on n, on the sequence (Y n,Zn,Un,
Kn)n.

LEMMA 3.3. Under (H2) [or (H1) in the case: h(u, e) = −u], there exists
some constant C such that

‖Yn‖S2 + ‖Zn‖L2(W) + ‖Un‖L2(μ̃) + ‖Kn‖S2 ≤ C ∀n ∈ N.(3.7)

PROOF. In what follows, we shall denote C > 0 to be a generic constant de-
pending only on T , the coefficients f , c, the process X and the bound for Ỹ in
(H1) or (H2), and which may vary from line to line.
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Applying Itô’s formula to |Yn
t |2, and observing that Kn is continuous and

	Yn
t = ∫E{Un

s (e) − c(Xs−, Y n
s−,Zn

s , e)}μ({t}, de), we have

E|g(XT )|2 = E|Yn
t |2 − 2E

∫ T

t
Y n

s f (Xs,Y
n
s ,Zn

s ) ds

− 2E
∫ T

t
Y n

s dKn
s + E

∫ T

t
|Zn

s |2 ds

+ E
∫ T

t

∫
E
{|Yn

s− + Un
s (e)

− c(Xs−, Y n
s−,Zn

s , e)|2 − |Yn
s−|2}λ(de) ds.

From the linear growth condition on f and the inequality Yn
t ≤ Ỹt by Lemma 3.2

under (H2) [and also under (H1) in the case h(u, e) = −u], and using the inequality
2ab ≤ 1

α
a2 + αb2 for any constant α > 0, we have

E|Yn
t |2 + E

∫ T

t
|Zn

s |2 ds + E
∫ T

t

∫
E

|Un
s (e) − c(Xs−, Y n

s−,Zn
s , e)|2λ(de) ds

≤ E|g(XT )|2 + 2CE
∫ T

t
|Yn

s |(1 + |Xs | + |Yn
s | + |Zn

s |) ds

− 2E
∫ T

t

∫
E

Yn
s−
(
Un

s (e) − c(Xs−, Y n
s−,Zn

s , e)
)
λ(de) ds

+ 1

α
E
[

sup
t∈[0,T ]

|Ỹt |2
]
+ αE|Kn

T − Kn
t |2.

Using again the inequality 2ab ≤ 1
η
a2 + ηb2 for η > 0 yields

E|Yn
t |2 + E

∫ T

t
|Zn

s |2 ds

+ 1 − η

2
E
∫ T

t

∫
E

|Un
s (e) − c(Xs−, Y n

s−,Zn
s , e)|2λ(de) ds

≤ E|g(XT )|2 + 2CE
∫ T

t
|Yn

s |(1 + |Xs | + |Yn
s | + |Zn

s |) ds

+ λ(E)

η
E
∫ T

t
|Yn

s |2 ds + 1

α
E
[

sup
t∈[0,T ]

|Ỹt |2
]
+ αE|Kn

T − Kn
t |2

≤ C

(
1 + E

∫ T

t
|Yn

s |2 ds

)
+ 1

2
E
∫ T

t
|Zn

s |2 ds

+ αE|Kn
T − Kn

t |2 + λ(E)

η
E
∫ T

t
|Yn

s |2 ds.
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Then, by using the inequality (a − b)2 ≥ a2/2 − b2, we get

E|Yn
t |2 + 1

2
E
∫ T

t
|Zn

s |2 ds + 1 − η

4
E
∫ T

t

∫
E

|Un
s (e)|2λ(de) ds

≤ 1 − η

2
E
∫ T

t

∫
E

|c(Xs−, Y n
s−,Zn

s , e)|2λ(de) ds

+ C

(
1 + E

∫ T

t
|Yn

s |2 ds

)
+ αE|Kn

T − Kn
t |2

(3.8)

≤ C

(
1 + E

∫ T

t
|Yn

s |2 ds

)

+ C(1 − η)E
∫ T

t
|Zn

s |2 ds

+ αE|Kn
T − Kn

t |2

from the linear growth condition on c. Now, from the relation

Kn
T − Kn

t = Yn
t − g(XT )

−
∫ T

t
f (Xs,Y

n
s ,Zn

s ) ds

+
∫ T

t

∫
E

(
Un

s (e) − c(Xs−, Y n
s−,Zn

s )
)
μ(ds, de)

+
∫ T

t
〈Zn

s , dWs〉

and the linear growth condition on f , c, there exists some positive constant C1 s.t.

E|Kn
T − Kn

t |2

≤ C1

(
1 + E|Yn

t |2 + E
∫ T

t
(|Yn

s |2 + |Zn
s |2) ds(3.9)

+ E
∫ T

t

∫
E

|Un
s (e)|2λ(de) ds

)
.

Hence, by choosing η > 0 s.t. (1
2 − C(1 − η)) ∧ (

1−η
2 ) > 0 and α > 0 s.t. C1α <

(1
2 − C(1 − η)) ∧ (

1−η
2 ), and plugging into (3.8), we get

E|Yn
t |2 + E

∫ T

t
|Zn

s |2 ds + E
∫ T

t

∫
E

|Un
s (e)|2λ(de) ds

≤ C

(
1 + E

∫ T

t
|Yn

s |2 ds

)
.
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By applying Gronwall’s lemma to t �→ E|Yn
t |2 and (3.9), we obtain

sup
0≤t≤T

E|Yn
t |2 + E

∫ T

0
|Zn

s |2 ds

(3.10)

+ E
∫ T

0

∫
E

|Un
s (e)|2λ(de) ds + E|Kn

T |2 ≤ C.

Finally, by writing from (3.1) that

sup
0≤t≤T

|Yn
t | ≤ |g(XT )| +

∫ T

0
|f (Xs,Ys,Zs)|ds + Kn

T + sup
s∈[0,T ]

∣∣∣∣
∫ T

0
〈Zs, dWs〉

∣∣∣∣
+
∫ T

0

∫
E

|Un
s (e) − c(Xs−, Ys−,Zs, e)|μ(ds, de),

we obtain the required result from the Burkholder–Davis–Gundy inequality, the
linear growth condition on f , c and (3.10). �

REMARK 3.2. A closer look at the proof leading to the estimate in (3.7) shows
that there exists a universal constant C, depending only on T , and the linear growth
condition constants of f , c, such that for each n ∈ N:

sup
t∈[0,T ]

E[Yn
t ]2 ≤ C

(
1 + E|g(XT )|2

(3.11)

+ E
[∫ T

0
|Xt |2dt

]
+ E

[
sup

t∈[0,T ]
|Ỹt |2

])
.

LEMMA 3.4. Under (H2) [or (H1) in the case: h(u, e) = −u], the sequence of
processes (Y n

t ) converges increasingly to a process (Yt ) with Y ∈ S2. The conver-
gence also holds in L2

F
(0,T) and for every stopping time τ ∈ [0, T ], the sequence

of random variables (Y n
τ ) converges to Yτ in L2(�,F τ ), that is,

lim
n→∞ E

[∫ T

0
|Yn

t − Yt |2 dt

]
= 0 and lim

n→∞ E[|Yn
τ − Yτ |2] = 0.(3.12)

PROOF. From Lemmas 3.1 and 3.2, the (nondecreasing) limit

Yt := lim
n→∞Yn

t , 0 ≤ t ≤ T ,(3.13)

exists almost surely, and this defines an adapted process Y . Moreover, by Lem-
ma 3.3 and convergence monotone theorem, we have

E
[

sup
0≤t≤T

|Yt |2
]
< ∞.

From the dominated convergence theorem, we also get the convergence (3.12). It
remains to check that the process Y has a càdlàg modification. We first show that
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(Y n)n are quasi-martingales with uniformly bounded conditional variations. That
is, there exists a constant C such that, for any partition π : 0 = t0 < t1 < · · · <

tm = T ,

E

{
|Yn

T | +
m−1∑
i=0

|E{Yn
ti+1

|Fti } − Yn
ti
|
}

≤ C ∀π,∀n.(3.14)

In fact, by (3.1), we have

E

{
m−1∑
i=0

|E{Yn
ti+1

|Fti } − Yn
ti
|
}

= E

{
m−1∑
i=0

∣∣∣∣E
[∫ ti+1

ti

f (Xs,Y
n
s ,Zn

s ) ds

+ n

∫ ti+1

ti

∫
E

h−(Un
s (e), e)λ(de) ds

−
∫ ti+1

ti

∫
E

(
Un

s (e) − c(Xs−, Y n
s−,Zn

s , e)
)
λ(de) ds

∣∣∣Fti

]∣∣∣∣
}

≤ E
[∫ T

0
|f (Xs,Y

n
s ,Zn

s )|ds

+
∫ T

0

∫
E

|Un
s (e) − c(Xs−, Y n

s−,Zn
s , e)|λ(de) ds + Kn

T

]
.

Recall (2.3), (2.4) and (2.6), we have

E

{
|Yn

T | +
m−1∑
i=0

|E{Yn
ti+1

|Fti } − Yn
ti
|
}

≤ CE
{

1 + |XT | +
∫ T

0
[1 + |Xs | + |Yn

s | + |Zn
s |]ds

+
∫ T

0

∫
E

|Un
s (e)|λ(de) ds + Kn

T

}
.

Applying (2.2) and Lemma 3.3, we obtain (3.14) immediately. Now by Meyer and
Zheng [16] (or see [15]), there exists a subsequence (Y nk )k and a càdlàg process
Ỹ such that (Y nk )k converges to Ỹ in distribution. On the other hand, by (3.13),
(Y nk )k converges to Y , P-a.s. Then Y and Ỹ have the same distribution, and thus
Y is also càdlàg. �

We now focus on the convergence of the diffusion and jump components
(Zn,Un). In our context, we cannot prove the strong convergence of (Zn,Un) in
L2(W) × L2(μ̃), and so the strong convergence of

∫ t
0 ZndW and

∫ t
0
∫
E Un(s, e) ×
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μ(ds, de) in L2(�,F t ), see Remark 3.3. Instead, we follow and extend arguments
of Peng [18], and we shall prove that (Zn,Un) converge in Lp(W) × Lp(μ̃), for
1 ≤ p < 2. First, we show the following weak convergence and decomposition
result.

LEMMA 3.5. Under (H2) [or (H1) in the case: h(u, e) = −u], there exist φ ∈
L2

F
(0,T), Z ∈ L2(W), V ∈ L2(μ̃) and K ∈ A2 predictable, such that the limit Y

in (3.13) has the form

Yt = Y0 −
∫ t

0
φs ds − Kt +

∫ t

0
〈Zs, dWs〉 +

∫ t

0

∫
E

Vs(e)μ(ds, de)(3.15)

for all t ∈ [0, T ]. Moreover, in the above decomposition of Y , the components Z

and V are unique, and are, respectively, the weak limits of (Zn) in L2(μ̃) and of
(V n) in L2(μ̃) where V n

t (e) = Un
t (e) − c(Xt−, Y n

t−,Zn
t , e), φ is the weak limit in

L2
F
(0,T) of a subsequence of (f n) := (f (X,Yn,Zn)), and K is the weak limit in

L2
F
(0,T) of a subsequence of (Kn).

PROOF. By Lemma 3.3, and the linear growth conditions on f , c together
with (2.2), the sequences (f n), (Zn), (V n) are weakly compact, respectively, in
L2

F
(0,T), L2(W) and L2(μ̃). Then, up to a subsequence, (f n), (Zn), (V n) con-

verge weakly to φ, Z and V . By Itô representation of martingales, we then get the
following weak convergence in L2(�,F τ ) for each stopping time τ ≤ T :∫ τ

0
f n

s ds ⇀

∫ τ

0
φs ds,

∫ τ

0
〈Zn

s , dWs〉 ⇀

∫ τ

0
〈Zs, dWs〉,∫ τ

0

∫
E

V n
s (e)μ(ds, de) ⇀

∫ τ

0

∫
E

Vs(e)μ(ds, de).

Since we have from (3.1)

Kn
τ = −Yn

τ + Yn
0 −

∫ τ

0
f n

s ds

(3.16)
+
∫ τ

0
〈Zn

s , dWs〉 +
∫ τ

0

∫
E

V n
s (e)μ(ds, de),

we also have the weak convergence in L2(�,F τ ):

Kn
τ ⇀ Kτ := −Yτ + Y0 −

∫ τ

0
φs ds

(3.17)
+
∫ τ

0
〈Zs, dWs〉 +

∫ τ

0

∫
E

Vs(e)μ(ds, de).

The process K inherits from Kn the nondecreasing path property, is square inte-
grable, càdlàg and adapted from (3.17), and so lies in A2. Moreover, by dominated
convergence theorem, we see that Kn converges weakly to K in L2(0,T). Since
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Kn is continuous, and so predictable, we deduce that K is also predictable, and we
obtain the decomposition (3.15) for Y . The uniqueness of Z follows by identifying
the Brownian parts and finite variation parts, and the uniqueness of V is then ob-
tained by identifying the predictable parts and by recalling that the jumps of μ are
inaccessible. We conclude that (Z,V ) is uniquely determined in (3.15), and thus
the whole sequence (Zn,V n) converges weakly to (Z,V ) in L2(W)× L2(μ̃). �

The sequence (Un) is bounded in L2(μ̃), and so, up to a subsequence, converges
weakly to some U ∈ L2(μ̃). The next step is to show that the whole sequence (Un)

converges to U and to identify in the decomposition (3.15) φt with f (Xt , Yt ,Zt ),
and Vt(e) with Ut(e) − c(Xt−, Yt−,Zt , e). Since f and c are nonlinear, we need
a result of strong convergence for (Zn) and (Un) to enable us to pass the limit in
f (Xt , Y

n
t ,Zn

t ) as well as in Un
t (e) − c(Xt−, Y n

t−,Zn
t , e), and to eventually prove

the convergence of the penalized BSDEs to the minimal solution of our jump-
constrained BSDE. We shall borrow a useful technique of Peng [18] to carry out
this task.

THEOREM 3.1. Under (H2), there exists a unique minimal solution (Y,Z,U ,
K) ∈ S2 × L2(W) × L2(μ̃) × A2 with K predictable, to (2.10) and (2.11). Y is
the increasing limit of (Y n) in (3.13) and also in L2

F
(0,T), K is the weak limit of

(Kn) in L2
F
(0,T), and for any p ∈ [1,2),

‖Zn − Z‖Lp(W) + ‖Un − U‖Lp(μ̃) −→ 0

as n goes to infinity. Moreover, in the case: h(u, e) = −u, (Y,Z, K̄) is the unique
minimal solution to (2.12) with K̄t = Kt − ∫ t

0
∫
E Us(e)μ(ds, de), and this holds

true under (H1). Consequently, the minimal solution Y to (2.12) and to (2.10)–
(2.13) are the same.

PROOF. We apply Itô’s formula to |Yn
t − Yt |2 on a subinterval (σ, τ ], with

0 ≤ σ < τ ≤ T , two stopping times. Recall the decomposition (3.15), (3.16) of
Y , Yn, and observe that Kn is continuous, and 	(Yn

t − Yt ) = 	Kt + ∫E(V n
t (e) −

Vt(e))μ({t}, de). We then have

E|Yn
τ − Yτ |2

= E|Yn
σ − Yσ |2 + E

∫ τ

σ
|Zn

s − Zs |2 ds + 2E
∫ τ

σ
[Yn

s − Ys][φs − f n
s ]ds

− 2E
∫ τ

σ
[Yn

s − Ys]dKn
s + 2E

∫
(σ,τ ]

[Yn
s− − Ys−]dKs + E

∑
t∈(σ,τ ]

|	Kt |2

+ E
∫
(σ,τ ]

∫
E
[|Yn

s− − Ys− + V n
s (e) − Vs(e)|2 − |Yn

s− − Ys−|2]μ(ds, de)

= E|Yn
σ − Yσ |2 + E

∫ τ

σ
|Zn

s − Zs |2 ds + 2E
∫ τ

σ
[Yn

s − Ys][φs − f n
s ]ds
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− 2E
∫ τ

σ
[Yn

s − Ys]dKn
s + 2E

∫
(σ,τ ]

[Yn
s− − Ys− + 	Ks]dKs

− E
∑

t∈(σ,τ ]
|	Kt |2 + E

∫ τ

σ

∫
E

|V n
s (e) − Vs(e)|2λ(de) ds

+ 2E
∫ τ

σ

∫
E
(Y n

s − Ys)
(
V n

s (e) − Vs(e)
)
λ(de) ds.

Since (Y n
s − Ys) dKn

s ≤ 0, and by using the inequality 2ab ≥ −a2

2 − 2b2 with
a = V n

s (e) − Vs(e) and b = Yn
s − Ys , we obtain

E
∫ τ

σ
|Zn

s − Zs |2 ds + 1

2
E
∫ τ

σ

∫
E

|V n
s (e) − Vs(e)|2λ(de) ds

≤ E|Yn
τ − Yτ |2 + 2E

∫ τ

σ
|Yn

s − Ys |2 ds

(3.18)
+ 2E

∫ τ

σ
|Yn

s − Ys ||φs − f n
s |ds

+ 2E
∫
(σ,τ ]

|Yn
s− − Ys− + 	Ks |dKs + E

∑
t∈(σ,τ ]

|	Kt |2.

The first two terms of the right-hand side of (3.18) converge to zero by (3.12)
in Lemma 3.4. The third term also tends to zero since (φ − f n)n is bounded in
L2(0,T), and so by Cauchy–Schwarz inequality

E
∫ T

0
|Yn

s − Ys ||φs − f n
s |ds ≤ C

(
E
∫ T

0
|Yn

s − Ys |2 ds

)1/2

→ 0.(3.19)

For the fourth term, we notice that the jumps of Yn are inaccessible since they are
determined by the Poisson random measure μ. Thus, the predictable projection of
Yn is pY n

t = Yn
t− . Similarly, from (3.15), and since K is predictable, we see that

pYt = Yt− − 	Kt . Since Yn increasingly converges to Y , then pY n also increas-
ingly converges to pY , and by the dominated convergence theorem, we obtain

lim
n→∞ E

∫
(0,T ]

|Yn
s− − Ys− + 	Ks |dKs = 0.(3.20)

For the last term in (3.18), we apply Lemma 2.3 in [18] to the predictable non-
decreasing process K : for any δ, ε > 0, there exists a finite number of pairs of
stopping times (σk, τk), k = 0, . . . ,N , with 0 < σk ≤ τk ≤ T , such that all the in-
tervals (σk, τk] are disjoint and

E
N∑

k=0

(τk − σk) ≥ T − ε

2
, E

N∑
k=0

∑
σk<t≤τk

(	Kt)
2 ≤ εδ

3
.(3.21)

We should note that in [18] the filtration is Brownian, therefore it is continuous,
and hence each stopping time σk can be approximated by a sequence of announce-
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able stopping times. In our case the stopping times σk’s are constructed as the
successive times of jumps of the predictable process K with size bigger than some
given positive level, the approximation of σk by announceable stopping times is
again possible. We can thus argue exactly the same way as in Lemma 2.3 in [18]
to derive both estimates in (3.21).

We now apply estimate (3.18) for each σ = σk and τ = τk , and then take the
sum over k = 0, . . . ,N . It follows that

N∑
k=0

E
∫ τk

σk

|Zn
s − Zs |2 ds + 1

2

N∑
k=0

E
∫ τk

σk

∫
E

|V n
s (e) − Vs(e)|2λ(de) ds

≤
N∑

k=0

E|Yn
τk

− Yτk
|2 + 2E

∫ T

0
|Yn

s − Ys |2 ds + 2E
∫ T

0
|Yn

s − Ys ||φs − f n
s |ds

+ 2E
∫
(0,T ]

|Yn
s− − Ys− + 	Ks |dKs +

N∑
k=0

E
∑

t∈(σk,τk]
|	Kt |2.

From the convergence results in Lemma 3.4, (3.19) and (3.20), we deduce that

lim sup
n→∞

N∑
k=0

E
∫ τk

σk

|Zn
s − Zs |2 ds + 1

2

N∑
k=0

E
∫ τk

σk

∫
E

|V n
s (e) − Vs(e)|2λ(de) ds

≤
N∑

k=0

E
∑

t∈(σk,τk]
|	Kt |2 ≤ εδ

3
.

Thus, there exists an integer �εδ > 0 such that for all n ≥ �εδ , we have

N∑
k=0

E
∫ τk

σk

|Zn
s − Zs |2 ds + 1

2

N∑
k=0

E
∫ τk

σk

∫
E

|V n
s (e) − Vs(e)|2λ(de) ds ≤ εδ

2
.

This implies

dt ⊗ P

[
(s,ω) ∈

N⋃
k=0

(σk(ω), τk(ω)] × � : |Zn
s (ω) − Zs(ω)|2 ≥ δ

]
≤ ε

2

and

dt ⊗ λ ⊗ P

[
(s, e,ω) ∈

N⋃
k=0

(σk(ω), τk(ω)]

× � × E : |V n
s (e,ω) − Vs(e,ω)|2 ≥ δ

]
≤ ε.

Together with (3.21), it follows that

dt ⊗ P
[
(s,ω) ∈ [0, T ] × � : |Zn

s (ω) − Zs(ω)|2 ≥ δ
]≤ ε
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and

dt ⊗ λ × P
[
(s, e,ω) ∈ [0, T ] × E × � : |V n

s (e,ω) − Vs(e,ω)|2 ≥ δ
]

≤ ε
(
1 + λ(E)

)
.

We deduce that for all δ > 0

lim
n→∞dt ⊗ P

[
(s,ω) ∈ [0, T ] × � : |Zn

s (ω) − Zs(ω)|2 ≥ δ
]= 0

and

lim
n→∞dt ⊗ λ ⊗ P

[
(s, e,ω) ∈ [0, T ] × E × � : |V n

s (e,ω) − Vs(e,ω)|2 ≥ δ
]= 0.

This means that the sequences (Zn)n and (V n)n converge in measure, respectively,
to Z and V . Since they are bounded, respectively, in L2(W) and L2(μ̃), they are
uniformly integrable in Lp(W) and Lp(μ̃) for any p ∈ [1,2), respectively. Thus,
(Zn) and (V n) converge strongly to Z and V in Lp(W) and Lp(μ̃), respectively.
Recalling that Un

t (e) = V n
t (e)+c(Xt−, Y n

t−,Zn
t , e), and by the Lipschitz condition

on c, we deduce that the sequence (Un) converges strongly in Lp(μ̃), for p ∈
[1,2), to U defined by

Ut(e) = Vt(e) + c(Xt−, Yt−,Zt , e), 0 ≤ t ≤ T , e ∈ E.

By the Lipschitz condition on f , we also have the strong convergence in Lp
F
(0,T)

of (f n) = (f (X,Yn,Zn)) to f (X,Y,Z). Since φ is the weak limit of (f n) in
L2

F
(0,T), we deduce that φ = f (X,Y,Z). Therefore, with the decomposition

(3.15) and since YT = limn Y n
T = g(XT ), we obtain immediately that (Y,Z,U,K)

satisfies the BSDE (2.10). Moreover, from the strong convergence in L1(μ̃) of
(Un) to U , and the Lipschitz condition on h, we have

E
∫ T

0

∫
E

h−(Un
s (e), e)λ(de) ds → E

∫ T

0

∫
E

h−(Us(e), e)λ(de) ds

as n goes to infinity. Since Kn
T = n

∫ T
0
∫
E h−(Un

s (e), e)λ(de) ds is bounded in
L2(�,FT), this implies

E
∫ T

0

∫
E

h−(Us(e), e)λ(de) ds = 0

and so the constraint (2.11) is satisfied. Hence, (Y,Z,K,U) is a solution to the
constrained BSDE (2.10) and (2.11), and by Lemma 3.2, Y = limYn is the mini-
mal solution. The uniqueness of Z follows by identifying the Brownian parts and
the finite variation parts, and then the uniqueness of (U,K) is obtained by identi-
fying the predictable parts and by recalling that the jumps of μ are inaccessible.

Finally, in the case h(u, e) = −u, the process

K̄t = Kt −
∫ t

0

∫
E

Us(e)μ(ds, de), 0 ≤ t ≤ T ,
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lies in A2, and the triple (Y,Z, K̄) is solution to (2.12). Again, by Lemma 3.2, this
shows that Y is the minimal solution to (2.10) and to (2.12). The uniqueness of
(Y,Z, K̄) is immediate by identifying the Brownian part and the finite variation
part. �

REMARK 3.3. From the estimate (3.18), it is clear that once the process K

is continuous, that is, 	Kt = 0, then (Zn,Un) converges strongly to (Z,U) in
L2(W) × L2(μ̃). This occurs in reflected BSDEs as in [10] or [13]; see also Re-
mark 4.3. In the case of constraints on jump component U as in (2.10) and (2.11),
the situation is more complicated, and the process K is in general only predictable.
The same feature also occurs for constraints on Z as in [18]. To overcome this
difficulty, we use the estimations (3.21) of the contribution of the jumps of K ,
which allow us to obtain the strong convergence of (Zn,Un) in Lp(W) × Lp(μ̃)

for p ∈ [1,2). Finally, notice that for the minimal solution (Y,Z, K̃) to the BSDE
(2.12), the process K̃ is not predictable.

3.3. The case of impulse control. In the impulse control case [i.e., f and c de-
pend only on X and h(u, e) = −u], we have seen in Theorem 2.1 that the minimal
solution to our constrained BSDE has the following functional explicit representa-
tion:

Yt = ess sup
ν∈V

Eν

[
g(XT ) +

∫ T

t
f (Xs) ds +

∫ T

t

∫
E

c(Xs−, e)μ(ds, de)
∣∣∣Ft

]
.

In this case, we also have a functional explicit representation of the solution Yn to
the penalized BSDE (3.1),

Yn
t = ess sup

ν∈Vn

Eν

[
g(XT ) +

∫ T

t
f (Xs) ds

(3.22)

+
∫ T

t

∫
E

c(Xs−)μ(ds, de)
∣∣∣Ft

]
,

where Vn = {ν ∈ V;νs(e) ≤ n ∀(s, e) ∈ [0, T ] × E a.s.}. Indeed, denote by Ȳ n the
right-hand side of (3.22). By writing that (Y n,Zn,Un) is the solution of the penal-
ized BSDE (3.1), taking the expectation under Pν , for ν ∈ Vn, and recalling that W

is a Pν-Brownian motion, and νλ(de) is the intensity measure of μ under Pν , we
obtain

Yn
t = Eν

[
g(XT ) +

∫ T

t
f (Xs) ds +

∫ T

t

∫
E

c(Xs−, e)μ(ds, de)
∣∣∣Ft

]
(3.23)

+ Eν

[∫ T

t

∫
E
{n[Un

s (e)]+ − νs(e)U
n
s (e)}λ(de) ds

∣∣∣Ft

]
.



BSDES WITH CONSTRAINED JUMPS AND QVIS 821

Since this equality holds for any ν ∈ Vn, and observing that n[Un
s (e)]+ −

νs(e)U
n
s (e) ≥ 0, for all ν ∈ Vn, we have

Ȳ n
t ≤ Yn

t ≤ Ỹ n
t + Eν

[∫ T

t

∫
E
{n[Un

s (e)]+ − νs(e)U
n
s (e)}λ(de) ds

∣∣∣Ft

]
.(3.24)

Let us now consider the family (νε)ε of Vn defined by

νε
s (e) =

{
n, if Un

s (e) > 0,
ε, otherwise.

Then, by using the same argument as in the proof of Lemma 3.2, we show that

Eνε
[∫ T

t

∫
E
{n[Un

s (e)]+ − νs(e)U
n
s (e)}λ(de) ds

∣∣∣Ft

]
→ 0 as ε → 0,

which proves with (3.24) that Yn
t = Ȳ n

t .
The representation (3.22) has a nice interpretation. It means that the value func-

tion of an impulse control problem can be approximated by the value function of
the same impulse control problem but with strategies whose numbers of orders
are bounded on average by nT λ(E). This has to be compared with the classical
approximation by iterated optimal stopping problems, where the nth iteration cor-
responds to the value of the same impulse control problem but where the number of
orders is smaller than n. The numerical advantage of the penalized approximation
is that it does not require iterations.

4. Relation with quasi-variational inequalities. In this section, we show
that minimal solutions to the jump-constrained BSDEs provide a probabilistic rep-
resentation of solutions to parabolic QVIs of the form

min
[
−∂v

∂t
− Lv − f (·, v, σ ᵀDxv), inf

e∈E
h(Hev − v, e)

]
= 0

(4.1)
on [0, T ) × R

d,

where L is the second-order local operator

Lv(t, x) = 〈b(x),Dxv(t, x)〉 + 1
2 tr(σσ ᵀ(x)D2

xv(t, x))

and He, e ∈ E, are the nonlocal operators

Hev(t, x) = v
(
t, x + γ (x, e)

)+ c(x, v(t, x), σ ᵀ(x)Dxv(t, x), e).

For such nonlocal operators, we denote for q ∈ R
d

He[t, x, q, v] = v
(
t, x + γ (x, e)

)+ c(x, v(t, x), σ ᵀ(x)q, e).

Note that when h(u) does not depend on e, and since it is nonincreasing in u,
the QVI (4.1) may be written equivalently in

min
[
−∂v

∂t
− Lv − f (·, v, σ ᵀDxv),h(Hv − v)

]
= 0 on [0, T ) × R

d,
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with Hv = supe∈E Hev. In particular, this includes the case of QVI associated to
impulse controls for h(u) = −u, and f , c independent of y, z.

We shall use the penalized parabolic integral partial differential equation (IPDE)
associated to the penalized BSDE (3.1), for each n ∈ N,

−∂vn

∂t
− Lvn − f (·, vn, σ

ᵀDxvn)

(4.2)
− n

∫
E

h−(Hevn − vn, e)λ(de) = 0 on [0, T ) × R
d .

To complete the PDE characterization of the function v, we need to provide a
suitable boundary condition. In general, we cannot expect to have v(T −, ·) = g,
and we shall consider the relaxed boundary condition given by the equation

min
[
v(T −, ·) − g, inf

e∈E
h
(

Hev(T −, ·) − v(T −, ·), e)]= 0 on R
d .(4.3)

In the sequel, we shall assume in addition to the conditions of Section 2.1 that
the functions γ , f , c and h are continuous with respect to all their arguments.

4.1. Viscosity properties. Solutions of (4.1), (4.2) and (4.3) are considered in
the (discontinuous) viscosity sense, and it will be convenient in the sequel to de-
fine the notion of viscosity solutions in terms of sub- and super-jets. We refer to
[14, 22] and more recently to the book [17] for the notion of viscosity solutions to
QVIs. For a locally bounded function u on [0, T ] × R

d , we define its lower semi-
continuous (lsc in short) u∗, and upper semicontinuous (usc in short) envelope u∗
by

u∗(t, x) = lim inf
(t ′,x′)→(t,x),t ′<T

u(t ′, x′), u∗(t, x) = lim sup
(t ′,x′)→(t,x),t ′<T

u(t ′, x′).

DEFINITION 4.1 (Subjets and superjets). (i) For a function u : [0, T ] × R
d →

R, lsc (resp., usc), we denote by J−u(t, x) the parabolic subjet [resp., J+u(t, x)

the parabolic superjet] of u at (t, x) ∈ [0, T ]× R
d , as the set of triples (p, q,M) ∈

R × R
d × S

d satisfying

u(t ′, x′) ≥ (resp., ≤) u(t, x) + p(t ′ − t) + 〈q, x′ − x〉 + 1
2〈x′ − x,M(x′ − x)〉

+ o(|t ′ − t | + |x′ − x|2).
(ii) For a function u : [0, T )× R

d → R, lsc (resp., usc), we denote by J̄−u(t, x)

the parabolic limiting subjet [resp., J̄+u(t, x) the parabolic limiting superjet] of u

at (t, x) ∈ [0, T ] × R
d , as the set of triples (p, q,M) ∈ R × R

d × S
d such that

(p, q,M) = lim
n

(pn, qn,Mn), (t, x) = lim
n

(tn, xn)

with (pn, qn,Mn) ∈ J−u(tn, xn) [resp., J+u(tn, xn)],

u(t, x) = lim
n

u(tn, xn).
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We now give the definition of viscosity solutions to (4.1), (4.2) and (4.3).

DEFINITION 4.2 [Viscosity solutions to (4.1)]. (i) A function u, lsc (resp.,
usc) on [0, T )×R

d , is called a viscosity supersolution (resp., subsolution) to (4.1)
if for each (t, x) ∈ [0, T ) × R

d , and any (p, q,M) ∈ J̄−u(t, x) [resp., J̄+u(t, x)],
we have

min
[
−p − 〈b(x), q〉 − 1

2
tr(σσ ᵀ(x)M)

− f (x,u(t, x), σ ᵀ(x)q), inf
e∈E

h
(

He[t, x, q,u] − u(t, x), e
)]≥ (resp., ≤) 0.

(ii) A locally bounded function on [0, T ) × R
d is called a viscosity solution to

(4.1) if u∗ is a viscosity supersolution and u∗ is a viscosity subsolution to (4.1).

DEFINITION 4.3 [Viscosity solutions to (4.2)]. (i) A function u, lsc (resp.,
usc) on [0, T )×R

d , is called a viscosity supersolution (resp., subsolution) to (4.2)
if for each (t, x) ∈ [0, T ) × R

d , and any (p, q,M) ∈ J̄−u(t, x) [resp., J̄+u(t, x)],
we have

−p − 〈b(x), q〉 − 1

2
tr(σσ ᵀ(x)M) − f (x,u(t, x), σ ᵀ(x)q)

− n

∫
E

h−(He[t, x, q,u] − u(t, x), e
)
λ(de) ≥ (resp., ≤) 0.

(ii) A locally bounded function u on [0, T ) × R
d is called a viscosity solution

to (4.2) if u∗ is a viscosity supersolution and u∗ is a viscosity subsolution to (4.2).

DEFINITION 4.4 [Viscosity solutions to (4.3)]. (i) A function u, lsc (resp.,
usc) on [0, T ]× R

d , is called a viscosity supersolution (resp., subsolution) to (4.3)
if for each x ∈ R

d , and any (p, q,M) ∈ J̄−u(T , x) [resp., J̄+u(T , x)], we have

min
[
u(T , x) − g(x), inf

e∈E
h
(

He[T ,x, q,u] − u(T , x), e
)]≥ (resp., ≤) 0.

(ii) A locally bounded function u on [0, T ] × R
d is called a viscosity solution

to (4.3) if u∗ is a viscosity supersolution and u∗ is a viscosity subsolution to (4.3).

REMARK 4.1. An equivalent definition of viscosity super and subsolution
to (4.3), which shall be used later, is the following in terms of test functions: a func-
tion u, lsc (resp., usc) on [0, T ]×R

d , is called a viscosity supersolution (resp., sub-
solution) to (4.3) if for each (t, x) ∈ [0, T ) × R

d , and any ϕ ∈ C1,2([0, T ] × R
d)

such that (t, x) is a minimum (resp., maximum) global of u − ϕ, we have

min
[
u(T , x) − g(x), inf

e∈E
h
(

He[T ,x,Dxϕ(T , x), u] − u(T , x), e
)]≥ (resp.,≤) 0.

We have similar equivalent definitions of viscosity super and subsolution to (4.1)
in terms of test functions.
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We slightly strengthen assumption (H1) or (H2) by

(H1′) There exists a quadruple (Ỹ , Z̃, K̃) ∈ S2 × L2(W) × A2 satisfying (2.12),
with Ỹt = ṽ(t,Xt), 0 ≤ t ≤ T , for some function deterministic ṽ satisfying
a linear growth condition

sup
(t,x)∈[0,T ]×Rd

|ṽ(t, x)|
1 + |x| < +∞.

(H2′) There exists a quadruple (Ỹ , Z̃, K̃, Ũ) ∈ S2 × L2(W) × L2(μ̃) × A2 sat-
isfying (2.10) and (2.11), with Ỹt = ṽ(t,Xt ), 0 ≤ t ≤ T , for some function
deterministic ṽ satisfying a linear growth condition

sup
(t,x)∈[0,T ]×Rd

|ṽ(t, x)|
1 + |x| < +∞.

Under assumption (H1′) [resp., (H2′)], there esists for each (t, x) ∈ [0, T ] × R
d

a unique minimal solution {(Y t,x
s ,Zt,x

s ,U t,x
s ,Kt,x

s ), t ≤ s ≤ T } to (2.10) and (2.11)
[resp., (2.12) and (2.13)] with X = {Xt,x

s , t ≤ s ≤ T }, the solution to (2.1) starting
from x at time t . We can then define the (deterministic) function v : [0, T ]×R

d →
R by

v(t, x) := Y
t,x
t , (t, x) ∈ [0, T ] × R

d .(4.4)

Similarly, we define the function

vn(t, x) := Y
n,t,x
t , (t, x) ∈ [0, T ] × R

d,(4.5)

where {(Y n,t,x
s ,Zn,t,x

s ,Un,t,x
s (·)), t ≤ s ≤ T } is the unique solution to (3.1) with

Xs = Xt,x
s , t ≤ s ≤ T .

We first have the following identification.

PROPOSITION 4.1. The function v links the processes Y t,x and Xt,x by the
relation

Y
t,x
θ = v(θ,X

t,x
θ ) for all stopping time θ valued in [t, T ].(4.6)

PROOF. From the Markov property of the jump-diffusion process X, and
uniqueness of a solution Yn to the BSDE (3.1), we have (see, e.g., [2])

Y t,x,n
s = vn(s,X

t,x
s ), t ≤ s ≤ T .(4.7)

From Section 3, we know that v is the pointwise limit of vn. Moreover, by (3.12),
Y

t,x,n
θ converges to Y

t,x
θ as n goes to infinity, for all stopping time θ valued in

[t, T ]. We then obtain the required relation by passing to the limit in (4.7). �
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REMARK 4.2. Assumption (H2′) [or (H1′) which is weaker than (H2′) in the
case h(u, e) = −u] ensures that the function v in (4.4) satisfies a linear growth
condition, and is in particular locally bounded. Indeed, from (3.11) and by passing
to the limit by Fatou’s lemma for v(t, x) = Y

t,x
t = limY

n,t,x
t , we have

sup
t∈[0,T ]

|v(t, x)|2 ≤ C

(
1 + E|g(X

t,x
T )|2 + E

[∫ T

t
|Xt,x

s |2 dt

]

+ E
[

sup
s∈[t,T ]

|ṽ(s,Xt,x
s )|2

])
.

The result follows from the standard estimate

E
[

sup
t≤s≤T

|Xt,x
s |2

]
≤ C(1 + |x|2)

and the linear growth conditions on g and ṽ.

The relation between the penalized BSDE (3.1) and the penalized IPDE (4.2) is
well known from the results of [2]. Although our framework does not fit exactly
into the one of [2], by mimicking closely the arguments in this paper and using
comparison theorem in [20], we obtain the following result.

PROPOSITION 4.2. The function vn in (4.5) is a continuous viscosity solution
to (3.1).

By adapting stability arguments for viscosity solutions to our context, we now
prove the viscosity property of the function v to (4.1). We shall assume that the
support of λ is the whole space E, that is,

∀e ∈ E ∃O open neighborhood of e, s.t. λ(O) > 0.(HE)

THEOREM 4.1. Under (H2′) [or (H1′) in the case: h(u, e) = −u], and (HE),
the function v in (4.4) is a viscosity solution to (4.1).

PROOF. From the results of the previous section, we know that v is the point-
wise limit of the nondecreasing sequence of functions (vn). By continuity of vn,
we then have (see, e.g., [1], page 91):

v = v∗ = lim
n→∞ inf∗vn

(4.8)
where lim

n→∞ inf∗vn(t, x) := lim inf
n→∞

t ′→t,x′→x

vn(t
′, x′),

v∗ = lim
n→∞ sup∗vn

(4.9)
where lim

n→∞ sup∗vn(t, x) := lim sup
n→∞

t ′→t,x′→x

vn(t
′, x′).
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(i) We first show the viscosity supersolution property for v = v∗. Let (t, x) be a
point in [0, T ) × R

d , and (p, q,M) ∈ J̄−v(t, x). By (4.8) and Lemma 6.1 in [6],
there exists sequences

nj → ∞, (pj , qj ,Mj ) ∈ J−vnj
(tj , xj ),

such that

(tj , xj , vnj
(tj , xj ),pj , qj ,Mj ) → (t, x, v(t, x),p, q,M).(4.10)

We also have by definition of v = v∗ and continuity of γ :

v
(
t, x + γ (x, e)

)≤ lim inf
j→∞ vnj

(
tj , xj + γ (xj , e)

) ∀e ∈ E.(4.11)

Moreover, from the viscosity supersolution property for vnj
, we have for all j

−pj − 〈b(xj ), qj 〉 − 1

2
tr(σσ ᵀ(xj )Mj) − f (xj , vnj

(tj , xj ), σ
ᵀ(xj )qj )

(4.12)
− nj

∫
E

h−(He[tj , xj , qj , vnj
] − vnj

(tj , xj ), e
)
λ(de) ≥ 0.

Let us check that the following inequality holds:

inf
e∈E

h
(

He[t, x, q, v] − v(t, x), e
)≥ 0.(4.13)

We argue by contradiction, and assume there exists some e0 ∈ E s.t.

h
(
v
(
t, x + γ (x, e0)

)+ c(x, v(t, x), σ ᵀ(x)q, e0) − v(t, x), e0
)
< 0.

Then, by continuity of σ , h, γ , c in all their variables, (4.10), (4.11) and the non-
increasing property of h, one may find some ε > 0 and some open neighborhood
O0 of e0 such that for all j large enough

h
(
vnj

(
tj , xj + γ (xj , e)

)+ c(xj , vnj
(tj , xj ), σ

ᵀ(xj )qj , e) − vnj
(tj , xj ), e

)≤ −ε

for all e ∈ O0. Since the support of λ is E, this implies∫
E

h−(He(tj , xj , qj , vnj
) − vnj

(tj , xj ), e
)
λ(de) ≥ ελ(O0) > 0.

By sending j to infinity into (4.12), we get the required contradiction. On the other
hand, by (4.12), we have

−pj − 〈b(xj ), qj 〉 − 1
2 tr(σσ ᵀ(xj )Mj ) − f (xj , vnj

(tj , xj ), σ
ᵀ(xj )qj ) ≥ 0,

so that by sending j to infinity,

−p − 〈b(x), q〉 − 1
2 tr(σσ ᵀ(x)M) − f (x, v(t, x), σ ᵀ(x)q) ≥ 0,

which proves, together with (4.13), that v is a viscosity supersolution to (4.1).
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(ii) We conclude by showing the viscosity subsolution property for v∗. Let (t, x)

a point in [0, T ) × R
d , and (p, q,M) ∈ J̄+v∗(t, x) such that

inf
e∈E

h
(

He[t, x, q, v∗] − v∗(t, x), e
)
> 0.(4.14)

From (4.9) and Lemma 6.1 in [6], there exist sequences

nj → ∞, (pj , qj ,Mj) ∈ J+vnj
(tj , xj ),

such that

(tj , xj , vnj
(tj , xj ),pj , qj ,Mj ) → (t, x, v∗(t, x),p, q,M).(4.15)

By continuity of the functions c, γ and the definition of v∗, we also have

lim sup
j→∞

He[tj , xj , qj , vnj
] ≤ He[t, x, q, v∗] ∀e ∈ E.(4.16)

Now, from the viscosity subsolution property for vnj
, we have for all j

−pj − 〈b(xj ), qj 〉 − 1

2
tr(σσ ᵀ(xj )Mj ) − f (xj , vnj

(tj , xj ), σ
ᵀ(xj )qj )

(4.17)
− nj

∫
E

h−(He[tj , xj , qj , vnj
] − vnj

(tj , xj ), e
)
λ(de) ≤ 0.

From (4.14) (which is uniform in e ∈ E), (4.15) and (4.16), continuity assumptions
on h, c and the nonincreasing property of h, we have for j large enough

h
(

He[tj , xj , qj , vnj
] − vnj

(tj , xj ), e
)
> 0 ∀e ∈ E,

and so ∫
E

h−(He[tj , xj , qj , vnj
] − vnj

(tj , xj ), e
)
λ(de) = 0.

Hence, by taking the limit as j goes to infinity, into (4.17), we conclude that

−p − 〈b(x), q〉 − 1
2 tr(σσ ᵀ(x)M) − f (x, v∗(t, x), σ ᵀ(x)q) ≤ 0,

which shows the viscosity subsolution property for v∗ to (4.1). �

We next turn to the boundary condition.

THEOREM 4.2. Under (H2′) [or (H1′) in the case: h(u, e) = −u] and (HE),
the function v in (4.4) is a viscosity solution to (4.3).

In order to deal with the possible jump at the terminal condition, we need the
following dynamic programming characterization of the minimal solution.
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LEMMA 4.1. Let (t, x) ∈ [0, T ) × R
d , and (Y t,x,Zt,x,Ut,x,Kt,x) be a mini-

mal solution to (2.10) and (2.11) on [t, T ] with Xs = Xt,x
s . Then for any stopping

time θ valued in [t, T ], (Y t,x
s ,Zt,x

s ,U t,x
s ,Kt,x

s )s∈[t,θ ] is a minimal solution to

Ys = v(θ,X
t,x
θ ) +

∫ θ

s
f (Xt,x

r , Yr ,Zr) dr

+ K
t,x
θ − Kt,x

s −
∫ θ

s
〈Zr, dWr〉(4.18)

−
∫ θ

s

∫
E

(
Ur(e) − c(X

t,x
r− , Yr−,Zr, e)

)
μ(dr, de)

with

h(Us(e), e) ≥ 0, dP ⊗ dt ⊗ λ(de), a.e. on � × [t, θ ] × E.(4.19)

PROOF. Notice first from (4.6) that (Y t,x
s ,Zt,x

s ,U t,x
s ,Kt,x

s )s∈[t,θ ] is solution
to (4.18) and (4.19). Let Y 1 be the minimal solution on [t, θ ] of (4.18) and (4.19)
(the existence of a minimal solution in the case of a random terminal time is ob-
tained by similar arguments to those used in the case of a deterministic termi-
nal time). For each ω ∈ �, there exists a minimal solution Y 2,ω on [θ(ω), T ] to

(2.10) and (2.11) with X = {Xθ(ω),X
t,x
θ(ω)(ω)

s , θ(ω) ≤ s ≤ T }. We then have from
the definition of v that Y

2,ω
θ(ω) = v(θ(ω),X

t,x
θ(ω)(ω)) for all ω ∈ �. By a measur-

able selection result (see, e.g., Theorem 82 in the Appendix to Chapter III in
[8]), there exists Y 2 ∈ S2 such that P(dω) a.s., we have Y 2

θ(ω)(ω) = Y
2,ω
θ(ω) =

v(θ(ω),X
t,x
θ(ω)(ω)) and Y 2

s (ω) = Y 2,ω
s (ω) for s ∈ [θ(ω), T ]. We then define the

process Ỹ by Ỹ |[t,θ ] = Y 1 and Ỹ |(θ,T ] = Y 2. Hence, Ỹ is a solution on [t, T ] to
(2.10) and (2.11), which implies Ỹ ≥ Y t,x . Moreover, since Y

t,x
θ = v(θ,X

t,x
θ ),

it follows that (Y t,x
s ,Zt,x

s ,U t,x
s ,Kt,x

s )s∈[t,θ ] is a solution on [t, θ ] to (4.18) and
(4.19). Hence, Y 1 ≤ Y t,x on [t, θ ], and therefore Y 1 = Y t,x on [t, θ ]. �

PROOF OF THEOREM 4.2. (i) We first prove the supersolution property of v∗
to (4.3). Let x ∈ R

d , and (p, q,M) ∈ J̄−v∗(T , x). By the same arguments as in
(4.13), we have

inf
e∈E

h
(

He[T ,x, q, v∗] − v∗(T , x), e
)≥ 0.(4.20)

Moreover, since the sequence of continuous functions (vn)n is nondecreasing and
vn(T , ·) = g, we deduce that v∗(T , ·) ≥ g, which combined with (4.20), proves the
viscosity supersolution property for v∗ to (4.3).

(ii) We next prove the subsolution property of v∗ to (4.3). We argue by contra-
diction and assume that there exist x0 ∈ R

n, ϕ ∈ C1,2([0, T ] × R
n) such that

0 = (v∗ − ϕ)(T , x0) = max
[0,T ]×Rd

(v∗ − ϕ)(4.21)
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and

min
[
ϕ(T , x0) − g(x0), inf

e∈E
h
(

He[T ,x0,Dxϕ(T , x0), v
∗] − ϕ(T , x0), e

)]
=: 2ε > 0.

By the upper semicontinuity of v∗, the continuity of ϕ and its derivative, and the
nonincreasing property of h, there exists an open neighbohood O of (T , x0) in
[0, T ] × R

d , and A, r > 0 such that for all (t, x,α,β) ∈ O × (−A,A) × B(0, r),
we have

ε ≤ min
[
ϕ(t, x) − α − g(x),

inf
e∈E

h
(
v∗(t, x + γ (x, e)

)
(4.22)

+ c
(
x,ϕ(t, x) − α,σ ᵀ(x)[Dxϕ(t, x) + β])

− [ϕ(t, x) − α], e)].
Let (tk, xk)k be a sequence in [0, T ) × R

d such that

(tk, xk) → (T , x0) and v(tk, xk) → v∗(T , x0).(4.23)

Fix then δ > 0 such that for k large enough: [tk, T ] × B(xk, δ) ⊂ O, and let us
define the functions ϕk by

ϕk(t, x) = ϕ(t, x) + ζ
|x − xk|2

δ2 + Ckφ

(
x − xk

δ

)
+ √

T − t,

where 0 < ζ < A ∧ δr , φ ∈ C2(Rd) satisfies φ|B̄(0,1) ≡ 0, φ|B̄(0,1)c > 0 and

lim|x|→∞ φ(x)
1+|x| = ∞, and Ck > 0 is a constant to be chosen below. By (4.21),

we notice that

(v∗ − ϕk)(t, x) ≤ −ζ for (t, x) ∈ [tk, T ] × ∂B(xk, δ)

and from the conditions on φ, we can choose Ck (large enough) so that

(v∗ − ϕk)(t, x) ≤ −ζ

2
for (t, x) ∈ [tk, T ] × B(xk, δ)

c.(4.24)

Since ∂
∂t

(
√

T − t) → −∞ as t ↗ T , we have for k large enough

−∂ϕk

∂t
− Lϕk(t, x) − f

(
x,ϕk(t, x) − α,σ ᵀ(x)Dxϕk(t, x)

)≥ 0
(4.25)

for (t, x,α) ∈ [tk, T ) × B(xk, δ) × (−A + ζ,A).

Fix now α∗ ∈ (0,A ∧ ζ
2 ∧ ε), and let us denote τk = inf{s ≥ tk;Xk

s �= Xk
s−}, θk =

inf{s ≥ tk;Xk
s /∈ B(xk, δ)} ∧ τk ∧ T where Xk = Xtk,xk . Let us then define the
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quadruples (Y k,Zk,Uk,Kk) on [tk, θk] by

Y k
s = [ϕk(s,X

k
s ) − α∗]1{s∈[tk,θk)} + v(θk,X

k
θk

)1{s=θk},

Zk
s = σ ᵀ(Xk

s−)Dxϕk(s,X
k
s−),

Uk
s (e) = v∗(s,Xk

s− + γ (Xk
s−, e)

)
+ c
(
Xk

s−, ϕk(s,X
k
s−) − α∗, σ ᵀ(Xk

s−)Dxϕk(s,X
k
s−)
)

− [ϕk(s,X
k
s−) − α∗]

and

Kk
s = −

∫ s

tk

{
∂ϕk

∂t
(r,Xk

r ) + Lϕk(r,X
k
r )

+ f
(
Xk

r ,ϕk(r,X
k
r ) − α∗, σ ᵀ(Xk

r )Dxϕk(r,X
k
r )
)}

dr

−
∫ s

tk

∫
E
(ϕk − α∗ − v∗)

(
r,Xk

r− + γ (Xk
r−, e)

)
μ(dr, de)

+ (ϕk(θk,X
k
θk

) − α∗ − v(θk,X
k
θk

)
)
1{s=θk}.

By construction and from Itô’s formula on ϕk(s,X
k
s ), we see that (Y k,Zk,Uk,Kk)

satisfies (4.18) on [tk, θk]. From (4.22), it is clear that the process Uk satisfies the
constraint

h(Uk
t (e), e) ≥ 0, dP ⊗ dt ⊗ λ(de), a.e. on � × [tk, θk] × E.

Observe also that

ϕk(θk,X
k
θk

) − α∗ ≥ v(θk,X
k
θk

).(4.26)

Indeed, we have two cases:

• (θk,X
k
θk

) ∈ [tk, T ] × B(xk, δ)
c: since α∗ <

ζ
2 , we have by (4.24),

ϕk(θk,X
k
θk

) − α∗ ≥ v∗(θk,X
k
θk

) ≥ v(θk,X
k
θk

).

• (θk,X
k
θk

) ∈ [tk, T ] × B(xk, δ) ⊂ O: since α∗ ≤ ε, we have by (4.22)

ϕk(θk,X
k
θk

) − α∗ ≥ ϕ(θk,X
k
θk

) − ε ≥ g(Xk
T ) = v(θk,X

k
θk

).

Let us then check that Kk is nondecreasing on [tk, θk]. First, on [tk, θk), we notice
that Kk consists only in the Lebesgue term dr , and so is nondecreasing by (4.25).
Moreover, we see that Kk

θk
≥ Kk

θ−
k

. Indeed, there are two possible cases:

• θk < τk : then Kk
θk

= Kk

θ−
k

+ ϕk(θk,X
k
θk

) − α∗ − v(θk,X
k
θk

), and by (4.26), we

have Kk
θk

≥ Kk

θ−
k

.
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• θk = τk : then Kk
θk

= Kk

θ−
k

− (ϕk(θk,X
k
θk

) − α∗ − v∗(θk,X
k
θk

)) + (ϕk(θk,X
k
θk

) −
α∗ − v(θk,X

k
θk

)), and so Kk
θk

≥ Kk

θ−
k

.

Therefore, the quadruple (Y k,Zk,Uk,Kk) is a solution on [tk, θk] to (4.18) and
(4.19), and by Lemma 4.1, we deduce that for all k,

ϕk(tk, xk) − α∗ = ϕ(tk, xk) +√T − tk − α∗ ≥ v(tk, xk).

We finally obtain a contradiction by sending k to ∞. �

4.2. Uniqueness result. This section is devoted to a uniqueness result for the
QVI (4.1)–(4.3). We need to impose some additional assumptions.

(H3) There exists a nonnegative function � ∈ C 2(Rd) and a positive constant ρ

satisfying:

(i) L� + f (·,�,σ ᵀD�) ≤ ρ�,
(ii) infe∈E h(He�(x) − �(x), e) > 0 for all x ∈ R

d ,
(iii) �(x) ≥ g(x) for all x ∈ R

d ,
(iv) lim|x|→∞ �(x)

1+|x| = ∞.

Assumption (H3) is similar to the one made in [22] or [4], and essentially
ensures the existence of a suitable strict supersolution to (4.1). We shall give in
Section 5 some sufficient conditions for (H3). This strict supersolution allows to
control the nonlocal term in QVI (4.1)–(4.3) via some convex small perturbation.
Thus, to deal with the dependence of f , c on y, z, we also require some convexity
conditions.

(H4) (i) The function f (x, ·, ·) is convex in (y, z) ∈ R × Rd for all x ∈ Rd .

(ii) The function h(·, e) is concave in u ∈ R a for all e ∈ E.
(iii) The function c(x, ·, ·, e) is convex in (y, z) ∈ R × R

d for all (x, e) ∈
R

d × E.
(iv) The function c(x, ·, z, e) is decreasing in y ∈ R for all (x, z, e) ∈ R

d ×
R

d × E.

THEOREM 4.3. Assume that (H3) and (H4) hold, and let U (resp., V ) be a lsc
(resp., usc) viscosity supersolution (resp., subsolution) to (4.1)–(4.3) satisfying a
linear growth condition

sup
x∈Rd

|U(t, x)| + |V (t, x)|
1 + |x| < ∞ ∀t ∈ [0, T ].

Then, U ≥ V on [0, T ] × R
d . Consequently, under (H2′) [or (H1′) in the case:

h(u, e) = −u], (H3), (H4) and (HE), the function v in (4.4) is the unique viscosity
solution to (4.1)–(4.3) satisfying a linear growth condition, and v is continuous on
[0, T ) × R

d .
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PROOF. Comparison principle. As usual, we shall argue by contradiction by
assuming that

sup
[0,T ]×Rd

(V − U) > 0.(4.27)

1. For some λ > 0 to be chosen below, let

Ũ (t, x) = e(ρ+λ)tU(t, x), Ṽ (t, x) = e(ρ+λ)tV (t, x)

and

�̃(t, x) = e(ρ+λ)t�(x).

A straightforward derivation shows that Ũ (resp., Ṽ ) is a viscosity supersolution
(resp., subsolution) to

min
[
ρw − ∂w

∂t
− Lw − f̃ (·,w,σ ᵀDxw), inf

e∈E
h̃(·, H̃ew − w,e)

]
= 0

(4.28)
on [0, T ) × R

d

min
[
w(T −, ·) − g̃, inf

e∈E
h̃
(
T , H̃ew(T −, ·) − w(T −, ·), e)]= 0

(4.29)
on R

d,

where

f̃ (t, x, r, q) = e(ρ+λ)tf
(
x, re−(ρ+λ)t , qe−(ρ+λ)t )− λr,

h̃(t, r, e) = e(ρ+λ)th
(
e−(ρ+λ)t r, e

)
, g̃(x) = e(ρ+λ)T g(x)

and

H̃w(t, x) = w
(
t, x + γ (x, e)

)+ c̃(x,w(t, x), σ ᵀ(x)Dxw(t, x), e)

with

c̃(t, x, r, q, e) = e(ρ+λ)t c
(
x, e−(ρ+λ)t r, e−(ρ+λ)tq, e

)
for all (t, x, r, q, e) ∈ [0, T ] × R

d × R × R
d × E. Since f is Lipschitz, we can

choose λ large enough so that f̃ is nonincreasing in r . Denote W̃ = (1−μ)Ũ +μ�̃

with μ > 0. By (4.27) and the growth condition (H3)(iv) of �, we have for μ small
enough

sup
[0,T ]×Rd

(Ṽ − W̃ ) = (Ṽ − W̃ )(t0, x0) > 0(4.30)

for some (t0, x0) ∈ [0, T ] × R
d . Moreover, from the viscosity supersolution prop-

erty (4.28) and (4.29) of Ũ , and the conditions (H3)(i), (ii), (H4)(i), (ii), (iii), we
see that W̃ is a viscosity supersolution to

ρw − ∂w

∂t
− Lw − f̃ (·,w,σ ᵀDxw) ≥ 0 on [0, T ) × R

d,(4.31)

inf
e∈E

h̃(·, H̃ew − w,e) ≥ μq̃ on [0, T ] × R
d,(4.32)
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where q̃(t, x) = e(ρ+λ)t infe∈E h(He�(x)−�(x), e) is positive on [0, T ]× R
d by

(H3)(ii).
2. Denote for all (t, x, y) ∈ [0, T ] × R

d × R
d and n ≥ 1

�n(t, x, y) = Ṽ (t, x) − W̃ (t, y) − ϕn(t, x, y)

with

ϕn(t, x, y) = n|x − y|2 + |x − x0|4 + |t − t0|2.
By the growth assumption on U and V and (H3)(iii), for all n, there exists
(tn, xn, yn) ∈ [0, T ]×R

d ×R
d attaining the maximum of �n on [0, T ]×R

d ×R
d .

By standard arguments, we have

(tn, xn, yn) → (t0, x0, x0),(4.33)

n|xn − yn|2 → 0,(4.34)

Ṽ (tn, xn) − W̃ (tn, yn) → Ṽ (t0, x0) − W̃ (t0, x0).(4.35)

3. We now show that for n large enough

inf
e∈E

h̃
(
tn, H̃e[tn, xn,Dxϕn(tn, xn, yn), Ṽ ] − Ṽ (tn, xn), e

)
> 0.(4.36)

On the contrary, up to a subsequence, we would have for all n,

inf
e∈E

h̃
(
tn, H̃e[tn, xn,Dxϕn(tn, xn, yn), Ṽ ] − Ṽ (tn, xn), e

)≤ 0

and so by uppersemicontinuity of Ṽ , compactness of E, there would exist a se-
quence (en) in E such that

h̃
(
tn, H̃en[tn, xn,Dxϕn(tn, xn, yn), Ṽ ] − Ṽ (tn, xn), en

)≤ 0.

Moreover, by the viscosity supersolution property of W̃ to (4.32), we have

h̃
(
tn, H̃en[tn, yn,−Dyϕn(tn, xn, yn), W̃ ] − W̃ (tn, yn), en

)≥ μq̃(tn, yn).

From the nonincreasing and the Lipschitz property of h(·, e), we deduce from the
two previous inequalities that there exists a positive constant η such that

H̃en[tn, yn,−Dyϕn(tn, xn, yn), W̃ ] − W̃ (tn, yn) + ηq̃(tn, yn)

≤ H̃en[tn, xn,Dxϕn(tn, xn, yn), Ṽ ] − Ṽ (tn, xn),

which is rewritten as

Ṽ (tn, xn) − W̃ (tn, yn) + ηq̃(tn, yn)
(4.37)

≤ Ṽ
(
tn, xn + γ (xn, en)

)− W̃
(
tn, yn + γ (yn, en)

)+ 	Cn,

where

	Cn = c̃(tn, xn, Ṽ (tn, xn), σ
ᵀ(xn)Dxϕn(tn, xn, yn), en)

− c̃(tn, yn, W̃ (tn, yn),−σ ᵀ(yn)Dyϕn(tn, xn, yn)).
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Now, we write 	Cn = 	C1
n + 	C2

n + 	C3
n , with

	C1
n = c̃(tn, xn, Ṽ (tn, xn), σ

ᵀ(xn)Dxϕn(tn, xn, yn), en)

− c̃(tn, xn, W̃ (tn, yn), σ
ᵀ(xn)Dxϕn(tn, xn, yn), en),

	C2
n = c̃(tn, xn, W̃ (tn, yn), σ

ᵀ(xn)Dxϕn(tn, xn, yn), en)

− c̃(tn, xn, W̃ (tn, yn),−σ ᵀ(yn)Dyϕn(tn, xn, yn), en),

	C3
n = c̃(tn, xn, W̃ (tn, yn),−σ ᵀ(yn)Dyϕn(tn, xn, yn), en)

− c̃(tn, yn, W̃ (tn, yn),−σ ᵀ(yn)Dyϕn(tn, xn, yn), en).

We have Ṽ (tn, xn) − W̃ (tn, yn) → (Ṽ − W̃ )(t0, x0) > 0 by (4.30) and (4.35).
Hence, for n large enough, Ṽ (tn, xn) ≥ W̃ (tn, yn), and so from the nonincreas-
ing condition (H4)(iv) of c, we have 	C1

n ≤ 0. Since σ ᵀ(xn)Dxϕn(tn, xn, yn) +
σ ᵀ(yn)Dyϕn(tn, xn, yn) → 0 by the Lipschitz condition on σ and (4.34), we de-
duce with the Lipschitz condition on c that lim supn→∞ 	C2

n ≤ 0. By (4.33) and
continuity of c, we have limn→∞ 	C3

n = 0. Therefore, we obtain

lim sup
n→∞

	Cn ≤ 0.

Up to a subsequence, we may assume that (en) converges to e0 in E. Hence, by
sending n to infinity into (4.37), it follows with (4.35) and the upper (resp., lower)-
semicontinuity of Ṽ (resp., W̃ ) that

(Ṽ − W̃ )
(
t0, x0 + γ (x0, e0), x0 + γ (x0, e0)

) ≥ (Ṽ − W̃ )(t0, x0) + ηq̃(t0, x0)

> (Ṽ − W̃ )(t0, x0),

a contradiction with (4.30).
4. Let us check that, up to a subsequence, tn < T for all n. On the contrary,

tn = t0 = T for n large enough, and from (4.36), and the viscosity subsolution
property of Ṽ to (4.29), we would get

Ṽ (T , xn) ≤ g̃(xn).

On the other hand, by the viscosity supersolution property of Ũ to (4.29) and
(H3)(iii), we have W̃ (T , yn) ≥ g̃(yn), and so

Ṽ (T , xn) − W̃ (T , yn) ≤ g̃(xn) − g̃(yn).

By sending n to infinity, and from continuity of g̃, this would imply (Ṽ −
W̃ )(t0, x0) ≤ 0, a contradiction with (4.30).

5. We may then apply Ishii’s lemma (see Theorem 6.1 in [12]) to (tn, xn, yn) ∈
[0, T ) × R

d × R
d that attains the maximum of �n, for all n ≥ 1: there exist

(pn

Ṽ
, qn

Ṽ
,Mn) ∈ J̄ 2,+Ṽ (tn, xn) and (pn

W̃
, qn

W̃
,Nn) ∈ J̄ 2,−W̃ (tn, yn) such that

pn

Ṽ
− pn

W̃
= ∂tϕn(tn, xn, yn) = 2(tn − t0),

qn

Ṽ
= Dxϕn(tn, xn, yn), qn

W̃
= −Dyϕn(tn, xn, yn)
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and (
Mn 0
0 −Nn

)
≤ An + 1

2n
A2

n,(4.38)

where An = D2
(x,y)ϕn(tn, xn, yn). From the viscosity supersolution property of W̃

to (4.31), we have

ρW̃(tn, yn) − pn

W̃
+ 〈b(yn),Dyϕ(tn, xn, yn)〉 − 1

2 tr(σ (yn)σ
ᵀ(yn)Nn)

− f̃ (tn, yn, W̃ (tn, yn),−σ ᵀ(yn)Dyϕ(tn, xn, yn)) ≥ 0.

On the other hand, from (4.36) and the viscosity subsolution property of Ṽ to
(4.28), we have

ρṼ (tn, xn) − pn

Ṽ
− 〈b(xn),Dxϕ(tn, xn, yn)〉 − 1

2 tr(σ (xn)σ
ᵀ(xn)Mn)

− f̃ (tn, xn, Ṽ (tn, xn), σ
ᵀ(xn)Dxϕ(tn, xn, yn)) ≤ 0.

By subtracting the two previous inequalities, we obtain

ρ
(
Ṽ (tn, xn) − W̃ (tn, yn)

)
≤ pn

Ṽ
− pn

W̃
+ 	Fn

(4.39)
+ 〈b(xn),Dxϕn(tn, xn, yn)〉 + 〈b(yn),Dyϕn(tn, xn, yn)〉
+ 1

2 tr
(
σ(xn)σ

ᵀ(xn)Mn − σ(yn)σ
ᵀ(yn)Nn

)
,

where

	Fn = f̃ (tn, xn, Ṽ (tn, xn), σ
ᵀ(xn)Dxϕn(tn, xn, yn))

− f̃ (tn, yn, W̃ (tn, yn),−σ ᵀ(yn)Dyϕn(tn, xn, yn)).

From (4.33), we have pn

Ṽ
− pn

W̃
→ 0 as n goes to infinity. From the Lipschitz

property of b, and (4.34), we have

lim
n→∞

(〈b(xn),Dxϕn(tn, xn, yn)〉 + 〈b(yn),Dyϕn(tn, xn, yn)
)= 0.

As usual, from (4.38), (4.33), (4.34) and the Lipschitz property of σ , we have

lim sup
n→∞

tr
(
σ(xn)σ

ᵀ(xn)Mn − σ(yn)σ
ᵀ(yn)Nn

)≤ 0.

Moreover, by the same arguments as for c̃, using the nonincreasing property of f̃

in its third variable, and the Lipschitz property of f̃ , we have

lim sup
n→∞

	Fn ≤ 0.

Therefore, by sending n → ∞ into (4.39), we conclude with (4.35) that ρ(Ṽ −
W̃ )(t0, x0) ≤ 0, a contradiction with (4.30).

Uniqueness for v. The uniqueness result is then a direct consequence of the
comparison principle, and the continuity of v on [0, T )× R

d follows from the fact
that in this case v∗ = v∗. �
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REMARK 4.3. As a byproduct of the comparison principle in Theorem 4.3, we
get the continuity of the value function v on [0, T )×R

d . Since the jump-diffusion
process X is quasi-left continuous, then so is the minimal solution Yt = v(t,Xt )

to the BSDE with constrained jumps, and the penalized approximation Yn
t =

vn(t,Xt). This implies that the predictable projections pY and pY n, respectively,
of Y and Yn, are equal to pYt = Yt− and pY n

t = Yn
t− . Therefore, Yt− = limn→∞ Yn

t− .
From the weak version of Dini’s theorem (see [9], page 202) this yields the uni-
form convergence of Yn on [0, T ], that is, limn→∞ supt∈[0,T ] |Yn

t − Yt | = 0, and
so by the dominated convergence theorem, the convergence of Yn to Y in S2:

lim
n→∞‖Yn − Y‖S2 = 0.(4.40)

Then, by applying Itô’s formula to t �→ E|Yt − Yn
t | a in the proof of Theorem 3.1,

we get from the convergence of Yn to Y in S2 that (Zn,V n) converges to (Z,V )

in L2(W) × L2(μ̃) and that K is continuous.

5. Some sufficient conditions for (H2′) and (H3). In this section, we provide
various explicit conditions on the coefficients model, which ensure that the general
assumptions (H2′) and (H3) hold true.

5.1. Existence of the solution to BSDE with jump constraint. We first consider
a case where we have upper bounds for the coefficients and h(u, e) = −u.

PROPOSITION 5.1. Suppose that h(u, e) = −u, and assume that there exist
real constants C1,C2 and η ∈ R

d such that

g(x) ≤ C1 + 〈η, x〉,
(5.1)

c(x, y, z, e) + 〈η, γ (x, e)〉 ≤ 0 and f (x, y, z) + 〈η, b(x)〉 ≤ C2

for all (x, y, z, e) ∈ R
d × R × R

d × E. Then (H2′) holds true.

PROOF. Let us define a quadruple (Ỹ , Z̃, K̃, Ũ) by: Ỹt = C1 + C2(T − t) +
〈η,Xt 〉 for t < T , ỸT = g(XT ), Z̃t = σ(Xt−).η, Ũt (e) = 0 and

K̃t =
∫ t

0
{C2 − η · b(Xs) − f (Xs, Ỹs, Z̃s)}ds

−
∫ t

0

∫
E
{c(Xs−, Ỹs−, Z̃s, e) + 〈η, γ (Xs−, e)〉}μ(ds, de), t < T ,

K̃T = K̃T − + C1 + 〈η,XT 〉 − g(XT ).

From (5.1), the process K̃ is clearly nondecreasing. Moreover, from the dynamics
of X, and by construction, we see that the quadruple (Ỹ , Z̃, K̃, Ũ) satisfies (2.10)–
(2.13) and the function ṽ(t, x) = C1 + C2(T − t) + η.x clearly satisfies a linear
growth condition. �
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We next give an example inspired by [4] where the jumps of X vanish as X goes
out of a ball centered in zero in the case of impulse control.

PROPOSITION 5.2. Suppose that h(u, e) = −u, f, c does not depend on y, z,
and assume that c ≤ 0, γ = 0 on {x ∈ R

d : |x| ≥ C1} × E for some C1 > 0. Then,
(H2′) holds true.

PROOF. We consider the function v

v(t, x) = sup
ν∈V

Eν

[
g(X

t,x
T ) +

∫ T

t
f (Xt,x

s ) ds +
∫ T

t

∫
E

c(X
t,x
s− , e)μ(ds, de)

]
.

Since c ≤ 0, and the choice of ν = 1 corresponds to the probability measure P1 =
P, we see that v̂ ≤ v ≤ v̄ where

v̂(t, x) = E
[
g(X

t,x
T ) +

∫ T

t
f (Xt,x

s ) ds +
∫ T

t

∫
E

c(X
t,x
s− , e)μ(ds, de)

]
,

v̄(t, x) = sup
ν∈V

Eν

[
g(X

t,x
T ) +

∫ T

t
f (Xt,x

s ) ds

]
.

The function v̂ clearly satisfies a linear growth condition by the linear growth con-
ditions on g,f, c and the standard estimate for X. Moreover, under the assump-
tions on the jump coefficient γ , it is shown in [4] that v̄ satisfies a linear growth
condition. Therefore, v̂ also satisfies a linear growth condition.

Let us now define the process Yt = v(t,Xt ), which is then equal to

Yt = ess sup
ν∈V

Eν

[
g(XT ) +

∫ T

t
f (Xs) ds +

∫ T

t

∫
E

c(Xs−, e)μ(ds, de)
∣∣∣Ft

]
,

and lies in S2 from the linear growth condition, and the estimate (2.2) for X. From
Theorem 2.1, we then know that there exists (Z,U,K) ∈ L2(W) × L2(μ̃) × A2

such that (Y,Z,U,K) is the minimal solution to (2.10)–(2.13), and so (H2′) is
satisfied. �

We finally consider a case for general constraint function h.

PROPOSITION 5.3. Assume that there exists a Lipschitz function w ∈ C 2(Rd)

satisfying a linear growth condition, supersolution to (4.3), and such that

〈b,Dw〉 + 1
2 tr(σσ ᵀD2w) + f (·,w,σ ᵀDw) ≤ C on R

d

for some constant C. Then (H2′) holds true.

PROOF. Let us define a quadruple (Ỹ , Z̃, Ũ , K̃) by

Ỹt = w(Xt) + C(T − t), t < T , ỸT = g(XT ),
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Z̃t = σ ᵀ(Xt−)Dw(Xt−), Ũt (e) = w(Xt− + γ (Xt−, e)) + c(Xt−, Ỹt−, Z̃t , e) −
w(Xt−), and

K̃t =
∫ t

0

[
C − 〈b(Xs),Dw(Xs)〉

− 1

2
tr{σ(Xs)σ

ᵀ(Xs)D
2w(Xs)} − f (Xs, Ỹs, Z̃s)

]
ds, t < T ,

K̃T = K̃T − + w(XT ) − g(XT ).

From the conditions on w, we see that (Ỹ , Z̃, K̃, Ũ) lies in S2 × L2(W) ×
L2(μ̃) × A2. Moreover, by Itô’s formula to w(Xt) and the supersolution prop-
erty of w to (4.3), we conclude that (Ỹ , Z̃, K̃, Ũ) is solution to (2.10) and (2.11),
and ṽ(t, x) = w(t, x) + C(T − t) satisfies a linear growth condition. �

5.2. The strict supersolution condition (H3). We give a sufficient condition
for (H3) in the usual case where f and c do not depend neither on y nor on z.

PROPOSITION 5.4. Consider the case where h is given by

h(u, e) = −u.

Assume that there exists a constant α > 0 such that

−α < |x + γ (x, e)|2 − |x|2 ∀(x, e) ∈ R
d × E,

β := inf
(x,e)∈Rd×E

−c(x, e)

|x + γ (x, e)|2 − |x|2 + α
> 0.

Then assumption (H3) holds true.

PROOF. We set �(x) := β|x|2 + ζ with ζ large enough so that � ≥ g, that is,
(H3)(iii) is satisfied. A straightforward computation shows that

inf
e∈E

h
(

He�(x) − �(x), e
)≥ αβ > 0

and hence (H3)(ii) is satisfied. Clearly, (H3)(iv) holds as well. Finally, it follows
from the linear growth assumption on b and σ that (H3)(i) holds for a sufficiently
large parameter ρ. �

Acknowledgments. We would like to thank both referees for useful com-
ments.



BSDES WITH CONSTRAINED JUMPS AND QVIS 839

REFERENCES

[1] BARLES, G. (1994). Solutions de Viscosité des équations de Hamilton–Jacobi. Mathématiques
et Applications 17. Springer, Paris. MR1613876

[2] BARLES, G., BUCKDAHN, R. and PARDOUX, E. (1997). Backward stochastic differential
equations and integral-partial differential equations. Stochastics Stochastics Rep. 60 57–
83. MR1436432

[3] BENSOUSSAN, A. and LIONS, J.-L. (1984). Impulse Control and Quasivariational Inequali-
ties. Gauthier-Villars, Montrouge. MR756234

[4] BOUCHARD, B. (2009). A stochastic target formulation for optimal switching problems in
finite horizon. Stochastics 81 171–197.

[5] BUCKDAHN, R. and HU, Y. (1998). Hedging contingent claims for a large investor in an in-
complete market. Adv. in Appl. Probab. 30 239–255. MR1618845

[6] CRANDALL, M. G., ISHII, H. and LIONS, P.-L. (1992). User’s guide to viscosity solutions
of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.) 27 1–67.
MR1118699
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