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COVERAGE PROCESSES ON SPHERES AND CONDITION
NUMBERS FOR LINEAR PROGRAMMING
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University of Paderborn, City University of Hong Kong and Oxford University

This paper has two agendas. Firstly, we exhibit new results for coverage
processes. Let p(n,m,α) be the probability that n spherical caps of angular
radius α in Sm do not cover the whole sphere Sm. We give an exact formula
for p(n,m,α) in the case α ∈ [π/2,π ] and an upper bound for p(n,m,α) in
the case α ∈ [0,π/2] which tends to p(n,m,π/2) when α → π/2. In the case
α ∈ [0,π/2] this yields upper bounds for the expected number of spherical
caps of radius α that are needed to cover Sm.

Secondly, we study the condition number C (A) of the linear program-
ming feasibility problem ∃x ∈ R

m+1Ax ≤ 0, x �= 0 where A ∈ R
n×(m+1) is

randomly chosen according to the standard normal distribution. We exactly
determine the distribution of C (A) conditioned to A being feasible and pro-
vide an upper bound on the distribution function in the infeasible case. Using
these results, we show that E(lnC (A)) ≤ 2 ln(m + 1) + 3.31 for all n > m,
the sharpest bound for this expectancy as of today. Both agendas are related
through a result which translates between coverage and condition.

1. Introduction.

1.1. Coverage processes on spheres.

One of the oldest problems in the theory of coverage processes is that of calculating
the chance that a given region is completely covered by a sequence of random sets. Un-
fortunately there is only a small number of useful circumstances where this probability
may be calculated explicitly. (Hall [13], Section 1.11.)

In 1897 Whitworth [30] considered the following problem. Assume we place n

arcs of angular radius α in the unit circle S1, whose centers are independently and
randomly chosen from the uniform distribution in S1. What is the probability that
these arcs do not cover S1?

Whitworth’s problem is arguably at the origin of the theory of coverage
processes. It was not until 1939 that an answer to the problem was given when
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Stevens [28] showed that the probability in question is
k∑

j=1

(−1)j+1
(

n

j

)(
1 − jα

π

)n−1

,(1)

where k = �π
α
�. Extensions of this result to other quantities related with random

arcs in S1 are given in [25]. Extensions to random arcs with different lengths are
given in [9, 16] and in [26] where an exact formula for the probability above is
given for randomly placed arcs having random independent size.

The extension of the original problem in S1 to the two-dimensional unit sphere
S2 was considered by Moran and Fazekas de St. Groth [20]. Let p(n,α) denote
the probability that n spherical caps of angular radius α, and centers randomly and
independently chosen from the uniform distribution on S2 do not cover S2. Moran
and Fazekas de St. Groth exhibited an approximation of p(n,α), and numerically
estimated this quantity for α = 53◦26′ (a value arising in a biological problem
motivating their research). Shortly thereafter, Gilbert [10] showed the bounds

(1 − λ)n ≤ p(n,α)≤ 4
3n(n− 1)λ(1 − λ)n−1,(2)

where λ = (sin α
2 )2 = 1

2(1 − cosα) is the fraction of the surface of the sphere
covered by each cap. In addition, Gilbert conjectured that, for n → ∞, p(n,α)

satisfies the asymptotic equivalence

p(n,α)≈ n(n− 1)λ2(1 − λ2)n−1.

This conjecture was proven by Miles [18] who also found an explicit expression
(cf. [17]) for p(n,α) if α ∈ [π/2, π], namely

p(n,α) =
(

n

2

)∫ π−α

0
sin2(n−2)(θ/2) sin(2θ) dθ

(3)

+ 3

4

(
n

3

)∫ π−α

0
sin2(n−3)(θ/2) sin3 θ dθ.

More on the coverage problem for S1 and S2 can be found in [27]. Extensions of
these results to the unit sphere Sm in R

m+1 for m > 2 are scarce. Let p(n,m,α)

be the probability that n spherical caps of angular radius α in Sm do not cover Sm.
That is, for α ∈ [0, π], and a1, . . . , an randomly and independently chosen points
in Sm from the uniform distribution, define

p(n,m,α) := Prob

{
Sm �=

n⋃
i=1

cap(ai, α)

}
,

where cap(a,α) denotes the spherical cap of angular radius α around a. It can
easily be seen that for n≤m+ 1 and α ≤ π/2 we have p(n,m,α)= 1. Moreover,
Wendel [29] has shown that

p(n,m,π/2)= 21−n
m∑

k=0

(
n− 1

k

)
.(4)
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Furthermore, a result by Janson [15] gives an asymptotic estimate of p(n,m,α)

for α → 0. Actually, Janson’s article covers a situation much more general than
fixed radius caps on a sphere and it was preceded by a paper by Hall [12] where
bounds for the coverage probability were shown for the case of random spheres on
a torus.

A goal of this paper is to extend some of the known results for S1 and S2 to
higher dimensions. To describe our results we first introduce some notation. We
denote by

Om := volm(Sm)= 2π(m+1)/2

�((m+ 1)/2)

the m-dimensional volume of the sphere Sm. Also, for t ∈ [0,1], denote the relative
volume of a cap of radius arccos t ∈ [0, π/2] in Sm by λm(t). It is well known that

λm(t)= Om−1

Om

∫ arccos t

0
(sin θ)m−1 dθ.(5)

Our results are formulated in terms of a family of numbers C(m,k) defined for
1 ≤ k ≤ m. These numbers are defined in Section 4.1 and studied in Section 5
where we give bounds on C(m,k) and derive a closed form for k ∈ {1,m− 1,m}.
Furthermore, we will show that, for each m, the C(m,k) can be obtained as the
solution of a system of linear equations which easily allows us to produce a table
for their values (cf. Table 1).

A main result in this paper is the following.

THEOREM 1.1. Let n > m ≥ 1, α ∈ [0, π], and ε = cos(π − α). For α ∈
[π2 , π]

p(n,m,α)=
m∑

k=1

(
n

k + 1

)
C(m,k)

∫ 1

ε
tm−k(1 − t2)km/2−1λn−k−1

m (t) dt

and for α ∈ [0, π
2 ) we have

p(n,m,α) ≤
∑m

k=0
(n−1

k

)
2n−1

+
(

n

m+ 1

)
C(m,m)

∫ |ε|
0

(1 − t2)(m
2−2)/2(

1 − λm(t)
)n−m−1

dt.

We remark that this formula, for α ∈ [π/2, π] and m = 2, is identical to the
one given by Miles (3). Also, for α ∈ [0, π/2] and m = 1, our upper bound for
p(n,1, α) coincides with the first term in Steven’s formula (1) (cf. Remark 4.9
below).

We may use Theorem 1.1, together with the bound on the C(m,k), to derive
bounds for the expected value of N(m,α), the number of random caps of radius
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TABLE 1
A few values for C(m,k)

k \ m 1 2 3 4 5 6

1 2
π 2 5.0930 12 27.1639 60

2 3/4 3.9317 477/32 49.5841 78795/512
3 0.6366 39/8 25.1644 897345/8192
4 15/32 4.8525 132225/4096
5 0.3183 4335/1024
6 105/512

α needed to cover Sm. The asymptotic behavior of N(m,α) for α → 0 has been
studied by Janson [15]. Otherwise, we have not found any bound for E(N(m,α))

in the literature.

THEOREM 1.2. For α ∈ (0, π
2 ] we have

E(N(m,α))≤ 3m+ 2 +√
m(m+ 1) cos(α)λm(cos(α))−2

(
1

2λm(cos(α))

)m

.

1.2. Polyhedral conic systems and their condition. Among the number of in-
terrelated problems collectively known as linear programming, we consider the
following two.

Feasibility of polyhedral conic systems (FPCS). Given a matrix A ∈ R
n×(m+1),

decide whether there exists a nonzero x ∈ R
m+1 such that Ax ≤ 0 (component-

wise).

Computation of points in polyhedral cones (CPPC). Given a matrix A ∈
R

n×(m+1) such that S = {x ∈ R
m+1 |Ax < 0} �= ∅, find x ∈S .

By scaling we may assume without loss of generality that the rows a1, . . . , an

of A have Euclidean norm one and interpret the matrix A as a point in (Sm)n. We
say that the elements of the set

Fn,m := {A ∈ (Sm)n | ∃x ∈ Sm〈a1, x〉 ≤ 0, . . . , 〈an, x〉 ≤ 0},(6)

are feasible. Similarly, we say that the elements in

F ◦
n,m := {A ∈ (Sm)n | ∃x ∈ Sm〈a1, x〉< 0, . . . , 〈an, x〉< 0}(7)

are strictly feasible. Elements in (Sm)n \ Fn,m are called infeasible. Finally, we
call ill-posed the elements in �n,m := Fn,m \ F ◦

n,m.
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For several iterative algorithms solving the two problems above, it has been
observed that the number of iterations required by an instance A increases with
the quantity

C (A)= 1

dist(A,�n,m)
,

(here dist is the distance with respect to an appropriate metric; for the precise
definition we refer to Section 2.1). This quantity, known as the GCC-condition
number of A [3, 11], occurs together with the dimensions n and m in the theoretical
analysis (for both complexity and accuracy) of the algorithms mentioned above.
For example, a primal-dual interior-point method is used in [6] to solve (FPCS)
within

O
(√

m+ n
(
ln(m+ n)+ lnC (A)

))
(8)

iterations. The Agmon–Motzkin–Schönberg relaxation method1 [1, 21] or the per-
ceptron method [23] solve (CPPC) in a number of iterations of order O(C (A)2)

(see Appendix B of [5] for a brief description of this).
The complexity bounds above, however, are of limited use since, unlike n

and m, C (A) cannot be directly read from A. A way to remove C (A) from these
bounds consists in trading worst-case by average-case analysis. To this end, one
endows the space (Sm)n of matrices A with a probability measure and studies
C (A) as a random variable with the induced distribution. In most of these works,
this measure is the unform one in (Sm)n (i.e., matrices A are assumed to have its
n rows independently drawn from the uniform distribution in Sm).

Once a measure has been set on the space of matrices [and in what follows
we will assume the uniform measure in (Sm)n], an estimate on E(lnC (A)) yields
bounds on the average complexity for (FPCS) directly from (8). For (CPPC) the
situation is different since it is known [5], Corollary 9.4, that E(C (A)2)=∞. Yet,
an estimate for ε > 0 on

Prob{C (A)≥ 1/ε |A ∈ Fn,m}
yields bounds on the probability that the relaxation or perceptron algorithms will
need more than a given number of iterations. Efforts have therefore been devoted
to compute the expected value (or the distribution function) of C (A) for random
matrices A.

Existing results for these efforts are easily summarized. A bound for E(lnC (A))

of the form O(min{n,m lnn}) was shown in [4]. This bound was improved [7] to
max{lnm, ln lnn}+ O(1) assuming that n is moderately larger than m. Still, in [5],
the asymptotic behavior of both C (A) and lnC (A) was exhaustively studied, and

1This method gives also the context in which C (A) was first studied, although in the feasible case
only [11].
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these results were extended in [14] to matrices A ∈ (Sm)n drawn from distributions
more general than the uniform. Independently of this stream of results, in [8],
a smoothed analysis for a related condition number is performed from which it
follows that E(lnC (A))= O(lnn).

Our second set of results adds to the line of research above. First, we provide
the exact distribution of C (A) conditioned to A being feasible and a bound on this
distribution for the infeasible case.

THEOREM 1.3. Let A ∈ (Sm)n be randomly chosen from the uniform distrib-
ution in (Sm)n, n > m. Then, for ε ∈ (0,1], we have

Prob{C (A)≥ 1/ε |A ∈ Fn,m}

= 2n−1∑m
k=0

(n−1
k

) m∑
k=1

(
n

k + 1

)
C(m,k)

×
∫ ε

0
tm−k(1 − t2)km/2−1λm(t)n−k−1 dt,

Prob{C (A)≥ 1/ε |A /∈ Fn,m}

≤ 2n−1∑n−1
k=m+1

(n−1
k

)
(

n

m+ 1

)
C(m,m)

×
∫ ε

0
(1 − t2)(m

2−2)/2(
1 − λm(t)

)n−m−1
dt.

Second, we prove an upper bound on E(lnC (A)) that depends only on m, in
sharp contrast with all the previous bounds for this expected value.

THEOREM 1.4. For matrices A randomly chosen from the uniform distribu-
tion in (Sm)n with n > m, we have E(lnC (A))≤ 2 ln(m+ 1)+ 3.31.

Note that the best previously established upper bound for E(lnC (A)) (for arbi-
trary values of n and m) was O(lnn). The bound 2 ln(m + 1) + 3.31 is not only
sharper (in that it is independent of n) but also more precise (in that it does not rely
on the O notation).2

1.3. Coverage processes versus condition numbers. Theorems 1.1 and 1.3 are
not unrelated. Our next result, which will be the first one we will prove, shows a
precise link between coverage processes and condition for polyhedral conic sys-
tems.

2Recently a different derivation of a O(lnm) bound for E(lnC (A)) was given in [2]. However,
this derivation does not provide explicit estimates for the constant in the O notation.



576 P. BÜRGISSER, F. CUCKER AND M. LOTZ

PROPOSITION 1.5. Let a1, . . . , an be randomly chosen from the uniform dis-
tribution in Sm. Denote by A the matrix with rows a1, . . . , an. Then, setting
ε := |cos(α)| for α ∈ [0, π], we have

p(n,m,α)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Prob
{
A ∈ Fn,m and C (A)≤ 1

ε

}
, if α ∈ [π/2, π],∑m

k=0
(n−1

k

)
2n−1

+ Prob
{
A /∈ Fn,m and C (A)≥ 1

ε

}
, if α ∈ [0, π/2].

In particular, p(n,m,π/2)= Prob{A ∈ Fn,m} = 21−n ∑m
k=0

(
n− 1

k

)
.

While Proposition 1.5 provides a dictionary between the coverage problem in
the sphere and the condition of polyhedral conic systems, it should be noted that,
traditionally, these problems have not been dealt with together. Interest on the sec-
ond focused on the case of C (A) being large or, equivalently, on α being close
to π/2. In contrast, research on the first mostly focused on asymptotics for either
small α or large n (an exception being [29]).

2. Main ideas. In this section we describe in broad strokes how the results
presented in the Introduction are arrived at. In a first step in Section 2.1, we give a
characterization of the GCC condition number which establishes a link to covering
problems thus leading to a proof of Proposition 1.5. We then proceed by explaining
the main ideas behind the proof of Theorem 1.3.

In all that follows, we will write [n] = {1, . . . , n} for n ∈ N.

2.1. The GCC condition number and spherical caps. A key ingredient in what
follows is a way of characterizing the GCC condition number in terms of spherical
caps. For p ∈ Sm and α ∈ [0, π], recall that

cap(p,α) := {x ∈ Sm | 〈p,x〉 ≥ cosα}.
A smallest including cap (SIC) for A = (a1, . . . , an) ∈ (Sm)n is a spherical cap of
minimal radius containing the points a1, . . . , an. If p denotes its center, then its
blocking set is defined as {i ∈ [n] | 〈p,ai〉 = cosα} which can be seen as a set of
“active” rows (cf. Figure 1).

A largest excluding cap (LEC) for A is the complement of a smallest including
cap for A. Note that (by a compactness argument) a SIC always exists, and while
there may be several SIC for A, its radius is uniquely determined. For the rest of
this article, we denote this radius by ρ(A) and set t (A) := cosρ(A). The following
is one of many equivalent ways [3, 5] of defining the GCC condition number.

DEFINITION 2.1. The GCC condition number of A ∈ (Sm)n is defined as
C (A) := 1/| cosρ(A)| ∈ (1,∞].
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FIG. 1. A SIC with α ∈ (0,π/2) (left) and with α ∈ (π/2,π) (right).

In order to understand the relation of this condition number to distance to ill-
posedness, we review a few known facts (for more information, see [3] and [5]).
Recall the definition of Fn,m and F ◦

n,m given in equations (6) and (7). It is easy
to see that Fn,m is a compact semialgebraic set with nonempty interior F ◦

n,m. The
set �n,m := Fn,m \ F ◦

n,m is the topological boundary of Fn,m. It consists of the
feasible instances that are not strictly feasible. Note that if n > m + 1, then �n,m

is also the boundary of the set of infeasible instances In,m := (Sm)n \ Fn,m. Hence
in this case �n,m consists of those instances that can be made both feasible and
infeasible by arbitrarily small perturbations.

The next lemma summarizes results from [3], Theorem 1, and [5], Proposi-
tion 4.1. It is enough to prove Proposition 1.5.

LEMMA 2.2. We have ρ(A) < π/2 if and only if A ∈ F ◦
n,m. Moreover, ρ(A)=

π/2 if and only if A ∈�n,m.

PROOF OF PROPOSITION 1.5. We claim that

p(n,m,α)= Prob{ρ(A)≤ π − α}.(9)

Indeed,
⋃n

i=1 cap(ai, α) �= Sm iff there exists y ∈ Sm such that y /∈ cap(ai, α) for
all i. This is equivalent to ∃y ∀i ai /∈ cap(y,α) which means that an LEC for A has
angular radius at least α. This in turn is equivalent to ρ(A) ≤ π − α thus proving
the claim.

Equation (9) for α = π/2 combined with Lemma 2.2 and Wendel’s result [29]
stated in equation (4) yields

21−n
m∑

k=0

(
n− 1

k

)
= p(n,m,π/2)= Prob{ρ(A)≤ π/2} = Prob{A ∈ Fn,m}.

Suppose now α ∈ [π/2, π]. Then

ρ(A)≤ π − α ⇐⇒ ρ(A)≤ π/2 and C (A)≤ 1

ε
,
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showing the first assertion of Proposition 1.5. Furthermore, for α ∈ [0, π
2 ]

ρ(A)≤ π − α

iff

ρ(A)≤ π/2 or
(
ρ(A) > π/2 and |cosρ(A)| ≤ |cos(π − α)|),

showing the second assertion of Proposition 1.5. �

2.2. Toward the proof of Theorem 1.3. To prove the feasible case in Theo-
rem 1.3 we note that

Prob
{
C (A)≥ 1

ε

∣∣∣ A ∈ Fn,m

}
= 1

vol Fn,m

vol Fn,m(ε),

where Fn,m(ε) = {A ∈ F ◦
n,m | t (A) < ε}. But vol Fn,m is known by Proposi-

tion 1.5. Therefore, our task is reduced to computing vol Fn,m(ε). As we will see
in Section 3.1, the smallest including cap SIC(A) is uniquely determined for all
A ∈ F ◦

n,m. Furthermore, for such A, t (A) depends only on the blocking set of A.
Restricting to a suitable open dense subset Rn,m(ε) ⊆ Fn,m(ε) of “regular” in-
stances, these blocking sets are of cardinality at most m+ 1. This induces a parti-
tion

Rn,m(ε)= ⋃
I

RI
n,m(ε),

where the union is over all subsets I ⊆ [n] of cardinality at most m + 1, and
RI

n,m(ε) denotes the set of matrices in Rn,m(ε) with blocking set indexed by I .
By symmetry, vol RI

n,m(ε) only depends on the cardinality of I ; hence it is enough
to focus on computing vol R[k+1]

n,m (ε) for k = 1, . . . ,m. The orthogonal invariance
and the particular structure of the R[k+1]

n,m (ε) (involving certain convexity condi-
tions) makes possible a change of coordinates that allows one to split the occur-
ring integral into an integral over t and a quantity C(m,k) that depends only on m

and k:

vol R[k+1]
n,m (ε)= C(m,k)

∫ ε

0
g(t, n,m, k) dt.

More precisely, we proceed as follows:
(1) By Fubini, we split the integral over R[k+1]

n,m (ε) into an integral over the first
k + 1 vectors a1, . . . , ak+1 (determining the blocking set [k + 1]) and an integral
over ak+2, . . . , an taken from SIC(A):

vol R[k+1]
n,m (ε) =

∫
A∈R[k+1]

k+1,m(ε)

(∫
cap(p(A),ρ(A))n−k−1

d(Sm)n−k−1
)

dR[k+1]
k+1,m

(10)
=

∫
A∈R[k+1]

k+1,m(ε)
G(A)dR[k+1]

k+1,m.
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FIG. 2. Determining (a1, a2) ∈ (S2)2 by first giving its span L ∈ G2(R3) and then ai ∈ S2 ∩L.

This is an integral of the function G(A) := vol(cap(p(A),ρ(A)))n−k−1 which is a
certain power of the volume of the spherical cap SIC(A).

(2) The next idea is to specify A = (a1, . . . , ak+1) in R[k+1]
k+1,m(ε) by first speci-

fying the subspace L spanned by these vectors and then the position of the ai on
the sphere Sm ∩L∼= Sk (cf. Figure 2).

Let Gk+1(R
m+1) denote the Grassmann manifold of (k + 1)-dimensional sub-

spaces in R
m+1 and consider the map

R[k+1]
k+1,m(ε) → Gk+1(R

m+1),
(11)

(a1, . . . , ak+1) �→ L= span{a1, . . . , ak+1}.
Clearly, a vector a ∈ Sm lies in the special subspace L0 := R

k+1 × 0 iff it lies
in the subsphere Sk . Hence the fibre over L0 consists of all “regular” tuples
A= (a1, . . . , ak+1) ∈ (Sk)k+1 such that t (A) < ε, and hence the fibre can be iden-
tified with R[k+1]

k+1,k(ε). Using the orthogonal invariance and the coarea formula
(also called Fubini’s theorem for Riemannian manifolds) we can reduce the com-
putation of the integral (10) to an integral over the special fibre R[k+1]

k+1,k(ε). This
leads to∫

R[k+1]
k+1,m(ε)

G(A)dR[k+1]
k+1,m = vol Gk+1(R

m+1)

∫
R[k+1]

k+1,k(ε)
G(A)J (A)dR[k+1]

k+1,k,

where J (A) is the normal Jacobian of the transformation (11).
(3) To specify a regular A = (a1, . . . , ak+1) ∈ (Sk)k+1, we first specify the di-

rection p = p(A) ∈ Sk and the height t = t (A) ∈ (0, ε) and then the position of
the ai on the subsphere {a ∈ Sk | 〈a,p〉 = t} � Sk−1 (cf. Figure 3).

More precisely, we consider the map

R[k+1]
k+1,k(ε)→ Sk × (0, ε), A �→ (p(A), t (A)).(12)

The fibre over (p0, t), where p0 = (0, . . . ,0,1) is the “north pole,” consists of
tuples (a1, . . . , ak+1) lying on the “parallel” subsphere {a ∈ Sk | 〈a,p〉 = t}. The
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FIG. 3. Determining (a1, a2, a3) ∈ (S2)3 by specifying the direction p, the height t , and the ai on
the subsphere {a ∈ S2 | 〈a,p〉 = t} by bi .

vectors ai can be described by points bi ∈ Sk−1, which are obtained by projecting
ai orthogonally onto R

k × 0 and scaling the resulting vector to length one.
The orthogonal invariance and the coarea formula allow us to reduce the compu-

tation of the integral over R[k+1]
k+1,k(ε) to the integration over t ∈ [0, ε] of an integral

over the special fibres over (p0, t). The latter integral is captured by the coeffi-
cient C(m,k) which can be interpreted as a higher moment of the volume of the
simplex 
 spanned by random points b1, . . . , bk+1 on the sphere Sk−1. However,
we have to respect the convexity condition that the origin is contained in the sim-
plex 
 spanned by the bi , which complicates matters. Altogether, we are lead to a
formula for vol R[k+1]

n,m (ε) of the shape,

vol Gk+1(R
m+1)

∫
R[k+1]

k+1,k(ε)
G(A)J (A)dR[k+1]

k+1,k

= C(m,k)

∫ ε

0
g(t, n,m, k) dt,

where g(t, n,m, k) is obtained by isolating the part of the resulting integrand that
depends on t .

In order to implement this plan, we have to isolate the appropriate regularity
conditions, that is, to identify the sets RI

n,m(ε), and to compute the normal Jaco-
bians of the maps (11) and (12). For the latter task, we prefer to use the language
of differential forms as is common in integral geometry [24].

Unfortunately, the above argument does not carry over to the infeasible case.
Nevertheless, the ideas described above are sufficient to obtain the upper bound in
Theorem 1.3.

The rest of the paper proceeds as follows. In Section 3 we describe the basic
facts on smallest including caps and integration on manifolds that will be needed
to make formal the ideas expressed above. Then, in Section 4, we prove Theo-
rem 1.3. Theorem 1.1 immediately follows via Proposition 1.5. Finally, in Sec-
tion 5, we give bounds for all, explicit expressions for some, and a way to compute
the coefficients C(m,k). From these bounds we derive Theorems 1.2 and 1.4.
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3. Preliminaries.

3.1. Properties of smallest including caps. Recall from Section 2.1 the def-
inition of smallest including caps (SICs) for a given A = (a1, . . . , an) ∈ (Sm)n.
A crucial feature of our proofs is the fact that a strictly feasible A has a uniquely
determined SIC. This is a consequence of the following crucial lemma which pro-
vides an explicit criterion for a spherical cap being a smallest including cap of A.
This lemma is a generalization of Lemma 4.5 in [5].

LEMMA 3.1. (a) For a strictly feasible A ∈ F ◦
n,m there exists exactly one

smallest including cap.
(b) Let (p, t) ∈ Sm × (0,1] and 1 ≤ k < n. Suppose that 〈ai,p〉 = t for all

i ∈ [k + 1] and 〈ai,p〉 > t for all i ∈ [n] \ [k + 1]. Then cap(p, arccos t) is the
smallest including cap of A if and only if

tp ∈ conv{a1, . . . , ak+1}.

PROOF. We first show that assertion (b) implies assertion (a). Suppose
cap(p1, ρ) and cap(p2, ρ) are SICs for A, and put t := cosρ. Note that t > 0.
Assertion (b) implies that tp1 is contained in the convex hull of a1, . . . , an;
hence there exist λi ≥ 0 such that

∑
i λi = 1 and tp1 = ∑

i λiai . Therefore,
〈tp1,p2〉 = ∑

i λi〈ai,p2〉 ≥ t , as 〈ai,p2〉 ≥ t for all i. This implies 〈p1,p2〉 ≥ 1
and hence p1 = p2.

The proof of assertion (b) goes along the lines of Lemma 4.5 in [5]. Sup-
pose first that cap(p,α) is a SIC for A where α := arccos t . It is sufficient
to show that p ∈ cone{a1, . . . , ak+1}. Indeed, if p = ∑

λiai with λi ≥ 0, then
tp = ∑

(tλi)ai . Furthermore,
∑

(tλi) = ∑
λi〈ai,p〉 = 〈∑λiai,p〉 = ‖p‖2 = 1.

Hence tp ∈ conv{a1, . . . , ak+1}.
We now argue by contradiction: if p is not contained in cone{a1, . . . , ak+1},

then there exists a vector v ∈ Sm such that 〈p,v〉 < 0 and 〈ai, v〉 > 0 for all i ∈
{1, . . . , k + 1}. For δ > 0 we set

pδ := p + δv

‖p + δv‖ = p + δv√
1 + 2δ〈p,v〉 + δ2

.(13)

Then for 1 ≤ i ≤ k + 1 and sufficiently small δ we have

〈ai,pδ〉 = t + δ〈ai, v〉√
1 + 2δ〈p,v〉 + δ2

> t,

where we used that 〈ai,p〉 = t , 〈ai, v〉> 0 and 〈p,v〉< 0.
For k + 2 ≤ i ≤ n the function δ → 〈ai,pδ〉 is continuous at δ = 0. Since, by

hypothesis, 〈ai,p〉 = 〈ai,p0〉 > t , it follows that 〈ai,pδ〉 > t for δ sufficiently
small. From this we conclude that for sufficiently small δ there exists tδ > t such
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that 〈ai,pδ〉 > tδ for all i ∈ [n]. Setting αδ = arccos tδ we obtain that αδ < α and
ai ∈ cap(pδ,αδ) for all i ∈ [n], contradicting the assumption that cap(p,α) is a
smallest including cap.

To prove the other direction, we suppose tp ∈ conv{a1, . . . , ak+1}. For q ∈ Sm

let α(q) we denote the angular radius of the smallest spherical cap with center q

containing a1, . . . , an. If we assume that cap(p,α) is not a SIC for A, then there
exists a vector v ∈ Sm and δ0 > 0, such that 〈v,p〉 = 0 and, for all 0 < δ ≤ δ0,
α(pδ) < α(p) where pδ = p+δv√

1+δ2
(i.e., we have a direction v along which we can

move to obtain a smaller cap). This means that

min
1≤i≤n

〈ai,pδ〉> min
1≤i≤n

〈ai,p〉 = t.

Therefore, for all i ∈ [k + 1] we have

〈ai,pδ〉 = 〈ai,p〉 + δ〈ai, v〉√
1 + δ2

> t = 〈ai,p〉

for sufficiently small δ which implies that 〈ai, v〉 > 0. Let μ ∈ R
k+1
≥0 be such that

tp = ∑
1≤i≤k+1 μiai and

∑
1≤i≤k+1 μi = 1. Then we have

t〈p,v〉 = ∑
1≤i≤k+1

μi〈ai, v〉> 0,

contradicting the assumption that 〈p,v〉 = 0. Thus cap(p,α) is indeed a smallest
including cap. �

For a strictly feasible A, we denote the center of its uniquely determined SIC by
p(A) and its radius by ρ(A). The blocking set BS(A) of A is defined as the block-
ing set of the SIC of A. It is not hard to see that BS(A) can have any cardinality
greater than one.

However, we note that in the infeasible case, there may be more than one small-
est including cap. Consider for instance three equilateral points on the circle (right-
hand side in Figure 1). It is known [5], Proposition 4.2, that in this case, the block-
ing set of a SIC has at least m+ 1 elements. In the infeasible case, one direction of
the characterization of smallest including caps of Lemma 3.1 still holds. The proof
is similar as for Lemma 3.1.

LEMMA 3.2. Let cap(p, arccos t) be a SIC for A ∈ (Sm)n with p ∈ Sm and t ∈
(−1,0). Suppose 〈ai,p〉 = t for i ∈ [m+ 1] and 〈ai,p〉 > t for i = m+ 2, . . . , n.
Then tp ∈ conv{a1, . . . , am+1}.

PROOF. Suppose tp /∈ conv{a1, . . . , am+1}. Then −p /∈ cone{a1, . . . , am+1}
and hence there exists a vector v ∈ Sm such that 〈−p,v〉 < 0 and 〈ai, v〉 > 0
for all i. For δ > 0 we define pδ as in (13). Take δ sufficiently small so that
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t < t + δ〈ai, v〉 < 0 for all i ∈ [m + 1]. Then, for i ∈ [m + 1] and δ sufficiently
small, we have

〈ai,pδ〉 = t + δ〈ai, v〉√
1 + 2δ〈p,v〉 + δ2

> t,

where we used that 〈ai,p〉 = t , 〈ai, v〉 > 0, and 〈p,v〉 > 0. This shows that
cap(p, arccos t) is not a smallest including cap. �

We present a few more auxiliary results that are needed for the proof of our
main result.

LEMMA 3.3. For given linearly independent a1, . . . , ak+1 ∈ Sm, 1 ≤ k ≤ m,
there exist unique p ∈ Sm and t ∈ (0,1) such that

p ∈ span{a1, . . . , ak+1}
and

〈ai,p〉 = t for all i ∈ [k + 1].
Moreover, the map (a1, . . . , ak+1) �→ (p, t) is differentiable.

PROOF. Let A denote the affine span of a1, . . . , ak+1, L the underlying linear
space and L the linear span of A. Since the ai are linearly independent, we have
A �= L and thus dim A = dimL = k, dim L = k + 1. Hence the intersection of L
with the orthogonal complement L⊥ is one-dimensional and contains exactly two
elements of length one. Take the one such that the common value t = 〈ai,p〉 is
positive. This shows existence and at the same time the uniqueness of p, t .

Suppose now k = m, and let A denote the square matrix with the rows
a1, . . . , am+1. The conditions 〈ai,p〉 = t can be written in matrix form as Ap = te

where e := (1, . . . ,1)�. By solving this equation we obtain the following explicit
formulas:

p(A)= 1

‖A−1e‖A−1e, t (A)= 1

‖A−1e‖ .(14)

This shows the differentiability of the map A �→ (p, t) in the case k =m. We leave
the proof in the general case to the reader. �

The next result, though very elementary, will be useful for clarification.
Let p ∈ Sk and t �= 0 and consider elements a1, . . . , ak+1 ∈ Sk satisfying

〈ai,p〉 = t for all i. Let bi ∈ Sk−1 be the scaled-to-one orthogonal projection
of ai onto the orthogonal complement of Rp. That is, ai = rbi + tp where
r = (1 − t2)1/2.

LEMMA 3.4. The following conditions are equivalent:
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1. The affine hull A of a1, . . . , ak+1 has dimension k.
2. The span of b1, . . . , bk+1 has dimension k.
3. a1, . . . , ak+1 are linearly independent.

PROOF. The equivalence of the first two conditions is obvious. The equiva-
lence of the first and third condition follows from dim span(A)= dim A + 1 (here
we use t �= 0). �

3.2. Volume forms on Grassmann manifolds. Integration on Grassmann mani-
folds will play a crucial role in our proofs. We recall some facts about the relevant
techniques from integral geometry and refer to Santaló’s book [24], II.9–12, and
the article [19] for more information. We recall that volume elements are always
unsigned forms.

Let M be a Riemannian manifold of dimension m, p ∈ M , and let y =
(y1, . . . , ym)� :U �→ R

m be local coordinates in a neighborhood U of p such that
∂/∂y1, . . . , ∂/∂ym are an orthonormal basis of TpM . The natural volume form on
M at p associated to its Riemannian metric is then given by dM = dy1 ∧· · ·∧dym

where dyi is the differential of the coordinate function yi at p.
In the case of a sphere, we get such local coordinates around a point p ∈

Sm by projecting onto the orthogonal complement of p. More precisely, let
〈e1, . . . , em+1〉 be an orthonormal basis of R

m+1 satisfying e1 = p (so that
e2, . . . , em+1 span the tangent space TpSm). For a point x = (x1, . . . , xm+1)

� ∈ Sm

in a neighbourhood of p set yi = 〈x, ei〉. Then (y2, . . . , ym+1) are local coordinates
of Sm around p such that ∂/∂yi are pairwise orthogonal at p. Hence the volume
element of Sm at p is given by

dSm = ω2 ∧ · · · ∧ωm+1,

where ωi := dyi = 〈dx, ei〉 and dx = (dx1, . . . , dxm+1)
�. Hence, if we denote by

E the (m+ 1)× (m+ 1)-matrix having the ei as rows, we obtain the volume form
by wedging the nonzero entries of E dx.

In a similar fashion we define volume forms on Stiefel manifolds (for details and
further justification we refer to [24]). A k-frame is a set of k linearly independent
vectors. For 1 ≤ k ≤ m + 1, the Stiefel manifold Vk(R

m+1) is defined as the set
of orthonormal k-frames in R

m+1. It is a compact Riemannian submanifold of
(Sm)k . Let Q= (q1, . . . , qk) ∈ Vk(R

m+1) and 〈e1, . . . , em+1〉 an orthonormal basis
of R

m+1 such that e1 = q1, . . . , ek = qk . Then the volume element of Vk(R
m+1) at

Q is given by

dVk(R
m+1)= ∧

1≤i≤k

(ωi,i+1 ∧ · · · ∧ωi,m+1),

where ωi,j = 〈dqi, ej 〉 for 1 ≤ i ≤ k and 1 ≤ j ≤m+1. [In terms of the (m+1)×
k matrix E dQ, this corresponds to wedging the entries below the main diagonal.]
With this volume element we have volVk(R

m+1)= Om · · · Om+1−k .
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We denote by Gk(R
m+1) the Grassmann manifold of k-dimensional subspaces

of R
m+1. One way of characterizing it is as a quotient of a Stiefel manifold, by

identifying frames that span the same subspace. Let L ∈ Gk(R
m+1) and choose

a frame Q ∈ Vk(R
m+1) spanning L. If Vk(L) denotes the Stiefel manifold of or-

thonormal k-frames in L and dVk(L) its volume element at Q, then it is known
that the volume element dGk(R

m+1) of the Grassmann manifold at L satisfies (see
[19], equation (10))

dVk(R
m+1)= dGk(R

m+1)∧ dVk(L).(15)

From this equality it follows that

dGk(R
m+1)= ∧

1≤i≤k

(ωi,k+1 ∧ · · · ∧ωi,m+1)

with the ωi,j as defined in the case of the Stiefel manifold. (In terms of the matrix
EdQ, this corresponds to wedging the elements in the lower (m + 1 − k) × k

rectangle.) As a consequence of (15), the volume of the Grassmannian is given by

Gk,m+1 := vol Gk(R
m+1)= Om+1−k · · · Om

O0 · · · Ok−1
.

Equation (15) has a generalization to frames that are not orthogonal, that is, to
points in a product of spheres (Sm)k . Let L ∈ Gk(R

m+1) and set S(L) := L∩ Sm,
so that S(L) ∼= Sk−1. Choose a basis a1, . . . , ak of L consisting of unit length
vectors, that is, a point A= (a1, . . . , ak) in S(L)k . We denote by vol(A) the volume
of the parallelepiped spanned by the ai . Then the volume form of (Sm)k at A can
be expressed as

d(Sm)k = vol(A)m−k+1 dGk(R
m+1)∧ dS(L)k.(16)

This equation can be derived as in [19] (see also [24], II.12.3). It also follows as a
special case of a general formula of Blaschke–Petkantschin-type derived by Zähle
[31] (see also the discussion in [22]).

A beautiful application of equation (16) is that it allows an easy computation of
the moments of the absolute values of random determinants. The following lemma
is an immediate consequence of (16) (see also [19]).

LEMMA 3.5. Let B ∈ (Sk)k+1 be a matrix with rows b1, . . . , bk independently
and uniformly distributed in Sk . Then

E(|det(B)|m−k+1)=
( Om

Ok−1

)k 1

Gk,m+1
.

4. The probability distribution of C (A). This section is devoted to the proof
of Theorem 1.3.
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4.1. The feasible case. Recall that, for A ∈ F ◦
n,m, we denote the center and

the angular radius of the unique smallest including cap of A by p(A) and ρ(A),
respectively, and we write t (A)= cosρ(A).

Our goal here is to prove the first part of Theorem 1.3, for which, as we noted
in Section 2.2, we just need to compute the volume of the following sets:

Fn,m(ε) := {A ∈ F ◦
n,m | t (A) < ε}.

For this purpose it will be convenient to decompose Fn,m(ε) according to the size
of the blocking sets. Recall that the blocking set of A ∈ F ◦

n,m is defined as

BS(A)= {i ∈ [n] | 〈p(A), ai〉 = t (A)}.(17)

For I ⊆ [n] with |I | ≤ n and ε ∈ (0,1] we define F I
n,m(ε) to be the set of all

A ∈ Fn,m(ε) such that BS(A)= I .
For technical reasons we have to require some regularity conditions for the ele-

ments of F I
n,m(ε).

DEFINITION 4.1. We call a family (a1, . . . , ak+1) of elements of a vector
space centered with respect to a vector c in the affine hull A of the ai if dim A = k,
and c lies in the relative interior of the convex hull of the ai . We call the family
centered if it is centered with respect to the origin. We now define, for I ⊆ [n],

RI
n,m(ε) := {A ∈ F I

n,m(ε) | (ai)i∈I is centered with respect to t (A)p(A)}.

Note that, by definition, the ai are affinely independent if |I | ≤m+ 1.

LEMMA 4.2. 1. F I
n,m(ε) is of measure zero if |I |> m+ 1.

2. If |I | ≤m+ 1, then RI
n,m(ε) is open in (Sm)n, and F I

n,m(ε) is contained in the
closure of RI

n,m(ε).
3. F I

n,m(ε) \ RI
n,m(ε) has measure zero.

PROOF. 1. If A ∈ F I
n,m(ε), then {ai | i ∈ I } is contained in the boundary of the

SIC of A, and hence its affine hull has dimension at most m. On the other hand,
the affine hull of (ai)i∈I is almost surely R

m+1 if |I |> m+ 1.
2. The fact that RI

n,m(ε) is open in (Sm)n easily follows from the continuity of
the map A �→ (p(A), t (A)) established in Lemma 3.3.

Suppose now A ∈ F I
n,m(ε). By Lemma 3.1 we have t (A)p(A) ∈ conv{ai | i ∈ I }

for A ∈ F I
n,m(ε). It is now easy to see that there are elements A′ arbitrarily close

to A such that A′ is centered with respect to t (A′)p(A′). This shows the second
assertion.

3. By part two we have RI
n,m(ε) ⊆ F I

n,m(ε) ⊆ RI
n,m(ε). Since we are dealing

with semialgebraic sets, the boundary of RI
n,m(ε) is of measure zero. �
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It is clear that the F I
n,m with I of the same cardinality just differ by a permuta-

tion of the vectors. Using Lemma 4.2 we obtain

vol Fn,m(ε)= ∑
|I |≤m+1

vol F I
n,m(ε)=

m∑
k=1

(
n

k + 1

)
vol Rk

n,m(ε),(18)

where we have put Rk
n,m(ε) := R[k+1]

n,m (ε) to ease notation.
Hence it is sufficient to compute the volume of Rk

n,m(ε). For this purpose we
introduce now the coefficients C(m,k).

DEFINITION 4.3. We define for 1 ≤ k ≤m

C(m,k)= (k!)m−k+1

Ok
m

Gk,m

∫
Mk

(volk 
)m−k+1 d(Sk−1)k+1,

where Mk is the following open subset of Sk−1:

Mk := {(b1, . . . , bk+1) ∈ (Sk−1)k+1 | (b1, . . . , bk+1) is centered}
and 
 :Mk → R maps B = (b1, . . . , bk+1) to the convex hull of the bi .

EXAMPLE 4.4. We compute C(m,1). Note that M1,1 = {(−1,1), (1,−1)}
and G1,m = 1

2 Om−1. Hence

C(m,1)= 1

Om

1

2
Om−1

∫
M1,1

(vol1 
)m dM1,1 = Om−1

Om

2m.

The assertion in Theorem 1.3 about the feasible case follows immediately from
Proposition 1.5, equation (18) and the following result.

PROPOSITION 4.5. Let ε ∈ (0,1]. The relative volume of F k
n,m(ε) is given by

vol Rk
n,m(ε)

On
m

= C(m,k)

∫ ε

0
tm−k(1 − t2)km/2−1λm(t)n−k−1 dt.

PROOF. Consider the projection

Rk
n,m(ε)→ Rk

k+1,m(ε), (a1, . . . , an) �→A= (a1, . . . , ak+1).

By Lemma 3.1, this map is surjective and its fiber over A consists of all
(A,ak+2, . . . , an) such that ai lies in the interior of the cap cap(p(A),ρ(A)) for
all i > k + 1. By Fubini, and using (5), we conclude that

vol Rk
n,m(ε)

On−k−1
m

=
∫
A∈Rk

k+1,m(ε)
λm(t (A))n−k−1 d(Sm)k+1.(19)
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We consider now the following map (which is well defined [cf. Lemma 3.4]):

Rk
k+1,m(ε)→ Gk+1(R

m+1), (a1, . . . , ak+1) �→ L= span{a1, . . . , ak+1}.
We can thus integrate over Rk

k+1,m(ε) by first integrating over L ∈ Gk+1(R
m+1)

and then over the fiber of L. By equation (16), the volume form of (Sm)k+1 at A

can be written as

d(Sm)k+1 = vol(A)m−k dGk+1(R
m+1)(L)∧ dS(L)k+1,

where S(L)k+1 denotes (k+1)-fold product of the unit sphere of L. By invariance
under orthogonal transformations, the integral over the fiber does not depend on L.
We may therefore assume that L = R

k+1, in which case the fiber over L can be
identified with Rk

k+1,k(ε). Thus we conclude from equation (19) that

vol Rk
n,m(ε)

On−k−1
m

= Gk+1,m+1

∫
A∈Rk

k+1,k(ε)
vol(A)m−kλm(t (A))n−k−1 d(Sk)k+1.(20)

In a next step, we will perform a change of variables in order to express the
integral on the right-hand side of equation (20) as an integral over t involving the
coefficients C(m,k).

Note that by Lemma 3.3, p(A) ∈ Sk and t (A) ∈ (0,1) are defined for any A ∈
GL(k + 1,R) and depend smoothly on A. A moment’s thought (together with
Lemmas 3.1 and 3.4) shows that we have the following complete characterization
of Rk

k+1,k(ε):

Rk
k+1,k(ε) = {A ∈ (Sk)k+1 |A is centered with respect to t (A)p(A),

0 < t(A) < ε,∀i 〈ai,p(A)〉 = t (A)}.
For A ∈ Rk

k+1,k(ε) set p := p(A), t := t (A), and r := r(t) := (1 − t2)1/2. For
i ∈ [k + 1] we define bi as the scaled-to-one orthogonal projection of ai onto the
orthogonal complement of Rp, briefly ai = rbi + tp. The matrix B = B(A) with
the rows b1, . . . , bk+1 can be written as B = 1

r
(A− tep�). Clearly, B is centered.

We define now

Wk = {(B,p) ∈ (Sk)k+1 × Sk | Bp = 0 and B is centered}.
This is a Riemannian submanifold of (Sk)k+2 of dimension k(k + 1)− 1. We thus
have a map,

ϕk : Rk
k+1,k(ε)→Wk × (0, ε), A �→ (B(a),p(A), t (A)).

The inverse of this map is given by (B,p, t) �→A= rB + tep�. It is well defined
since, by Lemma 3.4, A is invertible when B is centered. The Jacobian J (A) of the
diffeomorphism ϕk is stated in the next lemma, whose proof will be momentarily
postponed. We remark that this lemma can also be derived from [22], Lemma 1
(a special case of Zähle’s theorem [31]) with K being the unit ball.
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LEMMA 4.6. The volume form of (Sk)k+1 at A can be expressed in terms of
the volume form of Wk × (0, ε) as follows:

d(Sk)k+1 = J (A)dWk ∧ dt = r(k−2)(k+1) vol(A)

t
dWk ∧ dt.

We now express the Jacobian J (A) in terms of (B,p, t). The volume vol(A) of
the parallelepiped spanned by the ai equals (k + 1)! times the volume of the pyra-
mid with apex 0 and base 
(a1, . . . , ak+1), the latter denoting the simplex with
vertices a1, . . . , ak+1. Moreover, this pyramid has height t and it is well known
that the volume of a (k + 1)-dimensional pyramid with height t and base B is t

k+1
times the (k-dimensional) volume of B . This implies

vol(A)= (k + 1)! t

k + 1
volk−1 
(rb1, . . . , rbk+1)= k!rkt volk 
(B).

From this expression, together with (20), we conclude that

vol Rk
n,m(ε)

On
m

= Gk+1,m+1

Ok+1
m

∫
Wk×(0,ε)

vol(A)m−k+1 r(t)(k−2)(k+1)

t

× λm(t)n−k−1 d(Sk)k+1

= Gk+1,m+1(k!)m−k+1

Ok+1
m

∫
Wk

volk 
(B)m−k+1 dWk

×
∫ ε

0
tm−kr(t)km−2λm(t)n−k−1 dt.

Consider the projection pr :Wk → Sk, (B,p) �→ p. We note that its fiber over p

can be identified with the set Mk (cf. Definition 4.3). By the invariance of
volk 
(B) under rotation of p ∈ Sk , we get∫

Wk

volk 
(B)m−k+1 dWk = Ok

∫
Mk

volk 
(B)m−k+1 d(Sk−1)k+1.

Note that, up to a scaling factor, the right-hand side above is the coefficient C(m,k)

introduced in Definition 4.3. Using (Ok/Om)Gk+1,m+1 = Gk,m we obtain

vol Rk
n,m(ε)

On
m

= C(m,k)

∫ ε

0
tm−kr(t)km−2λm(t)n−k−1 dt.(21)

This completes the proof. �

PROOF OF LEMMA 4.6. For given p ∈ Sk , let S(p⊥) denote the (k − 1)-
subsphere of Sk perpendicular to p. At a point (B,p) ∈ Wk we have dWk =
dS(p⊥)k+1 ∧dSk , and we have dS(p⊥)k+1 = dS(p⊥)∧· · ·∧dS(p⊥) at the point
B = (b1, . . . , bk+1). The Jacobian J (A) we are looking for is hence determined by

d(Sk)k+1(A)= J (A)dS(p⊥)k+1(B)∧ dSk(p)∧ dt.
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Choose an orthonormal moving frame e1, . . . , ek, ek+1 with p(A) = ek+1. For
1 ≤ i ≤ k define the one-forms μi := −〈ei, dp〉 (compare Section 3.2). Then the
volume form of Sk at p is given by dSk(p)= μ1 ∧ · · · ∧μk .

Differentiating te = Ap we get e dt = dAp +Adp. By multiplying both sides
with A−1 and using formula (14) we obtain

p(dt/t)− dp =A−1 dAp.

Let Q denote the (k + 1)× (k + 1) matrix having the ei as rows. With respect to
this basis, the above equation takes the form

(μ1, . . . ,μk, dt/t)� =Q
(
p(dt/t)− dp

) =QA−1 dAp.(22)

Wedging the entries on both sides yields

dSk(p)∧ dt = t vol(A)−1〈p,da1〉 ∧ · · · ∧ 〈p,dak+1〉.(23)

The volume form of S(p⊥) at bi is given by

dS(p⊥)= 〈e1, dbi〉 ∧ · · · ∧ 〈ek−1, dbi〉.
In order to compare dS(p⊥)k+1 ∧ dSk ∧ dt with d(Sk)k+1 we use a different
moving frame. Fix an i, 1 ≤ i ≤ k + 1, and choose the moving frame as above and
additionally with ek = bi . Consider the modified frame ẽ1, . . . , ẽk+1 that arises
after rotating bi to ai and leaving the orthogonal complement of span〈ai,p〉 fixed,
that is, ẽj = ej for 1 ≤ j ≤ k − 1, ẽk := ai , and ẽk+1 =−tbi + rp (cf. Figure 4).

This implies 〈ẽk+1, dai〉 = r〈p,dai〉 − t〈bi, dai〉 = (1/r)〈p,dai〉 where we
have used that bi = (ai − tp)/r for the last equality. Hence the volume form of
Sk at ai equals

dSk(ai)= (1/r)〈e1, dai〉 ∧ · · · ∧ 〈ek−1, dai〉 ∧ 〈p,dai〉.

FIG. 4. The frame (ei) and its modification (ẽi ).
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If we wedge the 〈e1, dai〉 ∧ · · · ∧ 〈ek−1, dai〉 to both sides of equation (23), we
obtain, on the right-hand side,

t

vol(A)

k+1∧
i=1

〈e1, dai〉 ∧ · · · ∧ 〈ek−1, dai〉 ∧ 〈p,dai〉 = t

vol(A)
rk+1 d(Sk)k+1(A).

On the left-hand side we obtain, using 〈ej , dai〉 = r〈ej , dbi〉+ t〈ej , dp〉 and taking
into account that 〈ej , dp〉 ∧ dSk(p)= 0 since dSk(p)= ∧k

j=1〈ej , dp〉,
k+1∧
i=1

k−1∧
j=1

〈ej , dai〉 ∧ dSk ∧ dt = r(k−1)(k+1)
k+1∧
i=1

k−1∧
j=1

〈ej , dbi〉 ∧ dSk ∧ dt

= r(k−1)(k+1)dS(p⊥)k+1 ∧ dSk ∧ dt.

This implies that J (A)= t−1r(k−2)(k+1) vol(A) as claimed. �

4.2. The infeasible case. Recall that In,m = (Sm)n \ Fn,m denotes the set of
infeasible instances. We define, for I ⊆ [n],

I I
n,m(ε) := {A ∈ In,m | C (A) > ε−1 and A has a SIC with blocking set I }.

We note that by symmetry, the volume of I I
n,m(ε) only depends on the cardinality

of I .

LEMMA 4.7. I I
n,m(ε) has measure zero if |I |> m+ 1.

PROOF. If A ∈ I I
n,m(ε), then {ai | i ∈ I } is contained in the boundary of a

SIC of A with blocking set I . Hence the affine hull of (ai)i∈I has dimension less
than m. However, if |I |> m+ 1, the latter dimension is almost surely m+ 1. �

It is known [5], Proposition 4.2, that in the infeasible case, blocking sets have
at least m+ 1 elements. This fact, together with Lemma 4.7, implies that

vol In,m(ε)≤
(

n

m+ 1

)
vol I[m+1]

n,m (ε).(24)

As with Fn,m, for ease of notation, we write I m
n,m(ε) := I[m+1]

n,m (ε).
The inequality in Theorem 1.3 for the infeasible case follows immediately from

(24) and the following proposition.

PROPOSITION 4.8. We have for ε ∈ (0,1],
vol I m

n,m(ε)

On
m

≤ C(m,m)

∫ ε

0
(1 − t2)(m

2−2)/2(
1 − λm(t)

)n−m−1
dt.
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PROOF. Consider the projection

ψ : I m
n,m(ε)→ (Sm)m+1, A′ = (a1, . . . , an) �→A= (a1, . . . , am+1).

To investigate the image and the fibers of ψ assume A′ ∈ I m
n,m(ε). Then there

exists p ∈ Sm and α ∈ (π/2, π] such that cap(p,α) is a SIC of A′ ∈ I m
n,m(ε) with

blocking set [m+1]. Then we have that 〈ai,p〉 = t for all i ∈ [m+1] and 〈ai,p〉>

t for all i ∈ [n] \ [m + 1] where t := cosα ∈ [−1,0). Lemma 3.2 implies that
tp ∈ conv{a1, . . . , am+1}. In turn, Lemma 3.1 implies that cap(−p,π − α) is a
SIC of A with blocking set [m + 1], and we obtain that A ∈ F m

m+1,m(ε). These
reasonings show that the image of ψ is contained in F m

m+1,m(ε).
Suppose now that a1, . . . , am+1 are linearly independent. Then it follows from

Lemma 3.3 that the vector p is uniquely determined by A. This implies that the
fiber of A under ψ is contained in {A} × cap(p,α)n−m−1. We conclude that for
almost all A ∈ F m

m+1,m

volψ−1(A)

On−m−1
m

≤ (
1 − λm(t)

)n−m−1
.

From these observations we obtain, by Fubini,

vol I m
n,m(ε)

On−m−1
m

≤
∫
A∈F m

m+1,m(ε)

(
1 − λm(t (A))

)n−m−1
d(Sm)m+1.

In the proof of Proposition 4.5 we derived, from the integral representation (19)

for
vol F k

n,m(ε)

On−k−1
m

, formula (21). In exactly the same way we can show that

vol I m
n,m(ε)

On
m

≤ C(m,m)

∫ ε

0
(1 − t2)(m

2−2)/2(
1 − λm(t)

)n−m−1
dt,

which proves the assertion. �

REMARK 4.9. (i) It may be of interest to compare, in the case m= 1, the up-
per bound for p(n,1, α) which follows from our results with the exact expression
(1) for this quantity shown by Stevens. Recall that the latter is

p(n,1, α) = n

(
1 − α

π

)n−1

−
(

n

2

)(
1 − 2α

π

)n−1

+ · · ·

+ (−1)k+1
(

n

k

)(
1 − kα

π

)n−1

,

where k = �π
α
�. For α ∈ [0, π/2], Propositions 1.5 and 4.8 yield

p(n,1, α) = Prob{A ∈ Fn,1} + Prob
{
A /∈ Fn,1 and C (A)≥ 1

cos(α)

}

≤ n

2n−1 +
(

n

2

)
C(1,1)

∫ cosα

0
(1 − t2)−1/2(

1 − λ1(t)
)n−2

dt.
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We use now that C(1,1)= 2
π

, as shown in Example 4.4. Then

p(n,1, α) = n

2n−1 + n(n− 1)

π

∫ cosα

0
(1 − t2)−1/2

(
1 − arccos t

π

)n−2

dt

≤ n

2n−1 + n(n− 1)

∫ 1/2

α/π
(1 − x)n−2 dx

= n

(
1 − α

π

)n−1

.

That is, we get Stevens’s first term.
(ii) It may also be of interest to compare, for the case m = 2, our upper bound

for p(n,2, α) with the upper bound in (2) obtained by Gilbert [10]. Recall that the
latter gives

p(n,2, α)≤ 4
3n(n− 1)λ(1 − λ)n−1,

where λ denotes the fraction of the surface of the sphere covered by the cap of
radius α. It is easy to see that our bound implies

p(n,2, α)≤ 1

2n
(n2 − n+ 2)+ 1

2
n(n− 2)(1 − λ)n−1.

The first term in this sum is negligible for large n. The second term compares with
Gilbert’s for moderately large caps but it becomes considerably worse for small
caps.

5. On the values of the coefficients C(m,k). In this section we provide esti-
mates for the numbers C(m,k). In Section 5.1 we derive upper and lower bounds
for them which are elementary functions in m and k. In the case m = k the upper
bound is actually an equality, yielding an exact expression for C(m,m). Then in
Section 5.2 we use these bounds to prove Theorems 1.2 and 1.4. Finally, in Sec-
tion 5.3 we briefly describe how to derive an exact expression for C(m,m−1) and
how, for any given m, one may obtain the values of the C(m,k), k = 1, . . . ,m, by
solving an m×m linear system.

5.1. Bounding the coefficients C(m,k). Our first result provides bounds for
C(m,k) in terms of volumes of spheres.

LEMMA 5.1. We have for 1 ≤ k ≤m,

k + 1

2k

Ok−1Om−k

Om

≤ C(m,k)≤ (k + 1)m−k+1

2k

Ok−1Om−k

Om
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with equalities if k =m. In particular, C(m,m)= m+1
2m−1

Om−1
Om

.

PROOF. Recall Definition 4.3 of the C(m,k),

C(m,k)= (k!)m−k+1

Ok
m

Gk,m

∫
Mk

(vol
)m−k+1 dS.

We set S := (Sk−1)k+1 and denote by U the open dense subset of S consisting of
all B = (b1, . . . , bk+1) such that every k of these vectors are linearly independent.
By Definition 4.1, Mk is contained in U .

Set 
(B) = conv{b1, . . . , bk+1} and 
i(B) = conv(0, b1, . . . , b̂i , . . . , bk+1)

(where b̂i means that bi is omitted). We define, for B ∈U ,

mvol(B) :=
k+1∑
i=1

vol
i(B).

For B ∈ Mk we clearly have mvol(B) = vol
(B), but in general this is not the
case.

The essential observation is now the following:∫
Mk

(vol
)m−k+1 dS = 1

2k

∫
U

mvolm−k+1 dS.(25)

In order to show this, note that for B ∈ U there exists a unique μ ∈ R
k+1

with μk+1 = 1, μ1 · · ·μk �= 0, and such that
∑k+1

i=1 μibi = 0. This allows to de-
fine the map φ :U → {−1,1}k,B �→ (sgn(μ1), . . . , sgn(μk)). Note that Mk =
φ−1(1, . . . ,1). Moreover, each σ ∈ {−1,1}k defines an isometry,

Mk → φ−1(σ ), B �→ σB := (σ1b1, . . . , σkbk, bk+1).

It follows that mvol(B) = mvol(σB) since changing the signs of rows does not
alter the absolute values of determinants. This implies∫

U
mvolm−k+1 dS = ∑

σ∈{−1,1}k

∫
φ−1(σ )

mvolm−k+1 dS

= 2k
∫
Mk

mvolm−k+1 dS,

which proves the claimed equation (25).
Recall now the norm inequalities

(x�
1 + · · · + x�

p) ≤ (x1 + · · · + xp)�

(26)
≤ p�−1(x�

1 + · · · + x�
p) for xi ≥ 0, �≥ 1,
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where the last follows from the convexity of the function R → R, y �→ y�. For the
upper bound in the statement we now estimate the right-hand side of equation (25)
using the last inequality above (with p = k + 1 and �=m− k + 1). We obtain

∫
S

mvolm−k+1 dS ≤ (k + 1)m−k
k+1∑
i=1

∫
S
(vol
i)

m−k+1 dS

= (k + 1)m−k+1
∫
S
(vol
k+1)

m−k+1 dS

= (k + 1)m−k+1

k!m−k+1

∫
S
|det B̃|m−k+1 dS,

where B̃ ∈ R
k×k denotes the matrix with rows b1, . . . , bk . Since the integrand on

the right does not depend on bk+1, we can integrate over B̃ ∈ (Sk−1)k and pull out
a factor Ok−1 obtaining

∫
S

mvolm−k+1 dS ≤ (k + 1)m−k+1

k!m−k+1 Ok−1

∫
(Sk−1)k

|det B̃|m−k+1 d(Sk−1)k

= (k + 1)m−k+1

k!m−k+1 Ok+1
k−1E(|det B̃|m−k+1).

We plug in here the formula of the moments from Lemma 3.5. Putting every-
thing together, and using Gk,m = (Om−k/Om)Gk,m+1, the claimed upper bound on
C(m,k) follows. The lower bound is obtained by doing the same reasoning but
now using the left-hand side inequality in (26).

In the case k = m upper and lower bounds coincide and we get equalities for
C(m,m). �

REMARK 5.2. In the case k = 1 the upper bound in Lemma 5.1 coincides with
the value for C(m,1) shown in Example 4.4.

For the proofs of Theorems 1.2 and 1.4 we need a more explicit expression for
the bounds on the C(m,k). We devote the rest of this section to deriving such
expressions.

LEMMA 5.3. For 1 ≤ k ≤m we have

Ok−1Om−k

Om

≤
√

π

2
k3/4

√(
m

k

)
.

In the cases k = 1 or k =m one has the sharper bound 2Om−1
Om

≤√
m.

The proof uses bounds on Gamma functions, which we derive next.
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LEMMA 5.4. For all r ≥ 1,

r1/42−(r−1)/2
√

(r − 1)! ≤ �

(
r + 1

2

)

≤
√

π

2
r1/42−(r−1)/2

√
(r − 1)!.

PROOF. The double factorials k!! are defined as follows. For k even, k!! :=
k(k − 2)(k − 4) · · ·2, and for k odd, k!! := k(k − 2)(k − 4) · · ·3 · 1. Also, by con-
vention, 0!! = 1. By the functional equation �(x + 1) = x�(x) of the Gamma
function, it easily follows that for r ∈ N, r ≥ 1,

�

(
r + 1

2

)
=

⎧⎨
⎩

√
π

2
(r − 1)!!2−(r−1)/2, if r is even,

(r − 1)!!2−(r−1)/2, if r is odd.
(27)

We estimate now double factorials in terms of factorials. If r ≥ 2 is even,

(r!!)2 = rr(r − 2)(r − 2) · · ·4 · 4 · 2 · 2

= r(r − 1)
r

r − 1
(r − 2)(r − 3)

r − 2

r − 3
· · ·4 · 3

4

3
2 · 2

= r! r

r − 1

r − 2

r − 3
· · · 4

3
2

= r!
√

r

r − 1

r

r − 1

r − 2

r − 3

r − 2

r − 3
· · · 4

3

4

3
2 · 2.

We use that �+1
�

≤ �
�−1 for �≥ 2 to deduce from this

r!√r + 1 ≤ (r!!)2 ≤ r!√2r for r ≥ 2 even.(28)

Similarly, for r ≥ 1 odd, one shows that

(r!!)2 = r!
√

r

r − 1

r

r − 1

r − 2

r − 3

r − 2

r − 3
· · · 5

4

5

4

3

2

3

2
,

which implies

r!
√

r + 1

2
≤ (r!!)2 ≤ r!√r for r ≥ 1 odd.(29)

By applying the bounds (28) and (29) to (27) and noting that 21/4 ≤
√

π
2 , the claim

follows. �
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PROOF OF LEMMA 5.3. Assume that 2 ≤ k < m. Then, using Lemma 5.4, we
deduce that

Ok−1Om−k

Om

= 2
�((m+ 1)/2)

�(k/2)�((m− k + 1)/2)

≤
√

π

2

√
(m− 1)!

(k − 2)!(m− k − 1)!
(

m

(k − 1)(m− k)

)1/4

=
√

π

2

√(
m

k

)√
(m− k)k(k − 1)

m

(
m

(k − 1)(m− k)

)1/4

≤
√

π

2

√(
m

k

)
k3/4.

The cases k = 1 and k =m follow similarly from Lemma 5.4. �

An immediate consequence of Lemmas 5.3 and 5.4 are the following bounds on
the coefficients C(m,k).

PROPOSITION 5.5. For 1 ≤ k < m,

C(m,k)≤
√

π

2

(k + 1)m−k+1

2k
k3/4

√(
m

k

)
.

In addition, for all m≥ 1,

C(m,m)≤ (m+ 1)
√

m

2m
.

REMARK 5.6. Using Lemmas 5.1 and 5.4 it is easy to obtain lower bounds
for the C(m,k) similar to the upper bounds in Proposition 5.5.

5.2. Proof of Theorems 1.2 and 1.4. The following identity is repeatedly used
in the proof.

LEMMA 5.7. We have
∑∞

n=k

(n
k

)
zn−k = (1 − z)−k−1 for k ∈ N and z ∈ (0,1).

PROOF. Take the kth derivative on both sides of
∑∞

n=0 zn = 1
1−z

. �

PROOF OF THEOREM 1.2. By definition, we have N(m,α) > n iff cap(a1,

α)∪ · · · ∪ cap(an,α) �= Sn. Hence

E(N(m,α))=
∞∑

n=0

Prob
(
N(m,α) > n

) = ∞∑
n=0

p(n,m,α).
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We assume that α ≤ π/2. Since p(n,m,α)= 1 for n≤m+ 1, we conclude

E(N(m,α))=m+ 1 +
∞∑

n=m+1

p(n,m,α).(30)

Proposition 1.5 states that, for α ∈ (0, π
2 ], and ε = cos(α)

p(n,m,α)= 21−n
m∑

k=0

(
n− 1

k

)
+ Pn,m(ε),

where we have put

Pn,m(ε) := Prob{A ∈ In,m and C (A)≥ ε−1}.
We first estimate

T :=
∞∑

n=m+1

21−n
m∑

k=0

(
n− 1

k

)

as follows (take r = n− 1)

T =
m∑

k=0

∞∑
r=m

(
r

k

)(
1

2

)r

≤
m∑

k=0

(
1

2

)k ∞∑
r=k

(
r

k

)(
1

2

)r−k

−
m−1∑
k=0

1

2k
.

Applying Lemma 5.7 to the last expression we obtain

T ≤
m∑

k=0

(
1

2

)k

2k+1 − 2 + 1

2m−1 ≤ 2m+ 1.

We now estimate T ∗ := ∑∞
n=m+1 Pn,m(ε) using Theorem 1.3 which tells us that

Pn,m(ε)≤
(

n

m+ 1

)
C(m,m)

∫ ε

0
(1 − t2)(m

2−2)/2(
1 − λm(t)

)n−m−1
dt.

Hence, using Lemma 5.7 again,

T ∗ = C(m,m)

∞∑
n=m+1

(
n

m+ 1

)∫ ε

0
(1 − t2)(m

2−2)/2(
1 − λm(t)

)n−m−1
dt

≤ C(m,m)

∫ ε

0

∞∑
n=m+1

(
n

m+ 1

)(
1 − λm(t)

)n−m−1
dt

= C(m,m)

∫ ε

0
λm(t)−m−2 dt ≤ C(m,m)

ε

λ(ε)m+2 .

Plugging in the estimate for C(m,m) from Proposition 5.5, we obtain the claimed
bound for E(N(m,α))≤m+ 1 + T + T ∗. �
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We now turn to Theorem 1.4 on the expected value of lnC (A). In Theorem 1.3
we derived tail estimates on the probability distribution of the GCC condition num-
ber. For the sake of clarity, we include the following simple observation showing
how to use these tail estimates to bound the expected value of the logarithm of the
condition number.

PROPOSITION 5.8. Let Z be a random variable, almost surely greater or
equal than 1, satisfying, for some K, t0 > 0, that Prob{Z ≥ t} ≤ Kt−1 for all
t ≥ t0. Then E(lnZ)≤ ln t0 + K

t0
.

PROOF. We have Prob{lnZ ≥ s} ≤Ke−s for all s > ln t0. Therefore,

E(lnZ)=
∫ ∞

0
Prob{lnZ ≥ s}ds ≤ ln t0 +

∫ ∞
ln t0

Ke−s dt = ln t0 + K

t0

as claimed. �

We next proceed to prove Theorem 1.4. To simplify notation we put

Pn,m(ε) := Prob{A ∈ In,m and C (A)≥ ε−1},
Qn,m(ε) := Prob{A ∈ Fn,m and C (A)≥ ε−1}.

LEMMA 5.9. For any n > m≥ 1 and ε ∈ (0,1] we have:

(i) If ε−1 ≥ 13(m+ 1)3/2 then Pn,m(ε)≤ 2e(m+ 1)3/2ε.
(ii) If ε−1 ≥ (m+ 1)2 then Qn,m(ε)≤√

2πe(m+ 1)7/4ε.

PROOF. (i) Theorem 1.3 tells us that

Pn,m(ε)≤
(

n

m+ 1

)
C(m,m)

∫ ε

0
(1 − t2)(m

2−2)/2(
1 − λm(t)

)n−m−1
dt.

Recall formula (5) for the relative volume λm(t) of a cap of radius arccos(t) on Sm.
Recall also from Lemma 5.3 that αm := 2Om−1

Om
≤√

m. The first order derivative of
λm(t)

dλm(t)

dt
=−1

2
αm(1 − t2)(m−2)/2

is increasing; hence λm is a convex function. Moreover, λm(0)= 1/2. This implies
2λm(t)≥ 1 − αmt for all t ∈ [0,1]; hence 1 − λm(t)≤ 1

2(1 + αmt).
Bounding C(m,m) as in Proposition 5.5 we arrive at the estimate

Pn,m(ε)≤ 2(m+ 1)
√

m
1

2n

(
n

m+ 1

)(
1 +√

mε
)n−m−1

ε.(31)

We now proceed dividing by cases. Suppose that ε−1 ≥ 13(m+ 1)3/2.
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CASE 1 [n≤ 13(m+ 1)]. In this case ε−1 ≥ n
√

m and hence, using (31),

Pn,m(ε)≤ 2(m+ 1)
√

m(1 + 1/n)n−m−1ε ≤ 2e(m+ 1)
√

mε.

CASE 2 [n > 13(m+ 1)]. This implies ln(e n
m+1) ≤ n

m+1 ln(4
3), and it follows

that (
n

m+ 1

)
≤ 1

(m+ 1)!n
m+1 ≤

(
en

m+ 1

)m+1

≤
(

4

3

)n

.(32)

Since, in addition, ε−1 ≥ 13(m+ 1)
√

m≥ 2
√

m we get from (31)

Pn,m(ε)≤ 2(m+ 1)
√

m
1

2n

(
n

m+ 1

)(
3

2

)n

ε ≤ 2(m+ 1)
√

mε.

(ii) Theorem 1.3 implies that

Qn,m(ε) =
m∑

k=1

(
n

k + 1

)
C(m,k)

∫ ε

0
tm−k(1 − t2)km/2−1λm(t)n−k−1 dt

≤
m∑

k=1

(
n

k + 1

)
C(m,k)εm−k+12−(n−k−1)

≤
m∑

k=1

C(m,k)εm−k+12k+1,

the second line since λm(t)≤ 1
2 . Using Proposition 5.5 we obtain

Qn,m(ε) ≤ ε
√

2π(m+ 1)7/4
m∑

k=1

√(
m

k

)(
(m+ 1)ε

)m−k

≤ ε
√

2π(m+ 1)7/4
m∑

k=1

(
m

k

)(
(m+ 1)ε

)m−k

≤ ε
√

2π(m+ 1)7/4(
1 + (m+ 1)ε

)m
.

Under the assumption ε−1 ≥ (m+ 1)2 we have (m+ 1)ε ≤ 1
(m+1)

, and hence

Qn,m(ε)≤ ε
√

2π(m+ 1)7/4√e. �

PROOF OF THEOREM 1.4. For ε−1 ≥ 13(m+ 1)2 we have, by Lemma 5.9,

Prob{C (A)≥ ε−1} = Pn,m(ε)+Qn,m(ε)

≤ (
2e(m+ 1)3/2 +√

2πe(m+ 1)7/4)
ε

≤ 9.6(m+ 1)2ε.
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An application of Proposition 5.8 with K = 9.6(m + 1)2 and t0 = 13(m + 1)2

shows that

E(lnC (A))≤ 2 ln(m+ 1)+ ln 13 + 9.6/13 ≤ 2 ln(m+ 1)+ 3.31. �

5.3. On calculating the C(m,k). We describe a method for calculating the
C(m,k). For 1 ≤ k ≤m < n we define the following integrals:

I (n,m, k) := 2n−1
(

n

k + 1

)∫ 1

0
tm−k(1 − t2)km/2−1λm(t)n−k−1 dt.

By setting ε = 1 in the first part of Theorem 1.3 we get from (4) that, for all n > m,

m∑
k=1

I (n,m, k)C(m,k)=
m−1∑
k=0

(
n− 1

k

)
.(33)

By taking m different values of n (e.g., n=m+ 1, . . . ,2m) one obtains a (square)
system of linear equations in the C(m,k). Solving this system with Maple (sym-
bolically for even m and numerically for odd m) we obtained Table 1.

We can further use (33) to obtain expressions for C(m,k) for values of k other
than 1 and m. We do so for k =m− 1.

PROPOSITION 5.10. For all m≥ 2,

C(m,m− 1)= m(m− 1)

2m−1 (1 + α2
m) where αm = 2Om−1

Om

.

SKETCH OF PROOF. Put J (n,m, k) := ∫ 1
0 tm−k(1 − t2)km/2−1λm(t)n−k−1 dt

so that I (n,m, k) = 2n−1( n
k+1

)
J (n,m, k). In the following we write N = n − m.

One can prove that for fixed m the following asymptotic expansion holds for N →
∞:

2n−m−1J (n,m,m) = 1

αm

1

N
− m(m− 1)

α3
m

1

N3 + O
(

1

N5

)
,

2n−mJ(n,m,m− 1) = 1

α2
m

1

(N + 1)(N + 2)
+ O

(
1

N4

)
.

It follows after a short calculation that the left-hand side of (33) has the following
expansion:

C(m,m)
2m

(m+ 1)!
(

1

αm

Nm + a1(m)

αm

Nm−1 +
(

a2(m)

αm

− m(m− 1)

α3
m

)
Nm−2

)

+C(m,m− 1)
2m−1

m!
1

α2
m

Nm−2 + O(Nm−3),
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where

a1(m) := ∑
0≤j≤m

j = 1

2
m(m+ 1),

a2(m) := ∑
0≤i<j≤m

ij = 1

24
(m+ 1)m(m− 1)(m− 2)(3m+ 2).

Now we expand the right-hand side of (33) to obtain

1

m!N
m +

(
a1(m− 1)

m! + 1

(m− 1)!
)
Nm−1

+
(

a2(m− 1)

m! + a1(m− 1)

(m− 1)! + 1

(m− 2)!
)
Nm−2

+ O(Nm−3).

By comparing the coefficients of Nm (or those of Nm−1) we obtain

C(m,m)= m+ 1

2m
αm.

By comparing the coefficients of Nm−2 we get, after a short calculation,

C(m,m− 1) = O2
m−1

O2
m2m−3

(
a2(m− 1)− a2(m)+ma1(m− 1)

+m(m− 1)+ m(m− 1)O2
m

4O2
m−1

)
,

and simplifying this expression, the claimed result follows. �

Finding a closed form for all coefficients C(m,k) remains a challenging task.
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REFERENCES

[1] AGMON, S. (1954). The relaxation method for linear inequalities. Canad. J. Math. 6 382–392.
MR0062786

[2] BÜRGISSER, P. and AMELUNXEN, D. (2008). Uniform smoothed analysis of a condi-
tion number for linear programming. Accepted for Math. Program. A. Available at
arXiv:0803.0925.

[3] CHEUNG, D. and CUCKER, F. (2001). A new condition number for linear programming. Math.
Program. 91 163–174. MR1865268

[4] CHEUNG, D. and CUCKER, F. (2002). Probabilistic analysis of condition numbers for linear
programming. J. Optim. Theory Appl. 114 55–67. MR1910854

http://www.ams.org/mathscinet-getitem?mr=0062786
http://www.arxiv.org/abs/0803.0925
http://www.ams.org/mathscinet-getitem?mr=1865268
http://www.ams.org/mathscinet-getitem?mr=1910854


COVERAGE PROCESSES AND CONDITION NUMBERS 603

[5] CHEUNG, D., CUCKER, F. and HAUSER, R. (2005). Tail decay and moment estimates of
a condition number for random linear conic systems. SIAM J. Optim. 15 1237–1261.
MR2178497

[6] CUCKER, F. and PEÑA, J. (2002). A primal-dual algorithm for solving polyhedral conic sys-
tems with a finite-precision machine. SIAM J. Optim. 12 522–554. MR1885574

[7] CUCKER, F. and WSCHEBOR, M. (2002). On the expected condition number of linear pro-
gramming problems. Numer. Math. 94 419–478. MR1981163

[8] DUNAGAN, J., SPIELMAN, D. A. and TENG, S.-H. (2009). Smoothed analysis of condition
numbers and complexity implications for linear programming. Math. Programming. To
appear. Available at http://arxiv.org/abs/cs/0302011v2.

[9] DVORETZKY, A. (1956). On covering a circle by randomly placed arcs. Proc. Natl. Acad. Sci.
USA 42 199–203. MR0079365

[10] GILBERT, E. N. (1965). The probability of covering a sphere with N circular caps. Biometrika
52 323–330. MR0207005

[11] GOFFIN, J.-L. (1980). The relaxation method for solving systems of linear inequalities. Math.
Oper. Res. 5 388–414. MR594854

[12] HALL, P. (1985). On the coverage of k-dimensional space by k-dimensional spheres. Ann.
Probab. 13 991–1002. MR799434

[13] HALL, P. (1988). Introduction to the Theory of Coverage Processes. Wiley, New York.
MR973404

[14] HAUSER, R. and MÜLLER, T. (2009). Conditioning of random conic systems under a general
family of input distributions. Found. Comput. Math. 9 335–358. MR2496555

[15] JANSON, S. (1986). Random coverings in several dimensions. Acta Math. 156 83–118.
MR822331

[16] KAHANE, J.-P. (1959). Sur le recouvrement d’un cercle par des arcs disposés au hasard. C. R.
Math. Acad. Sci. Paris 248 184–186. MR0103533

[17] MILES, R. E. (1968). Random caps on a sphere. Ann. Math. Statist. 39 1371.
[18] MILES, R. E. (1969). The asymptotic values of certain coverage probabilities. Biometrika 56

661–680. MR0254953
[19] MILES, R. E. (1971). Isotropic random simplices. Adv. in Appl. Probab. 3 353–382.

MR0309164
[20] MORAN, P. A. P. and FAZEKAS DE ST. GROTH, S. (1962). Random circles on a sphere.

Biometrika 49 389–396. MR0156434
[21] MOTZKIN, T. S. and SCHOENBERG, I. J. (1954). The relaxation method for linear inequalities.

Canad. J. Math. 6 393–404. MR0062787
[22] REITZNER, M. (2002). Random points on the boundary of smooth convex bodies. Trans. Amer.

Math. Soc. 354 2243–2278. MR1885651
[23] ROSENBLATT, F. (1962). Principles of Neurodynamics. Perceptrons and the Theory of Brain

Mechanisms. Spartan Books, Washington, DC. MR0135635
[24] SANTALÓ, L. A. (1976). Integral Geometry and Geometric Probability. Addison-Wesley,

Reading, MA. MR0433364
[25] SIEGEL, A. F. (1979). Asymptotic coverage distributions on the circle. Ann. Probab. 7 651–

661. MR537212
[26] SIEGEL, A. F. and HOLST, L. (1982). Covering the circle with random arcs of random sizes.

J. Appl. Probab. 19 373–381. MR649974
[27] SOLOMON, H. (1978). Geometric Probability. SIAM, Philadelphia, PA. MR0488215
[28] STEVENS, W. L. (1939). Solution to a geometrical problem in probability. Ann. Eugenics 9

315–320. MR0001479
[29] WENDEL, J. G. (1962). A problem in geometric probability. Math. Scand. 11 109–111.

MR0146858

http://www.ams.org/mathscinet-getitem?mr=2178497
http://www.ams.org/mathscinet-getitem?mr=1885574
http://www.ams.org/mathscinet-getitem?mr=1981163
http://arxiv.org/abs/cs/0302011v2
http://www.ams.org/mathscinet-getitem?mr=0079365
http://www.ams.org/mathscinet-getitem?mr=0207005
http://www.ams.org/mathscinet-getitem?mr=594854
http://www.ams.org/mathscinet-getitem?mr=799434
http://www.ams.org/mathscinet-getitem?mr=973404
http://www.ams.org/mathscinet-getitem?mr=2496555
http://www.ams.org/mathscinet-getitem?mr=822331
http://www.ams.org/mathscinet-getitem?mr=0103533
http://www.ams.org/mathscinet-getitem?mr=0254953
http://www.ams.org/mathscinet-getitem?mr=0309164
http://www.ams.org/mathscinet-getitem?mr=0156434
http://www.ams.org/mathscinet-getitem?mr=0062787
http://www.ams.org/mathscinet-getitem?mr=1885651
http://www.ams.org/mathscinet-getitem?mr=0135635
http://www.ams.org/mathscinet-getitem?mr=0433364
http://www.ams.org/mathscinet-getitem?mr=537212
http://www.ams.org/mathscinet-getitem?mr=649974
http://www.ams.org/mathscinet-getitem?mr=0488215
http://www.ams.org/mathscinet-getitem?mr=0001479
http://www.ams.org/mathscinet-getitem?mr=0146858


604 P. BÜRGISSER, F. CUCKER AND M. LOTZ

[30] WHITWORTH, W. A. (1965). DCC Exercises in Choice and Chance. Dover, New York.
[31] ZÄHLE, M. (1990). A kinematic formula and moment measures of random sets. Math. Nachr.

149 325–340. MR1124814

P. BÜRGISSER

INSTITUTE OF MATHEMATICS

UNIVERSITY OF PADERBORN

33098 PADERBORN

GERMANY

E-MAIL: pbuerg@upb.de

F. CUCKER

DEPARTMENT OF MATHEMATICS

CITY UNIVERSITY OF HONG KONG

KOWLOON TONG

HONG KONG

E-MAIL: macucker@cityu.edu.hk

M. LOTZ

MATHEMATICAL INSTITUTE

UNIVERSITY OF OXFORD

24-29 ST. GILES’
OXFORD OX1 3LB
ENGLAND

E-MAIL: lotz@maths.ox.ac.uk

http://www.ams.org/mathscinet-getitem?mr=1124814
mailto:pbuerg@upb.de
mailto:macucker@cityu.edu.hk
mailto:lotz@maths.ox.ac.uk

	Introduction
	Coverage processes on spheres
	Polyhedral conic systems and their condition
	Feasibility of polyhedral conic systems (FPCS)
	Computation of points in polyhedral cones (CPPC)

	Coverage processes versus condition numbers

	Main ideas
	The GCC condition number and spherical caps
	Toward the proof of Theorem 1.3

	Preliminaries
	Properties of smallest including caps
	Volume forms on Grassmann manifolds

	The probability distribution of C(A)
	The feasible case
	The infeasible case

	On the values of the coefficients C(m,k)
	Bounding the coefficients C(m,k)
	Proof of Theorems 1.2 and 1.4
	On calculating the C(m,k)

	Acknowledgment
	References
	Author's Addresses

