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FRACTIONAL MARTINGALES AND CHARACTERIZATION OF
THE FRACTIONAL BROWNIAN MOTION

BY YAOZHONG HU!, DAVID NUALART? AND JIAN SONG
University of Kansas

In this paper we introduce the notion of fractional martingale as the
fractional derivative of order « of a continuous local martingale, where
a€(— %, %), and we show that it has a nonzero finite variation of order 1-1—% s
under some integrability assumptions on the quadratic variation of the local
martingale. As an application we establish an extension of Lévy’s character-
ization theorem for the fractional Brownian motion.

1. Introduction. The fractional Brownian motion (fBm) with Hurst parame-
ter H € (0, 1) is a zero mean Gaussian process with covariance

(1.1) EBIBH) =1 + 52 — |1 —s*H).

This process is a Brownian motion when H = % From the relation E (|B,H —
BSH 12) = |t — s|?H, it follows that B has Holder continuous trajectories of order
H — ¢, for any ¢ > 0. On the other hand, the self-similarity of the fBm and the
ergodic theorem imply that the fBm has %—Variation on any time interval [0, 7]
which equals to cyt, where cy = E(|B1H|1/H) (see [10]). We refer to the mono-
graph [4] and the review paper [9] for detailed accounts on the properties of the
fBm.

In the case of Brownian motion, the famous Lévy’s characterization theorem
states that a continuous stochastic process (B;, t > 0) adapted to a right-continuous
filtration (F;, ¢t > 0) is an F;-Brownian motion if and only if B is a local martin-
gale and (B); = . A natural problem is the extension of Lévy’s characterization
theorem to the fractional Brownian motion.

The purpose of this paper is to introduce and study the notion of a fractional
martingale, and apply it to the above problem. Fix o € (—%, %). IftM=(M;,t>0)

is a continuous local martingale, we denote by M) = (M,(“), t > 0) the stochastic
process defined by

t
(1.2) M@ = f (t — )2 dM,,
0
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provided this stochastic integral exists for all # > 0. The process M@ is called the
Riemann—Liouville process of M. Notice that M@ is no longer a martingale and
we will say that it is a fractional martingale.

If € (0, %), then the stochastic integral in (1.2) always exists, and Mt(a) =
ra+ oz)I(‘)"+ (M);, where I(‘)"+ is the left-sided fractional integral of order «. If

o€ (—%, 0) and M has «’-Hélder continuous trajectories on any finite interval for

some o' > —a, then M,(a) exists and M,(a) =T (1 +a)Dy (M), where Dy} is
the left-sided fractional derivative of order —«. We refer to Samko, Kilbas and
Marichev [11] for the definition and properties of the fractional operators.

We are interested in the variation properties of fractional martingales. The
process M@ has Holder continuous trajectories of order y on any finite interval,

for any y < % + «, provided M has Hoélder continuous trajectories of order % —€

on any finite interval, for any € > 0. Then, it is natural to expect that M@ has a
2

finite and nonzero variation of order 8 = (% +a) = 555 - We show that (see
Theorem 2.6) if d(M), = £*dt, then M@ has a finite S-variation c, 5 |8 ds
under some integrability conditions on &, where ¢, is a constant depending only
on «. The proof of this result is based on the variation properties of the fractional
Brownian motion.

The fractional Brownian motion B*! is not a martingale unless H = % But the

process

t
(1.3) M,:/O sV2=H ¢ —)1/2=H g gH

is a martingale with respect to the filtration generated by the fBm, verifying
(M), =d wt*H for some constant dy (see Norros, Valkeila and Virtamo [8]). We
show that if B = (B;,t > 0) is a continuous square integrable centered process
with By = 0, then B is a fractional Brownian motion with Hurst parameter H if
and only if the process B has the following properties:

(i) The sample paths of the process B are Holder continuous of order y for any
y €0, H).

(i) The process M defined in (1.3), where B is replaced by B, is a martin-
gale with respect to the filtration generated by B. If H > %, we also assume
that the quadratic variation of M is absolutely continuous with respect to the
Lebesgue measure.

(iii) For any ¢ > 0, the process B has %-Variation (in the sense of Definition 2.3)
which equals to ¢yt on the interval [0, ¢].

In order to prove that the conditions (i), (ii) and (iii) imply that B is a fractional
Brownian motion, it suffices to show that the martingale M satisfies (M); = dy 1>
for some constant dy, and this will be a consequence of the condition (iii) and the
general result on the B-variation of a fractional martingale.
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In a recent work [7], Mishura and Valkeila have proved another extension of
the Lévy characterization theorem, where condition (iii) is replaced by an assump-
tion on the renormalized quadratic variation, and no restriction on the quadratic
variation of M is required.

THEOREM 1.1 (Mishura and Valkeila). Assume that B is a continuous square
integrable centered process with Bo = 0. Then the following are equivalent:

(a) The process B is a fractional Brownian motion with Hurst parameter H €
O, 1).
(b) The process B satisfies the following properties:
(1) The process B has Holder continuous sample paths of order y for any
y € (0, H) in any finite interval.
(ii) The process M defined in (1.3), where B is replaced by B, is a martin-
gale with respect to the filtration generated by B.
(iii)) Foranyt >0,

n
i 2H_1 Z 2 2H
R k I(B’k/n — Bige—1y/m)” =177,

in L.

The proof of this theorem uses different kind of techniques, and is based on the
stochastic calculus with respect to the fractional Brownian motion.

The paper is organized as follows. Section 2 is devoted to study the S-variation
of fractional martingales, and Section 3 contains the proof of the Lévy characteri-
zation theorem for the fBm. Some technical lemmas are included in the Appendix.

2. B-variation of fractional martingales. Let (2, F, P) be a complete prob-
ability space equipped with a right-continuous filtration (F;, ¢ > 0) such that F
contains the P-null sets. Fix a parameter o € (—%, %). We introduce the following
notion.

DEFINITION 2.1. A continuous J;-adapted process (Mt(“), t > 0) is called a
fractional martingale of order « if there is a continuous local martingale (M;, t >
0) such that, for all ¢ > 0,

t
2.1) / (t —5)**d(M), < o0,
0
almost surely, and

t
(2.2) M = / (t — ) dM;.
0
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Notice that by Fubini’s theorem condition (2.1) holds true for almost all 7 > 0.

If o € (0, %), then (2.1) is always fulfilled. Moreover, an integration by parts
implies that the integral appearing in (2.2) exists as a Riemann—Stieltjes integral
and Mt(a) = I'(a + D15, (M), where I is the left-sided fractional integral of
order «.

For any o € (—%, 0) we introduce the following hypothesis:

(H). The trajectories of M are «’-Holder continuous on finite intervals for
some o’ > —a.

Then we have the following result.

LEMMA 2.2. Fix o € (—%, 0), and let M be a continuous local martingale

satisfying condition (H). Then (2.1) holds, Mt(a) exists as a Riemann—Stieltjes in-
tegral and it coincides with T'(a + 1) Dy (M), where D" is the left-sided frac-
tional derivative of order —a.

PROOF. Set
Z=|M;|+ (M) + sup p
O<s<u<t s — ul
For any integer n > 1 we define
Ty =inf{t >0:Z; > N}.

Then, Ty is an nondecreasing sequence of stopping times such that Ty 1 co. For
any s <t we can write

E({M)in1y — (M)sn1y|”) < CpE(IMiary — Mary|?P) < Cp,N?P|t — s|?P.

By Kolmogorov’s continuity criterion the sample paths of (M) are Holder contin-
uous of order y for any y < 2a’, on any finite interval. This implies (2.1), and
it is easy to check that the stochastic integral is a Riemann—Stieltjes integral and
coincides with T'(a + 1) Dy ' (M);. [

From fractional calculus, assuming condition (H) if « < 0, we have M, =
F(++1)10_f(M(a))f’ where 7% = D* if a > 0. Using the definition of the left-
sided fractional integral and derivative, we have

1 t
ﬁ/ (t —S)_l_aMs(a) dS, if < 0,
23 M ={ ATl

(t—s5)"*dM®, if > 0.

rl+ard —a)/o
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In order to define the S-variation, let us first introduce some notation. Fix a time
interval [a, b], and consider the uniform partition
n"={a=1ty <t{ <--- <t =b},

wheret{’:a—i—%(b—a) fori=0,...,n.Let >1andlet X = (X;,t >0) be a
continuous stochastic process.

DEFINITION 2.3. We define the g-variation of X on the interval [a, b], de-
noted by (X) g, [a,5], s the limit in probability of

n
(2.4) S X) =D ALK P,
i=1

if the limit exists, where A7 X = X o — X We say that the B-variation of X on
[a, b] exists in L if the above limit exists in L!.

We also denote (X)g.[0,,] by (X)g,. For instance, a continuous local martingale
has a finite 2-variation, denoted by (M), and the fractional Brownian motion BtH
of Hurst parameter H € (0, 1) has %—variation which is equal to ¢y f, where cy =
E(|B{'|)!/.

A direct consequence of the above definition is that if (X)g 4,¢] exists, then for
any a < b < ¢, both (X)g 14.»] and (X)g [p,c] €xist and

(2.5) (X)g.1a.c1 = (X)p.[a.b1 + (X)p.[b.c]-
It is also easy to see that the following triangular inequality holds:
(2.6) SEPVX + )P < SEEP () VP 4 sEEP ) VB

This inequality implies that if X and Y are two continuous stochastic processes
such that (X) g [4,5] exists and (Y)g (4,51 = 0, then

2.7 (X +Y)g,1a,p1 = (X)B,[a,b]-

Let W = (W;,t > 0) be an F;-Brownian motion. We want to compute the 8-
variation of M@ where M is a martingale of the form M; = fé & dW;. We will
denote by C a generic constant that may depend on «. Consider first the case where
the martingale is just a standard Wiener process. We recall that

g— 2
1 4+2a’

LEMMA 2.4. Let (W;,t = 0) be a Wiener process, and set X; = Wt(a) =
fé(t —5)*dW;. Then the B-variation of X exists in L' and (X)g.1a,p) = Ca(b—a),
where ¢y = CHKI;I/H, H= % +o,cyg= E(|Bf1|1/H), and

_( 2HT'(3/2 — H) >1/2
T=\T(H+1/2T2—-2H)

(2.8)
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PROOF. Because of (2.5), it is sufficient to show that (X)) g ; = c,f. We can ex-
tend the underlying probability space in such a way that (W_;, t > 0) is a Brownian
motion independent of W. Then, the process B defined by

BH IKH</Ot(l‘ —$)*dW; +/_Ooo((t — 5% — (—s)“)dWs>,

is a fractional Brownian motion with Hurst parameter H (see Mandelbrot and Van
Ness [6]). Hence,

X, =«y'BI - 7,
where Z; = f_ooo((t —5)% — (—5)%) dW;. From the %—Variation property of frac-

tional Brownian motion we know that (BH Vgt = cht, in L', because B = %

Then, by (2.7) it suffices to show that lim,,_, E(|S[(?;1t](Z) ) =0forall t > 0. We
have

n
Y E1Zp—Zp 1P
i=1

B/2

noso0
=C Z(/ (@ =) — @, — s)o‘)2 ds)
i=1 Y%
n oo ; « . 2d B/2
_c;(fo ((t,-_1+;+s> — (1 +9) ) s)

00 ¢ o 2 B/2 c 2 00 B/2
< C</ <(— + s) — s°‘> ds) +—=> </ (A ) ds)
o \\n nf =\Jo

=L+ 1.

It is easy to see by the dominated convergence theorem that /; — 0 as n — oo. On
the other hand,

n
12 < Ctn*l Z(l _ 1)(20{71)/3/2 < Ctn(20{71)/(2(3{+1) -0
i=2

since @ < 1/2. This proves the lemma. [
We will make use of the following lemma.

LEMMA 2.5. Fixa > 0. For t > a let X, = [j/(t — 5)*dW;, where W =
(Wy, t > 0) is a Wiener process. Then, for all t > a,

(2.9) lim_ E(S§-1x0)]) =o.
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PROOF. Take 8 =2/(1 + 2«). First we have

n a B

SCE|| 1G] — )% = (] — )*1d W
0

i=1

- a n o n a2 b1z
scz{fo [ — ) — (1, — 5)7] ds} ,
i=1

where ¢ > a and {¢/'} is a uniform partition on [a, ¢]. Then we apply a similar
argument as in the proof of Lemma 2.4. [

The following theorem is the main result of this section.

THEOREM 2.6. Set 8 =2/(1 4 2«a). Consider a continuous local martingale
of the form M; = fé EdWy, where &€ = (&,t > 0) is a progressively measurable
process such that, for all t > 0,

/OI(E(|gs|ﬂ))ﬂ//ﬂ ds <oo  forsome B’ >pB,  ifa<O,

(2.10) ,
A(E(Sf))ﬁ/zds<w, ifa > 0.

Then, the B-variation of M) on any interval [0, t] exists in L', and (M(“))ﬂ,; =
—~1/H

Ca f(; Iéslﬁds, where cq =cyky ', H = % + o, and kg is defined in (2.8).

PROOF. We can represent the martingale M as a stochastic integral M; =
fé & dWy, where W = (W;, ¢t > 0) is a Brownian motion defined on an extension
(ﬁ, .7?, ﬁ) of our original probability space (S}\, F, P). The space (S~2, .7?, 13) is the
product of (€2, F, P), and another space (Q,F, P) supporting a Brownian motion
independent of M. Clearly, if the conclusion of the theorem holds in the extended
space, it also holds in the original space.

Notice that if @ < 0, by Holder’s inequality condition (2.10) implies that

/Ot(z — )R E(E2) ds < o0,

and (2.1) holds.

Suppose first that the process & has the form & =Y I, 1,1(¢), where 0 <1, <1,
and Y is a bounded F7, -measurable random variable. In this case the process M@,
denoted by X, is given by

tAL
Xt:YI[tl,oo)<t)/ (l‘—S)adWS.
n
For t € [0, t1], we clearly have (X)g, =0. For t € [, 12],

t n
X,=Y/ (t—s)“dWs—Y/ (t —5)*dW;,
0 0
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and by Lemmas 2.4 and 2.5, for any interval [a, b] C [f1, 2], the B-variation of X
exists in L', and

(X)p.1ab) =l YIP (b — a).

Finally, by Lemma 2.5, for any interval [a, b] C [f2,00), (X)g,[a,p) =0, In L.
Hence, we have proved that

t
<X>,s,,=ca|Y|ﬁ<mrz—n)+=ca/O &1 ds.

Let us denote by S the space of step functions of the form

n
E =) Yily_,.m),

i=1

where Y; is F;, | measurable and bounded, and 0 =1y < --- <1,. For§ € S, we
have X, =3""_, Xf, where X; = f(; ‘;‘f (t —s)*dW, and éf =Yl _,41(t). From
(2.5) we have

n

(X)pr= Z<X>,3,[fi71,ti]m[0’t]'
i=1

From the first part of the proof we see that

calYilP(ti At —1tim))4, if j =1,

and applying the triangular inequality (2.6), we see then that

(X7) g 14 1.00000,1 = {

(X) 8.115-1.0000.0 = (X)) 811110011

Hence,
n t

@) (X)poa=ca Y 1YilP m—zi_1>+=ca/0 &7 ds,
i=1

and this proves the result for step functions.
To complete the proof, we use a density argument. Fix a time interval [0, T'].
We can find a sequence of step functions (§ k k> 1) in S such that if & > 0, then

: T k(2\\B/2
Jim [ (Bl — )P ds =0
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and if o < 0, then
T i
tim [ (Eqg — 17"/ ds =0.
k—00 J0

Define Xf = fé (t — s)“ssk dB; for t € [0, T']. From the triangular inequality (2.6)
and the Burkholder—Davis—Gundy inequality (see, for instance, [5]), we have, for
allt €[0, T],

E(«S,%‘?;HX)W = S (X917

5c<E(i

i=l

"
fo (1 — )% — (1, — )2) (& — EE W,

/ot’n (& ="

— (1 — )% (& — EM?ds

-
)

(i) If & > 0, namely, B < 2, then by the concavity of x#/? and Lemma A.1, we

have
/3/2) /8

(2.12)

5c<E(f

i=1

Now we will consider two cases depending on the sign of «.

E(ISha 00" = sl Ve))

(2.13) < C(Z

i=1

< C(/Ot(Euss - ss"ﬁ))’g/zds)l/ﬁ-

[0.1] g t p 1/8
E S/g’n (X) Cu ) 1&s|” ds

+E(‘S[Ot](xk YB _ ( /|§ |ﬁds>l/ﬂ‘>
A )

n

/0 (@ =) — (1, — 9)2)2E(l& — £5P) ds

Then
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From (2.13) and (2.11) we obtain

. N ‘ 1/p
lim sup E(lSﬁ’n x)V/h — <ca/ & |P ds) D
’ 0

n—oo

< C(/OQE@S - ss"|2>ﬂ/%1s)m3

([ o) ([ o)

and letting k tend to zero, we prove the desired result.
(ii) If @ <0, namely, 8 > 2, then applying the Minkovski inequality in (2.12)
and using Lemma A.2, we have
B /2) 1/

E(ISE00YE — sl e))

<c(x

i=1

"

fo' (1 =) = (- = %) (E(E — 119)* P ds

1/8
< c(/ol<E|ss gk ds)

Now in the same way as for the case « > 0, we can show

_ 0l o1 N
Tim E(|Sphlx0)"F - C"‘/o & 1P ds —0.

This proves the theorem. [J

REMARK 2.7. If @ > 0 and [j E(£})ds < oo, then [J(E(£2))P/2ds < oo,
and the B-variation of the fractional martingale M @) exists in L', and (M®) Bt =
Cq fé |&|# ds. Using a localization argument, we can prove that this result re-
mains true with the convergence in probability, for any continuous local martin-
gale such that (M), = fé Ssz ds for all t+ > 0. On the other hand, if « < 0 and
I E(|&|?)ds < oo for all + > 0, and for some B’ > B, then the B-variation of
the fractional martingale M@ exists in L' and (M ("‘))5,, = Cy fé &P ds. As
a consequence, again by a localization argument, the result remains true with
the convergence in probability, for any continuous local martingale such that
(M), = [} £2ds, assuming that 5 &7 ds < oo almost surely, for all # > 0, and
for some B’ > B.

COROLLARY 2.8. Consider a continuous local martingale M = (M;,t > 0)
with Mo =0 and (M); = fé SSZ ds, where £ = (&,t > 0) is a progressively mea-
surable process. Suppose that M satisfies (2.1) for some a € (—%, %). Then there
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exists C > 0, such that

11m1nfE(Sab](M(“) >C/ E(|&1P)ds.

n—oo

PROOF. For each integer N > 1 let ¢y (x) =x if |x| < N and ¥y (x) = =
x| > N. Denote M = [{(t —s)* vy (&) d M. An application of Burkholder’s
inequality yields

B
N

%
@ = = =99 1R ds

n

(s 0r) = (3

i=1

tVl

[ @ =9 = —99)

Y

CE(f

i=1

/3/2>

tﬂ
fo(u — 9% — (1, — )02 (l&s| A N ds

> CE(Xn:

i=1

/3/2)

By Theorem 2.6, S[a ud (M@-N)y converges to f:(|§s| AN)Pdsin L as n tends to
infinity. So, lim,,_, oo E(ng;lb](M(“)’N)) = f: E((|&| AN)P) ds and, consequently,
liminf, o E(S, (M@)) > C [? Elg|Pds. O

> CE(S[a b](M(a) N))

So far we have considered continuous local martingales such that (M), is ab-
solutely continuous with respect to the Lebesgue measure. The next result says
that in the case o < 0 if the quadratic variation of the martingale is not absolutely
continuous with respect to the Lebesgue measure with positive probability, then
the B-variation is infinite.

PROPOSITION 2.9. Fix —% < a < 0. Suppose that M = (M;,t > 0) is a con-
tinuous local martingale, satisfying (2.1). Consider the Lebesgue decomposition
of its quadratic variation given by (M); = u; + vy, where p; and vy are continu-
ous nondecreasing adapted processes such that d i, is absolutely continuous with
respect to the Lebesgue measure, and dv;, is singular. If P(dv; £ 0) > 0, then we
have limy o0 E (S| (M(@))) = 00, for all t > 0.

PROOF. By Burkholder’s inequality, we have
n
(o) () |B
E(Z |Mtl?(’x - Mti”(:| )
i=1
B/2

>CZE</ (@ =) = (1) — s)i)zd(Mh)
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B/2

> CiXZ;E(/OZ’n((z{Z —)Y— (| — s)‘j‘r)zdus>

n th 5 B/2
- CZE(/ (@ =) =t —9)%) dvs) .
i=1 0

Then the result follows from the above inequality and Lemma A.3, proved in the
Appendix. [J

On the other hand, the next result says that in the case o € (0, %), the B-variation
is zero if the quadratic variation of the martingale is singular.

PROPOSITION 2.10. Suppose that M = (M;,t > 0) is a continuous local
martingale, such that almost surely the measure d{M); is singular with respect to

the Lebesgue measure. Then, if a € (0, %), we have lim,,_, E(Sl[g(?’rf](M(“))) =0,
forallt > 0.

PROOF. The result is an immediate consequence of Lemma A.3, proved in
the Appendix. [J

3. Characterization of fractional Brownian motion. Suppose that B is

a fractional Brownian motion with Hurst parameter H € (0, 1). The process B
admits the following representation (see [4]):

t
(3.1 B,“’:/ Zu(t,s)dWs,
0

where

\H-12
Zu(t,s) :KH[(;) (t —s)H~1/2

_ <H _ %)SI/Z—H /tuH—3/2(u _g)H-12 du],

N

(3.2)

with kg defined in (2.8).
The next theorem is the main result of this paper and provides an extension of
Lévy characterization to the fractional Brownian motion.

THEOREM 3.1. FixH €(0,1), H # % Suppose that B = (B, t > 0) is a zero
mean continuous stochastic process. The following two conditions are equivalent:

(1) B is a fractional Brownian motion with Hurst parameter H .
(2) The process B satisfies the following conditions:
(1) The trajectories of B are Holder continuous of order H — € for any H —
€€ (0, H).
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(ii) Let
t
(3.3) M, = f sVPHG _ol2-Hgp.
0

Then M is a local martingale. Furthermore, if H > % the quadratic vari-
ation of the martingale M is absolutely continuous with respect to the
Lebesgue measure almost surely.

(iii)) For any t > 0, the %-variation of B in the interval [0, t] exists in L,
and (B)1/u,: = cyt, where cy = E(&|VH)Y and & is a standard normal
random variable.

REMARK 3.2. Notice that condition (i) is always true if H < %, and the
Riemann-Stieltjes integral in (3.3) exists by Proposition A.6.

PROOF OF THEOREM 3.1. From the properties of the fractional Brownian
motion we know that (1) implies (2). Suppose that (2) holds. Fix H — € € (0, H),
and T > 0. We are going to show that B is a fractional Brownian motion with Hurst
parameter H in the time interval [0, T']. Denote by || B| - the Holder norm of
order H — € on [0, T'] [see (A.2)]. The proof is divided into several steps.

Step 1. From (3.3), we can solve the integral equation to express B as a func-
tional of M. This can be done as in the proof of Theorem 5.2 of [8]. In this way
we obtain

By =dy[t""V?R, — (H - H1,],

where dy = BG — H, H+ 17!,

t
R, =/0 (t — )12 am,,

t/ pt
Y;:f (/ uH_3/2(u—s)H_l/2du>dMs.
0 s

Comparing with the representation formula (3.1) for the fractional Brownian mo-
tion, it suffices to prove that

and

(3.4) d(M)s = (kpdy's'?~ 1) ds,

because this implies that M is a Gaussian martingale, and B has the covariance of
the fractional Brownian motion with Hurst parameter H. In order to show (3.4),
we are going to compute the %—Variation of R, from the decomposition

(3.5) R, =d,§1t1/2_HBt +(H - %)tl/Z—HYt‘
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Step 2. Fix0<e < HA % A (1 — H) and suppose that E(||B||Zi) < 00. We

will first show that the %—Variation of the process Z; = tY/2=H B, exists in L' in
any interval [0, ¢] C [0, T'], and

(3.6) (Z)1/1, =2Hcyt"/CH.
An application of the triangular inequality yields

n H

i=1

S .(2) <

3.7
" H|1/H
+ (Z a2 — @2 By |1/H> :
i=1
and
H
n
()’ —
S%/;I]’n(z) > (Z(l,l}’l)l/(ZH) llBtin _ Bt[.’il |1/H>
i=1
3.8
(3-8) n H\1/H
_ <Z |(tin)1/2—H _ (tin—l)l/z_H|1/H|Bl,”,1 |1/H)
i=1
We have
n
Z I(tln)l/Z—H _ (1?71)1/2_H|1/H|B;i"_1 |1/H
i=1
1/2H)—e/H n
(39) <cisiy” (%) S — e
n

i=2

which converges in L' to 0 as n tends to infinity. From (3.7) to (3.9) we obtain

n
: [0,7] 1 1/Q2H)—1 1/H
3.10)  lim Sy ,(2) = lim @) | By — By |

i=1

’

1

in L', provided that the limit on the right-hand side of (3.10) exists. Denote I ]” =
(t;‘_1 , t;’] for j =1,2,...,n. We divide every subinterval / j” into m parts, and we
get a finer partition 0 = 7§™ < --- <t/ =t. Then, we have

nm n
DY B — By |V =37 ey () VDTN — 17 _y)

i=1 j=1
n jm
— Z( Z ((tlnm)l/(ZH)*l _ (t;l)l/(ZH)*l)|Btlnm _ Bti”inl|1/H
j=l\Ni=(G-1)m+1
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jm
+ (t;l)l/(zm_l< Z | Bypm — By, |VH cu(t; — t;—l)))‘
i=(j—-Dm+1

n jm
= SV g VO S (B — By

j=1 i=(j—Dm+1

jn
+ (t;?)l/(ZH)—l Z |Bt;‘”’ _ Bt,«"i”1|l/H _ cH(t;? _ t;‘_l) ‘
i=(j—1m+1

Letting m tend to infinity and using assumption (ii), we obtain

1/QH)-lyp _ p 1/H _ 1/2H)
Jlim_ Zl(z ) |Byn — By |V =2Heyt ,
l
in L', which shows (3.6).
Step 3. We claim that the J-variation of the process V; = t!'/2=#Y, in L! is
zero. The increment |Y; — Y| can be estimated by Lemma A.7 in the Appendix
with o = % — H, f being a trajectory of the process B and 8 = H — ¢. Notice that

a—}—,Bzl—e,andZa—I—,B:1—H—e.Hence,foranys,tE[O,T],wehave

— Y| < ClIBll—e P —sP).

~

Therefore, as in (3.7), we have

n
E(S\4, () =3V EY,y — Yy Y1)
i=1

n
_ — 1/H
+CI (VP — @ ) P T EQY e (V)
i=1
=A, + B,.

For the term A,, we have

1 —
i=1

1/2H)—¢/H n
1/H . 1. _ _
=C|B|}" (n) =1 yl=e/H-UH

1/(QH)—s/H
<c|siy” (n) p /e H L
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By Lemma A.7, lim,_, o0 E(A;) = 0. For the term B,,, using that E(|Yt,-",1 |V/HY <

CE(IBI )1 1'=/H  we obtain

E H 1/H
B § _ t
( n) <CE(||B||1/ ) (f —1/(2H) s/H( )

|\~ 1+1/H=¢/H
<CE(IBI". )<n> 0.

Hence, (Y)1/u, =0,in L, forall t € [0, T].
Step 4. From (3.5), (3.6), Step 3 and (2.7), we get that the %—Variation of the
process R in any interval [0, ] C [0, T'] exists in L' and

(3.11) (R)1/m.s = cpdy ' 2H Y CH),

On the other hand, since R; is an H — i martingale, Theorem 2.6 and Propo-
sition 2.9 imply that if H < 1/2, the quadratic variation d{M),; must be ab-
solutely contmuous with respect to the Lebesgue measure, almost surely In the
case H > 5 L this is true by the assumption (ii). This implies that (M), = fo &: 2ds,
where & = (&, t > 0) is a progressively measurable process.

By Corollary 2.8, there is a positive constant C such that, for any 71, , € [0, T'],
C [ sV/CD=1ds > [ E(|&|"")ds. Then E(|&]|"/#) < Cs'/@H)=1 Thus, we

can apply Theorem 2.6 to obtain (R)/pg, = cH/cHl/H fo |&|'/H ds. Comparing
this with (3.11), we obtain

& =kndy's'>H, 0<s <,
and (3.4) holds. This proves that B is a fractional Brownian motion with Hurst
parameter H under the condition E (|| B|| I/H _p) <o00.

Step 5.1 E(|| Bl ",
ment. Denote

) is not necessarily finite, we can use a localization argu-

and BX = Bn7,. Since Y, |Bt{§ — B{{JUH < Y IBy — By V7 +

(K %) I/H by the dominated convergence theorem, we can also get

e )-

By modifying the proof in Steps 14 slightly, we get
&l =kndy's">H, 0<s<inTk.
Clearly, limg_, o Tx = T, and then

&) = kpdy's'2H, 0<s<T. O

Tk =inf{t > 0: Bl n—e = K} AT,

n
Do IBi = Bl |V —cp(t ATy
i=1
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REMARK 3.3. Notice that in the case H > % we have imposed the additional
assumption that the martingale (3.3) has an absolutely continuous quadratic vari-
ation. This is true, for instance, if the filtration generated by the process B is
included in the filtration generated by a Brownian motion. The next proposition
shows that this condition is necessary at least in the case H € (%, %).

PROPOSITION 3.4. Suppose that H € (%, %). There exists a process B, satis-
Jfying conditions (1) and (iii) of Theorem 3.1, such that the process M defined in
(3.3) is a local martingale, and B is not a fractional Brownian motion.

PROOF. Let BY be a fractional Brownian motion with Hurst parameter H €
(%, %). Define

t
M,:/ s12=H (y _ g)1/2=H gpH
0

Let N; = Wy, where W is a Brownian motion independent of B, and ¢ is a
strictly increasing, Holder continuous function of exponent y for any y < 1, null at
zero, such that the measure d¢ (¢) is singular with respect to the Lebesgue measure
(for the existence of such function, see Lemma A.8 in the Appendix). Set

MI=M[+NI and EII_I=BII—I+YI,
where

_d<H1/2/(t SH=12 N,

— (H — %) /Ot</:uH_3/2(u —s)H_l/zst)st).

The process BH clearly satisfies (i) and it is not a fractional Brownian motion.
Finally, (B )1/Ht = cyt in L', because the ——Varlatlon of fo (t —s)A=12 4N,
is zero by Proposition 2.10, and, by the same arguments as in the proof of Theo-
rem 3.1, we can show that the %—Variation of Y vanishes. [

APPENDIX

A.1. Some technical lemmas.

LEMMA A.1. Leta € (0, %). Fix an interval [0, t]. For any natural number
m, we define t/" = %t, 0<i<m. Let g be a measurable function on [0, 00)
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such that, for all t > 0, fot |g(s)|ds < oco. Then there exists a function C(t) > 0
satisfying

. m ) B2
lim supZ(/O (" —s)* — (" — %) |g(S)|ds)

m—oo
i=1

SC(t)/Ot lg(s)|P/? ds.
PROOF. Set
A ZZ(/l (" =) — @f" —s)“)zlg(s)lds)ﬂ/z
! mZ\Jo i1 + :

We have A, < C(A1 m + A2, + A3,;m), Where

m

Al :Z(

tm

i-2 m a m a\2 B2
[ == @ =9 lewlds)

i=3

mo , B2
A=Y ( [ @ = = @t =9l ds

i=2 i

and

m tn

) . 812
A=Y [ @ =s2igods)

i=1 “Wihi-1

Let ¢, (x) = ((x + %)“ — x*)2. The ¢ (x) is a nonincreasing of x when x > 0. As
a consequence,

m < [l ) ’ B/2
Aln = —Z/ (f (" =) = @2 —9)%) |g(s)|ds> du
130, \Jo
m < [ iy B/2
_ _Z/ (/ Bt —s)|g(s)|ds) du
i3, \Jo

m (s u %
f?fo(fo ¢m<u—s>|g<s>|ds) du.

Using the Holder inequality, we obtain

u B/2 u B/2—1
(/ ¢>m(u—s>|g<s)|ds) 5(/ ¢m(u—s)ds)
0 0

x /”asm(u — 9)lg)1P 2 ds
0

t B/2—1 .y
_ B/2
5(/0 ¢m<s>ds) /0 Gt — 5)|g(5)|P2 ds.
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Integrating in the variable u yields

an=2([ ¢m<s>ds)ﬁ/2 l/ [ ntu = 5)dslg)P ds du
. =2(f ¢m<s>ds)ﬂ/ [ ([ dntw—s)au)igr#2as
=2([ <z>m<s)ds)ﬂ/2 1 [ ([ snwau)igoi2as
=2([ ¢m<s>ds)ﬁ/2 [ g2 as
Thercfore,

00 5 B2 pt
1irnooA1,m = t_l(f ((x +0)* —x%) dx) / 1g()1P2 du.

For the term A3, we can write

tm

= () 20,

i=1 i—1

B/2
|g<s)|ds)

tﬂl

-7 )

i=1 i—1

B2
|g(s>|ds) L
m

The functions

m zm

=53],

[ 16)1ds ) g, i)
i=1 i—1

converge almost everywhere to |g|, and they are bounded in L'([0, t]). Hence,
lg(s) |P/2 is uniformly integrable on [0, ¢]. Therefore,

t t
limsup A3, §m1meA |gm(S)|’3/2ds :/0 Ig(S)Iﬁ/zds.

m— 00

From the fact that [x* — y¥| < |x — y|%, we see that

e

Thus, in the same way as for A3 ,,, we have

tm

, B/2
| “|g<s>|ds) .

t
limsup Ay, < 2] |g(s)|‘3/2ds. 0
0

m— 00

LEMMA A.2. Leta € (—— 0). Fix an interval [0, t]. For any natural num-
ber m, we define t" = %t, 0 <i <m. Let g be a measurable function on [0, 00)



FRACTIONAL MARTINGALES 2423

such that, for all t > 0, fot |g(s)|’3//2 ds < oo for some B’ > B. Then there exists a
constant C depending on t such that

m m

Z(/Ol ((l‘lm —)* =", - s)(—xi-)2|g(s)|ds>ﬁ/2

i=1
t \BIB
< c(/ |g<s)|ﬂ/2ds)
0

PROOF. Consider the decomposition given in the proof of Lemma A.1. For
the first term we can write, from inequality (A.1),

m /[t £\ 2 B/2 i
Al,mgc:—</ (sza—<s+—> )ds) /|g(s)|ﬁ/2ds
t 0 m 0

1+2 1420\ B/2 /¢
t t
c@(z”z‘” i (—) _ (r + —) ) / 12(s)|P/% ds
t m m 0

(142a)B8/2 t

t

C?(—) [ g2 as
0

m

‘ t , B'/B
<c| |g(s>|ﬁ/2ds50(/ |g(s>|ﬂ/2ds)
0 0

Let 2ap > —1 and ; + é =1. Then B/ =2¢ > B, and applying Holder’s inequal-
ity, we can write

m BICP) ;i B/2q)
Ay < Z( [ —sper ds) ( / |g<s)|‘fds)
i=1 "y "

[l

m_ oy N\ ((2ap)/P)B/2 4 o B/(24)
() o)
i=1 1

m m

i—

A

IA

IA

t B/2q)
< C1((1+2ap)/p)B/2 (/(; lg(s)]9 ds)

For the term A» ,,, with the same notation as above, we can write

m ", ) B/2
Ao =C ([0 =9 lgwlas)
i=2 Vi

m_ o\ (A20p)/P)B/2 i, B/20)
<c Z(—) ( [ g ds)
Pt m m )

i—

; B/2g)
< Cr+2ap) B2 </0 19(s)[ ds)
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LEMMA A.3. Suppose that v is a measure on an interval [0, t], which is sin-
gular with respect to the Lebesgue measure. We have the following:

() Ifa € (—3,0), then

. - i n o n a2 hr2
L%OZI(/O (@ =9 =@~ =0,
=

(i) Ifoe(0,7), then
B/2
nlinc}oz(/ — )" =@, _S)a) dvs) =0.

PROOF. Denote A} := (¢ |,1]. Set

n t;‘l ) 5/2

Ay = Z(/ (! —$)* — (1" — 9)%) dus> .

i=1 0

() o € (—1,0), then

A >Z( ' —s)z"‘dvs)ﬂ/z
( ) Z(u(An )ﬂ/2>ZC( )(:1((2?0,3/2’

where m denotes the Lebesgue measure. Suppose that F;, is the o -field of subsets
of the interval [0, 7] generated by the partition {A},i =1,...,n}. Denote by v,
and m,, the restrictions of the measures v and m to the o-field F;,. Set

" v(A"

X= Y m

Then A, > CE(X ,’? / 2). The sequence (X,«, k > 0) is a martingale with respect to
the filtration F5«. As a consequence (see, for instance, Theorem 3.3 in [2]), we have
lim,— 00 Xor = X (m + v)-a.e. Since v L m, X =0 m-a.e. If llmk_>ooE(X’3/2) <
0o, then (X,«, k > 0) would be a uniformly integrable martingale and, hence,
Xor = E(X|F5) =0, which is a contradiction.

(i) If & € (0, 1), then

SO e a2 VY b\
A”=Z(/0 (" =) —(t,-l—s))dvs) +Z( i —s) dvs)

i=1 fi-1
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For the term C,, we have
t "1
Cu <( > Z( (AM)PI2 = “ﬂzg(v(A;’)n)ﬂ/z:t“ﬂE(X,’?/Z).
i=1

Since E(X,) =v([0,7]) < 00, & < 1, and X,, — 0 a.e., we have lim,_.o C, = 0.
On the other hand,

n [fi—1 1 B/2
B, < Z(Z ft (& — )% — (1", — s)"‘)zdvs>

j=1""%-1

i—1 ¢ 20 B/2
Z(—) (% — (i — 1)“)%(&}))

5 .n (z’—l(£>aﬁ(l_a - 1)0‘)ﬂv(A?)ﬂ/2)
)

aﬂ n n
(i — G = D) Y vamp2,
i=1 j=1
Notice that

n

> (i =G — DY) <C+Z — (@i — 1Y)

i=1
<C+ Z(i — D@V =C+omPrH,
where C > 0. If a € (0, %), we have af — B+ 1 <0 and then sup,, 7, (i — (i —
1)®)# < 0o. Then, similarly, lim, A, =0. O

A.2. Transformations of Holder continuous functions. Let 5 € (0, 1]. We
denote by CB([0, T]) the set of Holder continuous functions on [0, 7']. For any
function f in Cﬁ([O, T])and any 0 <a < b < T, we will write

(A2) 1 lpap= sup LOZTOL

a<s<t<b |t_s|/8

We also set || fllg = Il fllg,0,7-

LEMMA A.4. Suppose that [ € Cﬂ([O, T)),and assumethat0 <a <b <v <
T.Let,y >0and o+ B #0. Then

b
/ 57 (v — )2 df (s)

<11£1s(2+ ’ﬁ‘)by(w C 0 g (0 — a) ).
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PROOF. Suppose first y > 0. Integrating by parts yields

b
/ s7 (v — $)* df (s)

b (v —b)*(f(b) — f(v)) —a (v —a)*(f(a) — f(v))

b
a

—/ (f(s) = f)Is” (v —19)"Tds

< ||f||,s,a,v(by (w— b a¥ (v — )P
b b
+)// (v—s)‘”ﬁs”*]ds—i-oz/ (v—s)“+ﬁ1syds>

< ||f||,s,a,v[by(v — B b (0 — a)*

+max{(v —a)*T?, (v — BY*TPYBY —a?)

y|_ @ Na+B o phatB
+b o ((v—a) (v —">b) )}
< ||f||/3,a,v<2 =+ m )bV ((v — b)a+/3 + (v — a)a+13).

The case y = 0 is proved in a similar way. [l

LEMMA A.5. Suppose that f € CP([0, T1), and suppose a <0, + 8 > 0.
Let g(t) = [} s* df (s). Then, g € C*T#([0, T1), and

B
lglle+p < mllfllﬂ-

PROOF. Fix 0 <a < b <T. Integrating by parts yields

b
18(b) — g(@)] = / S9dLf(s) — £(a)]

b
BULF(b) — f(@)] +a / Lf(s) — f(@))s® " ds

b
§||f||5b"‘|b—a|ﬂ+la|/a () — F(@)](s —a)*ds

b
- ||f||,3(|b—a|“+ﬁ+|a|/ <s—a>“+ﬂ—1ds)
a

B
< ||f||ﬁm|b—a|“+ﬁ,
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which give the desired result. [J

PROPOSITION A.6. Fixa € (—4, %) and B € (0,1] such that 0 <o + B < 1.
Suppose that f € CP([0, T1), and let g(t) = fé st —s)*dfs. Then:

1. Ifa>0,g¢€ C‘“‘ﬁ([O, T]) and forany 0 <a <b < T, we have

(A3) 8(0) — 8@ = ClI fllgh" (b — a)**P.

2. Ifa <0and 0 <20+ B <1,theng € C2°‘+ﬂ([0, T]) and
8(6) = g(@| = ClI fllpb — a)***.

PROOF. We can write

g(b) — g(a) = /O

:a/ab<foas“(v —s)“‘ldfs) a’v—i—[abs“(b—s)“dfs
—A+B.

a

b
s9((b — ) — (a — %) dfy + / s(b — 5)? df,

If o > 0, using Lemma A.4 yields
b
AL = ClLflga [ (=@ +0 ) do
a

= C|lfllga®[(b — a)* P + b*FF — q*TP]
and
|B| < C|lfllgh® (b —a)**P,

which implies (A.3) follows. On the other hand, if ¢ < 0, the function A(t) =
fé s*dfy is (a + B)-Holder continuous by Lemma A.5, and ||hllq4p < Cll flig-
Then, applying Lemma A .4 to the function /, we obtain the estimates

Ab<ﬁaw——ﬂ“Uﬂh>dv

b
<Clflp / [0 — )21 4 p2a+b-1] gy

Al <o

< CIfllglb — a)***F 4 p?2*+F — g2 +F],

and

b
Bl < f (b — )" dh,
a

<C|fllgb—a)***F.

The proof is complete. [
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LEMMA A.7. Fixa € (—%, %) and B € (0, 1] such that 0 <a + B <1 and
0 <2a + B < 1. Suppose that f € CP([0, T]), and let g(t) = [ s%(t — 5)* df;.

Set
h(t) = /l w1 (/"(u —5)7 dgs> du.
0 0

Then for any 0 <a <b < T, we have
|h(b) — h(a)| < C| fllp(bP —aP).
PROOF. We have

b u
(A.4) lh(b) — h(a)| ff u_“_l‘[o (u—s)"%dgs|du.

Suppose first that @ < 0. Then, | gll2e+p < C|l f1lg, and Lemma A .4 yields

(A5) ‘ /0 (u— )" dgy| < ClLFIlsu+P.

Substituting (A.5) into (A.4) yields the results. In the case @ > 0, the Hélder norm
llglla+p in an interval [0, u] is bounded by Cu®|| f||g, and Lemma A.4 yields

u
\/ (U — )" dgy| < ClLFIlsuP+.
0

This completes the proof of the lemma. [

A.3. Existence of singular Holder continuous distribution functions. Let
0< H <1 and p > 1. Suppose that X = (X,;,t > 0) is a zero mean Gaussian
process with stationary increments and a variance o >(t) = E(X 12) given by

200 [T L
(A.6) o (t)_/o (1 —cos(xt))g(x)dx,

where g(x) = x 27" 1g5)(x) + (| logx|?x) ~M1[2,00) (x). If we replace g(x) by
ga(x) = x2H-1jp equation (A.6), then the process X is a fractional Brownian
motion with Hurst parameter H . Taking into account that g(x) > Cgpy (x) for some
constant C > 0, it follows that the process X satisfies the local nondeterminism
property in some interval (0, d) (see Theorem 4.1 in [1]).

The following lemma implies the existence of finite measures on the real line
which are singular with respect to the Lebesgue measure, and whose distribution
function is Holder continuous of order y, for any ¥ < 1 on any finite interval.

LEMMA A.8. Let X be the Gaussian process introduced above. Then, there
exists a version of its local time L(t, x), jointly continuous in t and x, with the
following properties:
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(i) Foreach x e R and y < 1, L(t, x) is Holder continuous of order y with
respect to t, on any finite interval.
(i1) L(¢, x) is a nondecreasing function of t.
(iii)) For each x € R, the support of the measure L(dt, x) is the set {s, X; = x},
which has a Lebesgue measure 0.

PROOF. The function o2 satisfies
2 e
o“(t) > Cllogt™" |7,

for some constant C > 0 and for 7 € (0, %). Then, property (i) follows by Theo-
rem 8.1 in [1]. From Theorem 6.4, page 11, in [3], it follows that for each x € R
the support of the measure L(dt, x) is the set A, = {s, Xy = x}. Finally, to show
that A, has a Lebesgue measure 0, we write

T T
E/ le(s)ds:/ E(lx,—x)ds =0,
0 0

which implies that fOT 15 (s)ds = 0 almost surely. This completes the proof of the
lemma. [
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