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SMALL DEVIATIONS OF GENERAL LÉVY PROCESSES

BY FRANK AURZADA1 AND STEFFEN DEREICH2

Technische Universität Berlin

We study the small deviation problem logP(supt∈[0,1] |Xt | ≤ ε), as
ε → 0, for general Lévy processes X. The techniques enable us to deter-
mine the asymptotic rate for general real-valued Lévy processes, which we
demonstrate with many examples.

As a particular consequence, we show that a Lévy process with nonvan-
ishing Gaussian component has the same (strong) asymptotic small deviation
rate as the corresponding Brownian motion.

1. Introduction and results.

1.1. Motivation and notation. The small deviation problem for a stochastic
process X = (Xt)t∈[0,1]—also called the small ball problem—consists in deter-
mining the probability

P
(

sup
t∈[0,1]

|Xt | ≤ ε
)

as ε → 0.

One can also consider other norms, but, in this article, we concentrate on the supre-
mum norm, which is denoted by ‖ · ‖. There has been a lot of interest in small
deviation problems in recent years, which is due to the many connections to other
questions, such as the law of the iterated logarithm of Chung type, strong limit laws
in statistics, metric entropy properties of linear operators, quantization and sev-
eral other approximation quantities for stochastic processes (see the surveys [10]
and [9] and the bibliography [11]).

Typically, one cannot determine the above probability, even asymptotically, ex-
cept for a very few examples (such as, e.g., Brownian motion). Therefore, one
concentrates on the asymptotic rate of the logarithm of that quantity,

− log P
(

sup
t∈[0,1]

|Xt | ≤ ε
)

as ε → 0.(1)

Even this simplified problem is a difficult issue if one aims to solve it for a whole
class of processes. Thus far, this has only been possible for a large subclass of

Received May 2008; revised November 2008.
1Supported by the DFG Research Center MATHEON “Mathematics for key technologies” in

Berlin.
2Partly supported by a DFG Research Fellowship.
AMS 2000 subject classifications. 60G51, 60F99.
Key words and phrases. Small deviations, small ball problem, lower tail probability, Lévy

process, Esscher transform.

2066

http://www.imstat.org/aop/
http://dx.doi.org/10.1214/09-AOP457
http://www.imstat.org
http://www.ams.org/msc/


SMALL DEVIATIONS OF LÉVY PROCESSES 2067

Gaussian processes (see the approach in [7], completed in [8]). With the framework
presented in this article however, we are able to determine the asymptotic rate of
the quantity (1) for general real-valued Lévy processes.

Let X = (Xt)t∈[0,1] denote a Lévy process. It is characterized by independent
and stationary increments, X0 = 0, stochastic continuity and cadlag paths; see [3,
18]. Due to the Lévy–Khintchine formula, the characteristic function of each mar-
ginal Xt (t ∈ [0,1]) admits the representation

EeiuXt = e−tψ(u),(2)

where

ψ(u) = σ 2

2
u2 − ibu +

∫
R\{0}

(
1 − eiux + 1{|x|≤1}iux

)
ν(dx)

for parameters σ 2 ∈ [0,∞), b ∈ R and a positive measure ν on R\ {0}, called Lévy
measure, satisfying ∫

R\{0}
1 ∧ x2ν(dx) < ∞.(3)

On the other hand, for a given triplet (ν, σ 2, b), there exists a Lévy process X such
that (2) is valid, and its distribution is uniquely characterized by the latter triplet.
We call the corresponding process a (ν, σ 2, b)-Lévy process. In order to avoid
pathological cases, we always assume that the Lévy process is nondeterministic.

We recall that, for Brownian motion B , σ > 0 and b ∈ R,

− log P
(

sup
t∈[0,1]

|σBt + bt | ≤ ε
)

∼ π2

8
σ 2ε−2,(4)

where ∼ means strong asymptotic equivalence. This process corresponds to
a (0, σ 2, b)-Lévy process; see, for example, Section 7.3 in [12] for historical re-
marks on this result.

Apart from this special case, the rate in (1) is already known for certain sta-
ble Lévy processes. Namely, for any strictly α-stable Lévy process [i.e., a Lévy
process satisfying the scaling property L(Xt) = L(t1/αX1) for all t ≥ 0] such
that |X| is not a subordinator (an increasing process, see below), we have

− log P
(

sup
t∈[0,1]

|Xt | ≤ ε
)

∼ Kε−α(5)

for some constant K > 0 (see [3], page 220, or [5, 16] and [23]). We refer to [13]
and [21] for an overview of further results for symmetric stable Lévy processes
under various kinds of other norms.

On the other hand, if |X| is a stable subordinator [then, necessarily, 0 < α < 1
and its characteristic function is given by (8) below], then, for some explicitly
known K ′ > 0, as ε → 0,

− log P
(

sup
t∈[0,1]

|Xt | ≤ ε
)

= − log P(|X1| ≤ ε) ∼ K ′ε−α/(1−α).(6)
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In the case where X is a subordinator, it is easy to determine the small devi-
ation rate since, here, supt∈[0,1] |Xt | = X1. It thus suffices to look at the distri-

bution of X1 in a neighborhood of the origin. If b >
∫ 1

0 xν(dx), then the prob-
ability of a small deviation is zero for sufficiently small ε, whereas, in the case
b = ∫ 1

0 xν(dx), one can determine the asymptotics of (1) via de Bruijn’s Tauberian
theorem ([4], Theorem 4.12.9) from the asymptotics of

− log Ee−λX1 = −
∫ ∞

0
(e−λx − 1)ν(dx) as λ → ∞,(7)

provided that the latter expression is regularly varying.
Let us introduce further notation. If (2) is true for

ψ(u) = σ 2

2
u2 +

∫
R\{0}

(1 − eiux + iux)ν(dx)

for a measure ν with
∫ |x| ∧ x2ν(dx) < ∞, then we call X a (ν, σ 2)-Lévy martin-

gale. It is a martingale in the usual sense. Furthermore, we say that a (ν, σ 2, b)-
Lévy processes is of type (I) if

∫ 1

−1
|x|ν(dx) < ∞ and σ 2 = 0.

Finally, a (ν, σ 2, b)-Lévy process is called a subordinator if it is almost surely
increasing. Recall (see [18]) that this is the case if and only if σ 2 = 0, ν is concen-
trated on the positive real line and satisfies

∫ 1

0
xν(dx) < ∞ and b ≥

∫ 1

0
xν(dx).

We use the following notation for, respectively, strong and weak asymptotics.
We write f � g if lim supf/g ≤ 1; f � g is defined analogously. Further, f ∼ g

means that limf/g = 1. We also use f � g (or g � f ) if lim supf/g < ∞ and
f ≈ g if 0 < lim inff/g ≤ lim supf/g < ∞.

This paper is organized as follows. In Section 1.2, we review results of Simon,
who studied the question when the problem (1) actually makes sense for Lévy
processes. Section 1.3 contains our main results, which are illustrated by several
examples in Section 2. The proofs are postponed to Sections 3 and 4 (proofs of the
main results) and Section 5 (proof of the explicit rates in the examples).

1.2. The small deviation property. In [19], the following question was studied:
for which Lévy processes does the small deviation problem make sense? Namely,
one says that a stochastic process X = (Xt)t∈[0,1] possesses the small deviation
property if

P
(

sup
t∈[0,1]

|Xt | ≤ ε
)

> 0 for all ε > 0.
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Simon investigated this property for Rd -valued Lévy processes. For real-valued
Lévy processes, it reduces to the following, easily verifiable, equivalent character-
ization [19].

PROPOSITION 1.1. A (ν, σ 2, b)-Lévy process X possesses the small deviation
property if and only if it is not of type (I) or if it is of type (I) and, for c := b −∫
|x|≤1 xν(dx), we have:

• c = 0, or
• c > 0 and ν{−ε ≤ x < 0} �= 0 for all ε > 0, or
• c < 0 and ν{0 < x ≤ ε} �= 0 for all ε > 0.

Let us visualize this fact with a simple example.

EXAMPLE 1.2. Let us consider an α-stable subordinator with drift: Xt + μt ,
where X has the characteristic function:

EeizXt = exp
(
t

∫ ∞
0

(eizx − 1)
dx

x1+α

)
(8)

and, by Proposition 1.1, Xt + μt possesses the small deviation property if and
only if μ ≤ 0, that is, if there is a nonpositive drift. Clearly, if there is a positive
drift, then, already, the drift term makes the process leave the interval [−ε, ε] al-
most surely for ε < μ. For μ = 0, relation (6) holds, whereas the rate of (1) was
previously unknown for μ < 0. We come back to this case in Example 2.3.

Let us comment on some related work. Ishikawa [6] generalizes the results from
Simon [19] to other types of stochastic processes. A related result for scaled Pois-
son processes connected to the Strassen law is shown in [1]. Further, similar results
are obtained in [22] for symmetric stable Lévy processes with 1 < α < 2. More-
over, Simon [20] investigated the small deviation problem for Lévy processes un-
der p-variation norm in contrast to the present considerations. Finally, the works
[14] and [15] solve the small deviation problem for certain specific Lévy processes,
namely, Lévy processes that arise from subordination to Brownian motion. We
come back to this relation in Examples 2.12 and 2.13.

1.3. Main results. In this section, we show how to obtain estimates for (1) for
a general real-valued Lévy process X with triplet (ν, σ 2, b). Our approach is based
on two results which we now state.

PROPOSITION 1.3. Let (Xt) be a Lévy process whose Lévy measure has sup-
port in {|x| ≤ 1} and assume that u∗ ∈ R is a solution of

	′(u∗) = 0,(9)
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where

	(u) := 1

2
σ 2u2 + bu +

∫
[eux − 1 − ux]ν(dx)(10)

denotes the logarithmic moment generating function of X1. Then, the Esscher
transform Q given by

dQ

dP
= eu∗X1−	(u∗)

is a probability measure such that, for all ε > 0,

e	(u∗)−ε|u∗|Q(‖X‖ ≤ ε) ≤ P(‖X‖ ≤ ε) ≤ e	(u∗)+ε|u∗|Q(‖X‖ ≤ ε)(11)

and X is a (eu∗x · ν(dx), σ 2)-Lévy martingale under Q.

We remark that Proposition 1.3 can be shown in a more general context, in
particular, for a broad class of noncompactly supported Lévy measures and in the
multidimensional setting. However, the current formulation is sufficient for our
purposes.

This result enables us to transform a Lévy process with compactly supported
Lévy measure into a Lévy martingale. It turns out that we find an appropriate
Esscher transform [i.e., (9) has a unique solution] in all cases needed. To be
more precise, Proposition 1.3 can be applied if X (or −X) is not a subordinator
and X possesses the small deviation property. The proof of this fact (formulated as
Lemma 3.2) and the proof of Proposition 1.3 are given in Section 3.

We proceed with stating the second key result, which is proved in Section 4. It
treats the case of a Lévy martingale.

PROPOSITION 1.4. Let ε > 0 and denote by X a (ν, σ 2)-Lévy martingale
with ν supported on [−ε, ε]. Then,

P(‖X‖ ≤ 3ε) ≥ e−10F(ε)−3 and P(‖X‖ ≤ ε/2) ≤ eF(ε)/12+1,

where

F(ε) := 1

ε2

[
σ 2 +

∫ ε

−ε
x2ν(dx)

]
.(12)

We now outline how Propositions 1.3 and 1.4 lead to good estimates for the log-
arithmic small ball probabilities (1). Let X be an arbitrary (ν, σ 2, b)-Lévy process.
We fix ε > 0 and denote by P̄ε the conditional probability of P given that X

has no jumps that are larger than ε. Under P̄ε , X is a Lévy process with triplet
(ν|[−ε,ε], σ 2, bε) with bε := b − ∫

[−1,1]\[−ε,ε] xν(dx). Thus, under P̄ε , X1 has the
logarithmic moment generating function

	ε(u) = 1

2
σ 2u2 + bεu +

∫ ε

−ε
[eux − 1 − ux]ν(dx).(13)
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Assuming that there exists a solution uε to the equation 	′
ε(uε) = 0, we denote the

corresponding Esscher transform of P̄ε by Q̄ε and conclude, using Proposition 1.3,
that

P(‖X‖ ≤ 3ε) ≥ P(X has no jumps larger than ε) · P̄ε(‖X‖ ≤ 3ε)

≥ exp{−ν([−ε, ε]c) + 	ε(uε) − 3ε|uε|} · Q̄ε(‖X‖ ≤ 3ε).

Under Q̄ε , the process X is a (euεx · ν(dx)|[−ε,ε], σ 2)-Lévy martingale. Denoting
by F̄ the corresponding F -function from Proposition 1.4, that is,

F̄ (ε) = 1

ε2

[
σ 2 +

∫ ε

−ε
x2euεxν(dx)

]
= ε−2	′′

ε (uε),(14)

we conclude with Proposition 1.4 that

P(‖X‖ ≤ 3ε) ≥ exp
{−[

ν([−ε, ε]c) − 	ε(uε) + 3ε|uε| + 10F̄ (ε) + 3
]}

.

Conversely, analog computations show that

P(‖X‖ ≤ ε/2) ≤ exp
{
−

[
ν([−ε, ε]c) − 	ε(uε) − ε

2
|uε| + 1

12
F̄ (ε) − 1

]}
.

Our main theorem summarizes these considerations:

THEOREM 1.5. Let ε > 0 and let X be a Lévy process with triplet (ν, σ 2, b)

that possesses a solution uε ∈ R to the equation 	′
ε(uε) = 0, where 	ε is as

in (13). Then, one has

− log P(‖X‖ ≤ 3ε) ≤ ν([−ε, ε]c) − 	ε(uε) + 3ε|uε| + 10F̄ (ε) + 3(15)

and

− log P(‖X‖ ≤ ε/2) ≥ ν([−ε, ε]c) − 	ε(uε) − ε

2
|uε| + 1

12
F̄ (ε) − 1,(16)

where F̄ (ε) is as in (14).

A particularly important consequence of Theorem 1.5 is that for Lévy processes
with nonvanishing Gaussian component σ , one has

− log P(‖X‖ ≤ ε) ∼ π2

8
σ 2ε−2;

see Corollary 2.6.
Theorem 1.5 gives estimates of (1) in terms of ν([−ε, ε]c), 	ε(uε), |uε| and

F̄ (ε). These quantities depend, in a nontrivial way, on the characterizing triplet of
the Lévy process. We want to emphasize that the lower and upper bound are tight
in the sense that

− log P(‖X‖ ≤ 3ε) � ν([−ε, ε]c) − 	ε(uε) + F̄ (ε)
(17)

� − log P(‖X‖ ≤ ε/2),
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whenever

ε|uε| ≺ −	ε(uε) + ν([−ε, ε]c) + F̄ (ε),(18)

where f ≺ g means lim supf/g = 0. This condition is satisfied in all examples
considered below and we are not aware of any counterexamples. Furthermore, we
give sufficient conditions for (18) to hold in the Appendix; see Lemma A.1.

Note that equation (17) gives the weak asymptotic order of the small devia-
tions (1) whenever − log P(‖X‖ ≤ 2ε) ≈ − log P(‖X‖ ≤ ε) and condition (18) is
satisfied.

Interestingly, for general Lévy processes, the probability of a small deviation
can be arbitrarily small [thus, the expression in (1) can increase arbitrarily fast; see
Remark 2.4] so that one can easily construct examples for which − log P(‖X‖ ≤
2ε) ≈ − log P(‖X‖ ≤ ε) fails to hold.

Assuming the validity of (18), we see that the small deviations are governed by
three effects:

• the first term, that is, ν([−ε, ε]c), represents the cost of having no large jumps;
• the second term, that is, −	ε(uε), represents the cost induced by the drift of the

modified process (the Esscher term);
• the third term, that is, F̄ (ε), represents the cost induced by the oscillations of

the modified process.

We remark that any of the terms ν([−ε, ε]c), −	ε(uε) and F̄ (ε) can give the
leading term in the asymptotics. An explicit analysis is carried out below for many
examples.

2. Examples. The steps described in the last subsection enable us to derive
an estimate for the rate in (1) for any given Lévy process. Let us demonstrate the
technique with some examples. In particular, we show how to re-prove all known
results about the small deviation order for Lévy processes using our framework.

2.1. Symmetric Lévy processes. The first example concerns the case when the
distribution of X is symmetric. Then, X is already a P̄ε-martingale and we get the
following simpler bounds:

COROLLARY 2.1. Let X be a symmetric Lévy process [i.e., L(X1) =
L(−X1)]. Then,

− log P(‖X‖ ≤ ε) ≈ ν([−ε, ε]c) + F(ε),

where F is as defined in (12).

The corollary follows immediately from Theorem 1.5, once one notices that, for
any Lévy measure ν and Gaussian component,

ν([−2ε,2ε]c) + F(2ε) ≈ ν([−ε, ε]c) + F(ε).
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We give a proof of this fact in Lemma 5.1. Let us concretize the last result when
the Lévy measure is given by some regularly varying function.

EXAMPLE 2.2. Let X be a symmetric Lévy process with σ 2 = 0 and Lévy
measure

ν([−ε, ε]c) ≈ ε−α
(ε) as ε → 0

for some slowly varying function 
 and 0 < α ≤ 2 [note that, for α = 2, certain
restrictions for 
 apply in order to ensure (3)]. It is then easily seen that

F(ε) ≈ ε−2
∫ ε

0
x1−α
(x) dx.

If α < 2 and 
 is a slowly varying function that is bounded away from 0 and ∞ on
any compact interval, then the last term behaves asymptotically as ε−α
(ε); see
[4]. However, this is not true for α = 2. Namely, let us evaluate F when 
(x) =
c| logx|−γ . We then obtain

− log P(‖X‖ ≤ ε) ≈
{

ε−α| log ε|−γ , 0 < α < 2,

ε−2| log ε|1−γ , α = 2, γ > 1.

The above example includes Lévy processes that are approximately (in the sense
that the asymptotic behavior of the Lévy measure at zero is the same) a symmetric
α-stable Lévy process.

2.2. Subordinators with negative drift. We now consider a class of subordina-
tors with additional negative drift.

EXAMPLE 2.3. Let us first return to the stable subordinator X with 0 < α < 1
considered in (8), where we add the drift with slope μ. The cases μ > 0 and μ = 0
were treated in Example 1.2, so assume that μ < 0. In this case, Theorem 1.5
yields the somewhat surprising result [recall (6) for the subordinator without drift
and (5) for the strictly stable case]

− log P
(

sup
t∈[0,1]

|Xt + μt | ≤ ε
)

≈ ε−1| log ε|.(19)

The following remark illustrates that expressions of the form ε−1| log ε| appear
naturally in the context of small deviations due to their relation to the large devia-
tions of the Poisson distribution.

REMARK 2.4. Assume, now, that ν is a finite measure that is supported on
(0,∞) and set f (ε) = ν(0, ε] for ε > 0. We consider a (ν,0,−1 + ∫ 1

0 xν(dx))-
Lévy process X. As before, we estimate

P(‖X‖ ≤ ε/2) ≤ P(X has no jumps larger than ε) · P̄ε(X1 ≥ −ε).
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Let Nε denote the number of jumps smaller or equal to ε. Then, X1 ≤ −1 + εNε ,
P̄ε-almost surely, so that

P̄ε(X1 ≥ −ε) ≤ P

(
Nε ≥ 1

ε
− 1

)
.

The random variable Nε is Poisson distributed with parameter f (ε) and we
derive, by using the exponential Chebyshev inequality, that

P(‖X‖ ≤ ε/2) ≤ P

(
Nε ≥ 1

ε
− 1

)

≤ exp
(
−

[(
1

ε
− 1

)(
log

1/ε − 1

f (ε)
− 1

)
+ f (ε)

])
(20)

= exp
(
−(

1 + o(1)
)1

ε
[| log ε| + | logf (ε)|]

)
.

Thus, we always get that

− log P(‖X‖ ≤ ε) � ε−1| log ε|.
Moreover, the estimate (20) shows that one can achieve arbitrarily small proba-
bilities [i.e., arbitrarily fast increase of (1)] for the small deviation by choosing ν

accordingly.

EXAMPLE 2.5. Our next example concerns the Gamma process X:

EeizXt = exp
(
t

∫ ∞
0

(eizx − 1)
e−x/ab dx

x

)
,

with parameters a, b > 0. We add a drift with slope μ. For μ > 0, the process
(Xt + μt) does not satisfy the small deviation property. For μ = 0, we are in the
case of a subordinator with supt∈[0,1] |Xt | = X1 being Gamma-distributed so that

P
(

sup
t∈[0,1]

|Xt | ≤ ε
)

∼ εb+1

ab�(b + 1)
.

On the other hand, for a negative drift μ < 0, our results imply that

− log P
(

sup
t∈[0,1]

|Xt + μt | ≤ ε
)

≈ ε−1| log ε|.

2.3. Lévy processes with nonvanishing Gaussian component. Let us now
look at Lévy processes with nonvanishing Gaussian component (i.e., assume that
σ �= 0).

COROLLARY 2.6. Let X be a (ν, σ, b)-Lévy process with σ �= 0. Then,

− log P(‖X‖ ≤ ε) ∼ π2

8
σ 2ε−2.
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PROOF. We represent X as X = Y +σB , where B is a standard Brownian mo-
tion, Y does not contain any Gaussian component, and B and Y are independent.
By Anderson’s inequality [2],

P(‖Y + σB‖ ≤ ε) ≤ P(‖σB‖ ≤ ε),

which already implies, by (4), that

lim inf
ε→0

ε2(− log P(‖Y + σB‖ ≤ ε)
) ≥ π2

8
σ 2.

On the other hand, let 0 < ε < 1, 0 < θ < 1 and let

Xt = Yt − bεt + σBt + bεt + Zt, t ∈ [0,1],
where σB is the Gaussian component of X, Z is constructed from the jumps of X

that are larger than ε and bε is chosen such that Yt − bεt is a martingale, that is,

bε := b −
∫
{ε<|x|<1}

xν(dx).

Observe that the components Y , B and Z are independent and, thus,

P(‖Yt − bεt‖ ≤ θε)P
(‖σBt + bεt‖ ≤ (1 − θ)ε

)
P(‖Z‖ = 0)

= P
(‖Yt − bεt‖ ≤ θε,‖σBt + bεt‖ ≤ (1 − θ)ε,‖Z‖ = 0

)
(21)

≤ P(‖X‖ ≤ ε).

Clearly,

− log P(‖Z‖ = 0) = ν({|x| > ε}) = o(ε−2).

Furthermore, by Proposition 1.4,

− log P(‖Yt − bεt‖ ≤ θε) ≈ ε−2
∫
{|x|≤θε}

x2ν(dx) = o(ε−2).

On the other hand, by Proposition 1.3 and (4),

− log P
(‖σBt + bεt‖ ≤ (1 − θ)ε

)
� b2

ε

2σ 2 − log P
(‖σB‖ ≤ (1 − θ)ε

)

� (1 − θ)−2 π2

8
σ 2ε−2

since |bε| = o(ε−1). Therefore, (22) implies that

lim sup
ε→0

ε2(− log P(‖X‖ ≤ ε)
) ≤ (1 − θ)−2 π2

8
σ 2.(22)

Letting θ tend to zero completes the proof. �
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2.4. Polynomial Lévy measure. Let us look at what happens if both lower tails
of the Lévy measure are polynomial with different exponents. The technique used
for this example can be extended to any case with regularly varying Lévy measure
at zero.

Let X be a Lévy process with triplet (ν,0, b), where ν = ν0 + ν1, ν1 is some
finite measure concentrated on {|x| > 1} and ν0 is given by

ν0(dx)

dx
= C11(0,1](x)

x1+α1
+ C21[−1,0)(x)

(−x)1+α2
,(23)

where α1, α2 < 2 and C1,C2 ≥ 0, C1 + C2 �= 0.
First, let us note that ν1 has no influence on the order, so we can, and will,

assume without loss of generality that ν1 = 0. On the other hand, observe that, if
α1 �= α2, we can always assume α1 > α2 (by passing over to −X if necessary).
Equally, if α1 = α2, we can assume that C1 > C2, unless we are in the case of
symmetric ν. This reduces the number of cases that have to be treated.

We distinguish three regimes: the cases where α1 > 1, α1 = 1 and 0 < α1 < 1.
The second exponent α2 can even be negative.

COROLLARY 2.7. Let α1 ≥ α2 and α1 > 1. Then,

− log P(‖X‖ ≤ ε) ≈ ε−α1 .

If the maximal exponent equals 1, then we get the following:

COROLLARY 2.8. Let α1 > α2 and α1 = 1. Then,

− log P(‖X‖ ≤ ε) ≈ ε−1| log ε| log(| log ε|).
The same holds in the case α1 = α2 = 1 and C1 > C2. However, the case α1 =
α2 = 1 and C1 = C2 leads to

− log P(‖X‖ ≤ ε) ≈ ε−1.

Finally, if the maximal exponent is less than 1, we obtain the following result:

COROLLARY 2.9. Let α1 ≥ α2 and 0 < α1 < 1. Set c := b − ∫ 1
−1 xν(dx).

Then,

− log P(‖X‖ ≤ ε) ≈
{

ε−1| log ε|, c �= 0,

ε−α1, c = 0.

Let us briefly discuss our findings.
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REMARK 2.10. In the first regime, the case α1 > 1, the asymmetry does not
have any influence on the small deviations. In particular, the cost for having no
large jumps and the cost induced by the oscillations govern the asymptotics.

In the case α1 = 1, the result strongly depends on the magnitude of the asym-
metry. If α1 is not equal to α2 or C1 is not equal to C2, then the Esscher term
dominates the small deviations. Otherwise, we regain the asymptotics of the sym-
metric case. Note that, so far, the drift b has not influenced the asymptotics.

In the case α1 < 1, we have
∫ 1
−1 |x|ν(dx) < ∞; thus, we can define the effec-

tive drift, c = b − ∫ 1
−1 xν(dx). The result now strongly depends on this effective

drift. If this is nonzero, then the Esscher term determines the small deviation or-
der. Otherwise, the nonexistence of large jumps and the oscillation term govern the
asymptotics.

The case of symmetric Lévy measure (i.e., α1 = α2 =: α and C1 = C2) is in-
cluded in the above results; however, we repeat it here since it represents the most
important situation.

COROLLARY 2.11. Let α1 = α2 =: α, C1 = C2. If b �= 0, then

− log P(‖X‖ ≤ ε) ≈
{

ε−1| log ε|, 0 < α < 1,

ε−α, 1 ≤ α < 2.

If b = 0, we are in the symmetric case and the rate is ε−α for all α ∈ (0,2).

The latter corollaries cover, in particular, general α-stable Lévy processes, that
is, if α1 = α2 =: α and ν1 is adjusted appropriately, we deal with an α-stable Lévy
process. This generalizes the known results for strictly stable processes (5) and
stable subordinators (6). Also, tempered α-stable processes (see, e.g., [17]) are
included in the above results.

2.5. Further examples.

EXAMPLE 2.12. Let us consider the so-called variance Gamma process. This
process is obtained when replacing the time parameter of a Brownian motion with
drift by a Gamma subordinator, that is, letting B be a Brownian motion, σ > 0,
μ ∈ R, and A be a Gamma process as defined in Example 2.5, independent of B .
Then, Xt := σBAt +μAt is called a variance Gamma process. It is a Lévy process
with Lévy measure ν given by

ν(dx)

dx
= C1

x
e−λ1x1{x>0} + C2

(−x)
e−λ2(−x)1{x<0}

with parameters C1,C2, λ1, λ2 > 0, depending in some way on σ , μ and the pa-
rameters of the Gamma process. In particular, C1 = C2 and λ1 = λ2 if and only if
μ = 0.
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Applying Theorem 1.5, we see that the small deviation probability of X is given
by

− log P(‖X‖ ≤ ε) ≈
{ | log ε|, μ = 0,

ε−1| log ε|, μ �= 0.

This extends the recent results for the case μ = 0 in [15]. When μ �= 0, the Esscher
term dominates. In the case μ = 0, the very slow increase comes from the very
slow increase of the Gamma process; see [15].

EXAMPLE 2.13. In [14], the small deviation problem was solved for processes
arising from subordination to fractional Brownian motion. For the case of subordi-
nation to Brownian motion, the resulting process is a Lévy process and the findings
follow easily from our current framework.

In order to formulate the result, let B be a Brownian motion and A be any
subordinator (independent of B) with Laplace exponent �, that is,

�(u) := − log Ee−uA1 = ubA +
∫ ∞

0
(1 − e−ux)νA(dx),

where νA is the Lévy measure of the subordintor A and bA ≥ 0 is the drift of A. We
then consider the subordinated process Xt := BAt . Note that X is symmetric, so,
by Corollary 2.1, we only have to investigate ν([−ε, ε]c) and F from (12), where
ν is the Lévy measure of X. Doing so, we find that

− log P(‖X‖ ≤ ε) ≈ �(ε−2) + bA

{
ε−2

(
σ 2 +

∫ ε

0
x2νA(dx)

)
+ νA([−ε, ε]c)

}

for any subordinator A. This improves the results from [14] since, there, cer-
tain regularity conditions for the Laplace exponent � and bA = 0 were assumed.
Again, the case of subordination with the Gamma process (�(u) = b log(u+1/a),
bA = 0, treated in [15]) is included.

EXAMPLE 2.14. Let us now consider a compound Poisson process with no
effective drift (for some remarks on compound Poisson processes with drift, see
Remark 2.4), that is, Lévy processes with finite Lévy measure ν and c := b −∫ 1
−1 xν(dx) = 0. Here, the small deviation probability does not tend to zero [i.e.,

(1) does not tend to ∞] because the probability that the compound Poisson process
has no jump is positive. In fact, we have P(supt∈[0,1] |Xt | ≤ ε) → exp(−ν(R)).

3. Esscher term. In this section, we prove Proposition 1.3. We assume that X

is a Lévy process with compactly supported Lévy measure ν. As outlined above,
this can be obtained by subtracting the large jumps from the Lévy process.

The goal of this section is to show that one can transform the Lévy process
by using the Esscher transform in such a way that the resulting process is a Lévy
martingale. This transformation incurs a “cost” on the probability that the process
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remains inside an ε-strip. The resulting Lévy martingale can then be treated with
the methods in Section 4.

Furthermore, we prove in this section that the Esscher transformation in Propo-
sition 1.3 is possible in all cases of interest (Lemma 3.2). However, first, we prove
Proposition 1.3.

PROOF OF PROPOSITION 1.3. We now denote by X a Lévy process with com-
pactly supported Lévy measure ν (we exclude the trivial case when ν = 0, b = 0
and σ 2 = 0) and represent its characteristic function as EeiuXt = e−tψ(u), where

ψ(u) = σ 2

2
u2 − ibu +

∫
R\{0}

(1 − eiux + iux)ν(dx).

For u ∈ R, we consider the Esscher transform Qu given by

dQu

dP

∣∣∣∣
Ft

= euXt−t	(u).

Here, (Ft ) denotes the canonical filtration induced by the process X. Observe that

log EQu

eθXt = log Ee(θ+u)Xt−t	(u) = t
(
	(θ + u) − 	(u)

)
.

Using the fact that 	(u) = 1
2σ 2u2 + bu+ ∫ [eux − 1 −ux]ν(dx), we conclude that

	(θ + u) − 	(u) = 1

2
σ 2(θ + u)2 + b(θ + u)

+
∫ [

e(θ+u)x − 1 − (θ + u)x
]
ν(dx)

−
[

1

2
σ 2u2 + bu +

∫
[eux − 1 − ux]ν(dx)

]

= 1

2
σ 2θ2 +

(
b + σ 2u +

∫
x(eux − 1)ν(dx)

)
θ

+
∫

[eθx − 1 − θx]euxν(dx).

Thus, X is a Qu-Lévy process. Moreover, it is an (eu∗x · ν,σ 2)-Lévy martingale
if u is equal to the solution u∗ of the equation

	′(u∗) = b + σ 2u∗ +
∫

x(eu∗x − 1)ν(dx) = 0.

In the sequel, we let Q := Qu∗
. Then,

e	(u∗)−ε|u∗|Q(‖X‖ ≤ ε) ≤ P(‖X‖ ≤ ε) ≤ e	(u∗)+ε|u∗|Q(‖X‖ ≤ ε). �
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REMARK 3.1. The property 	′(u∗) = 0, together with the convexity of 	,
implies that

	(u∗) = inf
u∈R

	(u).

Thus, the change of measure leads to an equivalent martingale measure that is
entropy-minimizing.

Proposition 1.3 implies that the existence of a solution to 	′(u) = 0 yields the
existence of a so-called equivalent martingale measure Q for X. Certainly, such
equivalent martingale measures do not always exist. In particular, all subordinators
do not possess equivalent martingale measures and thus we will not be able to
apply Proposition 1.3 for these processes.

Fortunately, the case of X being a subordinator is essentially the only relevant
case in which we cannot apply Proposition 1.3:

LEMMA 3.2. Let X be a Lévy process. If |X| is not a subordinator and pos-
sesses the small deviation property, then (9) has a unique solution under each
measure P̄ε .

The last lemma shows that either:

(a) the problem (9) has a solution with u∗ ∈ R—and we can thus work with the
estimate (11); or

(b) the process is a subordinator without drift (or the negative of a subordinator)—
in which case the small deviation problem is solved via the Tauberian theorem;
or

(c) the process does not satisfy the small deviation property—which means that
for sufficiently small ε, the probability is zero.

PROOF OF LEMMA 3.2. Clearly, we can assume that 0 < ε < 1 and ν(|x| >

ε) = 0. We have to check whether the function

	′(u) = σ 2u + b +
∫ ε

−ε
(eux − 1)xν(dx)

has a unique root. First, we note that u �→ (eux − 1)x is a strictly increasing func-
tion for any x ∈ R \ {0}. Thus, the function u �→ ∫ ε

−ε(e
ux − 1)xν(dx) is strictly

increasing (unless ν = 0, which is trivial) and is hence 	′. This makes any root
unique. Furthermore, we note that 	′ is continuous so that existence of a root is
equivalent to limu→−∞ 	′(u) < 0 < limu→∞ 	′(u).

Let us consider the various cases.
Case 1: σ �= 0. In this case, we clearly have limu→±∞ 	′(u) = ±∞.
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Case 2: We consider σ = 0 and
∫ ε
−ε |x|ν(dx) = ∞. Then, we must have∫ ε

0 xν(dx) = ∞ or
∫ 0
−ε −xν(dx) = ∞. In the former case,

lim
u→±∞

∫ ε

0
(eux − 1)xν(dx) → ±∞ and

∫ 0

−ε
(eux − 1)xν(dx)

{≥ 0, u > 0,
≤ 0, u < 0,

which shows the assertion. The latter case is treated analogously.
Case 3: Finally, let X be of type (I). This is the most interesting case, where we

actually need the assumptions. In this case, we have

	′(u) = b −
∫ ε

−ε
xν(dx) +

∫ ε

0
euxxν(dx) +

∫ 0

−ε
euxxν(dx).

Case 3(a): If ν(0 < x < ε) > 0 and ν(−ε < x < 0) > 0, then clearly
limu→±∞ 	′(u) = ±∞.

Case 3(b): Let ν(0 < x < ε) > 0 and ν(−ε < x < 0) = 0. Then,
limu→∞ 	′(u) = ∞ and limu→−∞ 	′(u) = b − ∫ ε

−ε xν(dx) = −b′. If the latter
term is positive, then the process does not satisfy the small deviation property (by
Proposition 1.1) and we are done. If −b′ equals zero, then it is easily seen that the
process is in fact a subordinator. And, finally, if it is negative, then 	′ must have
a (unique) root.

Case 3(c), where ν(0 < x < ε) = 0 and ν(−ε < x < 0) > 0, is treated as 3(b).
Case 3(d), where ν(0 < x < ε) = 0 and ν(−ε < x < 0) = 0, is trivial. �

4. Exit time arguments. In this section, we consider a Lévy martingale hav-
ing jumps smaller than ε. Note that one can obtain this by first removing the jumps
larger than ε and then applying the transformation described in Section 3.

The purpose of this section is to prove Proposition 1.4. We proceed in several
steps. First, let us define inductively the times

τi = inf{t ≥ 0 : |Xτ1+···+τi−1+t − Xτ1+···+τi−1 | ≥ ε}, i = 1,2, . . . ,

and the increments Zi = Xτ1+···+τi
− Xτ1+···+τi−1 . To be formally correct, we here

need to consider the Lévy process defined on the whole interval [0,∞). By the
strong Markov property, the family (Zi, τi)i∈N consists of independent identically
distributed random variables.

LEMMA 4.1. For ε > 0, we have

P(‖X‖ ≤ 3ε) ≥ e−10F(ε)−3.
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PROOF. For convenience, we let τ = τ1 and Z = Z1. Due to the optional stop-
ping theorem and the boundedness of the jumps, we have

0 = EXτ ≤ 2εP(Z > 0) − εP(Z < 0)

so that

P(Z > 0) ≥ 1/3.

Moreover, Doob’s martingale inequality gives that

P(τ ≤ t) = P
(
sup
s≤t

|Xs | ≥ ε
)

≤ E|Xt |2
ε2 = F(ε)t.

Hence, we have, for t := (4F(ε))−1,

P(τ ≥ t,Z > 0) ≥ 1 − P(τ ≤ t) − P(Z < 0) ≥ 1
12 .

By symmetry, we also have P(τ ≥ t,Z < 0) ≥ 1/12.
Next, fix the smallest integer n with n ≥ t−1 and consider the event

E = {∀i ∈ {1, . . . , n} : τi ≥ t, sgn(Zi) = − sgn(Xτ1+···+τi−1)},
where sgn denotes the signum function, with sgn(0) = 1. If E occurs, then (Xt)

starts at each time τ1 + · · · + τi−1 in the interval [−2ε,2ε] and ends at time τ1 +
· · ·+ τi in the same interval. Hence, along the whole trajectory, we have |Xs | ≤ 3ε

while s ≤ ∑n
i=1 τi . Since, by assumption,

∑n
i=1 τi ≥ nt ≥ 1, we have ‖X‖ ≤ 3ε.

Hence, using the strong Markov property of the Lévy process, we obtain

P(‖X‖ ≤ 3ε) ≥ P(E) ≥ 12−n ≥ 12−4F(ε)−1 ≥ e−10F(ε)−3. �

Conversely, one can prove the following lemma.

LEMMA 4.2. For ε > 0, we have

P(‖X‖ ≤ ε/2) ≤ e−F(ε)/12+1.

PROOF. Again, let τ denote the first exit time of X out of [−ε, ε]. Then, by
Wald’s identity,

4ε2 ≥ lim sup
t→∞

EX2
t∧τ = lim sup

t→∞
ε2F(ε)E[t ∧ τ ] = ε2F(ε)Eτ

and thus, by the Markov inequality,

P
(
τ ≥ 8/F (ε)

) ≤ 1/2.

Consequently, one has, for n := �F(ε)/8� > 0 and ti := 8i/F (ε), i = 0, . . . , n,

P(‖X‖ ≤ ε/2) ≤ P
(
∀i = 0, . . . , n − 1 : sup

s∈[ti ,ti+1]
|Xs − Xti | ≤ ε

)

≤ 2−n ≤ 2−F(ε)/8+1.

If n = 0, the result holds trivially. �
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5. Proofs of the explicit rates in the examples. In this section, we give the
proofs for the asymptotic rates stated in the examples.

First, we show the following lemma, which immediately yields Corollary 2.1.

LEMMA 5.1. With F as in (12), we have

ν([−2ε,2ε]c) + F(2ε) ≤ ν([−ε, ε]c) + F(ε) ≤ 4
[
ν([−2ε,2ε]c) + F(2ε)

]
.

PROOF. For ε > 0, we consider the function gε : [0,∞) → [0,1] defined by
gε(x) = x2

ε2 ∧ 1. Then, g2ε ≤ gε ≤ 4g2ε so that

ν([−ε, ε]c) + F(ε) =
∫

gε dν + σ 2

ε2

≤ 4
∫

g2ε dν + 4
σ 2

(2ε)2

= 4
[
ν([−2ε,2ε]c) + F(2ε)

]
.

The converse inequality follows analogously. �

In general, the following elementary lemma is of great help in the calculations.

LEMMA 5.2. For α ∈ R, there exist positive constants C1,C2 such that, for
any γ ≥ 0,

C1
eγ − 1 − γ − γ 2/2

γ
≤

∫ 1

0
(eγ x − 1 − γ x)

dx

xα
≤ C2

eγ − 1 − γ − γ 2/2

γ
,

C1
eγ − 1 − γ

γ
≤

∫ 1

0
(eγ x − 1)

dx

xα
≤ C2

eγ − 1 − γ

γ
,

C1
eγ − 1

γ
≤

∫ 1

0
eγ x dx

xα
≤ C2

eγ − 1

γ
,

provided the integral in question converges.

PROOF. To prove the inequalities, write the exponential as a series, exchange
summation and integration (which is possible since everything is absolutely inte-
grable), then integrate term by term. The remaining factor (n+ 1)/(n+ 1 −α) can
be estimated from above and below uniformly in n in the range of the respective
sum. �

When γ is negative, the last lemma is not valid. Instead, we have the following.
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LEMMA 5.3. Let α ∈ R. Then, as γ → −∞,

∫ 1

0
(eγ x − 1 − γ x)

dx

xα
≈

⎧⎨
⎩

γ, α < 2,

γ log(−γ ), α = 2,

−(−γ )α−1, 2 < α < 3,

∫ 1

0
(eγ x − 1)

dx

xα
≈

⎧⎨
⎩

−1, α < 1,

− log(−γ ), α = 1,

−(−γ )α−1, 1 < α < 2,∫ 1

0
eγ x dx

xα
≈ (−γ )α−1 if α < 1.

PROOF. Simply substitute y = −γ x and calculate the behavior of the integrals
at infinity. �

Furthermore, we need the following fact.

LEMMA 5.4. Provided the integral in question converges, we have, for u ∈ R,
∫ ε

0
(eux − 1 − ux)

dx

xα
= ε1−α

∫ 1

0
(euεx − 1 − uεx)

dx

xα
,

∫ ε

0
(eux − 1)

dx

xα
= ε1−α

∫ 1

0
(euεx − 1)

dx

xα
,

∫ ε

0
eux dx

xα
= ε1−α

∫ 1

0
euεx dx

xα
.

We now start with the proofs of the examples. We start with the stable subordi-
nator with drift.

PROOF OF EXAMPLE 2.3. Here, we have to consider

	(u) = uμ +
∫ ∞

0
(eux − 1)

dx

x1+α
.

After subtracting the large jumps, we have

	ε(u) = uμ +
∫ ε

0
(eux − 1)

dx

x1+α
.

We now assume that uε solves

0 = 	′
ε(uε) = μ +

∫ ε

0
euεx

dx

xα
= μ + ε1−α

∫ 1

0
euεεx

dx

xα
.
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Note that εuε tends to ∞ as ε → 0. Therefore, setting uε =: ε−1 logv, Lemma 5.2
yields that v ≈ εα−1| log ε|. This implies, again using Lemma 5.2, that

ν([−ε, ε]c) ≈ ε−α, −	ε(uε) ≈ ε−1| log ε|,
ε|uε| ≈ | log ε| and F̄ (ε) ≈ ε−1. �

In a similar way, we treat the Gamma process with drift.

PROOF OF EXAMPLE 2.5. Here, we have to consider

	(u) = uμ +
∫ ∞

0
(eux − 1)

be−x/a

x
dx.

After subtracting the large jumps, we have

	ε(u) = uμ +
∫ ε

0
(eux − 1)

be−x/a

x
dx.

Again, we need to consider the solution uε of

0 = 	′
ε(uε) = μ +

∫ ε

0
euεxbe−x/a dx = μ + e(uε−1/a)ε − 1

uε − 1/a
b.

Noting that εuε → ∞ and setting uε −1/a =: ε−1 logv, we find, using Lemma 5.2,
that v ≈ ε−1| log ε|. This yields, using Lemma 5.2,

ν([−ε, ε]c) ≈ | log ε|, −	ε(uε) ≈ ε−1| log ε|,
ε|uε| ≈ | log ε| and F̄ (ε) ≈ ε−1. �

We now come to the proofs for the polynomial Lévy measure. We distinguish
between the asymmetric cases α1 < 1, α1 = 1 and α1 > 1, and the symmetric case.

PROOF OF COROLLARIES 2.7–2.9 AND 2.11. In the symmetric case where
α1 = α2, C1 = C2 and b = 0, the result follows immediately from Corollary 2.1.
The remaining cases are treated separately.

Case 1: α1 ≥ α2, α1 > 1.
We have

	ε(u) =
∫ ε

0
(eux − 1 − ux)

C1 dx

x1+α1
+

∫ 0

−ε
(eux − 1 − ux)

C2 dx

(−x)1+α2

(24)

+
(
b −

∫ 1

ε
x

C1 dx

x1+α1
−

∫ −ε

−1
x

C2 dx

(−x)1+α2

)
u.

After differentiating with respect to u, we obtain

	′
ε(u) =

∫ ε

0
(eux − 1)

C1 dx

xα1
−

∫ ε

0
(e−ux − 1)

C2 dx

xα2

(25)

+ b −
∫ 1

ε

C1 dx

xα1
+

∫ 1

ε

C2 dx

xα2
.
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Note that

	′
ε(0) = b −

∫ 1

ε

C1 dx

xα1
+

∫ 1

ε

C2 dx

xα2
≈ −ε1−α1

if α1 > α2 or C1 > C2. Otherwise, one has α1 = α2 and C1 = C2, which implies
that 	′

ε(0) = b. In the former case, uε is positive for all sufficiently small ε > 0
and, by Lemma 5.4,

ε1−α1 ≈ ε1−α1

∫ 1

0
(eεuεx − 1)

C1 dx

xα1
− ε1−α2

∫ 1

0
(e−εuεx − 1)

C2 dx

xα2

so that εuε ≈ 1 and, by Lemma 5.2,

ν([−ε, ε]c) ≈ ε−α1, −	ε(uε) ≈ ε−α1 and F̄ (ε) ≈ ε−α1 .

In the latter case, we obtain

ε1−α1

∫ 1

−1
(eεuεx − 1)

dx

xα1
= O(1)

so that εuε tends to zero and

ν([−ε, ε]c) ≈ ε−α1, −	ε(uε) = O(ε−α1) and F̄ (ε) = O(ε−α1).

Case 2: α1 = 1 ≥ α2 with α2 < 1 or C1 > C2.
Essentially, we proceed as in the proof of Case 1. Note that (26) is valid, but

that

	′
ε(0) = b −

∫ 1

ε

C1 dx

x
+

∫ 1

ε

C2 dx

xα2
≈ −| log ε| → −∞.

Thus, uε is again positive for sufficiently small ε and

| log ε| ≈
∫ ε

0
(euεx − 1)

C1 dx

x
−

∫ ε

0
(euεx − 1)

C2 dx

xα2

=
∫ 1

0
(eεuεx − 1)

C1 dx

x
− ε1−α2

∫ 1

0
(eεuεx − 1)

C2 dx

xα2
.

Now, εuε tends to infinity and we use Lemmas 5.2 and 5.3 to deduce that

| log ε| ≈ eεuε

εuε

.

Setting logv := εuε , we conclude that v ≈ | log ε| log(| log ε|). This yields, again
using Lemmas 5.2 and 5.3, that

ν([−ε, ε]c) ≈ ε−1, −	ε(uε) ≈ ε−1| log ε| log(| log ε|),
ε|uε| ≈ log(| log ε|) and F̄ (ε) ≈ ε−1| log ε|.

Case 3: 1 = α1 = α2, C1 = C2 and b �= 0 (without loss of generality, b < 0).
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Now,

	′
ε(0) = b

and thus uε is positive with
∫ ε

−ε
(euεx − 1)

dx

xα1
≈ 1,

which gives εuε ≈ 1, leading to

ν([−ε, ε]c) ≈ ε−1, −	ε(uε) ≈ ε−1 and F̄ (ε) ≈ ε−1.

Case 4: 1 > α1 ∨ α2 and c �= 0 (without loss of generality, c < 0).
Now,

	′
ε(0) = b −

∫ 1

ε

C1 dx

xα1
+

∫ 1

ε

C2 dx

xα2
→ c

since α1 ∨ α2 < 1. Therefore,

−c ≈
∫ ε

0
(eux − 1)

dx

xα1
−

∫ ε

0
(e−ux − 1)

dx

xα2
.

We have uε > 0. Set uε = ε−1 logv and observe that v ≈ ε−(1−α1)| log ε|. This
gives

ν([−ε, ε]c) ≈ ε−α1∨α2, −	ε(uε) ≈ ε−1| log ε| and F̄ (ε) ≈ ε−α1∨α2 .

Case 5: 1 > α1 ≥ α2 and c = 0 with α1 > α2 or C1 > C2.
In this case, 	ε simplifies to

	ε(u) =
∫ ε

0
(eux − 1)

C1 dx

x1+α1
+

∫ 0

−ε
(eux − 1)

C2 dx

(−x)1+α2

and we have

	′
ε(u) =

∫ ε

0
eux C1 dx

xα1
−

∫ ε

0
e−ux C2 dx

xα2
.

In particular, uε is negative for sufficiently small ε. Using the above lemmas,
one derives that ε|uε| ≈ 1 if α1 = α2 and, otherwise, ε|uε| = logv with v ≈
εα2−α1 | log ε|α1 . In both cases, the term ν([−ε, ε]c) ≈ ε−α1 is of leading order.

�

We finish with the proofs for the remaining examples.

PROOF OF EXAMPLE 2.12. The reasoning is essentially the same as for the
Gamma process (Example 2.5) when μ �= 0. The result follows immediately from
Corollary 2.1 for μ = 0. �
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PROOF OF EXAMPLE 2.13. The influence of bA is clear from Theorem 30.1
in [18], so let us assume that bA = 0. We then consider

F(ε) = ε−2
∫ ε

−ε
x2ν(dx) and N(ε) := ν([−ε, ε]c),

where ν is the Lévy measure of X = BAt . It is easy to see (cf. Theorem 30.1
in [18]) that

F(ε) = ε−2
∫ ∞

0
E1{|Bx |≤ε}B2

xνA(dx)

= ε−2
∫ ∞

0
E1{xξ2≤ε2}xξ2νA(dx) = ε−2

(∫ ε2

0
· · · +

∫ ∞
ε2

· · ·
)
,(26)

where ξ is a standard normal random variable. In the first integral in (26), the
indicator can be estimated from above by 1 and from below by 1{ξ2≤1}. Thus, the
first integral in (26) has the order

ε−2
∫ ε2

0
xνA(dx) ≈

∫ ε2

0
(1 − e−xε−2

)νA(dx).

On the other hand, the second integral in (26) can be estimated from above by

ε−2
∫ ∞
ε2

ε2νA(dx).

From below, we estimate it by zero. Furthermore,

N(ε) =
∫ ∞

0
P(|Bx | > ε)νA(dx)

(27)

=
∫ ε2

0
P(xξ2 > ε2)νA(dx) +

∫ ∞
ε2

P(xξ2 > ε2)νA(dx).

The integrand in the first term in (27) is of order less than

e−ε2/(2x) � xε−2 ≈ 1 − e−xε−2
.

The integrand in the second term in (27) is bounded from above and below.
Putting all the pieces together, we obtain that

F(ε) + N(ε) ≈
∫ ε2

0
(1 − e−xε−2

)νA(dx) +
∫ ∞
ε2

νA(dx)

≈
∫ ∞

0
(1 − e−xε−2

)νA(dx) = �(ε−2),

as required. �
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APPENDIX

In the examples of Section 2, the term ε|uε| (appearing in Theorem 1.5) does
not affect the small deviation order. We now show that under weak assumptions,
one can always neglect the term ε|uε| since it is of lower order than −	ε(uε). It is
still an open question as to whether ε|uε| is negligible in all cases.

LEMMA A.1. Let us assume that we are in the situation of Theorem 1.5.

(a) If bε ≤ 0, then

(ε|uε|)2 ≤ −2
(
ε−2

∫ ε

0
x2ν(dx)

)−1

	ε(uε).

(b) If ∫ 1

−1
|x|ν(dx) < ∞(28)

and the effective drift c �= 0, then we have

|cuε| ≤ −4	ε(uε)

for all sufficiently small ε.

REMARK A.2. The assertion implies the negligibility of ε|uε| in most cases:
if ν has mass infinity, then the term ε−2 ∫ ε

0 x2ν(dx) is typically bounded away from
zero so that, by assertion (a), ε|uε| ≤ const + o(|	ε(uε)|); if, on the other hand, ν

has finite mass and c �= 0, then assertion (b) implies that ε|uε| = o(|	ε(uε)|).
PROOF OF LEMMA A.1. Note that

	ε(u) = bεu +
∫ ε

−ε
(eux − 1 − ux)ν(dx),

bε = b −
∫ −ε

−1
xν(dx) −

∫ 1

ε
xν(dx)

and

0 = 	′
ε(uε) = bε +

∫ ε

−ε
(euεx − 1)xν(dx),

which implies that we can express bε in terms of uε:

bε = −
∫ ε

−ε
(euεx − 1)xν(dx).

This shows that

	ε(uε) = −
∫ ε

−ε
(euεx − 1)xν(dx)uε +

∫ ε

−ε
(euεx − 1 − uεx)ν(dx)

(29)
=

∫ ε

−ε

(
euεx(1 − uεx) − 1

)
ν(dx).
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Statement (a): Since bε < 0, we have uε > 0. We obtain from (29) and the ob-
servation ez(1 − z) − 1 ≤ 0 for all real z that

	ε(uε) ≤
∫ ε

0

(
euεx(1 − uεx) − 1

)
ν(dx)

(30)

≤ −1

2

∫ ε

0
uεx(euεx − 1)ν(dx),

where the last step follows from ez(1 − z) − 1 ≤ −1
2z(ez − 1), which holds for all

z ≥ 0. Using ez − 1 ≥ z, we can estimate the last term from above by

−1

2

∫ ε

0
(uεx)2ν(dx) = −1

2
(uεε)

2ε−2
∫ ε

0
x2ν(dx),

as asserted.
Statement (b): Assume that ε is sufficiently small so that

∫ ε

−ε
|x|ν(dx) ≤ |c|

2
.(31)

By (28), we get

	ε(u) = cu +
∫ ε

−ε
(eux − 1)ν(dx)

and

0 = 	′
ε(uε) = c +

∫ ε

−ε
euεxxν(dx).

Without loss of generality, we assume that c < 0 and thus uε > 0. We estimate

−c =
∫ ε

−ε
euεxxν(dx) ≤

∫ ε

0
euεxxν(dx)(32)

and conclude, as in (30), that

	ε(uε) = cuε +
∫ ε

−ε
(euεx − 1)ν(dx) ≤ −1

2

∫ ε

0
uεx(euεx − 1)ν(dx),

= −uε

2

(∫ ε

0
xeuεxν(dx) −

∫ ε

0
xν(dx)

)
≤ −uε

2

(
−c −

∫ ε

0
xν(dx)

)
.

Here, we used (32) in the last step. To estimate the last expression, we use (31),
which already yields the assertion. �
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