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Analogical reasoning depends fundamentally on the ability to learn and
generalize about relations between objects. We develop an approach to rela-
tional learning which, given a set of pairs of objects S = {A(1) :B(1),A(2) :
B(2), . . . ,A(N) :B(N)}, measures how well other pairs A :B fit in with the
set S. Our work addresses the following question: is the relation between
objects A and B analogous to those relations found in S? Such questions
are particularly relevant in information retrieval, where an investigator might
want to search for analogous pairs of objects that match the query set of inter-
est. There are many ways in which objects can be related, making the task of
measuring analogies very challenging. Our approach combines a similarity
measure on function spaces with Bayesian analysis to produce a ranking. It
requires data containing features of the objects of interest and a link matrix
specifying which relationships exist; no further attributes of such relation-
ships are necessary. We illustrate the potential of our method on text analysis
and information networks. An application on discovering functional interac-
tions between pairs of proteins is discussed in detail, where we show that our
approach can work in practice even if a small set of protein pairs is provided.

1. Contribution. Many university admission exams, such as the American
Scholastic Assessment Test (SAT) and Graduate Record Exam (GRE), have his-
torically included a section on analogical reasoning. A prototypical analogical rea-
soning question is as follows:

doctor :hospital:
(A) sports fan :stadium
(B) cow :farm
(C) professor :college
(D) criminal :jail
(E) food :grocery store

The examinee has to answer which of the five pairs best matches the relation
implicit in doctor :hospital. Although all candidate pairs have some type of
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relation, pair professor :college seems to best fit the notion of (profession,
place of work), or the “works in” relation implicit between doctor and hospital.

This problem is nontrivial because measuring the similarity between objects di-
rectly is not an appropriate way of discovering analogies, as extensively discussed
in the cognitive science literature. For instance, the analogy between an electron
spinning around the nucleus of an atom and a planet orbiting around the Sun is not
justified by isolated, nonrelational, comparisons of an electron to a planet, and of
an atomic nucleus to the Sun [Gentner (1983)]. Discovering the underlying rela-
tionship between the elements of each pair is key in determining analogies.

1.1. Applications. This paper concerns practical problems of data analysis
where analogies, implicitly or not, play a role. One of our motivations comes from
the bioPIXIE2 project [Myers et al. (2005)]. bioPIXIE is a tool for exploratory
analysis of protein–protein interactions. Proteins have multiple functional roles
in the cell, for example, regulating metabolism and regulating cell cycle, among
others. A protein often assumes different functional roles while interacting with
different proteins. When a molecular biologist experimentally observes an interac-
tion between two proteins, for example, a binding event of {Pi,Pj }, it might not
be clear which function that particular interaction is contributing to. The bioPIXIE
system allows a molecular biologist to input a set S of proteins that are believed to
have a particular functional role in common, and generates a list of other proteins
that are deduced to play the same role. Evidence for such predictions is provided
by a variety of sources, such as the expression levels for the genes that encode
the proteins of interest and their cellular localization. Another important source
of information bioPIXIE takes advantage of is a matrix of relationships, indicating
which proteins interact according to some biological criterion. However, we do not
necessarily know which interactions correspond to which functional roles.

The application to protein interaction networks that we develop in Section 5
shares some of the features and motivations of bioPIXIE. However, we aim at
providing more detailed information. Our input set S is a small set of pairs of
proteins that are postulated to all play a common role, and we want to rank other
pairs Pi :Pj according to how similar they are with respect to S. The goal is to
automatically return pairs that correspond to analogous interactions.

To use an analogy itself to explain our procedure, recall the SAT example that
opened this section. The pair of words doctor :hospital presented in the SAT
question play the role of a protein–protein interaction and is the smallest possible
case of S, that is, a single pair. The five choices A–E in the SAT question cor-
respond to other observed protein–protein interactions we want to match with S,
that is, other possible pairs. Since multiple valid answers are possible, we rank
them according to a similarity metric. In the application to protein interactions, in

2http://pixie.princeton.edu/pixie/.
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Section 5, we perform thousands of queries and we evaluate the goodness of the
resulting rankings according to multiple gold standards, widely accepted by mole-
cular and cellular biologists [Ashburner et al. (2000); Kanehisa and Goto (2000);
Mewes et al. (2004)].

The general problem of interest in this paper is a practical problem of infor-
mation retrieval [Manning, Raghavan and Schütze (2008)] for exploratory data
analysis: given a query set S of linked pairs, which other pairs of objects in my
relational database are linked in a similar way? We apply this analysis to cases
where it is not known how to explicitly describe the different classes of relations,
but good models to predict the existence of relationships are available. In Section 4
we consider an application to information retrieval in text documents for illustra-
tive purposes. Given a set of pairs of web pages which are related by some hyper-
link, we would like to find other pairs of pages that are linked in a similar way. In
information network settings, the proposed method could be useful, for instance,
to answer queries for encyclopedia pages relating scientists and their major dis-
coveries, to search for analogous concepts, or to identify the absence of analogous
concepts, in Wikipedia. From an evaluation perspective, this application domain
provides an example where large scale evaluation is more straightforward than in
the biological setting.

In this paper we introduce a method for ranking relations based on the Bayesian
similarity criterion underlying Bayesian sets, a method originally proposed by
Ghahramani and Heller (2005) and reviewed in Section 2. In contrast to Bayesian
sets, however, our method is tailored to drawing analogies between pairs of ob-
jects. We also provide supplementary material with a Java implementation of our
method, and instructions on how to rebuild the experiments [Silva et al. (2010)].

1.2. Related work. To give an idea of the type of data which our method is
useful for analyzing, consider the methods of Turney and Littman (2005) for au-
tomatically solving SAT problems. Their analysis is based on a large corpus of
documents extracted from the World Wide Web. Relations between two words Wi

and Wj are characterized by their joint co-ocurrence with other relevant words
(such as particular prepositions) within a small window of text. This defines a
set of features for each Wi :Wj relationship, which can then be compared to other
pairs of words using some notion of similarity. Unlike in this application, however,
there are often no (or very few) explicit features for the relationships of interest.
Instead we need a method for defining similarities using features of the objects in
each relationship, while at the same time avoiding the mistake of directly compar-
ing objects instead of relations.

One of the earliest approaches for determining analogical similarity was intro-
duced by Rumelhart and Abrahamson (1973). In their paper, one is initially given
a set of pairwise distances between objects (say, by the subjective judgement of a
group of people). Such distances are used to embed the given objects in a latent
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space via a multidimensional scaling approach. A related pair A :B is then rep-
resented as a vector connecting A and B in the latent space. Its similarity with
respect to another pair C :D is defined by comparing the direction and magnitude
of the corresponding vectors. Our approach is probabilistic instead of geometrical,
and operates directly on the object features instead of pairwise distances.

We will focus solely on ranking pairwise relations. The idea can be extended to
more complex relations, but we will not pursue this here. Our approach is described
in detail in Section 3.

Finally, the probabilistic, geometrical and logical approaches applied to analog-
ical reasoning problems can be seen as a type of relational data analysis [Džeroski
and Lavrač (2001); Getoor and Taskar (2007)]. In particular, analogical reasoning
is a part of the more general problem of generating latent relationships from rela-
tional data. Several approaches for this problem are discussed in Section 6. To the
best of our knowledge, however, most analogical reasoning applications are inter-
esting proofs of concept that tackle ambitious problems such as planning [Veloso
and Carbonell (1993)], or are motivated as models of cognition [Gentner (1983)].
Our goal is to create an off-the-shelf method for practical exploratory data analysis.

2. A review of probabilistic information retrieval and the Bayesian sets
method. The goal of information retrieval is to provide data points (e.g., text
documents, images, medical records) that are judged to be relevant to a particular
query. Queries can be defined in a variety of ways and, in general, they do not
specify exactly which records should be presented. In practice, retrieval methods
rank data points according to some measure of similarity with respect to the query
[Manning, Raghavan and Schütze (2008)]. Although queries can, in practice, con-
sist of any piece of information, for the purposes of this paper we will assume that
queries are sets of objects of the same type we want to retrieve.

Probabilities can be exploited as a measure of similarity. We will briefly review
one standard probabilistic framework for information retrieval [Manning, Ragha-
van and Schütze (2008), Chapter 11]. Let R be a binary random variable represent-
ing whether an arbitrary data point X is “relevant” for a given query set S (R = 1)
or not (R = 0). Let P(·|·) be a generic probability mass function or density func-
tion, with its meaning given by the context. Points are ranked in decreasing order
by the following criterion:

P(R = 1|X,S)

P (R = 0|X,S)
= P(R = 1|S)

P (R = 0|S)

P (X|R = 1,S)

P (X|R = 0,S)
,

which is equivalent to ranking points by the expression

logP(X|R = 1,S) − logP(X|R = 0,S).(2.1)

The challenge is to define what form P(X|R = r,S) should assume. It is not
practical to collect labeled data in advance which, for every possible class of
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queries, will give an estimate for P(R = 1|X,S): in general, one cannot antici-
pate which classes of queries will exist. Instead, a variety of approaches have been
developed in the literature in order to define a suitable instantiation of (2.1). These
include a method that builds a classifier on-the-fly using S as elements of the pos-
itive class R = 1, and a random subset of data points as the negative class R = 0
[e.g., Turney (2008b)].

The Bayesian sets method of Ghahramani and Heller (2005) is a state-of-the-art
probabilistic method for ranking objects, partially inspired by Bayesian psycho-
logical models of generalization in human cognition [Tenenbaum and Griffiths
(2001)]. In this setup the event “R = 1” is equated with the event that X and the
elements of S are i.i.d. points generated by the same model. The event “R = 0” is
the event by which X and S are generated by two independent models: one for X

and another for S. The parameters of all models are random variables that have
been integrated out, with fixed (and common) hyperparameters. The result is the
instantiation of (2.1) as

logP(X|S) − logP(X) = log
P(X,S)

P (X)P (S)
,(2.2)

the Bayesian sets score function by which we rank points X given a query S. The
right-hand side was rearranged to provide a more intuitive graphical model, shown
in Figure 1. From this graphical model interpretation we can see that the score
function is a Bayes factor comparing two models [Kass and Raftery (1995)].

In the next section we describe how the Bayesian sets method can be adapted
to define analogical similarity in the biological and information networks settings
we consider, and why such modifications are necessary.

FIG. 1. In order to score how well an arbitrary element X fits in with query set
S = {X1,X2, . . . ,Xq }, the Bayesian sets methodology compares the marginal likelihood of the
model in (a), P(X,S), against the model in (b), P(X)P (S). In (a), the random parameter vector � is
given a prior defined by the (fixed) hyperparameter α. The same (latent) parameter vector is shared
by the query set and the new point. In (b), the parameter vector � that generates X is different from
the one that generates the query set.
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3. A model of Bayesian analogical similarity for relations. To define an
analogy is to define a measure of similarity between structures of related objects.
In our setting, we need to measure the similarity between pairs of objects. The
key aspect that distinguishes our approach from others is that we focus on the
similarity between functions that map pairs to links, rather than focusing on the
similarity between the features of objects in a candidate pair and the features of
objects in the query pairs.

As an illustration, consider an analogical reasoning question from a SAT-like
exam where for a given pair (say, water : river) we have to choose, out of 5 pairs,
the one that best matches the type of relation implicit in such a “query.” In this
case, it is reasonable to say car : highway would be a better match than (the some-
what nonsensical) soda : ocean, since cars flow on a highway, and so does water in
a river. Notice that if we were to measure the similarity between objects instead of
relations, soda : ocean would be a much closer pair, since soda is similar to water,
and ocean is similar to river.

Nevertheless, it is legitimate to infer relational similarity from individual ob-
ject features, as summarized by Gentner and Medina (1998) in their “kind world
hypothesis.” What is needed is a mechanism by which object features should be
weighted in a particular relational similarity problem. We postulate that, in ana-
logical reasoning, similarity between features of objects is only meaningful to the
extent by which such features are useful to predict the existence of the relation-
ships.

Our approach can be described as follows. Let A and B represent object spaces.
To say that an interaction A :B is analogous to S = {A(1) :B(1),A(2) :B(2), . . . ,

A(N) :B(N)} amounts to implicitly defining a measure of similarity between the
pair A :B and the set of pairs S, where each query item A(k) :B(k) corresponds
to some pair Ai :Bj . However, this similarity is not directly derived from the
similarity of the information contained in the distribution of objects themselves,
{Ai} ⊂ A, {Bi} ⊂ B. Rather, the similarity between A :B and the set S is defined
in terms of the similarity of the functions mapping the pairs as being linked. Each
possible function captures a different possible relationship between the objects in
the pair.

BAYESIAN ANALOGICAL REASONING FORMULATION. Consider a space of
latent functions in A × B → {0,1}. Assume that A and B are two objects clas-
sified as linked by some unknown function f (A,B), that is, f (A,B) = 1. We
want to quantify how similar the function f (A,B) is to the function g(·, ·), which
classifies all pairs (Ai,Bj ) ∈ S as being linked, that is, where g(Ai,Bj ) = 1. The
similarity should depend on the observations {S,A,B} and our prior distribution
over f (·, ·) and g(·, ·).

Functions f (·) and g(·) are unobserved, hence the need for a prior that will
be used to integrate over the function space. Our similarity metric will be defined
using Bayes factors, as explained next.
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3.1. Analogy in function spaces via logistic regression. For simplicity, we will
consider a family of latent functions that is parameterized by a finite-dimensional
vector: the logistic regression function with multivariate Gaussian priors for its
parameters.

For a particular pair (Ai ∈ A, Bj ∈ B), let Xij = [�1(A
i,Bj ) �2(A

i,Bj )

· · · �K(Ai,Bj )]T be a point on a feature space defined by the mapping � : A ×
B → �K . This feature space mapping computes a K-dimensional vector of at-
tributes of the pair that may be potentially relevant to predicting the relation be-
tween the objects in the pair. Let Lij ∈ {0,1} be an indicator of the existence of a
link or relation between Ai and Bj in the database. Let � = [θ1, . . . , θK ]T be the
parameter vector for our logistic regression model such that

P(Lij = 1|Xij ,�) = logistic(�TXij ),(3.1)

where logistic(x) = (1 + e−x)−1.
We now apply the same score function underlying the Bayesian sets methodol-

ogy explained in Section 2. However, instead of comparing objects by marginal-
izing over the parameters of their feature distributions, we compare functions for
link indicators by marginalizing over the parameters of the functions.

Let LS be the vector of link indicators for S: in fact, each L ∈ LS has the value
L = 1, indicating that every pair of objects in S is linked. Consider the following
Bayes factor:

P(Lij = 1,LS = 1|Xij ,S)

P (Lij = 1|Xij )P (LS = 1|S)
.(3.2)

This is an adaptation of equation (2.2) where relevance is defined now by
whether Lij and LS were generated by the same model, for fixed {Xij ,S}. In
one sense, this is a discriminative Bayesian sets model, where we predict links
instead of modeling joint object features. Since we are integrating out �, a prior
for this parameter vector is needed. The graphical models corresponding to this
Bayes factor are illustrated in Figure 2.

Thus, each pair (Ai,Bj ) is evaluated with respect to a query set S by the score
function given in (3.2), rewritten after taking a logarithm and dropping constants
as

score(Ai,Bj ) = logP(Lij = 1|Xij ,S,LS = 1)
(3.3)

− logP(Lij = 1|Xij ).

The exact details of our procedure are as follows. We are given a relational
database (DA, DB, LAB ). Dataset DA (DB ) is a sample of objects of type A (B).
Relationship table LAB is a binary matrix modeled as generated from a logistic
regression model of link existence. A query proceeds according to the following
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FIG. 2. The score of a new data point {Ai,Bj } is given by the Bayes factor that compares mod-
els (a) and (b). Node α represents the hyperparameters for �. In (a), the generative model is the same
for both the new point and the query set represented in the rectangle. Notice that our conditioning
set S of pairs might contain repeated instances of a same point, that is, some A or B might appear
multiple times in different relations, as illustrated by nodes with multiple outgoing edges. In (b), the
new point and the query set do not share the same parameters.

steps:

1. the user selects a set of pairs S that are linked in the database, where the pairs
in S are assumed to have some relation of interest;

2. the system performs Bayesian inference to obtain the corresponding posterior
distribution for �, P(�|S,LS), given a Gaussian prior P(�);

3. the system iterates through all linked pairs, computing the following for each
pair:

P(Lij = 1|Xij ,S,LS = 1) =
∫

P(Lij = 1|Xij ,�)P (�|S,LS = 1) d�.

P (Lij = 1|Xij ) is similarly computed by integrating over P(�). All pairs are
presented in decreasing order according to the score in equation (3.3).

The integral presented above does not have a closed formula. Because comput-
ing the integrals by a Monte Carlo method for a large number of pairs would be
unreasonable, we use a variational approximation [Jordan et al. (1999); Airoldi
(2007)]. Figure 3 presents a summary of the approach.

The suggested setup scales as O(K3) with the feature space dimension, due
to the matrix inversions necessary for (variational) Bayesian logistic regression
[Jaakkola and Jordan (2000)]. A less precise approximation to P(�|S,LS) can be
imposed if the dimensionality of � is too high. However, it is important to point
out that once the initial integral P(�|S,LS) is approximated, each score function
can be computed at a cost of O(K2).

Our analogical reasoning formulation is a relational model in that it models
the presence and absence of interactions between objects. By conditioning on the
link indicators, the similarity score between A :B and C :D is always a function
of pairs (A,B) and (C,D) that is not in general decomposable as similarities
between A and C, and B and D.
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FIG. 3. General framework of the procedure: first, a “prior” over parameters � for a link classifier
is defined empirically using linked and unlinked pairs of points (the dashed edges indicate that cre-
ating a prior empirically is optional, but in practice we rely on this method). Given a query set S of
linked pairs of interest, the system computes the predictive likelihood of each linked pair D(i) ∈ D+
and compares it to the conditional predictive likelihood, given the query. This defines a measure of
similarity with respect to S by which all pairs in D+ are sorted.

3.2. Comparison with Bayesian sets and stochastic block models. The model
presented in Figure 2 is a conditional independence model for relationship indi-
cators, that is, given object features and parameters, the entries of LD are indepen-
dent. However, the entries in LD are in general marginally dependent. Since this is
a model of relationships given object attributes, we call the model introduced here
the relational Bayesian sets model.

Our approach has some similarity to the so-called stochastic block models.
These models were developed four decades ago in the network literature to quan-
tify the notion of “structural equivalence” by means of blocks nodes that instan-
tiate similar connectivity patterns [Lorrain and White (1971); Holland and Lein-
hardt (1975)]. Modern stochastic block model approaches, in statistics and ma-
chine learning, build on these seminal works by introducing the discovery of the
block structure as part of the model search strategy [Fienberg, Meyer and Wasser-
man (1985); Nowicki and Snijders (2001); Kemp et al. (2006); Xu et al. (2006);
Airoldi et al. (2005, 2008); Hoff (2008)]. The observed features in our approach,
Xij , effectively play the same role as the latent indicators in stochastic block mod-
els.3 Since Xij is observed, there is no need to integrate over the feature space to
obtain the posterior distribution of �. This computational efficiency is particularly
relevant in information retrieval and exploratory data analysis, where users expect
a relatively short response time.

3In a stochastic block model, typically each object has a single feature η indicating membership to

some latent class. For a pair Ai,Bj , the corresponding feature vector Xij would be (ηA,ηB).
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As an alternative to our relational Bayesian sets approach, consider the fol-
lowing direct modification of the standard Bayesian sets formulation to this prob-
lem: merge the data sets DA and DB into a single data set, creating for each pair
(Ai,Bj ) a row in the database with an extra binary indicator of relationship ex-
istence. Create a joint model for pairs by using the marginal models for A and B
and treating different rows as being independent. This ignores the fact that the re-
sulting merged data points are not really i.i.d. under such a model, because the
same object might appear in multiple relations [Džeroski and Lavrač (2001)]. The
model also fails to capture the dependency between Ai and Bj that arises from
conditioning on Lij , even if Ai and Bj are marginally independent. Nevertheless,
heuristically this approach can sometimes produce good results, and for several
types of probability families it is very computationally efficient. We evaluate it in
Section 4.

3.3. Choice of features and relational discrimination. Our setup assumes that
the feature space � provides a reasonable classifier to predict the existence of
links. Useful predictive features can also be generated automatically with a vari-
ety of algorithms [e.g., the “structural logistic regression” of Popescul and Ungar
(2003)]. See also Džeroski and Lavrač (2001). Jensen and Neville (2002) discuss
shortcomings of methods for automated feature selection in relational classifica-
tion.

We also assume feature spaces are the same for all possible combinations of
objects. This allows for comparisons between, for example, cells from different
species, or web pages from different web domains, as long as features are gener-
ated by the same function �(·, ·). In general, we would like to relax this require-
ment, but for the problem to be well-defined, features from the different spaces
must be related somehow. A hierarchical Bayesian formulation for linking differ-
ent feature spaces is one possibility which might be treated in a future work.

3.4. Priors. The choice of prior is based on the observed data, in a way that
is equivalent to the choice of priors used in the original formulation of Bayesian
sets [Ghahramani and Heller (2005)]. Let �̂ be the maximum likelihood estimator
of � using the relational database (DA, DB, LAB). Since the number of possible
pairs grows at a quadratic rate with the number of objects, we do not use the whole
database for maximum likelihood estimation. Instead, to get �̂, we use all linked
pairs as members of the “positive” class (L = 1), and subsample unlinked pairs
as members of the “negative” class (L = 0). We subsample by sampling each ob-
ject uniformly at random from the respective data sets DA and DB to get a new
pair. Since link matrices LAB are usually very sparse, in practice, this will almost
always provide an unlinked pair. Sections 4 and 5 provide more details.

We use the prior P(�) = N (�̂, (cT̂)−1), where N (m,V) is a normal of
mean m and variance V. Matrix T̂ is the empirical second moments matrix of
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the linked object features, although a different choice might be adequate for differ-
ent applications. Constant c is a smoothing parameter set by the user. In all of our
experiments we set c to be equal to the number of positive pairs. A good choice
of c might be important to obtain maximum performance, but we leave this issue
as future work. Wang et al. (2009) present some sensitivity analysis results for a
particular application in text analysis.

Empirical priors are a sensible choice, since this is a retrieval, not a predictive,
task. Basically, the entire data set is the population, from which prior information
is obtained on possible query sets. A data-dependent prior based on the popula-
tion is important for an approach such as Bayesian sets, since deviances from the
“average” behavior in the data are useful to discriminate between subpopulations.

3.5. On continuous and multivariate relations. Although we focus on mea-
suring similarity of qualitative relationships, the same idea could be extended to
continuous (or ordinal) measures of relationship, or relationships where each Lij

is a vector. For instance, Turney and Littman (2005) measure relations between
words by their co-occurrences on the neighborhood of specific keywords, such as
the frequency of two words being connected by a specific preposition in a large
body of text documents. Several similarity metrics can be defined on this vector
of continuous relationships. However, given data on word features, one can easily
modify our approach by substituting the logistic regression component with some
multiple regression model.

4. Ranking hyperlinks on the web. In the following application we consider
a collection of web pages from several universities: the WebKB collection, where
relations are given by hyperlinks [Craven et al. (1998)]. Web pages are classified
as being of type course, department, faculty, project, staff, student or other. Doc-
uments come from four universities (Cornell, Texas, Washington and Wisconsin).
We are interested in recovering pairs of web pages {A,B} where web page A has
a link to web page B . Notice that the relationship is asymmetric. Different types of
web pages imply different types of links. For instance, a faculty web page linking
to a project web page constitutes a type of link. The analogical reasoning task here
is simplified if we assume each web page object has a single role (i.e., exactly one
out of the pre-defined types {course, department, faculty, project, staff, student,
other}), and therefore a pair of web pages implies a unique type of relationship.
The web page types are for evaluation purposes only, as we explain later: we will
not provide this information to the model.

Our main standard of comparison is a “flattened Bayesian sets” algorithm
(which we will call “standard Bayesian sets,” SBSETS, in constrast to the rela-
tional model, RBSETS). Using a multivariate independent Bernoulli model as in
the original paper [Ghahramani and Heller (2005)], we merge linked web page
pairs into single rows, and then apply the original algorithm directly to the merged
data. It is clear that data points are not independent anymore, but the SBSETS
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algorithm assumes this is the case. Evaluating this algorithm serves the purpose
of both measuring the loss of not treating relational data as such, as well as the
limitations of evaluating the similarity of pairs through models for the marginal
probabilities of A and B instead of models for the predictive function P(Lij |Xij ).

Binary data was extracted from this database using the same methodology as in
Ghahramani and Heller (2005). A total of 19,450 binary variables per object are
generated, where each variable indicates whether a word from a fixed dictionary
appears in a given document more frequently than the average. To avoid intro-
ducing extra approximations into RBSETS, we reduced the dimensionality of the
original representation using singular value decomposition, obtaining 25 measures
per object.

In this experiment objects are of the same type, and therefore, dimensionality.
The feature vector Xij for each pair of objects {Ai,Bj } consists of the V fea-
tures for object Ai , the V features of object Bj , and measures Z = {Z1, . . . ,ZV },
where Zv = (Ai

v × B
j
v )/(|Ai | × ‖Bj‖), ‖Ai‖ being the Euclidean norm of the V -

dimensional representation of Ai . We also add a constant value (1) to the feature
set as an intercept term for the logistic regression. Feature set Z is exactly the
one used in the cosine distance measure,4 a common and practical measure widely
used in information retrieval [Manning, Raghavan and Schütze (2008)]. This fea-
ture space also has the important advantage of scaling well (linearly) with the
number of variables in the database. Moreover, adopting such features will make
our comparisons fairer, since we evaluate how well cosine distance itself performs
in our task. Notice that our choice of Xij is suitable for asymmetric relationships,
as naturally occurs in the domain of web page links. For symmetric relationships,
features such as |Ai

v − B
j
v | could be used instead.

In order to set the empirical prior, we sample 10 “negative” pairs for each “pos-
itive” one, and weight them to reflect the proportion of linked to unlinked pairs in
the database. That is, in the WebKB study we use 10 negatives for each positive,
and we count each negative case as being 350 cases replicated. We perform sub-
sampling and reweighting in order to be able to fit the database in the memory of
a desktop computer.

Evaluation of the significance of retrieved items often relies on subjective as-
sessments [Ghahramani and Heller (2005)]. To simplify our study, we will focus
on particular setups where objective measures of success are defined.

To evaluate the gain of our model over competitors, we will use the following
setup. In the first query, we are given all pairs of web pages of the type student →
course from three of the labeled universities, and evaluate how relations are ranked
in the fourth university. Because we know class labels for the web pages (while the
algorithm does not), we can use the classes of the returned pairs to label a hit as

4The cosine similarity measure between two items corresponds to the sum of the features in Z.
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being “relevant” or “irrelevant.” We label a pair (Ai,Bj ) as relevant if and only if
Ai is of type student and Bj is of type course, and Ai links to Bj .

This is a very stringent criterion, since other types of relations could also be
valid (e.g., staff → course appears to be a reasonable match). However, this fa-
cilitates objective comparisons of algorithms. Also, the other class contains many
types of pages, which allows for possibilities such as a student → “hobby” pair.
Such pairs might be hard to evaluate (e.g., is that particular hobby demanding or
challenging in a similar way to coursework?). As a compromise, we omit all pages
from the category other in order to better clarify differences between algorithms.5

Precision/recall curves [Manning, Raghavan and Schütze (2008)] for the stu-
dent → course queries are shown in Figure 4. There are four queries, each corre-
sponding to a search over a specific university given all valid student → course
pairs from the other three. There are four algorithms on each evaluation: the stan-
dard Bayesian sets with the original 19,450 binary variables for each object, plus
another 19,450 binary variables, each corresponding to the product of the respec-

FIG. 4. Results for student → course relationships.

5As an extreme example, querying student → course pairs from the wisconsin university returned
student → other pairs at the top four. However, these other pages were for some reason course
pages—such as http://www.cs.wisc.edu/~markhill/cs752.html.

http://www.cs.wisc.edu/~markhill/cs752.html
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tive variables in the original pair of objects (SBSETS1); the standard Bayesian
sets with the original binary variables only (SBSETS2); a standard cosine distance
measure over the 25-dimensional representation (COSINE 1) for each page, with
pairs being given by the combined vector of 50 features; a cosine distance mea-
sure using the raw 19,450-dimensional binary for each document (COSINE 2); our
approach, RBSETS.

In Figure 4 RBSETS demonstrates consistently superior or equal precision-
recall. Although SBSETS performs well when asked to retrieve only student items
or only course items, it falls short of detecting what features of student and course
are relevant to predict a link. The discriminative model within RBSETS conveys
this information through the link parameters.

We also did an experiment with a query of type faculty → project, shown in
Figure 5. This time results between algorithms were closer to each other. To make
differences more evident, we adopt a slightly different measure of success: we
count as a 1 hit if the pair retrieved is a faculty → project pair, and count as a
0.5 hit for pairs of type student → project and staff → project. Notice this is a
much harder query. For instance, the structure of the project web pages in the
texas group was quite distinct from the other universities: they are mostly very

FIG. 5. Results for faculty → project relationships.
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TABLE 1
Area under the precision/recall curve for each algorithm and query

Student → course Faculty → project

C1 C2 RB SB1 SB2 C1 C2 RB SB1 SB2

Cornell 0.87 0.82 0.87 0.82 0.80 0.19 0.18 0.24 0.18 0.18
Texas 0.62 0.32 0.77 0.55 0.54 0.24 0.21 0.29 0.12 0.12
Washington 0.69 0.31 0.76 0.67 0.64 0.40 0.42 0.47 0.40 0.40
Wisconsin 0.77 0.72 0.88 0.75 0.73 0.28 0.30 0.26 0.19 0.21

short, basically containing links for members of the project and other project web
pages.

Although the precision/recall curves convey a global picture of the performance
of each algorithm, they might not be a completely clear way of ranking approaches
for cases where curves intersect at several points. In order to summarize algo-
rithm performances with a single statistic, we computed the area under each pre-
cision/recall curve (with linear interpolation between points). Results are given in
Table 1. Numbers in bold indicate the largest area under the curve. The dominance
of RBSETS should be clear.

5. Ranking protein interactions. The budding yeast is a unicellular organ-
ism that has become a de-facto model organism for the study of molecular and
cellular biology [Botstein, Chervitz and Cherry (1997)]. There are about 6000 pro-
teins in the budding yeast, which interact in a number of ways [Cherry et al.
(1997)]. For instance, proteins bind together to form protein complexes, the phys-
ical units that carry out most functions in the cell [Krogan et al. (2006)]. In recent
years, significant resources have been directed to collect experimental evidence of
physical proteins binding, in an effort to infer and catalogue protein complexes and
their multifaceted functional roles [e.g., Fields and Song (1989); Itô et al. (2000);
Uetz et al. (2000); Gavin et al. (2002); Ho et al. (2002)]. Currently, there are four
main sources of interactions between pairs of proteins that target proteins localized
in different cellular compartments with variable degrees of success: (i) literature
curated interactions [Reguly et al. (2006)], (ii) yeast two-hybrid (Y2H) interaction
assays [Yu et al. (2008)], (iii) protein fragment complementation (PCA) interaction
assays [Tarassov et al. (2008)], and (iv) tandem affinity purification (TAP) interac-
tion assays [Gavin et al. (2006); Krogan et al. (2006)]. These collections include a
total of about 12,292 protein interactions [Jensen and Bork (2008)], although the
number of such interactions is estimated to be between 18,000 [Yu et al. (2008)]
and 30,000 [von Mering et al. (2002)].

Statistical methods have been developed for analyzing many aspects of this
large protein interaction network, including de-noising [Bernard, Vaughn and
Hartemink (2007); Airoldi et al. (2008)], function prediction [Nabieva et al.
(2005)] and identification of binding motifs [Banks et al. (2008)].
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5.1. Overview of the analysis. We consider multiple functional categorization
systems for the proteins in budding yeast. For evaluation purposes, we use indi-
vidual proteins’ functional annotations curated by the Munich Institute for Protein
Sequencing [MIPS, Mewes et al. (2004)], those by the Kyoto Encyclopedia of
Genes and Genomes [KEGG, Kanehisa and Goto (2000)] and those by the Gene
Ontology consortium [GO, Ashburner et al. (2000)]. We consider multiple collec-
tions of physical protein interactions that encode alternative semantics. Physical
protein-to-protein interactions in the MIPS curated collection measure physical
binding events observed experimentally in Y2H and TAP experiments, whereas
physical protein-to-protein interactions in the KEGG curated collection measure a
number of different modes of interactions, including phosporelation, methylation
and physical binding, all taking place in the context of a specific signaling path-
way. So we have three possible functional annotation databases (MIPS, KEGG and
GO) and two possible link matrices (MIPS and KEGG), which can be combined.

Our experimental pipeline is as follows: (i) Pick a database of functional anno-
tations, say, MIPS, and a collection of interactions, say, MIPS (again). (ii) Pick a
pair of categories, M1 and M2. For instance, take M1 to be cytoplasm (MIPS 40.03)
and M2 to be cytoplasmic and nuclear degradation (MIPS 06.13.01). (iii) Sam-
ple, uniformly at random and without replacement, a set S of 15 interactions in the
chosen collection. (iv) Rank other interacting pairs6 according to the score in equa-
tion (3.3) and, for comparison purposes, according to three other approaches to be
described in Section 5.1.4. (v) The process is repeated for a large number of pairs
M1 × M2, and 5 different query sets S are generated for each pair of categories.
(vi) Calculate an evaluation metric for each query and each of the four scores, and
report a comparative summary of the results.

5.1.1. Protein-specific features. The protein-specific features were generated
using the data sets summarized in Table 2 and an additional data set [Qi, Bar-
Joseph and Klein-Seetharaman (2006)]. Twenty gene expression attributes were
obtained from the data set processed by Qi, Bar-Joseph and Klein-Seetharaman
(2006). Each gene expression attribute for a protein pair Pi :Pj corresponds to
the correlation coefficient between the expression levels of corresponding genes.
The 20 different attributes are obtained from 20 different experimental conditions
as measured by microarrays. We did not use pairs of proteins from Qi et al. for
which we did not have data in the data sets listed in Table 2. This resulted in
approximately 6000 positively linked data points for the MIPS network and 39,000
for KEGG.

We generated another 25 protein–protein gene expression features from the data
in Table 2 using the same procedure based on correlation coefficients. This gives

6The portion of ranked list that is relevant for evaluation purposes is limited to a subset of the
protein–protein interactions. More details are given in Section 5.1.3.
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TABLE 2
Collection of data sets used to generate protein-specific features

No. Measurements description Data sources

1. Expression microarrays Gasch et al. (2000); Brem et al. (2005);
Primig et al. (2000); Yvert et al. (2003)

2. Synthetic genetic interactions Breitkreutz, Stark and Tyers (2003); SGD
3. Cellular localization Huh et al. (2003)
4. Transcription factor binding sites Harbison et al. (2004); TRANSFAC
5. Sequence similarities Altschul et al. (1990); Zhu and Zhang (1999)

a total of 45 attributes, corresponding to the main data set used in our relational
Bayesian sets runs.

Another data set was generated using the remaining (i.e., nonmicroarray) fea-
tures of Table 2. Such features are binary and highly sparse, with most entries
being 0 for the majority of linked pairs. We removed attributes for which we had
fewer than 20 linked pairs with positive values according to the MIPS network.
The total number of extra binary attributes was 16.

Several measurements were missing. We imputed missing values for each vari-
able in a particular data point by using its empirical average among the observed
values.

Given the 45 or 61 attributes of a given pair {Pi , Pj }, we applied a nonlinear
transformation where we normalize the vector by its Euclidean norm in order to
obtain our feature table X.

5.1.2. Calibrating the prior for �. We initially fit a logistic regression clas-
sifier using a maximum likelihood estimation (MLE) and our data, obtaining the
estimate �̂. Our choice of covariance matrix �̂ for � is defined to be a rescaling
of a squared norm of the data:

(�̂)−1 = XT
POSXPOS,(5.1)

where XPOS is the matrix containing the protein–protein features only of the linked
pairs used in the MLE computation.

5.1.3. Evaluation metrics. As in the WebKB experiment, we propose an ob-
jective measure of evaluation that is used to compare different algorithms. Con-
sider a query set S, and a ranked response list R = {R1,R2,R3, . . . ,RN } of
protein–protein pairs. Every element of S is a pair of proteins Pi :Pj such that Pi is
of class Mi and Pj is of class Mj , where Mi and Mj are classes from either MIPS,
KEGG or Gene Ontology. In general, proteins belong to multiple classes. This is
in contrast with the WebKB experiment, where, according to our web page cate-
gorization, there was only one possible type of relationship for each pair of web
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pages. The retrieval algorithm that generates R does not receive any information
concerning the MIPS, KEGG or GO taxonomy. R starts with the linked protein
pair that is judged most similar to S, followed by the other protein pairs in the
population, in decreasing order of similarity. Each algorithm has its own measure
of similarity.

The evaluation criterion for each algorithm is as follows: as before, we gen-
erate a precision-recall curve and calculate the area under the curve (AUC). We
also calculate the proportion (TOP10), among the top 10 elements in each rank-
ing, of pairs that match the original {M1,M2} selection (i.e., a “correct” Pi :Pj is
one where Pi is of class M1 and Pj of class M2, or vice-versa. Notice that each
protein belongs to multiple classes, so both conditions might be satisfied.) Since
a researcher is only likely to look at the top ranked pairs, it makes sense to define
a measure that uses only a subset of the ranking. AUC and TOP10 are our two
evaluation measures.

The original classes {M1,M2} are known to the experimenter but not known to
the algorithms. As in the WebKB experiment, our criterion is rather stringent, in
the sense that it requires a perfect match of each RI with the MIPS, KEGG or GO
categorization. There are several ways by which a pair RI might be analogous to
the relation implicit in S, and they do not need to agree with MIPS, GO or KEGG.
Still, if we are willing to believe that these standard categorization systems cap-
ture functional organization of proteins at some level, this must lead to association
between categories given to S and relevant subpopulations of protein–protein in-
teractions similar to S. Therefore, the corresponding AUC and TOP10 are useful
tools for comparing different algorithms even if the actual measures are likely to
be pessimistic for a fixed algorithm.

5.1.4. Competing algorithms. We compare our method against a variant of it
and two similarity metrics widely used for information retrieval:

1. The cosine score [Manning, Raghavan and Schütze (2008)], denoted by COS.
2. The nearest neighbor score, denoted by NNS.
3. The relational maximum likelihood sets score, denoted by MLS.

The nearest neighbor score measures the minimum Euclidean distance between RI

and any individual point in S, for a given query set S and a given candidate
point RI . The relational maximum likelihood sets is a variation of RBSETS where
we initially sample a subset of the unlinked pairs (10,000 points in our setup) and,
for each query S, we fit a logistic regression model to obtain the parameter estimate
�MLE

S . We also use a logistic regression model fit to the whole data set (the same
one used to generate the prior for RBSETS), giving the estimate �MLE. A new
score, analogous to (3.3), is given by logP(Lij = 1|Xij ,�MLE

S ) − logP(Lij =
1|Xij ,�MLE), that is, we do not integrate out the parameters or use a prior, but
instead the models are fixed at their respective estimates.
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Neither COS or NNS can be interpreted as measures of analogical similarity, in
the sense that they do not take into account how the protein pair features X con-
tribute to their interaction.7 It is true that a direct measure of analogical similarity
is not theoretically required to perform well according to our (nonanalogical) eval-
uation metric. However, we will see that there are practical advantages in doing
so.

5.2. Results on the MIPS collection of physical interactions. For this batch of
experiments, we use the MIPS network of protein–protein interactions to define
the relationships. In the initial experiment, we selected queries from all combina-
tions of MIPS classes for which there were at least 50 linked pairs Pi :Pj in the
network that satisfied the choice of classes. Each query set contained 15 pairs. Af-
ter removing the MIPS-categorized proteins for which we had no feature data, we
ended up with a total of 6125 proteins and 7788 positive interactions. We set the
prior for RBSETS using a sample of 225,842 pairs labeled as having no interaction,
as selected by Qi, Bar-Joseph and Klein-Seetharaman (2006).

For each tentative query set S of categories {M1,M2}, we scored and ranked
pairs P ′

i :P ′
j such that both P ′

i and P ′
j were connected to some protein appearing

in S by a path of no more than two steps, according to the MIPS network. The
reasons for the filtering are two-fold: to increase the computational performance
of the ranking since fewer pairs are scored; and to minimize the chance that unde-
sirable pairs would appear in the top 10 ranked pairs. Tentative queries would not
be performed if after filtering we obtained fewer than 50 possible correct matches.
Trivial queries, where filtering resulted only in pairs in the same class as the query,
were also discarded. The resulting number of unique pairs of categories {M1,M2}
was 931 classes of interactions. For each pair of categories, we sampled our query
set S 5 times, generating a total of 4655 rankings per algorithm.

We run two types of experiments. In one version, we give to RBSETS the data
containing only the 45 (continuous) microarray measurements. In the second vari-
ation, we provide to RBSETS all 61 variables, including the 16 sparse binary in-
dicators. However, we noticed that the addition of the 16 binary variables hurts
RBSETS considerably. We conjecture that one reason might be the degradation of
the variational approximation. Including the binary variables hardly changed the
other three methods, so we choose to use the 61 variable data set for the other
methods.8

7As a consequence, none uses negative data. Another consequence is the necessity of modeling the
input space that generates X, a difficult task given the dimensionality and the continuous nature of
the features.

8We also performed an experiment (not included) where only the continuous attributes were used
by the other methods. The advantage of RBSETS still increased, slightly (by a 2% margin against
the cosine distance method). For this reason, we analyze the most pessimistic case.
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TABLE 3
Number of times each method wins when querying pairs of MIPS classes using the MIPS

protein–protein interaction network. The first two columns, #AUC and #TOP10, count the number
of times the respective method obtains the best score according to the AUC and TOP10 measures,
respectively, among the 4 approaches. This is divided by the number of replications of each query

type (5). The last two columns, #AUC.S and #TOP10.S, are “smoothed” versions of this statistic:
a method is declared the winner of a round of 5 replications if it obtains the best score in at least 3

out of the 5 replications. The top table shows the results when only the continuous variables are
used by RBSETS, and in the bottom table when the discrete variables are also given to RBSETS

Method #AUC #TOP10 #AUC.S #TOP10.S

(a)
COS 240 294 219 277
NNS 42 122 28 75
MLS 105 270 52 198
RBSETS 542 556 578 587

(b)
COS 314 356 306 340
NNS 75 146 62 111
MLS 273 329 246 272
RBSETS 267 402 245 387

Table 3 summarizes the results of this experiment. We show the number of times
each method wins according to both the AUC and TOP10 criteria. The number of
wins is presented as divided by 5, the number of random sets generated for each
query type {M1,M2} (notice these numbers do not need to add up to 931, since ties
are possible). Moreover, we also presented “smoothed” versions of this statistic,
where we count a method as the winner for any given {M1,M2} category if, for the
group of 5 queries, the method obtains the best result in at least 3 of the sets. The
motivation is to smooth out the extra variability added by the particular set of 15
protein pairs for a fixed {M1,M2}. The proposed relational Bayesian sets method
is the clear winner according to all measures when we select only the continuous
variables. For this reason, for the rest of this section all analysis and experiments
will consider only this case.

Table 4 displays a pairwise comparison of the methods. In this table we show
how often the row method performs better than the column method, among those
trials where there was no tie. Again, RBSETS dominates.

Another useful summary is the distribution of correct hits in the top 10 ranked
elements across queries. This provides a measure of the difficulty of the problem,
besides the relative performance of each algorithm. In Table 5 we show the pro-
portion of correct hits among the top 10 for each algorithm for our queries using
MIPS categorization and also GO categorization, as explained in the next section.
About 14% of the time, all pairs in the top 10 pairs ranked by RBSETS were of the
intended type, compared to 8% of the second best approach.
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TABLE 4
Pairwise comparison of methods according to the AUC and TOP10 criterion. Each cell shows the

proportion of the trials where the method in the respective row wins over the method in the column,
according to both criteria. In each cell, the proportion is calculated with respect to the 4655

rankings where no tie happened

AUC TOP10

COS NNS MLS RBSETS COS NNS MLS RBSETS

COS – 0.67 0.43 0.30 – 0.70 0.46 0.30
NNS 0.32 – 0.18 0.06 0.29 – 0.25 0.11
MLS 0.56 0.81 – 0.25 0.53 0.74 – 0.28
RBSETS 0.69 0.93 0.74 – 0.69 0.88 0.71 –

5.2.1. Changing the categorization system. A variation of this experiment was
performed where the protein categorizations do not come from the same family
as the link network, that is, where we used the MIPS network but not the MIPS
categorization. Instead we performed queries according to the Gene Ontology cat-
egories. Starting from 150 pre-selected GO categories [Myers et al. (2006)], we
once again generated unordered category pairs {M1,M2}. A total of 179 queries,
with 5 replications each (a total of 895 rankings), were generated and the results
summarized in Table 6.

This is a more challenging scenario for our approach, which is optimized with
respect to MIPS. Still, we are able to outperform other approaches. Differences
are less dramatic, but consistent. In the pairwise comparison of RBSETS against

TABLE 5
Distribution across all queries of the number of hits in the top 10 pairs, as ranked by each

algorithm. The more skewed to the right, the better. Notice that using GO categories doubles
the number of zero hits for RBSETS

0 1 2 3 4 5 6 7 8 9 10

Proportion of top hits using MIPS categories and links specified by the MIPS database
COS 0.12 0.15 0.12 0.10 0.08 0.07 0.06 0.05 0.04 0.07 0.08
NNS 0.29 0.16 0.14 0.10 0.06 0.05 0.03 0.03 0.03 0.03 0.02
MLS 0.12 0.12 0.12 0.10 0.09 0.08 0.07 0.06 0.07 0.06 0.07
RBSETS 0.04 0.08 0.09 0.09 0.09 0.08 0.09 0.07 0.09 0.08 0.14

Proportion of top hits using GO categories and links specified by the MIPS database
COS 0.12 0.13 0.11 0.10 0.11 0.09 0.06 0.06 0.04 0.06 0.06
NNS 0.53 0.23 0.07 0.02 0.02 0.02 0.04 0.01 0.00 0.00 0.01
MLS 0.16 0.11 0.12 0.10 0.08 0.08 0.08 0.06 0.05 0.06 0.05
RBSETS 0.09 0.09 0.10 0.10 0.08 0.08 0.06 0.08 0.08 0.07 0.12
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TABLE 6
Number of times each method wins when querying pairs of GO classes using the MIPS

protein–protein interaction network. Columns #AUC, #TOP10, #AUC.S and #TOP10.S
are defined as in Table 3

Method #AUC #TOP10 #AUC.S #TOP10.S

COS 58 73 58 72
NNS 1 10 0 4
MLS 26 55 13 38
RBSETS 93 105 101 110

the second best method, COS, our method wins 62% of the time by the TOP10
criterion.

5.2.2. The role of filtering. In both experiments with the MIPS network, we
filtered candidates by examining only a subset of the proteins linked to the ele-
ments in the query set by a path of no more than two proteins. It is relevant to
evaluate how much coverage of each category pair {M1,M2} we obtain by this
neighborhood selection.

For each query S, we calculate the proportion of pairs Pi :Pj of the same cat-
egorization {M1,M2} such that both Pi and Pj are included in the neighborhood.
Figure 6 shows the resulting distributions of such proportions (from 0 to 100%):
a histogram for the MIPS search and a histogram for the GO search. Despite the
small neighborhood, coverage is large. For the MIPS categorization, 93% of the
queries resulted in a coverage of at least 75% (with 24% of the queries resulting

FIG. 6. Distribution of the coverage of valid pairs in the MIPS network, according to our gener-
ated query sets. Results are broken into the two categorization systems (MIPS and GO) used in this
experiment.
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in perfect coverage). Although filtering implies that some valid pairs will never be
ranked, the gain obtained by reducing false positives in the top 10 ranked pairs is
considerable (results not shown) across all methods, and the computational gain of
reducing the search space is particularly relevant in exploratory data analysis.

5.3. Results on the KEGG collection of signaling pathways. We repeat the
same experimental setup, now using the KEGG network to define the protein–
protein interactions. We selected proteins from the KEGG categorization system
for which we had data available. A total of 6125 proteins were selected. The KEGG
network is much more dense than MIPS. A total of 38,961 positive pairs and
226,188 negative links were used to generate our empirical prior.

However, since the KEGG network is much more dense than MIPS, we filtered
our candidate pairs by allowing only proteins that are directly linked to the proteins
in the query set S. Even under this restriction, we are able to obtain high coverage:
the neighborhood of 90% of the queries included all valid pairs of the same cat-
egory, and essentially all queries included at least 75% of the pairs falling in the
same category as the query set. A total of 1523 possible pairs of categories (7615
queries, considering the 5 replications) were generated.

Results are summarized in Table 7. Again, it is evident that RBSETS domi-
nates other methods. In the pairwise comparison against COS, RBSETS wins 76%
of the times according to the TOP10 criterion. However, the ranking problem in
the KEGG network was much harder than in the MIPS network (according to our
automated nonanalogical criterion). We believe that the reason is that, in KEGG,
the simple filtering scheme has much less influence as reflected by the high cover-
age. The distribution of the number of hits in the top 10 ranked items is shown in
Table 8. Despite the success of RBSETS relative to the other algorithms, there is
room for improvement.

6. More related work. There is a large literature on analogical reasoning in
artificial intelligence and psychology. We refer to French (2002) for a survey, and
to more recent papers on clustering [Marx et al. (2002)], prediction [Turney and

TABLE 7
Number of times each method wins when querying pairs of KEGG classes using the KEGG
protein–protein interaction network. Columns #AUC, #TOP10, #AUC.S and #TOP10.S

are defined as in Table 3

Method #AUC #TOP10 #AUC.S #TOP10.S

COS 159 575 134 507
NNS 30 305 17 227
MLS 290 506 199 431
RBSETS 1042 1091 1107 1212
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TABLE 8
Distribution across all queries of the number of hits in the top 10 pairs, as ranked by each

algorithm. The more skewed to the right, the better

0 1 2 3 4 5 6 7 8 9 10

Proportion of top hits using KEGG categories and links specified by the KEGG database
COS 0.56 0.21 0.08 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.01
NNS 0.89 0.03 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MLS 0.57 0.21 0.08 0.04 0.02 0.01 0.01 0.00 0.00 0.00 0.00
RBSETS 0.29 0.24 0.16 0.09 0.06 0.03 0.02 0.01 0.03 0.02 0.01

Littman (2005); Turney (2008a)] and dimensionality reduction [Memisevic and
Hinton (2005)] as examples of other applications. Classical approaches for plan-
ning have also exploited analogical similarities [Veloso and Carbonell (1993)].

Nonprobabilistic similarity functions between relational structures have also
been developed for the purpose of deriving kernel matrices, such as those required
by support vector machines. Borgwardt (2007) provides a comprehensive survey
and state-of-the-art methods. It would be interesting to adapt such methods to prob-
lems of analogical reasoning.

The graphical model formulation of Getoor et al. (2002) incorporates models
of link existence in relational databases, an idea used explicitly in Section 3 as the
first step of our problem formulation. In the clustering literature, the probabilistic
approach of Kemp et al. (2006) is motivated by principles similar to those in our
formulation: the idea is that there is an infinite mixture of subpopulations that gen-
erates the observed relations. Our problem, however, is to retrieve other elements
of a subpopulation described by elements of a query set, a goal that is closer to the
classical paradigm of analogical reasoning.

As discussed in Section 3.2, our model can be interpreted as a type of block
model [Kemp et al. (2006); Xu et al. (2006); Airoldi et al. (2008)] with observable
features. Link indicators are independent given the object features, which might
not actually be the case for particular choices of feature space. In theory, block
models sidestep this issue by learning all the necessary latent features that account
for link dependence. An important future extension of our work would consist of
tractably modeling the residual link association that is not accounted for by our
observed features.

Discovering analogies is a specific task within the general problem of gener-
ating latent relationships from relational data. Some of the first formal methods
for discovering latent relationships from multiple data sets were introduced in the
literature of inductive logic programming, such as the inverse resolution method
[Muggleton (1981)]. A more recent probabilistic method is discussed by Kok and
Domingos (2007). Džeroski and Lavrač (2001) and Getoor and Taskar (2007) pro-
vide an overview of relational learning methods from a data mining and machine
learning perspective.
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A particularly active subfield on latent relationship generation lies within text
analysis research. For instance, Stephens et al. (2001) describe an approach for
discovering relations between genes given MEDLINE abstracts. In the context of
information retrieval, Cafarella, Banko and Etzioni (2006) describe an application
of recent unsupervised information extraction methods: relations generated from
unstructured text documents are used as a preprocessing step to build an index
of web pages. In analogical reasoning applications, our method has been used by
others for question-answering analysis [Wang et al. (2009)].

The idea of measuring the similarity of two data points based on a predictive
function has appeared in the literature on matching for causal inference. Suppose
we are given a model for predicting an outcome Y given a treatment Z and a
set of potential confounders X. For simplicity, assume Z ∈ {0,1}. The goal of
matching is to find, for each data point (Xi , Yi,Zi), the closest match (Xj , Yj ,Zj )

according to the confounding variables X. In principle, any clustering criterion
could be used in this task [Gelman and Hill (2007)]. The propensity score criterion
[Rosenbaum (2002)] measures the similarity of two feature vectors Xi and Xj by
comparing the predictions P(Zi = 1|Xi ) and P(Zj = 1|Xj ). If the conditional
P(Z = 1|X) is given by a logistic regression model with parameter vector �,
Gelman and Hill (2007) suggest measuring the difference between XT

i � and XT
j�.

While this is not the same as comparing two predictive functions as in our frame-
work, the core idea of using predictive functions to define similarity remains.

A preliminary version of this paper appeared in the proceedings of the 11th
International Conference on Artificial Intelligence and Statistics [Silva, Heller and
Ghahramani (2007)].

7. Conclusion. We have presented a framework for performing analogical
reasoning within a Bayesian data analysis formulation. There is of course much
more to analogical reasoning than calculating the similarity of related pairs. As
future work, we will consider hierarchical models that could in principle compare
relational structures (such as protein complexes) of different sizes. In particular,
the literature on graph kernels [Borgwardt (2007)] could provide insights on de-
veloping efficient similarity metrics within our probabilitistic framework.

Also, we would like to combine the properties of the mixed-membership sto-
chastic block model of Airoldi et al. (2008), where objects are clustered into mul-
tiple roles according to the relationship matrix LAB , with our framework where
relationship indicators are conditionally independent given observed features.

Finally, we would like to consider the case where multiple relationship matrices
are available, allowing for the comparison of relational structures with multiple
types of objects.

Much remains to be done to create a complete analogical reasoning system, but
the described approach has immediate applications to information retrieval and
exploratory data analysis.
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SUPPLEMENTARY MATERIAL

Supplement: Java implementation of the Relational Bayesian Sets method
(DOI: 10.1214/09-AOAS321SUPP; .zip). We provide complete source code for
our method, and instructions on how to rebuild our experiments. With the code it
is also possible to test variations of our queries, analyzing the sensitivity of the
results to different query sizes and initialization of the variational optimizer.
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