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BACKWARD ESTIMATION OF STOCHASTIC PROCESSES WITH
FAILURE EVENTS AS TIME ORIGINS1
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Stochastic processes often exhibit sudden systematic changes in pattern a
short time before certain failure events. Examples include increase in medical
costs before death and decrease in CD4 counts before AIDS diagnosis. To
study such terminal behavior of stochastic processes, a natural and direct way
is to align the processes using failure events as time origins. This paper studies
backward stochastic processes counting time backward from failure events,
and proposes one-sample nonparametric estimation of the mean of backward
processes when follow-up is subject to left truncation and right censoring.
We will discuss benefits of including prevalent cohort data to enlarge the
identifiable region and large sample properties of the proposed estimator with
related extensions. A SEER–Medicare linked data set is used to illustrate the
proposed methodologies.

1. Introduction. Stochastic processes such as recurrent events and repeated
measurements are often collected in medical follow-up studies in addition to sur-
vival data. Examples include recurrent hospitalizations, medical cost processes, re-
peated quality of life measurements and CD4 counts. Such processes often exhibit
certain terminal behavior during a short time before failure events. For example,
medical costs tend to increase suddenly before death, qualities of lives deteriorate
before death and CD4 counts decrease before AIDS diagnosis.

Conventional statistical methodologies mainly focus on stochastic processes
that are counting forward from initial events observed for every individual; see
Nelson (1988), Pepe and Cai (1993), Lawless and Nadeau (1995), Cook and Law-
less (1997), Lin et al. (2000) and Wang, Qin and Chiang (2001), among others,
on recurrent event processes, Lin (2000) on medical cost processes and Pawitan
and Self (1993) on CD4 count processes. The conventional views of stochastic
processes, however, are not designed to study the terminal behavior of processes.
Consider medical cost as an example. Calculating the mean of cost processes for
a population defined at an initial event would include both survivors and nonsur-
vivors at any fixed time after the initial event, and the increase in medical cost
based on survivors’ cost measurement is offset by nonsurvivors who do not con-
tribute to the increase in medical cost after death. Unless the failure times are con-
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stant over a population, conventional forward processes do not serve the purpose
of estimating the terminal behavior of stochastic processes.

In this paper we directly consider stochastic processes before failure events of
interest, by introducing backward processes that start at failure events and counting
backward in time. By aligning the origins of the processes to failure events, termi-
nal behavior of stochastic processes could be naturally and directly studied by the
backward processes. We will focus on one-sample nonparametric estimation of the
mean of backward processes when the failure events are partially observed subject
to left truncation and right censoring. Since failure events and processes right be-
fore failure events may not be observed, statistical methods are needed to correct a
bias induced by missingness. Development of methods rely on a stochastic repre-
sentation technique of a marked counting process generalizing that of Huang and
Louis (1998) and the proposed estimator also generalizes a weighted estimator for
left truncated and right censored data proposed by Gross and Lai (1996).

Throughout this paper we will consider medical costs as motivating examples.
The SEER–Medicare linked data provide illustrative examples of medical cost
process data collected in a left truncated and right censored follow-up sample.
The Surveillance, Epidemiology and End-Results (SEER)–Medicare linked data
are population-based data for studying cancer epidemiology and quality of cancer-
related health services. The SEER–Medicare linked data consist of a linkage of two
large population-based databases, SEER and Medicare. The SEER data contain in-
formation of cancer incidence diagnosed between 1973 and 2002. The Medicare
data contain information on medical costs between 1986 and 2004. The linked
data consist of cancer patients in the SEER data who were enrolled in Medicare
during the study period of the Medicare data. Details of each data and linkage are
discussed in Warren et al. (2002). Although the linkage criterion sounds simple, it
creates a left truncated and right censored sample because the two data sets have
different starting times. In the SEER–Medicare linked data, patients diagnosed
with cancer before 1986 form a prevalent cohort, because only those patients who
survived through 1986 were included. Patients diagnosed with cancer after 1986
form an incident cohort, because those patients were recruited at the onset of dis-
ease. Patients survived through 2004 were considered censored. A prevalent cohort
is typically a left truncated and right censored sample and data from a combination
of incident and prevalent cohorts are also left truncated and right censored.

This article is organized as follows. In Section 2 we will introduce backward
processes to study terminal behavior of stochastic processes and discuss the differ-
ences from conventional forward process models. The proposed methods for esti-
mating the mean function of backward processes will be discussed in Section 3,
together with identifiability problems associated with incomplete follow-up, large
sample properties of the proposed estimators and a method for constructing confi-
dence bands for mean functions. We will also discuss two related extensions of the
proposed procedure in Section 4, one is on distributional estimation of the back-
ward processes, and the other is on estimation of derivatives of backward mean
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functions. Simulations and real examples analyzing a SEER–Medicare linked data
set will be presented in Section 5. Section 6 will include several concluding re-
marks.

2. Forward and backward processes. Let Y(t) be a stochastic process with
bounded variation, where t is the time after an initial event, usually defined as
the time of disease onset. We call Y(t) = ∫ t

0 dY (s) a forward stochastic process
since the time index t in Y(t) starts at the initial event and moves forward with
calendar time. On the other hand, a backward stochastic process is defined as
V (u) = ∫ T

T −u dY (s), where T is the time from the initial event to a failure event
of interest and the time origin for V (u) is the failure event. In the medical cost
example, Y(t) is total medical cost within t time units after the initial event, and
V (u) is total medical cost during the last u time units of life. Figure 1 shows the
trajectories of forward and backward cost processes for 3 uncensored individuals
in the SEER–Medicare linked data.

In Figure 1 we can see an increase in medical cost a short period before death.
To study this terminal behavior of medical cost processes, it is natural to align
the processes to a different time origin, the failure event, as shown in Figure 1(b).
Since terminal behavior of stochastic processes usually incur during a short time
period before death, relevant scientific questions center on a rather short period τ0

FIG. 1. Trajectories of forward and backward cost processes for 3 uncensored individuals in the
SEER–Medicare linked data. (a) Forward cost processes. Circles represent failure events. (b) Back-
ward cost processes. Circles represent diagnoses of cancer.
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before death, say, 6 months or 1 year. τ0 is a prespecified time period related to
scientific questions of interest. The backward stochastic processes at τ0 time units
before failure events are only meaningfully defined for a subgroup of patients who
survive at least τ0 time units, and the estimand of interest is E(V (u)|T ≥ τ0),
for u ∈ [0, τ0]. However, due to limited study duration, only a conditional version
μτ0,τ1(u) = E(V (u)|τ0 ≤ T < τ1) can be nonparametrically identified, where τ1
depends on study design and data availability. τ1 can be taken as the maximum
follow-up period, and the time period of interest τ0 is usually much shorter than
τ1. We will further discuss implications of incident and prevalent sampling on the
identifiability constraints in Section 3.2.

To distinguish between processes with time origins at initial events and fail-
ure events, throughout this paper t denotes a time index counting forward from
initial events and u denotes a time index counting backward from failure events.
The processes Y(t) and V (u) address different scientific questions and have dif-
ferent interpretations. Consider the medical cost example, where Y(t) measures
medical cost from an initial event. Note that Y(t) will not increase after death, so
that Y(t) = Y(T ) for t ≥ T . The interpretation of forward mean function E(Y (t))

is generally confounded with survival performance. For example, if there are two
groups of patients with the same spending per unit time when alive but different
survival distributions, the group with longer survival time will have a higher mean
forward cumulative cost. There may also be crossovers between mean forward cost
curves, because patients with severe disease tend to spend more near disease onset
but die in shorter time than patients with less severe disease. We shall see such
an example from the SEER–Medicare data set in Section 5.2. On the other hand,
the time origin of a backward process V (u) is defined to be a failure event, and the
backward mean function can be interpreted as the mean of stochastic processes be-
fore failure events. In the medical cost example, when financial decision is a major
concern (e.g., decision made by insurance company), then discounted forward cost
may be more relevant. The backward processes essentially answer different types
of questions related to end-of-life cost, and there is currently a lot of public health
interest in comparing and evaluating palliative care. This work could provide valid
statistical methods for public health researchers interested in estimating end-of-life
medical cost, together with other applications.

3. Proposed estimation.

3.1. Data structure. Let T be a failure time, C be a censoring time and W

be a truncation time. (T ,C,W) are defined relative to an initial event. Truncation
time W is the time between the initial event and the time of recruitment. For in-
cident cases, W = 0. For prevalent cases, W > 0 and survival data are observed
only when T ≥ W , that is, the failure time is left truncated. Also, since censoring
is only meaningfully defined for subjects who are eligible to be sampled, we as-
sume that P(W ≤ C) = 1 as discussed in Wang (1991). Let X = min(T ,C) and
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� = I (T ≤ C). In addition to observing the usual left truncated and right cen-
sored survival data (W,X,�), Y(t) is also observed from time of recruitment to
death or censoring. We assume an independent censoring and truncation condition
in which {V (·), T } is independent of {W,C}. This assumption does not impose
any dependent structure between the process V (·) and the failure time T . In fact,
V (·) and T are allowed to be arbitrarily dependent under this assumption and thus
handle the case of informative failure events. The assumption is similar in nature
to those imposed for nonparametric estimation of forward mean function with in-
formative terminal events; see, for example, Lawless and Nadeau (1995), Lin et
al. (1997), Strawderman (2000) and Ghosh and Lin (2000). Let S(t) = P(T ≥ t)

and G(t) = P(X ≥ t ≥ W |T ≥ W), by the independent censoring and truncation
conditions G(t) = S(t) · P(C ≥ t ≥ W)/β where β = P(T ≥ W).

To estimate the mean of V (u) for u ∈ [0, τ0], we only need the following mini-
mal data [Huang and Louis (1998)]:{

Wi,Xi,�i, {�iVi(u), u ∈ [0, τ0]}, i = 1, . . . , n
}
.

That is, in addition to the survival data, we only need backward process data to
be available for individuals whose failure events are uncensored. For subjects in a
prevalent cohort, backward process data may not be fully available for individuals
who experience failure events within τ0 from recruitment. In this case, we may
treat recruitment time to be τ0 after the actual recruitment date and W + τ0 be a
new truncation variable for the subjects in a prevalent cohort. This is equivalent
to artificially truncating a small portion of data and it guarantees that V (u),u ∈
[0, τ0], is observable for all uncensored observations with T ≥ τ0 in the prevalent
cohort.

3.2. Identifiability. A backward stochastic process can be viewed as a marked
process attached to a failure event. This is a generalization of marked variables
considered by Huang and Louis (1998) in which random variables are observed at
failure events. Because of limited study duration, marginal distribution of marked
variables cannot be fully identified nonparametrically. The same applies to back-
ward stochastic processes because we do not have data on backward processes for
subjects with survival time greater than τ1, which is the maximum support of the
censoring time. In view of this identifiability problem, together with the fact that
stochastic processes within a prespecified time period of interest τ0 before failure
events are only meaningfully defined for the subgroup of individuals who survives
at least τ0 time units, we confine ourselves to estimate a conditional version of
backward mean function, μτ0,τ1(u) = E(V (u)|τ0 ≤ T < τ1), for u ∈ [0, τ0]. If the
maximum support of T is at most τ1, then E(V (u)|T ≥ τ0) can be estimated for
u ∈ [0, τ0].

In an incident cohort, τ1 is usually the maximum follow-up duration, which is
determined by study design. In a prevalent cohort, τ1 is the longest observation
time, which is usually longer than the maximum follow-up time because subjects
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FIG. 2. Estimates of survival probabilities for ovarian cancer patients in the SEER–Medicare data,
using only incident cohort data (bold) and using data from both incident and prevalent cohorts
(nonbold). Solid curves represent localized stage at diagnosis, dashed curves represent regional stage
and dotted curves represent distant stage.

have already experienced the initial events before recruitment. An important impli-
cation of using prevalent cohort data is that it allows us to identify a larger portion,
possibly all, of the right tail of the survival distribution. For example, Figure 2
shows the estimated survival probabilities for ovarian cancer patients in three dif-
ferent historic stages at diagnosis. For all three groups of patients, the full right tail
of survival distributions can be identified when the full data set is considered, but
not in the case when we only analyze the incident cohort. If we only analyze the
incident cohort data, τ1 is 18 years, which is the maximum follow-up period for
the incident cohort in the data set. When we include prevalent cohort data in the
analysis, we can estimate E(V (u)|T ≥ τ0) nonparametrically.

3.3. Proposed estimator. We propose an estimator for the backward mean
function μτ0,τ1(u) by using marked counting process arguments extending those of
Huang and Louis (1998). Let Ni(t) = I (Xi ≤ t,�i = 1), i = 1, . . . , n, be counting
processes for observed failure, Ri(t) = I (Xi ≥ t ≥ Wi) be at-risk indicators, and

NV
i (t, u) =

{
Vi(u)I (Xi ≤ t,�i = 1), if t ≥ τ0,
0, if t < τ0

= Vi(u)I (τ0 ≤ Xi ≤ t,�i = 1)

be marked counting processes for observed failure with a random marker
Vi(u). Define averaged processes N(t) = n−1 × ∑n

i=1 Ni(t), NV (t, u) = n−1 ×∑n
i=1 NV

i (t, u) and R(t) = n−1 × ∑n
i=1 Ri(t). Furthermore, let �T (s) be the
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cumulative hazard function for T and �V
τ0

(t, u) = ∫ t
τ0

E(V (u)|T = s)�T (ds).
�V

τ0
(t, u) can be interpreted as a hazard weighted cumulative mean of backward

processes, which is called cumulative mark-specific hazard function in Huang and
Louis (1998).

Note that

E
(
V (u)I (τ0 ≤ T < τ1)

) =
∫ τ1

τ0

S(s)�V
τ0

(ds, u).

If we have an estimate of �V
τ0

(t, u), denoted by �̂V
τ0

(t, u), then we can estimate

E(V (u)I (τ0 ≤ T < τ1)) by
∫ τ1
τ0

Ŝ(s)�̂V
τ0

(ds, u), where Ŝ(t) is the product limit es-
timate using left truncated and right censored data [Tsai, Jewell and Wang (1987),
Lai and Ying (1991)]. Since

�V
τ0

(t, u) =
∫ t

τ0

E
(
V (u)|T = s

)
�T (ds)

=
∫ t

τ0

E(V (u)I (T = s))P (C ≥ s ≥ W)/β

S(s)P (C ≥ s ≥ W)/β
ds =

∫ t

τ0

E(NV (ds,u))

G(s)
,

where the expectation is taken conditioning on T ≥ W , �V
τ0

(t, u) can be estimated
by

�̂V
τ0

(t, u) =
∫ t

τ0

NV (ds,u)

R(s)
.(3.1)

The backward mean function μτ0,τ1(u) can then be estimated by

μ̂τ0,τ1(u) = 1

Ŝ(τ0) − Ŝ(τ1)

∫ τ1

τ0

Ŝ(s)�̂V
τ0

(ds, u)

(3.2)

= 1

n

1

Ŝ(τ0) − Ŝ(τ1)

n∑
i=1

Ŝ(Xi)�iVi(u)I (τ0 ≤ Xi < τ1)

R(Xi)
.

More generally, we can estimate μt1,t2(u) = E(V (u)|t1 ≤ T < t2) for u ≤ t1 <

t2 ≤ τ1 and u ∈ [0, τ0], which can be estimated by

μ̂t1,t2(u) = 1

n

1

Ŝ(t1) − Ŝ(t2)

n∑
i=1

Ŝ(Xi)�iVi(u)I (t1 ≤ Xi < t2)

R(Xi)
.

The mean of V (u) can be estimated as long as T > u. However, if we estimate
E(V (u)|u ≤ T < τ1), the subpopulation defined by conditioning changes with the
time index u, and the estimand loses a desirable interpretation of being a mean
process for a fixed underlying population. Although the introduction of the con-
stant τ0 in the conditioning may not use information from part of the data, it defines
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a meaningful subpopulation such that the whole backward function can be studied
for the same underlying population.

The following theorem states the large sample properties of the proposed esti-
mator.

THEOREM 3.1. Assume that E(V 2(τ0)) < ∞ and certain technical restric-
tions on the support of (T ,C,W) hold [Wang (1991)]. For τ0 ≤ t1 < t2 ≤ τ1,
μ̂t1,t2(u) → μt1,t2(u) uniformly a.s. on [0, τ0]. Also, n1/2(μ̂t1,t2(u) − μt1,t2(u)) =
n−1/2 ∑n

i=1 ξi(u) + op(1), where ξi(u) is defined in the Appendix and the random
sequence converges weakly to a Gaussian process with covariance function

Ct1,t2(u, v) = 1

(S(t1) − S(t2))2

∫ t2

t1

S2(s)

G(s)
E

(
V (u)V (v)|T = s

)
�T (ds)

− 1

(S(t1) − S(t2))3

∫ t2

t1

S(s)Ht1,t2(s, v)

G(s)
�V (ds,u)

(3.3)

− 1

(S(t1) − S(t2))3

∫ t2

t1

S(s)Ht1,t2(s, u)

G(s)
�V (ds, v)

+ 1

(S(t1) − S(t2))4

∫ t2

t1

Ht1,t2(s, u)Ht1,t2(s, v)

G(s)
�T (ds),

where

Ht1,t2(s, u) = E
(
V (u)I (s ≤ T < t2)

)
S(t1) + E

(
V (u)I (t1 ≤ T < s)

)
S(t2).

From (3.3), Ct1,t2(u, v) can be consistently estimated by

�̂t1,t2(u, v) = 1

n

n∑
i=1

�iI (t1 ≤ Xi < t2)

R2(Xi)(Ŝ(t1) − Ŝ(t2))2

[
Ŝ(Xi)Vi(u) − Ĥt1,t2(Xi, u)

(Ŝ(t1) − Ŝ(t2))

]

(3.4)

×
[
Ŝ(Xi)Vi(v) − Ĥt1,t2(Xi, v)

(Ŝ(t1) − Ŝ(t2))

]
,

where

Ĥt1,t2(s, u) = 1

n

n∑
j=1

(
�jVj (u)Ŝ(Xj )[I (t1 ≤ s ≤ Xj < t2)Ŝ(t1)

+ I (t1 ≤ Xj < s ≤ t2)Ŝ(t2)])/R(Xj ).

3.4. Construction of confidence bands. From the large sample results, we can
construct pointwise confidence intervals in the form μ̂t1,t2(u) ± n−1/2zσ̂t1,t2(u),

where z is the standard normal critical value and σ̂t1,t2(u) = �̂
1/2
t1,t2

(u,u). Since
we are estimating mean functions of processes, it is also of interest to construct
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confidence bands for a given level of significance. We will replace z in a point-
wise confidence interval by a larger value b to reach an appropriate simultaneous
coverage probability. Although

√
n(μ̂t1,t2(u) − μt1,t2(u)) converges to a Gaussian

process, the limiting process may not have independent increment because V (u) is
an arbitrary process. Thus, it may not be possible to compute the exact asymptotic
distribution. To construct confidence bands, we approximate the limiting process
by a multiplier bootstrap method described as follows:

1. Generate random multipliers {Gi, i = 1, . . . , n} which are independent standard
normal distributed and independent of the data. Then, compute

W(u) = n−1/2
n∑

i=1

Gi

{
�iI (t1 ≤ Xi < t2)

R(Xi)(Ŝ(t1) − Ŝ(t2))

[
Ŝ(Xi)Vi(u)− Ĥt1,t2(Xi, u)

(Ŝ(t1) − Ŝ(t2))

]}
.

2. Repeat step 1 until m versions of W(u) are obtained, denoted by {Wk(u), k =
1, . . . ,m}.

3. Obtain b which is the (100 − α)-percentile of max(0,τ0){|Wk(u)|}.
4. The confidence band for μt1,t2(u), u ∈ [0, τ0], can be calculated by μ̂t1,t2(u) ±

n−1/2bσ̂t1,t2(u).

The above method uses the simulated samples W(u) to approximate the dis-
tribution of ξ(u), the influence function of μ̂t1,t2(u). The method is motivated by
the construction of confidence bands for survival function in a proportional haz-
ards model proposed by Lin, Fleming and Wei (1994). By the permanence of the
Donsker property [van der Vaart and Wellner (1996)], W(u) can be shown to con-
verge to a Gaussian process. Also, conditional on observed data, E(W(u)W(v))

equals the right-hand side of (3.4) since E(GiGj ) = 0 for i �= j and E(G2
i ) = 1.

Hence, E(W(u)W(v)) converges almost surely to Ct1,t2(u, v) and W(u) has the
same asymptotic distribution as

√
n(μ̂t1,t2(u) − μt1,t2(u)).

In the medical cost example, μt1,t2(u) is nonnegative and it is more meaningful
to construct confidence intervals or confidence bands that are always nonnegative.
For this purpose, we consider the log-transformation and the confidence bands
have the form μ̂t1,t2(u) exp[±n−1/2b∗σ̂t1,t2(u)/μ̂t1,t2(u)]. b∗ can be found by the
above algorithm with a slight modification in step 3, where b∗ is the (100 − α)-
percentile of max(0,τ0)[|Wk(u)|/σ̂t1,t2(u)]. The reason is that by the functional delta
method,

√
nμt1,t2(u)(ln μ̂t1,t2(u) − lnμt1,t2(u))/σt1,t2(u) is asymptotically equiva-

lent to (μt1,t2(u)/σt1,t2(u)) × (1/μt1,t2(u)) × ξ(u) = ξ(u)/σt1,t2(u), whose distrib-
ution is approximated by W(u)/σ̂t1,t2(u).

4. Extensions of estimation.

4.1. Distribution and percentile estimation. In a lot of applications, including
medical cost, the distribution of V (u) is not symmetric and is often highly skewed.
In these cases, apart from estimating the mean function, one might also be inter-
ested in estimating percentile and distribution functions of V (u). Here we extend
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the marked process approach of mean estimation to estimate a joint distribution
function, pτ0,τ1(m, t, u) = P(V (u) ≤ m,T ≤ t |τ0 ≤ T < τ1) where τ0 ≤ t < τ1.
Let

ÑV
i (t, u) =

{
I
(
Vi(u) ≤ m,Xi ≤ t,�i = 1

)
, if t ≥ τ0,

0, if t < τ0

= I
(
Vi(u) ≤ m,τ0 ≤ Xi ≤ t,�i = 1

)

and �̃V
τ0

(t, u) = ∫ t
τ0

P(V (u) ≤ m|T = s)�T (ds). Following the arguments in Sec-
tion 3, pτ0,τ1(m, t, u) can be estimated by

p̂τ0,τ1(m, t, u) = 1

n

1

Ŝ(τ0) − Ŝ(τ1)

n∑
i=1

Ŝ(Xi)�iI (Vi(u) ≤ m,τ0 ≤ Xi ≤ t)

R(Xi)
.

This joint distribution estimate can be used for correlation analysis between V (u)

and T . Similar to the estimator of mean function, p̂τ0,τ1(m, t, u) is a consistent
estimate of pτ0,τ1(m, t, u).

Next, we consider estimating a pointwise qth-percentile function, m
q
τ0,τ1(u),

which is defined by

P
(
V (u) ≤ mq

τ0,τ1
(u)|τ0 ≤ T < τ1

) = q

for u ∈ [0, τ0] and 0 < q < 1. To estimate m
q
τ0,τ1(u), consider the estimating func-

tion

ϕq(m,u) = 1

n

1

Ŝ(τ0) − Ŝ(τ1)
(4.1)

×
n∑

i=1

Ŝ(Xi)�iI (τ0 ≤ Xi < τ1)(I (Vi(u) ≤ m) − q)

R(Xi)
.

It can be seen that ϕq(m0, u) converges in probability to 0 for m0 = m
q
τ0,τ1(u).

Thus, a natural estimator of m
q
τ0,τ1(u) is the zero-crossing of ϕq(m,u). The ex-

istence of a solution is guaranteed because ϕq(m,u) is increasing in m and
limm→−∞ ϕq(m,u) < 0 and limm→∞ ϕq(m,u) > 0, for 0 < q < 1. The estimation
of m

q
τ0,τ1(u) can be easily implemented in common statistical softwares by noting

from (4.1) that this quantity can be estimated by a weighted empirical percentile
of V (u) with weights equals to Ŝ(Xi)�iI (τ0 ≤ Xi < τ1)/R(Xi).

4.2. Estimation of backward rate function. When the mean rate of change of
stochastic processes before failure events is of scientific interest, one might want
to estimate an associated quantity r(u) = E(dV (u)

du
). In the medical cost example,

r(u) is the mean rate of cost accrual per unit time at u time units before a fail-
ure event. r(u) is a measure of instantaneous change in the backward stochastic
process. We call r(u) the backward rate function.
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Like the estimation of backward mean functions, we can only estimate non-
parametrically a conditional version rτ0,τ1(u) = E(dV (u)

du
|τ0 ≤ T < τ1). Similar to

μτ0,τ1(u), we have the following relationship:

rτ0,τ1(u)
(
S(τ1) − S(τ0)

) = E

(
dV (u)

du
I (τ0 ≤ T < τ1)

)

(4.2)

=
∫ τ1

τ0

S(s)E

(
dV (u)

du

∣∣∣T = s

)
�T (ds).

To estimate rτ0,τ1(u), it suffices to estimate E(dV (u)
du

|T = s) at the jump points

of �̂T , which are the uncensored survival times. For each uncensored individual,
E(dV (u)

du
|Ti) can be estimated by

v̂i(u) = 1

h

∫ τ0

0
k

(
u − v

h

)
dVi(v),

where k(·) is a kernel function satisfying
∫ τ0

0 k(s) ds = 1 and h > 0 is a bandwidth
parameter, which can be chosen by minimizing an integrated mean square error.
v̂i(u) is similar in nature to the estimator of the subject specific rate of recurrent
event proposed by Wang and Chiang (2002). Substituting unknown quantities in
(4.2) by their estimates, rτ0,τ1(u) can be estimated by

r̂τ0,τ1(u) = 1

n

1

Ŝ(τ0) − Ŝ(τ1)

n∑
i=1

S(Xi)�iv̂i(u)I (τ0 ≤ Xi < τ1)

R(Xi)
.(4.3)

The estimator (4.3) can also be derived as the convolution smoothing estimator of
μ̂τ0,τ1 . It can be shown that

r̂τ0,τ1(u) = 1

h

∫ τ0

0
k

(
u − v

h

)
μ̂τ0,τ1(dv).

5. Numerical studies.

5.1. Simulations. Finite sample performance of the proposed estimator in Sec-
tion 3 and the empirical coverage of pointwise confidence intervals and overall
confidence bands are evaluated by simulations. Data are generated 2000 times in
each simulation, and each simulated data set consists of 100 or 400 observations.
The confidence bands are constructed by simulating 1000 sets of random multipli-
ers in each simulated data set.

The simulation follows data structure similar to the SEER–Medicare linked
data. We generated survival time T from a gamma distribution with shape
3 and rate 1, truncation time W has half chance to be 0 and half chance
to be generated from a uniform-(0,20) distribution, and censoring time C =
W + C′ where C′ is generated from a uniform-(0,8) distribution. The subset
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with truncation time W = 0 represents an incident cohort and W > 0 a preva-
lent cohort with untruncated observations satisfying T ≥ W . Conditioning on
T , we generated two independent latent variables Z1 and Z2 from a gamma
distribution with shape 3 and rate T . The latent variables are used to induce
correlation between survival time and stochastic processes. For each subject,
we generate a recurrent event process P(·) from a Poisson process with rate
4Z1, and at each occurrence of recurrent events at u time units before fail-
ure event, a variable Q(u) is generated from a gamma distribution with shape
Z2 × [3 + 3 × I (u < 1/3)] and rate 1. The process of interest is V (u) =∫ T
T −u Q(s) dP (s). The generated data has the same structure as medical cost

data, where P represents counting process for recurrent hospitalizations, Q rep-
resents medical cost incurred at a particular hospitalization and V (u) is the total
medical cost in the last u time units of life. The recurrent event process, med-
ical cost process and failure time are correlated through latent variables. That is,
medical cost processes are terminated by informative failure events. Our simu-
lations generated negative correlation between end-of-life cost and failure time,
which also matches with the SEER–Medicare linked data (see Section 5.2). Un-
der this setting, we are interested in estimating E(V (u)|1 ≤ T < 20) for u ∈
[0,1].

We compare the proposed estimator with naive complete-case estimators that
have been used in the medical literature. Supposing one uses an unweighted
sample mean based on observed deaths for the analysis, the direction of bias
for this naive analysis will depend on whether longer survivors or shorter sur-
vivors are being oversampled. In an incident cohort, naive analysis will over-
sample shorter survivors in general because the naive data set is right truncated
by discarding the right censored observations. So the estimated mean end-of-life
cost will be biased upward in the simulation. In a prevalent cohort, naive sample
is subject to double truncation, but the effect from left truncation is more seri-
ous in the simulation and we oversample longer survivors in general, so the es-
timated mean end-of-life cost will be biased downward. The simulation results
are shown in Table 1 and match with this reasoning. The proposed method can
correct the bias caused by left truncation and right censoring. The unweighted
complete case estimator has been used, for example, in Chan et al. (1995), for
studying the frequency of opportunistic infections for HIV infected individuals
before death.

The small sample bias of the proposed estimator and evaluation of the variance
estimator is also shown in Table 1. We can see that the proposed estimator worked
well in practical sample sizes. We also studied the empirical coverage of the 95%
confidence bands. Let t∗ = min{u :Vi(u) > 0 for some i}. Since μt1,t2(u) = 0 for
u < t∗, it is only meaningful to consider coverage probabilities for u ≥ t∗. We con-
sidered the coverage of confidence band for u ∈ [t∗,1]. The empirical coverage of
the 95% confidence bands are 94% for both n = 100 and n = 400. The empiri-
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TABLE 1
Summary of the simulation study: Comparisons among the proposed estimator and naive estimators
based on unweighted complete case analysis from incident and prevalent cohorts, and evaluation of

variance estimates and pointwise coverage probabilities of 95% confidence intervals using the
proposed methodologies. SSE represents the sampling standard deviation and SEE is

the sample average of the standard error estimates

Sample
size

Naive estimators Proposed estimators

u Truth Incident Prevalent Estimate SSE SEE Coverage

100 0.1 4.32 5.34 2.27 4.19 1.24 1.35 0.92
0.2 8.64 10.71 4.53 8.41 2.13 2.25 0.92
0.3 12.96 16.08 6.79 12.62 3.00 3.13 0.93
0.4 15.84 19.61 8.38 15.4 3.54 3.66 0.93
0.5 18.00 22.28 9.53 17.5 3.94 4.01 0.93
0.6 20.16 24.92 10.64 19.57 4.35 4.40 0.93
0.7 22.32 27.52 11.8 21.62 4.73 4.78 0.93
0.8 24.48 30.08 12.92 23.64 5.11 5.12 0.93
0.9 26.64 32.61 14.01 25.63 5.46 5.45 0.93
1.0 28.80 35.08 15.11 27.58 5.79 5.77 0.93

400 0.1 4.32 5.39 2.22 4.29 0.67 0.69 0.94
0.2 8.64 10.78 4.38 8.58 1.13 1.14 0.95
0.3 12.96 16.17 6.60 12.86 1.58 1.60 0.95
0.4 15.84 19.75 8.07 15.72 1.87 1.88 0.95
0.5 18.00 22.44 9.19 17.86 2.08 2.07 0.95
0.6 20.16 25.11 10.29 19.98 2.29 2.26 0.95
0.7 22.32 27.76 11.41 22.09 2.49 2.44 0.95
0.8 24.48 30.35 12.52 24.17 2.68 2.62 0.95
0.9 26.64 32.89 13.61 26.20 2.86 2.77 0.95
1.0 28.80 35.36 14.69 28.18 3.03 2.93 0.95

cal coverage of the confidence bands are close to the nominal value for practical
sample sizes.

5.2. Data analysis. The proposed methods are illustrated by analyzing the
SEER–Medicare linked data. We investigated end-of-life-cost for ovarian cancer
cases diagnosed at age 65 or older among Medicare enrolles. Total amount charged
during hospitalization is considered as medical cost in the analysis; this includes
charges not covered by Medicare. All medical expenditures are adjusted to January
2000 value by the medical care component of the consumer price index, available
from the website of the U.S. Department of Labor (http://www.bls.gov/cpi/). We
compare medical cost among individuals with different historic stages at diagno-
sis. There were 3766, 1400 and 15,104 subjects classified as localized, regional and
distant stages at diagnosis respectively. The estimates of the survival probabilities
are shown in Figure 2.

http://www.bls.gov/cpi/
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FIG. 3. Estimates of the mean forward cost functions for ovarian cancer patients. Solid curve
represents localized stage at diagnosis, dashed curve represents regional stage and dotted curve
represents distant stage.

First, we compare the estimated mean forward cost functions among the three
historic stages. A mean forward cost process is estimated by

μ̂Y (t) = 1

n

n∑
i=1

∫ t

0

Ŝ(s)I (Wi ≤ s ≤ Ci) dYi(s)

R(s)
,

which can be viewed as a limiting case of the estimator of Lin et al. (1997) with
the partition size tending to zero. If left truncation is absent, methods proposed
by Bang and Tsiatis (2000), Strawderman (2000) and Zhao and Tian (2001) can
also be extended to estimate forward mean functions. Figure 3 shows the estimates
for mean forward cost functions up to the thirtieth year after initial diagnosis of
cancer. Note that there is a crossover for three curves around ten years after diag-
nosis. The ten year estimated survival probabilities are 0.47, 0.25, 0.07 (s.e.: 0.03,
0.06, 0.05) for patients diagnosed with local, regional and distinct stages respec-
tively. In the first ten years after diagnosis, cumulative cost reflects the severity of
the cancer stage at diagnosis. Beyond the tenth year, the cumulative cost reflects
the better chance of survival for the less severe stages of cancer. The conflicting
nature between accumulation of cost and survival complicates the analysis and
careful interpretation of the results are needed. Also, the forward cost functions
cannot directly answer questions about end-of-life-cost, because individuals have
different survival times and the increase in medical cost before failure events at a
given time after disease onset is offset by nonsurvivors who do not contribute to
any increase in medical cost after death.
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FIG. 4. Estimates of the mean backward cost functions for ovarian cancer patients. Solid curves
represent the estimates. Dotted curves represent 95% simultaneous confidence bands. Dashed curves
represent pointwise 95% confidence intervals.

In the SEER–Medicare data analysis we observe a negative correlation be-
tween end-of-life-cost and survival. Using the estimator of joint distribution in
Section 4.1, the estimated Pearson correlation coefficient between V (1) and T

(conditioned on T > τ0 = 1) is −0.65, −0.31 and −0.46 for localized, regional
and distant stages respectively. We compare the estimated one-year mean back-
ward cost functions among the three historic stages, for individuals surviving at
least one year after onset of disease. The results are shown in Figure 4. Unlike
mean forward cost functions, estimated backward cost functions are very similar
in shape for the three historic stage groups. The results show that there is a termi-
nal increase in medical cost before death. The estimated final-year medical cost of
a patient is $31,802, $31,752, $38,377 (s.e.: $1229, $2205, $896) in January 2000
value for patients diagnosed with local, regional and distinct stages respectively.
The estimated medical cost for the last three months of life of an ovarian cancer
patient is $16,365, $16,284, $18,848 (s.e.: $692, $1236, $613) in January 2000
value for patients diagnosed with local, regional and distinct stages respectively.
Figure 5 shows the backward rate of cost accrual, which is the end-of-life cost per
unit time before death. The bandwidths for the estimates were chosen to minimize
an integrated mean squared error. The results agree with Figure 4 that there is a
terminal increase in medical cost before death.
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FIG. 5. Estimates of the backward rate of cost accrual. Solid curve represents localized stage at
diagnosis, dashed curve represents regional stage and dotted curve represents distant stage.

6. Concluding remarks. In this paper we proposed statistical methods for
studying the terminal behavior of stochastic processes before failure events. In par-
ticular, we discussed nonparametric methods for estimating the mean function of
backward stochastic processes under incident and prevalent sampling designs. We
also discussed identifiability issues related to estimation with incomplete follow-
up data. In an incident sampling design, the right tail of survival distribution may
not be identified because of limited study duration. Using prevalent sampling de-
sign, the identifiable region for the survival distribution could be enlarged and cost
associates with those individuals can be identified.

We used the SEER–Medicare data as an example throughout this paper. Al-
though the SEER–Medicare data contain both incident and prevalent cohorts, our
method can be applied to data only from an incident cohort or a prevalent cohort.
The proposed methods only require the stochastic process data to be available in
a certain time interval before a failure event. Thus, prevalent data can be used
alone for the proposed methods even though we do not have data on the stochastic
process before patient enrollment.

The backward estimation procedure proposed in this paper could serve as a
main building block for other analyses. For example, we can compute the ratio of
end-of-life cost to lifetime cost that combine the proposed method and the existing
methods for analyzing lifetime cost.

Although we use medical cost as an example, applications of the proposed meth-
ods do not only limit one to study medical cost, but can also be used to study the
terminal behavior of other stochastic processes before failure events. Other appli-
cations include CD4 counts before AIDS diagnosis, frequency of hospitalizations
before death and measurements of quality-of-life before death.
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The main focus of this paper is one sample estimation of the backward mean
function. The authors are extending the idea in this paper to regression models of
backward mean functions and backward rate functions.

APPENDIX: PROOF OF THEOREM 3.1

We apply empirical process theory to prove the asymptotic results. Since
NV (t, u) is having bounded variations and E(NV (t, u)) < ∞ for (t, u) ∈
[τ0, τ1] × [0, τ0], we can apply the uniform strong law of large numbers [Pol-
lard (1990)] to show that NV (t, u) converges a.s. uniformly to E(NV (s, u)) =∫ s
τ0

E(V (u)I (T = s))P (C ≥ s ≥ W)/β ds. Also, R(s) converges a.s. uniformly to
G(s) [Woodroofe (1985)]. By Lemma 1 of Lin et al. (2000),

�̂V
τ0

(t, u) =
∫ t

τ0

N(ds,u)

R(s)

a.s.→
∫ t

τ0

E(N(ds,u))

G(s)
= �V

τ0
(t, u)

uniformly on [τ0, τ1] × [0, τ0]. Also, since Ŝ(t) and �̂V
τ0

(t, u) are uniform consis-
tent estimates of S(t) and �V

τ0
(t, u), uniform consistency of μ̂t1,t2(u) also follows

from Lemma 1 in Lin et al. (2000).
Defining Mi(t) = Ni(t) − ∫ t

0 Ri(s)�T (ds) for t ≥ 0, MV
i (t, u) = NV

i (t, u) −∫ t
τ0

Ri(s)�
V
τ0

(ds, u) for t ≥ τ0 and u ∈ [0, τ0], we have
√

n
(
�̂V

τ0
(t, u) − �V

τ0
(t, u)

)

= √
n

{∫ t

τ0

N(ds,u)

R(s)
−

∫ t

τ0

E(N(ds,u))

G(s)

}

=
∫ t

τ0

√
n(N(ds,u) − E(N(ds,u)))

G(s)

−
∫ t

τ0

√
n(R(s) − G(s))

G2(s)
E(N(ds,u)) + op(1)

=
∫ t

τ0

√
nN(ds,u)

G(s)
−

∫ t

τ0

√
nR(s)

G(s)
�V

τ0
(ds, u) + op(1)

= n−1/2
n∑

i=1

∫ t

τ0

MV
i (ds, u)

G(s)
+ op(1)

and √
n
(
μ̂t1,t2(u) − μt1,t2(u)

)

= √
n

(
1

ˆS(t1) − Ŝ(t2)

∫ t2

t1

Ŝ(s)NV (ds, u)

R(s)

− 1

S(t1) − S(t2)

∫ t2

t1

S(s)E(NV (ds,u))

G(s)

)
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= −
√

n[(Ŝ(t1) − S(t1)) − (Ŝ(t2) − S(t2))]
(S(t1) − S(t2))2

∫ t2

t1

S(t)�V
τ0

(ds, u)

+ 1

S(t1) − S(t2)

∫ t2

t1

S(s)
√

n
(
�̂V

τ0
(ds, u) − �V

t1
(ds, u)

)

+ 1

S(t1) − S(t2)

∫ t2

t1

∫ t2

t1

√
n
(
Ŝ(s) − S(s)

)
�V

τ0
(ds, u) + op(1)

= n−1/2
n∑

i=1

(
ξ1i (u) + ξ2i (u) + ξ3i (u)

) + op(1),

where

ξ1i (u) = E(V (u)|t1 ≤ T < t2)

S(t1) − S(t2)

[
S(t1)

∫ t1

0

Mi(dt)

G(s)
− S(t2)

∫ t2

0

Mi(dt)

G(s)

]
,

ξ2i (u) = 1

S(t1) − S(t2)

∫ t2

t1

S(s)MV
i (ds, u)

G(s)
,

ξ3i (u) = − 1

S(t1) − S(t2)

∫ t2

t1

S(s)

∫ s

0

Mi(dt)

G(s)
�V (ds,u).

Upon algebraic manipulation, ξi(u) = ξ1i (u) + ξ2i (u) + ξ3i (u) reduces to

ξi(u) = 1

S(t1) − S(t2)

∫ t2

t1

S(s)MV
i (ds, u)

G(s)

− 1

(S(t1) − S(t2))2

∫ t2

t1

Ht1,t2(s, u)Mi(ds)

G(s)
.

Since ξi(u) can be written as sums and products of monotone functions of u,
therefore, {ξi(u)} forms a manageable sequence [Pollard (1990), Bilias, Gu and
Ying (1997)]. The weak convergence of

√
n(μ̂t1,t2(u) − μt1,t2(u)) follows from

the functional central limit theorem [Pollard (1990)].
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