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MODELING HOURLY OZONE CONCENTRATION FIELDS
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University of British Columbia

This paper compares two methods built on a hierarchical Bayesian foun-
dation and designed for modeling hourly ozone concentrations over the east-
ern United States. One, a dynamic linear state space model (DLM) that has
been proposed earlier, lies in a very contemporary setting where two histor-
ical paths to temporal process models, the Kalman filter and the dynamic
system with random perturbations, converge. The other, which we call the
Bayesian spatial predictor (BSP), is a Bayesian alternative to the purely spa-
tial method of kriging. The DLM as a dynamic system model has parameters
that are states of the process which generate the ozone and change with time.
More specifically, the model includes a time-varying site invariant mean field
as well as time-varying coefficients for 24 and 12 hour diurnal cyclic compo-
nents. The resulting model’s great flexibility comes at the cost of complexity,
forcing the use of an MCMC approach and very time-consuming computa-
tions. Thus, the size of the DLM’s spatial domain of applicability has to be
restricted and the number of monitoring sites that can be treated limited. The
paper’s assessment of the DLM reveals other difficulties that point to the need
to consider a less flexible competitor, a Bayesian spatial predictor (BSP). The
two methods are compared in a variety of ways and overall conclusions given.
In particular, the conclusions point to the BSP as the more practical alterna-
tive for spatial prediction.

1. Introduction. This paper applies and compares two models for mapping
hourly ambient ozone concentration fields over subregions of the United States
(US), an application whose importance is described below. It focuses primarily on
the recently proposed dynamic linear model (DLM) of Huerta, Sansó and Stroud
(2004), because that model seems to have worked well for mapping the hourly
ozone field of Mexico City. The second model, whose development began with Le
and Zidek (1992), is an alternative to kriging called the Bayesian spatial predictor
[BSP; see also Le and Zidek (2006)]. It was selected to provide a baseline for
assessing the first because it has a proven track record in air pollution modeling.
Moreover, it, like the first, has Bayesian foundations.

This paper has two important companions. The first is a technical report that
provides a lot more detail about the DLM [Dou, Le and Zidek (2007)]. The second
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is the statistical software we developed for implementing the DLM that could be
used in other applications. The current version, GDLM.1.0, is freely available at
http://enviro.stat.ubc.ca for various platforms, namely, Windows, Unix and Linux,
and comes with a demo. The document for GDLM.1.0 has been submitted as Sup-
plement A [Dou, Le and Zidek (2009b)].

The paper’s application poses a challenging methodological problem since the
fine scale auto–dependence structure of short term (e.g., hourly) aggregates of
space–time process responses can prove difficult to model realistically. “Correla-
tion leakage” exemplifies the difficulties involved [Zidek et al. (2002)]. However,
these short term aggregates are important. In particular, United States regulatory
standards for ozone are stated in terms of metrics computed from those hourly
averages because of a large body of scientific evidence suggesting a strong link
between them and acute health outcomes [Ozone (2006)]. That evidence concerns
both human health and human welfare, the latter referring to such things as crop
yield. The importance of these random fields meant that in formulating National
Ambient Air Quality Standards (NAAQS) for ozone to protect human welfare,
spatial interpolation had to be used in rural areas to characterize them due to the
paucity of monitoring sites there [Ozone (2006)]. A large part of that ozone field
over the United States constitutes the application of central interest in this paper,
although, as we see below, practical limitations of the DLM method forces us to
restrict attention to clusters of about ten monitoring sites for the comparisons we
make of the DLM and BSP methods.

Ideally, interpolated fields should also be used in risk analysis of the effects of
ozone on human health, as input into the computer models used there to incorpo-
rate indoor sources in the estimation of human exposure to an air pollutant. The
latter can reduce the underestimation of the health effects of errors resulting from
the use of ambient monitoring measurements to represent exposure [Shaddick et
al. (2008)]. The US Environmental Protection Agency (EPA) developed and used
such a program (APEX) to explore the health risk of ozone under various reg-
ulatory scenarios [Ozone (2006)], albeit without interpolating the hourly ozone
concentration fields. In contrast, the BSP was used by the second and third authors
of this paper to interpolate a spatial pollution field for another EPA population ex-
posure model called SHEDS [Burke, Zufall and Özkaynak (2001)]. Calder et al.
(2008) also interpolated such values in a simplified version of SHEDS. In sum-
mary, hourly ozone ambient concentration fields need to be spatially interpolated,
predicted or mapped.

The DLM, described in Section 2, is essentially the same as the models of
Huerta et al. (2004) and Stroud, Muller and Sansó (2001), which in turn are state
space models [West and Harrison (1997)]. As a dynamic system model, it has para-
meters that represent states of the process that generate the ozone and change with
time. More specifically, the model includes a time-varying site invariant mean field
as well as time-varying coefficients for 24 and 12 hour diurnal cyclic components.
The resulting model’s great flexibility comes at the cost of complexity, forcing the
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use of an MCMC approach and very time-consuming computations. Thus, the size
of the DLM’s spatial domain of applicability has to be restricted and the number
of monitoring sites that can be treated limited. The paper’s assessment of the DLM
reveals other difficulties that led us to consider a less flexible competitor, the BSP,
and the paper compares these two methods.

A number of criteria were invoked for that comparison and we now summarize
these and the results:

Practical applicability. The lack of available software for the DLM hourly
ozone model was addressed by the investigators and suitable code had been de-
veloped as noted above. Using that software, we found that, in contrast to the BSP,
the DLM made unduly large computational demands for our application, making
it unsuitable for mapping large geographical domains.

Spatial prediction accuracy. The objective of mapping hourly spatial ozone
fields led us to compare the accuracy of their respective spatial predictions. We
found the BSP having smaller mean square predictive errors with respect to the
outcomes in a test set of sites.

Calibration of predictive credibility intervals. Here both methods proved some-
what deficient based on the performance of nominally 95% intervals. The BSP
intervals tended to be overly narrow, those of the DLM overly wide.

Accuracy of temporal forecasts. Both methods can produce short term tempo-
ral forecasts and that comparison is made in a companion report [Dou, Le and
Zidek (2009a)].

The paper is organized as follows. Section 2 introduces the hourly concen-
tration field data modeled in this paper. These data, made at fixed site monitors
and reported in the AQS data set, lead to our DLM. However, choosing the hy-
perparameters appropriately proves challenging. In fact, for guidance in making
those choices, we consider a simpler alternative, the FOPM (first-order polyno-
mial model) that is susceptible to theoretical analysis. That analysis also reveals
both natural as well as surprising properties of a simple but representative case.
For instance, with the type of model considered there and plausibly therefore,
the one proposed by Huerta et al. (2004), the predictive posterior variances for
successive time points conditional on all the data must be monotonically increas-
ing, a seemingly undesirable property. Theoretical results and algorithms for the
DLM are presented in Section 2, which also gives theoretical results for predic-
tion and interpolation at unmonitored (ungauged) sites from their predictive pos-
terior distributions. Section 3 gives a brief overview of the BSP that Le and Zidek
(2006) describe in detail. Briefly, it is a multivariate spatial predictor with empiri-
cal Bayesian elements. Section 4 implements both the DLM and BSP for the ozone
data referred to above. Moveover, it compares the results obtained using these two
different approaches. Section 5 describes difficulties posed by the DLM approach
as revealed by our assessment. We summarize our findings and draw conclusions
in Section 6.
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2. The dynamic linear model. Although we believe the methods described in
this paper apply quite generally to hourly pollution concentration space–time fields
with a strong diurnal cycle, the paper focuses on hourly ozone concentrations (ppb)
over part of the United States owing to their particular importance. Moreover, our
assessment is limited to the summer of 1995 for which data had been provided.
In all, 375 irregularly located sites (or “stations”) monitor that field. To enable
a focused assessment of the DLM approach and to make computations feasible,
we consider just one cluster of ten stations (Cluster 2), in close proximity to one
another. However, in work not reported here for brevity, two other such clusters led
to similar findings. Note that by design Cluster 2 has the same number of stations
as the one in Mexico City studied by Huerta et al. (2004).

Initially a small amount of randomly missing data were filled in by the conven-
tional approach of spatial regression method. Then an exploratory data analysis,
following that of Huerta et al. (2004), showed like theirs that a square-root trans-
formation of the data is needed to validate the normality assumption for the DLM
residuals. The Bayesian periodogram [Dou et al. (2007)] for the transformed data
reveals a peak between 1 pm and 3 pm each day with a significant 24-hour cycle.
We also found evidence of a weak 12-hour cycle. However, no obvious weekly cy-
cles or nightly peaks were seen. Moreover, the phase seems more or less constant.
Thus, in the end, the DLM suggested by our analysis turns out to be the one in
Huerta et al. (2004) without the covariates they had available in their work; it has
states for both local trends as well as periodicity across sites.

To state the model more precisely, let yit denote the square-root of the observ-
able ozone concentration, at site si , i = 1, . . . , n, and time t , t = 1, . . . , T , n being
the total number of gauged (that is, monitoring) sites in the geographical subre-
gion of interest and T , the total number of time points. More succinctly, we let
yt = (y1t , . . . , ynt )

′ :n × 1. Then the DLM for the field is

yt = 1nβt + S1t (a1)α1t + S2t (a2)α2t + νt ,(2.1)

βt = βt−1 + wt,(2.2)

αj t = αj,t−1 + ω
αj

t ,(2.3)

where 1 denotes a column vector of 1’s, νt ∼ N [0, σ 2Vλ], wt ∼ N [0, σ 2τ 2
y ],

ω
αj

t ∼ N [0, σ 2τ 2
j Vλj

], Vλ = exp(−V/λ), Vλj
= exp(−V/λj ), j = 1,2 and αj t =

(αj1t , . . . , αjnt )
′ :n×1, j = 1,2. Here βt denotes a canonical spatial trend and αjit

a seasonal coefficient for site i at time t corresponding to a periodic component,
Sjt (aj ) = cos(πtj/12)+ aj sin(πtj/12), j = 1,2. Note that V = (vij ) :n×n rep-
resents the distance matrix for the gauged sites s1, . . . , sn, that is, vij = ‖si − sj‖
for i, j = 1, . . . , n, where ‖si − sj‖ denotes the Euclidean distance (km) between
sites si and sj . Note that this model thus assumes a second order spatial stationarity
unlike the BSP, the second method considered in this paper. This can be a serious
limitation in some geographical domains, although in the application considered
in this paper, we found no evidence of nonstationarity.
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Models (2.1)–(2.3) can also be written as

yt = F′
txt + νt , νt ∼ N(0,Ut ),(2.4)

xt = xt−1 + ωt , ωt ∼ N(0,Wt ),(2.5)

where with In denoting the n × n identity matrix, x′
t = (βt ,α

′
1t ,α

′
2t ), F′

t =
[1n, S1t (a1)In, S2t (a2)In] :n × (2n + 1), Ut = σ 2Vλ and Wt = σ 2W, W be-
ing a block diagonal matrix with diagonal entries τ 2

y , τ 2
1 exp(−V/λ1) and

τ 2
2 exp(−V/λ2).

Let y1:T = (ym
1:T ,yo

1:T )′, where ym
1:T = (ym

1 , . . . ,ym
T ) represents all the missing

values and yo
1:T , all the observed values in Cluster 2 sites for t = 1, . . . , T . The

model unknowns are therefore the coordinates of the vector (λ, σ 2,x1:T ,ym
1:T ,

a1, a2), in which the vector of state parameters up to time T is x1:T = (x1, . . . ,xT ),
the range parameter is λ, the variance parameter is σ 2 and, finally, the vector of
amplitude-phase parameters is a = (a1, a2). Let γ = (τ 2

y , τ 2
1 , λ1, τ

2
2 , λ2) be the

vector of parameters fixed in the DLM to achieve computational feasibility.
Specification of the DLM is completed by prescribing the hyperpriors for the

distributions of some of the model parameters:

λ ∼ IG(αλ,βλ),

σ 2 ∼ IG(ασ 2, βσ 2),

a ∼ N(μo
a,�

o
a).

Notice that λ and σ 2 have inverse Gamma distributions for computational conve-
nience.1 Section 4 discusses the choice of the hyperpriors in the context of our
application.

2.1. Parameter specification. Before turning to the implementation of the
DLM in the next section, we explore theoretically, albeit in a more tractable spe-
cial case, some analytical features of the model. That exploration leads to insight
about how the model’s parameters should be specified, as well as undesirable con-
sequences of inappropriate choices. Our assessment focuses on the accuracy of the
model’s predictions.

This simple model we consider is a special case of the so-called “first-order
polynomial model (FOPM),” a commonly used model [West and Harrison (1997)].
It captures many important features and properties of the DLM we have adopted.

Letting 0 label an ungauged site, we assume for i = 0, . . . , n and t = 1, . . . , T ,
the FOPM model given by

yit = βt + εit ,(2.6)

βt = βt−1 + δt ,(2.7)

1X ∼ IG(α,β) if Y = 1/X ∼ G(α,β), where p(y) ∝ yα−1 exp(−βy) for α,β > 0.
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where εt = (ε0t , . . . , εnt )
′ ∼ N(0, σ 2

ε exp(−V/λ)) and δt ∼ N(0, σ 2
δ ). Assume

β0 ∼ N(0, σ 2
β ) and λ,σ 2

ε , σ 2
δ and σ 2

β are known here.
The FOPM is particularly useful for short-term prediction since then the under-

lying evolution βt is roughly constant. Observe that the zero-mean evolution error
δt process is independent over time, so that the underlying process is a random
walk. At any fixed time t ,

βt = β0 +
t∑

k=1

δk,(2.8)

yit = β0 +
t∑

k=1

δk + εit .(2.9)

Consequently, the FOPM has the following covariance structure:

Var(yit ) = σ 2
β + tσ 2

δ + σ 2
ε ,(2.10)

Cov(yit , yjt ) = σ 2
β + tσ 2

δ + σ 2
ε exp(−dij /λ) (i �= j),(2.11)

Cov(yit , yjs) = σ 2
β + min{t, s}σ 2

δ (s �= t),(2.12)

where dij = ‖si − sj‖, for i, j = 0,1, . . . , n and t, s = 1, . . . , T .

This DLM defines a nonstationary spatio-temporal process since for the FOPM
to be stationary, the eigenvalues of state transfer matrix, G = Gt in the notation
of West and Harrison (1997), must lie inside of the unit circle. But Gt = 1, so
that conditions fails. Nonstationarity also obtains since Gt = I2n+1, given all the
model parameters in (2.4) and (2.5). The DLM in (2.6) and (2.7) has the important
property that its covariance functions in (2.11) and (2.12) depend on the time point
min{t, s}, not |t − s|, and this also renders its nonstationarity.

We readily find the correlation between yit and yjs to be

Cor(yit , yjt ) = σ 2
β + tσ 2

δ + σ 2
ε exp(−dij /λ)

σ 2
β + tσ 2

δ + σ 2
ε

(i �= j),(2.13)

Cor(yit , yjs) = σ 2
β + min{t, s}σ 2

δ√
σ 2

β + tσ 2
δ + σ 2

ε

√
σ 2

β + sσ 2
δ + σ 2

ε

(s �= t),(2.14)

where i, j = 0, . . . , n and s, t = 1, . . . , T .

REMARKS.

1. The correlations in (2.13) and (2.14) have the following properties when
i �= j :

Cor(yit , yjt ) > Cor(yit , yjs)(2.15)
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for s �= t, s, t = 1, . . . , T and

Cor(yit , yjt ) − Cor(yit , yjs)(2.16)

is a monotone increasing function of |t − s|. Thus, for any fixed time point t ,
Cor(yit , yjs) as a function of s attains its maximum at s = t and decreases as
|s − t | increases.

2. By (2.13), Cor(yit , yjt ) → 1 as t → ∞ for i �= j , i, j ∈ {0, . . . , n}. That
property seems unreasonable; the degree of association between two fixed moni-
tors should not increase as time goes by. To circumvent this problem, we can make
some of the model parameters, say, σ 2

δ , depend on time. More specifically, (2.13)
suggests making tσ 2

δ = O(1) to stabilize Cor(yit , yjt ). Another problem is seen
for any two sites in close proximity when dij 
 0,

Cor(yit , yjt ) 
 σ 2
β + tσ 2

δ + σ 2
ε

σ 2
β + tσ 2

δ + σ 2
ε

= 1,

a reasonable feature. But for widely separated sites when dij → ∞,

Cor(yit , yjt ) → σ 2
β + tσ 2

δ

σ 2
β + tσ 2

δ + σ 2
ε

= σ 2
β + O(1)

σ 2
β + O(1) + σ 2

ε

.

To make this correlation nearly 0, as it should be, we need have σ 2
β + O(1) � σ 2

ε .

A sufficient condition for this property to hold is σ 2
β � σ 2

ε and tσ 2
δ = O(1) � σ 2

ε .

In summary, the key result, (2.13), suggests a simple but straightforward way
to make the model parameter σ 2

δ depend on T , namely, to replace it by σ 2
δ /T ,

an adjustment made necessary by an artifact of the DLM prior assumptions. Sec-
tion 6 provides an empirical validation of the benefits of that adjustment, and some
of its implications. However, from a substantive point of view, the adjustment is
not sensible—these parameters should not have to be changed just because T is
changed.

We now study the behavior of the predictive variances in the FOPM that helps
us understand our interpolation results. To that end, consider the correlations of
responses at an ungauged site s0 with those at the gauged site sj , j ∈ {1, . . . , n},
respectively. Note that both (2.15) and (2.16) hold for i = 0. The properties of
the correlation structure in (2.13) and (2.14) lead us to conjecture that the model’s
predictive bands will increase monotonically over time as more data become avail-
able, in the absence of restrictions on tσ 2

δ = O(1) as suggested above. Further-
more, even conditioning on all the data, the predictive bands increase over time. In
support of these conjectures, we prove that they hold in a simple case where n = 1
and T = 2 in (2.6) and (2.7) [Dou et al. (2007)] but omit the proof here for brevity.
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THEOREM 1. For the FOPM in (2.6) and (2.7) with n = 1 and T = 2, assume
the prior for β0 is N(0, σ 2

β ). The joint distribution of y = (y01, y11, y02, y12)
′ is

N(0,�), where

� = (σ 2
β + σ 2

δ )1′
414

+ block-diagonal{σ 2
ε exp(−V/λ), σ 2

δ 1′
212 + σ 2

ε exp(−V/λ)},
1′
k being the k × 1 vector of 1’s (k = 1,2, . . .). Then we have the following predic-

tive conditional variances:

Var(y01|y11) = (σ 2
β + σ 2

δ + σ 2
ε )2 − (σ 2

β + σ 2
δ + σ 2

ε exp(−d01/λ))2

σ 2
β + σ 2

δ + σ 2
ε

,(2.17)

Var(y02|y12) = (σ 2
β + 2σ 2

δ + σ 2
ε )2 − (σ 2

β + 2σ 2
δ + σ 2

ε exp(−d01/λ))2

σ 2
β + 2σ 2

δ + σ 2
ε

,(2.18)

Var(y01|y11, y12) = M1

�
,(2.19)

Var(y02|y11, y12) = M2

�
,(2.20)

where

� = (σ 2
β + σ 2

δ + σ 2
ε )(σ 2

β + 2σ 2
δ + σ 2

ε ) − (σ 2
β + σ 2

δ )2,(2.21)

M1 = (σ 2
β + 2σ 2

δ + σ 2
ε )

× {
(σ 2

β + σ 2
δ + σ 2

ε )2 − (
σ 2

β + σ 2
δ + σ 2

ε exp(−d01/λ)
)2}

(2.22)

− 2(σ 2
β + σ 2

δ )2(
σ 2

ε − σ 2
ε exp(−d01/λ)

)
and

M2 = (σ 2
β + σ 2

δ + σ 2
ε )

× {
(σ 2

β + 2σ 2
δ + σ 2

ε )2 − (
σ 2

β + 2σ 2
δ + σ 2

ε exp(−d01/λ)
)2}

(2.23)

− 2(σ 2
β + σ 2

δ )2(
σ 2

ε − σ 2
ε exp(−d01/λ)

)
.

The above results yield, in particular, two inequalities about the predictive vari-
ance of y01 that can also be obtained directly by elementary reasoning. They show
in agreement with intuition that uncertainty about y01 based on more data collected
over time is no greater than that based on less:

Var(y01|y11) ≥ Var(y01|y11, y12)

and

Var(y02|y12) ≥ Var(y02|y11, y12).
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We would also expect that, conditional on the same data, the predictive vari-
ances of y01 and y02, for example, Var(y01|y11, y12) and Var(y02|y11, y12), would
be more or less equal. Yet the following theorem shows that is not the case.

THEOREM 2. For the FOPM in Theorem 1, we have the following properties
of the predictive conditional variances:

Var(y02|y11,y12)−Var(y01|y11,y12)
(2.24)

= σ 4
ε σ 2

δ (1 − exp(−d01/λ))2

�
≥ 0,

Var(y02|y12)−Var(y01|y11)
(2.25)

= σ 4
ε σ 2

δ (1 − exp(−d01/λ))2

(σ 2
β + σ 2

δ + σ 2
ε )(σ 2

β + 2σ 2
δ + σ 2

ε )
≥ 0,

Var(y01|y11) − Var(y01|y11, y12) ≥ Var(y02|y12) − Var(y02|y11, y12).(2.26)

Equation (2.24) tells us that the predictive posterior variances conditional on
all the data increase monotonically at successive time points. That counterintuitive
result leads to monotonically increasing coverage probabilities at ungauged sites.
According to (2.25), a similar result holds for the predictive variance at a given
time conditional on just the monitoring gauged site data available at that time.
As noted above, adding data collected over time reduces predictive uncertainty.
However, according to (2.26), that benefit decreases over time, another unintuitive
result. These surprising properties are discussed in Section 5 in relationship to the
DLM model of actual interest in this paper and our empirical findings.

Next, we present a curious result about the properties of the above predictive
variances that may explain some of their key features. This result concerns these
predictive variances as functions of λ, d01 or σ 2

ε . Part of its proof is included in
Appendix A.1.

COROLLARY 1. The predictive conditional variances in (2.17)–(2.23) in-
crease as d01 increases, or σ 2

ε increases, or λ decreases.

Thus, keeping two parameters fixed, these predictive conditional variances are
monotone functions of the remaining one. Therefore, the DLM can paradoxically
lead to larger predictive variances when conditioning on more data. Consider, for
example, the case of just one gauged site, n = 1, and two time points T = 2.
A second statistician arrives on the scene late at time T = 2, believing the process
was initiated at time T = 1. He has only the data available at that time to use in
predicting y02. Being in the same relative position as the first statistician at time
T = 1, he computes his conditional predictive variance and gets a result identical
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to the one in equation (2.17). We denote it by Var∗(y02|y12) to distinguish it from
the one in equation (2.18), which the first statistician would compute at time T = 2,
if he had not observed y01. Surprisingly, under the condition in the next corollary,
the late-comer’s variance based on just y12 is actually less than that of the first
statistician using all the data available at time T = 2, that is, Var(y02|y11, y12) in
(2.20). This result is stated more precisely in the next corollary.

COROLLARY 2. For the FOPM in Theorem 1,

Var∗(y02|y12) < Var(y02|y11, y12) if and only if σ 2
ε > σ 2

β

(
1 + σ 2

β

σ 2
δ

)
.(2.27)

The behavior suggested by Corollary 2 is actually observed in our application
(see Section 5).

2.2. Implementation. We now briefly describe how to implement our model
using the MCMC method, more specifically, the forward-filtering–backward-
sampling algorithm of Carter and Kohn (1994). Our approach follows Huerta et
al. (2004) and the details can be found in Dou et al. (2007). However, unlike them,
we use all the samples after the burn-in period, not just the chain containing the
accepted samples, thereby avoiding the (small) sampling bias that would otherwise
accrue from, in effect, changing the detailed balance equation of the Metropolis–
Hasting algorithm.

The algorithm we use for Cluster 2 based on the AQS data set is now summa-
rized using “∼” to mean “from distribution”:

1. Initially sample λ(1) ∼ IG(αλ,βλ), σ 2(1) ∼ IG(ασ 2, βσ 2) and x(1)
1:T ∼ N(m0,

σ 2(1)
C0).

2. Given the (j − 1)th values λ(j−1), σ 2(j−1)
, x(j−1)

1:T , ym
1:T

(j−1), a
(j−1)
1 , a

(j−1)
2

and the observations yo
1:T sample:

(1) (λ(j), σ 2(j)
,x(j)

1:T ) ∼ p(λ,σ 2,x1:T |a(j−1)
1 , a

(j−1)
2 ,y(j−1)

1:T ) where y(j−1)
1:T =

(ym
1:T

(j−1),yo
1:T ).

(i) Generate a candidate value λ∗ from a lognormal proposal distribution
q(λ(j−1), λ), that is, LN(λ(j−1), τ 2) for some suitable tuning parame-
ter τ 2.

Compute the acceptance ratio α(λ(j−1), λ∗) where

α
(
λ(j−1), λ∗) = min

{
1,

p(λ∗|a(j−1)
1 , a

(j−1)
2 ,y(j−1)

1:T )λ∗

p(λ(j−1)|a(j−1)
1 , a

(j−1)
2 ,y(j−1)

1:T )λ(j−1)

}
.

Accept the candidate value with probability α(λ(j−1), λ∗) and set
λ(j) = λ∗; otherwise reject and set λ(j) = λ(j−1).
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(ii) Sample σ 2(j) ∼ p(σ 2|λ(j), a
(j−1)
1 , a

(j−1)
2 ,y(j−1)

1:T ).

(iii) Sample x(j)
1:T ∼ p(x1:T |λ(j), σ 2(j)

, a
(j−1)
1 , a

(j−1)
2 ,y(j−1)

1:T ).

(2) ym
1:T

(j) ∼ p(ym
1:T |λ(j), σ 2(j)

,x(j)
1:T , a

(j−1)
1 , a

(j−1)
2 ,yo

1:T ).

(3) (a
(j)
1 , a

(j)
2 ) ∼ p(a1, a2|λ(j), σ 2(j)

,x(j)
1:T ,y(j)

1:T ), where y(j)
1:T = (ym

1:T
(j),yo

1:T ).

3. Repeat until convergence.

The software, GDLM.1.0, developed to implement the DLM approach, en-
hances the Metropolis-within-Gibbs algorithm by augmenting the R code with C
to speed up the computation.

2.3. Interpolation and prediction. This section describes how to interpolate
hourly ozone concentrations at ungauged sites using the DLM and simulated
Markov chains for the model parameters defined above in this section. Suppose
s1, . . . , su are u ungauged sites of interest within the geographical region of Clus-
ter 2 sites and we need samples from

p(ys
1:T |λ,σ 2,x1:T , a1, a2,y1:T ),

where ys
1:T = (ys

1, . . . , y
s
T ) : 1 ×T , while ys

t denotes the unobserved square-root of
ozone concentrations at the ungauged site s ∈ {s1, . . . , su} and time t = 1, . . . , T .
Let (αs

1t , α
s
2t ) denote the unobserved state parameters at time t and site s. The

DLM is given by

ynew
t = 1n+1βt + S1t (a1)α

new
1t + S2t (a2)α

new
2t + νnew

t ,(2.28)

where ynew
t = (ys

t ,y′
t )

′, αnew
j t = (αs

jt ,α
′
j t )

′ for j = 1,2, and νnew
t ∼

N(0, σ 2 exp(−Vnew/λ)).

In the following two subsections we illustrate how to sample the unobserved
state parameters {(αs

1t , α
s
2t ) : t = 1, . . . , T } and demonstrate spatial interpolation at

the ungauged site s.

2.4. Sampling the unobserved state parameters. We first sample αs
jt given

αs
j,t−1, αj t and αj,t−1, j = 1,2. From the state equation (2.5) for αnew

j t , we
know that the joint density of αs

jt and αj t is Gaussian, with covariance matrix

σ 2τ 2
j exp(−Vnew/λj ), where Vnew denotes the distance matrix for the ungauged

site and gauged sites. The conditional posterior distribution,

p(αs
jt |αs

j,t−1, λ, σ 2, βt ,α1t ,α2t , a1, a2,y1:T ),(2.29)

is derived in Appendix A.2.

2.5. Spatial interpolation at ungauged sites. We interpolate the square-root of
ozone concentration at an ungauged site by conditioning on all the other parame-
ters and observations at the gauged sites. As above, ys

t and yt are jointly normally
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distributed as a consequence of the observation equation. The predictive condi-
tional distribution for ys

t , that is,

p(ys
t |αs

1t , α
s
2t , λ, σ 2, βt ,α1t ,α2t , a1, a2,y1:T ),(2.30)

is given in Appendix A.2.

3. The Bayesian spatial predictor. For completeness, this section gives a
brief description of the BSP, which predicts random space–time response fields
[Le and Zidek (2006)]. The responses are site-specific and may include covariates.
Although the application in this paper involves just ozone, the multivariate version
of the BSP is needed. We include site-specific covariates here, even though we
have none in our application, to facilitate possible future extensions of the method
to more complete databases and these are included in the response vector, unlike
the covariates which are constant across the region.

The BSP involves a number of elements beginning with a transformation of the
data using a common transformation across all sites. The goal of data transforma-
tion is to find an approximately symmetrical form for data histograms at each site
for its data over time.

Next comes an exploratory data analysis and the removal of systematic regional
components. These components can be such things as trends, periodicity, auto-
correlation and models for covariates that are constant over the region. Thus, the
same model is fitted over all sites in the region using the data from all the sites
and times. Usually enough data are available that the estimated parameters are
effectively constants. Hence, their removal from the stochastic field model has a
completely predictable effect on it.

At time t , let rt : 1 × (g + u)p represent the row vector of residuals so obtained
for the g gauged, that is, monitored sites as well as the u ungauged sites in the
region where every site has p ≥ 1 site-specific responses. Assign the j th coordi-
nate of rt a column vector of random effects, β

j
r : l × 1. With that vector z′

rtβ
j
r

can reflect the effect on the site-response pair represented by j at time t , of the
covariates in the transposed column vector z′

rt : 1 × l which are not site-specific.

Conditional on z′
rtβ

j
r , rt is assumed to have an arbitrary covariance matrix �r,

representing both the covariances between the sites as well as the covariances be-
tween responses within the sites. Note that at this level of modeling, no assumption
is made about the separability of the between-site variability and within-site vari-
ability. Moreover, the site effect vector β

j
r allows each site’s trend, seasonality and

so on to deviate from their regional counterparts.
Conditional on βr and �r, we assume the {rt } have a known between-time co-

variance A that is separable from the within-time covariance �r. Furthermore,
we assume a Gaussian response field across the T time points and all sites and
responses so that r .= (r′

1, . . . , r′
n)

′ ∼ Nn×(g+u)p(zβr,A ⊗�r) for the “design ma-
trix” z .= (z1, . . . , zT )′ :T × l.
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Next βr and �r are given their conjugate multi-normal and generalized Inverted
Wishart prior distributions, respectively. The latter’s hypercovariance structure is
assumed to be a Kronecker product of covariances reflecting the assumed separa-
bility of the between-site and within-site covariances. That assumption is imple-
mented in the online R, C and F codes that implement the BSP methodology (go
to http://enviro.stat.ubc.ca). Furthermore, they incorporate an empirical Bayesian
step which estimates the hyperparameters in the conjugate priors using the EM
algorithm. That software is used in the application addressed in this paper. Note,
however, that the separability assumption can be relaxed in other applications of
the method at the cost of some recoding of the software.

The resulting posterior predictive distribution with estimated hyperparameters
is a matric-t distribution. That means, in particular, that the conditional posterior
predictive distribution of the responses of direct interest given the site-specific
covariates can be derived and the predictive posterior mean will then be a linear
combination of regional and site-specific covariates.

As a final step in applying the BSP, the regional models that were removed to get
the residuals matrix r need to be combined with predicted residuals at ungauged
sites. These in turn must be squared to get back onto the scale of the raw data.

4. Application. This section applies our models to the hourly ozone concen-
tration field mentioned briefly above.

4.1. The data. That ozone field generates the data used in this paper. Those
data come from the AQS ozone database created by the EPA. As noted in Sec-
tion 2, the heavy computational requirements of the DLM force the restriction of
our analysis to hourly ground-level ozone concentrations (in ppb) from a cluster
of just ten monitoring sites (we call “Cluster 2”) and data for that cluster were
extracted from that database. That cluster, centered at St. Louis, Missouri, spans a
distance of at most 895 kms. In contrast, that of Huerta et al. (2004), centered in
Mexico City, covers no more than 30 kms in any one direction although it has the
same number of sites as our cluster.

Data from an additional set of six monitoring sites, located at randomly selected
and irregularly spaced geographical locations within this area, were extracted to
provide a validation sample.

Figure 1 shows the geographical locations of these ten gauged and six ungauged
sites. The percentages of the missing measurements vary between 0% and 24.8%
for gauged sites, and between 0% and 11.5% for ungauged sites.

Figure 2 depicts the boxplots of the square-root transformed hourly ozone con-
centrations at each one of the 16 monitoring stations across all time points. Gauged
Site (GS) 9 differs markedly from the others. The authors wondered if its deviation
from the rest might be due to some of its geographical features. An examination of
the region reveals GS 9’s proximity to a body of surface water, the Missouri River.
However, GS 7 also lies near water; in fact, it falls between the junction of the

http://enviro.stat.ubc.ca
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FIG. 1. Geographical locations for Cluster 2 sites from the AQS database (1995), where the lati-
tude and longitude are measured in degrees. Integers label gauged sites and letters, ungauged sites.

Illinois, Mississippi and Missouri Rivers. Similarly, GS 1 lies close to Kentucky
Lake, while GS 6 lies near Mark Twain Lake. Thus, in the end, we were forced to
abandon that potential explanation and have found no other.

FIG. 2. Boxplots for the square-root of hourly ozone concentrations (
√

ppb) at monitoring stations
in Cluster 2 from the AQS database during the summer of 1995. Here “G” stands for “gauged site,”
while “U” stands for “ungauged site.”
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We used linear regression to further explore the data, in particular, weekday
and hourly effects. We found these to be approximately constant over all gauged
sites; the hourly effects from 0 A.M. to 10 A.M. vary slightly more than those of
the hours following 10 A.M., pointing to the relatively strong hourly effects from
10 A.M. to 11 P.M. The weekday effects also seemed constant across GSs. These
results suggest that we can model weekday and hourly effects as constant across
all gauged sites in the cluster. We used this finding to develop the BSP approach
used below. It also has implications for the DLM method, although for brevity we
leave details to Dou et al. (2007).

4.2. The methods. The central issue addressed in this paper, the need to map
the ozone field or, in other words, interpolate its values at ungauged sites, leads us
to compare the two models we have proposed for that purpose. More precisely, we
compare the interpolated values they yield of hourly ozone concentrations at the
six validation sites. Results for other clusters were generally similar and for one
results are presented in a companion report [Dou et al. (2009a)].

The DLM. To emulate Huerta et al. (2004) to the maximum feasible extent,
we use their initial settings for the starting values, hyperpriors and fixed model
parameters but only after confirming that our results would not be unduly sensitive
to that choice. In summary we chose the following:

• The hyperprior for λ is IG(1,5) and for σ 2, IG(2,0.01). The expected value of
IG(1,5) is ∞ and so are both of the variances of p(λ) and p(σ 2). These vague
priors for λ and σ 2 are selected to reflect our lack of prior knowledge about their
distributions.

• The initial information for x0, the initial state parameter, is assumed to be nor-
mally distributed with mean vector m0 = (2.85,−0.751′

n,−0.081′
n)

′ and co-
variance matrix σ 2

1 C0, where σ 2
1 ∼ IG(2,0.01) and C0 is a block diagonal ma-

trix with diagonal entries 1, 0.011′
n and 0.011′

n.• The hyperprior for a is a bivariate normal distribution with mean vector μo =
(2.5,9.8)′ and a diagonal matrix �o with diagonal entries 0.5 and 0.5.

• Some of the model parameters in the DLM are fixed as follows: τ 2
y = 0.02,

τ 2
1 = 0.0002, τ 2

2 = 0.0004, λ1 = 25 and λ2 = 25.

To test sensitivity of our results to our starting values, we experimented with
a variety of such values of λ, σ 2, a1 and a2. Figure 1 in Supplement B [Dou, Le
and Zidek (2009c)], compares the results for pairs of two very different values
over 4268 MCMC iterations. The results demonstrate the adequacy of our burn-in
period of 2269. We concluded that varying the hyperparameters produced the same
results after taking just a few iterations to adjust. In fact, the chains converged in
less than five hundred iterations with an acceptance rate were approximately 62%.
The post burn-in samples were the ones used to estimate the posterior distribution
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FIG. 3. This figure illustrates the correlation leakage problem for intersite spatial correlations for
the sites in our analysis. Panel (a) shows those correlations for all site pairs and the residuals ob-
tained by removing regional trends. The second, (b), is the same plot, but this time for the residuals
after an additional regional AR(2) model was fitted. Notice the sharp declines in the spatial correla-
tions as a result of “leakage” into spatial cross-correlations at lags 1, 2 and so on.

that in all cases except for λ resembled closely those obtained by Huerta et al.
(2004). In contrast, that for λ was centered on a point about ten times larger than
theirs, possibly reflecting the much larger spatial domain in our application.

The BSP. To begin, Figure 3 depicts estimated spatial correlations of the resid-
uals after removing regional (i.e., common site-model) trends and AR(2) autocor-
relation components (dAR’ing). This reveals “correlation leakage,” a sharp drop
in the lag 0 spatial cross correlation with loss of correlation to lag 1 and longer
cross correlations. To prefilter data series as we must to use the BSP when leakage
occurs, typically in series based on data collected with short temporal lags, Li et
al. (1999) and Zidek et al. (2002) suggest using daily vectors of random hourly
response coordinates for selected hours, instead of using the univariate hourly re-
sponses themselves. One of their arguments, that the impact of the problem of
“correlation leakage” across space and time lags is reduced using this approach, is
supported by theoretical results [Zidek et al. (2002)]. A related argument of theirs
is that daily vectors of deAR’d residuals are approximately independent from day-
to-day, while the need to model fine scale temporal correlation is eliminated.

The benefits promised by these arguments obtain for Cluster 2 and other clusters
we have studied. To realize them, we must select the number of hours d between 1
to 24 to include in those daily vectors. The simplest choice d = 1 would ensure a
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23 hour separation between the successive responses that, under our AR(2) struc-
ture, would render autocorrelation negligible in the daily sequence. However, that
choice would also leave us without estimates of the correlation between successive
hourly responses, leading to d = 2 instead. For that would mean, in particular, that
a spatial interpolator for, say, hour 12 at an ungauged site, would borrow strength
from both hours 11 and 12 measurements at the gauged sites. But that choice, like
d = 1, has the disadvantage of complexity: twelve models would be needed for
the resulting 12 parallel multivariate time series. That points to d > 2. But then
large values of d such as d = 24 would also be undesirable, given our objective
of eliminating autocorrelation between successive daily vectors of dimension d .
A compromise in the range 2 ≤ d ≤ 6 suggests itself as a compromise, although
the optimal choice clearly depends on the degree of autocorrelation in the AR(2)
process and that varies from one location to another.

Although we do not have a theoretical way of selecting d , we do have an em-
pirical alternative in particular applications. In ours, suppose, for example, that
interest focuses on interpolating hour 12’s ozone level at a specified ungauged site
using all the observed responses at the gauged sites. The possible response vector
sequences corresponding to d ∈ {2, . . . ,6} would be those from (11:12)-hours to
(7:12)-hours, where (i:j )-hours denotes the sub-data matrix of hourly measure-
ments from hours i to j inclusive, across the gauged sites, i, j ∈ {1, . . . , p}. For
each, the spatial correlations between all gauged sites are estimated using the mul-
tivariate BSP approach.

As expected, the spatial correlation declines and leakage increases as d the di-
mension of the response vector increases. The smallest value d = 2 in the admissi-
ble range {2, . . . ,6} produces the smallest loss of such spatial correlation. We see
a further drop when d = 3. However, little change is seen for d’s beyond that. In
other words, nothing is gained by going beyond d = 2 and we stop there, making
it our compromise choice for hour 12. Similar results obtain for the other hours,
strongly supporting the use of the 2-consecutive-hour-block as the response vector.
These blocks of data were extracted from the AQS ozone database for the summer
of 1995 for Cluster 2 to serve as the observed multivariate responses in a multi-
variate BSP model framework. While the resulting spatial correlation is not large,
the very strong autocorrelation between 12 and its neighbor, hour 11, enables a lot
of strength to be borrowed over both space and time in the combined space–time
total and this is key to the good performance of the BSP predictor.

Prior to implementing the multivariate BSP approach, a small number of miss-
ing measurements were filled in by the conventional method of periodic means.
In the BSP model’s notation, p = 2, n = 120, u = 6 and g = 10. In all, 24 multi-
variate BSP predictors are derived by successively cycling through the successive
two-hour blocks to predict the hourly ozone levels at the 6 validation sites. We
also found the corresponding 95% pointwise predictive intervals along with their
empirical coverage probabilities.
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4.3. The results. Figures 4 and 5 depict plots of the interpolation results for
square-root transformed ozone concentrations at Ungauged Site (US) D during the
first and fourth weeks in the summer of the study. Overall, the BSP proves more
accurate than the DLM. Moreover, it avoids the unnatural oscillatory behavior in
the 95% predictive interval bounds, an artifact of the harmonic terms in the mean
model used in the DLM. To elaborate on this important point, note that, conditional
on the mean, the predictive distribution for a response at an ungauged site has a
fixed width predictive error band [see equation (A.3)]. However, in the uncondi-
tional distribution for that response, the mean’s random coefficients contribute to
the width of that band. First of all, they do so through the harmonic, that is, co-
sine and sine, functions associated with them. As these functions are squared in
the variance for the unconditional distribution, valleys in the mean become peaks
in the variance, giving the impression of a six- rather than twelve-hour cycle as
postulated in the model. That same periodic behavior can be seen in the paper of
Huerta et al. [(2004), Figure 6]. Second, they do so through their variances which
are rescaled by their squared harmonic factors. The growth in those variances over
time, induced by their random walk evolutionary model, is then inflated by the
squared harmonics at peak times. Thus, as seen in the figures, by the fourth week
we see much larger band widths at those peaks than during the first week. The
width of those bands varies further according to the site’s distance from a moni-
toring site, as that determines the degree uncertainty in those random coefficients.
The large predictive intervals for the ground-level ozone concentrations reflect the
inefficiency of the DLM approach. For example, the 95% predictive bands could
be between 0 and 15 for the square-root of ozone levels. These findings lend further
support to our conclusion that a more practical alternative to the DLM is needed.
In turn, that led us to consider the BSP as a possible competitor for predicting
ground-level ozone concentrations.

Notice the periodic drop toward zero for the BSP in these figures. That results
from BSP’s recognition that US D’s close “cousin” Gauged Site (GS) 1, with which
it is spatially correlated, contains a missing value coded as a “0” in the data at
this particular hour. That hour is midnight when we believe but cannot confirm if
quality checking was carried out nightly during the 120 days of study. That also
happens at US D and other sites such as US B and GS 2 on 118 out of the 120
days. We imputed the missing observations at midnight by computing its periodic
means, leading to the “midnight zeros.” For example, the observations at GS 1 and
US D are all missing, while GS 2 and US C only have one or two observed values
at that time. In fact, the DLM needs the imputed values for complete data and
“updates” the missing values by treating them like the model parameters. However,
even using our roughly imputed missing values as the periodic means, our results
indicate that the BSP works better over those sites.

Figure 6 plots the ratio of the empirical mean square predictive errors of the
DLM over the BSP arising from the prediction of the observations for the six val-
idation site values. Thus, values larger than 1.0 mean DLM are less accurate than
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FIG. 4. Interpolation at Ungauged Site D for the 1st week. The square-root of hourly ozone con-
centrations are plotted on the vertical axes and hours on the horizontal axes. Solid and dashed lines
represent, respectively, BSP interpolation and 95% pointwise predictive intervals; dot-dashed and
dot lines represent, respectively, DLM interpolation and 95% predictive intervals; finally, • represent
observations at Ungauged Site D.

BSP. Overall, the BSP performs uniformly better than the DLM while requiring
much less computation time.

Figures 7–8 present the coverage probabilities of the DLM and BSP at 95%
nominal level at each one of ungauged sites or 17 weeks involved in the ozone
study. Overall, the DLM intervals tend to exceed the nominal level of 95%, while
the BSP intervals cover less than the nominal level, indicating respectively too
little and too much confidence in their predicted values.

The coverage probabilities of the model’s posterior predictive credibility inter-
vals over successive weeks, conditional on all 17 weeks of data, increase monoton-
ically. That implies the counterintuitive result that uncertainty increases as time
evolves. A pragmatic way around this unnatural property comes from Section 2.1
where the correlation structure of an analytically tractable DLM is studied. The
section suggests making the model parameters, such as τ 2

y , τ 2
1 and τ 2

2 , depend on
the time span of the temporal domain T involved. In other words, the hyperpara-
meters would differ for a study involving one week to those for a study involving
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FIG. 5. Interpolation at Ungauged Site D for the 4th week. The square-root of hourly ozone con-
centrations are plotted on the vertical axes and hours on the horizontal axes. Solid and dashed lines
represent, respectively, BSP interpolation and 95% pointwise predictive intervals; dot-dashed and
dot lines represent, respectively, DLM interpolation and 95% predictive intervals; finally, • represent
observations at Ungauged Site D.

the whole summer, quite unreasonable if one views the prior as representing prior
knowledge.

5. Discussion. In general, the DLM provides a flexible modeling tool, made
practical by advances in statistical computing. However, its substantial computa-
tional requirements still limit its applicability. Moreover, the very flexibility that
makes it so powerful also imposes an immense burden of choice on the model.
This section summarizes critical issues and includes some suggestions for im-
provement.

MCMC convergence. See Supplement B [Dou, Le and Zidek (2009c)].

Relationships among parameters. Our prior assumptions make the model pa-
rameters λ, σ 2, a1 and a2 uncorrelated, leading us to investigate that relationship
a posteriori. In fact, our results, which are omitted for brevity, show all pairs re-
main uncorrelated except for λ and σ 2, which have a strong linear association. The
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FIG. 6. The ratio of the empirical mean squared prediction errors for the DLM over the multivariate
BSP interpolators for: (a) the 6 “ungauged” validation sites for each of the 17 weeks; (b) the 17 weeks
for each of those 6 sites.

third author learned about that feature of the DLM from Jonathon Stroud (personal
communication). Since σ 2 determines spatial variability while λ determines cor-
relation, this relationship is intriguing. Larger values of σ 2 tend to go with larger
λ’s, that is, diminished spatial correlation. In kriging type models, it is quite com-
mon to have range and sill parameters correlated in the posterior, according to an
anonymous reviewer.

Time varying parameters and coverage probabilities. Although we follow
Huerta et al. (2004) in assuming the temporal constancy of λ and σ 2, it is nat-
ural to ask if those generated by the MCMC method change over time. A variant
of this issue concerns the time domain of the application. Would the results for
these parameters change if we switched from one time span to a longer one con-
taining it? A “yes” to this question would pose a challenge to anyone intending to
apply the model, knowing that the choice would have implications for the size of
σ 2 and λ.

To address these concerns, we carried out the following studies:

(i) Study Ã: Implement the DLM at ungauged sites using only weekly data
for successive weeks (Wk :k = 1, . . . ,17). Generate Markov chains for λ, σ 2, a1
and a2. Estimate model parameters and interpolate the results at the ungauged
sites. Obtain the coverage probabilities at each ungauged site and week for fixed



1204 Y. DOU, N. D. LE AND J. V. ZIDEK

FIG. 7. The empirical coverage probabilities of the DLM and multivariate BSP interpolators for
each of six ungauged sites at a nominal level of 95%.

credible interval probabilities. Obtain the coverage probabilities at each ungauged
site and week for fixed credible interval probabilities using each week’s data.

(ii) Study B̃: Implement the DLM at ungauged sites using all the data from
weeks 1 to 17 (W1:17 = {W1, . . . ,W17}). Estimate model parameters and interpo-
late the results at ungauged sites. Obtain the coverage probabilities at each un-
gauged site and week for fixed credible interval probabilities for each week.

(iii) Study C̃: Fix λ∗
k at week k (k = 1, . . . ,17) using values suggested by the

Markov chains generated in Study Ã. Then use these λ∗ = {λ∗
1, . . . , λ

∗
17} as fixed

values in the DLM to reduce computation time. In other words, go through all
the steps in the algorithm of Section 2.2 but now using only fixed λ∗’s instead of
generating them by a Metropolis–Hasting step. Note that we are then only using
Gibbs sampling and an MCMC blocking scheme. Compute the corresponding cov-
erage probabilities using W1:17 at each ungauged site and week for fixed credible
interval probabilities.

Studies Ã and B̃ are intended to explore the effect on the interpolation results,
of varying the amount of data and its collection time. Study C̃ aims to pick out
any significant difference in the interpolation results when using a fixed λ∗ rather
than using the Markov samples of λ’s. It is also aimed at finding how much time
would be saved by avoiding the inefficient Metropolis step. Table 1 shows these
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FIG. 8. The coverage probabilities of the DLM and multivariate BSP interpolators for each of 17
weeks at a nominal level of 95%.

TABLE 1
Fixed values of λ∗ in Study C̃

Week 1 2 3 4 5 6 7 8 9
λ∗ 54.2 178.5 83.7 405.4 86.6 59.7 199.3 144.1 322.7

Week 10 11 12 13 14 15 16 17
λ∗ 142.2 172.7 187.9 315.8 419.0 99.8 260.3 284.8

fixed λ∗’s used in Study C̃. Table 2 shows the time saved using fixed λ∗’s against
the one using the Metropolis–Hastings algorithm.

Figure 9 illustrates the MCMC estimation results obtained in Study Ã. It plots
the Markov chains of λ and σ 2 using weekly data. Obviously λ and σ 2 vary from
week to week, implying that the constant λ–σ 2 model is not tenable over a whole
summer for this data set and should not be assumed in general without empirical
validation.

Figure 10 typifies figures in Dou et al. (2007) showing the coverage probabili-
ties for various predictive intervals associated with the interpolators in these three
studies. The solid line with bullets represents the results for Study Ã, the dotted
line with up-triangles for B̃ and the dashed line with squares for C̃. These graphs
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TABLE 2
Summary of computational times (seconds) for complete summer long

MCMC runs without spatial prediction in Studies Ã, B̃ and C̃

Time (seconds)

Study Data Iteration total Accept (%) Total /Iteration

Ã Wk 1500 0.82 17,018 13.8
B̃ W1:17 1000 0.35 326,782 932.3
C̃ W1:17 1000 1.00 329,349 329.3

FIG. 9. Scatterplots for (λ,σ 2) pairs for various weeks, based on the MCMC samples using a
selected week’s data, specifically weeks 4, 6 and 9 but starting from the same initial values as those
in Section 4.2.

show that the coverage probabilities of Study B̃ are similar to those of C̃. This
suggests that we could use the entries in Table 1 on page 1205 as fixed λ∗’s in the
DLM to obtain interpolation results similar to those obtained using the Metropolis-
within-Gibbs algorithm.

Section 2.1 presents results about the prediction accuracy of the simplest DLM,
namely, the FOPM showing, in particular, that the predictive variances must in-
crease monotonically at successive time points even though all the variances are
conditional on the same 17 weeks of data. Here we see the same phenomenon ex-
pressed empirically through the graph of the coverage probabilities in Figure 10.
The plots exhibit a monotonic increasing trend in the coverage probabilities of
both Studies B̃ and C̃ even though the uncertainty in each case is calculated for
distributions that are conditional on all the data. Note that those coverage probabil-
ities for both studies deviate slightly from a strictly monotone trend at some time
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FIG. 10. Coverage probabilities over the 17 weeks of summer for: (a) 95% credible intervals at
Ungauged Site D; (b) 80% credible intervals at Ungauged Site C. These coverage probabilities are
computed for Study Ã: weekly data (solid bullet with solid line); Study B̃: W1:17 (up-triangle with
dotted line); Study C̃: W1:17 but with fixed λ∗ (square with dashed line); and Study D̃: W1:17 but
with fixed λ∗ and modified τ2

y , τ2
1 and τ2

2 (empty circle with solid line).

points because of the time varying relationship between λ and σ 2 seen in Figure 9.
This increase can mean that a posteriori, λ and σ 2’s vary over the time span of the
study, while the prior postulates that they do not. It may also be due to misspec-
ification of the model parameter values γ = (τ 2

y , τ 2
1 , λ1, τ

2
2 , λ2). (See the initial

settings for γ in Section 4.2.) In any case the phenomenon represents a limitation
in the applicability of the model since it runs counter to intuition.

As an aside, Study C̃ enjoys significant computational advantages over B̃. Ta-
ble 2 shows computation time of the former to be almost 2.8 times shorter than the
latter.

On another point, these studies show that sometimes, paradoxically, the model
gives better results using only one week’s data rather than all of it. In fact, Corol-
lary 2 in Section 2.1 predicts this finding because the prior for σ 2

1 is IG(2,0.01),
the expectation of σ 2

1 is 0.01, implying that σ 2
β 
 0.01 and σ 2

δ 
 0.01 × 0.02.

Hence, σ 2
β (1 + σ 2

β/σ 2
δ ) 
 0.51, which is less than σ 2

ε . For example, the median of

σ 2 is around 1.21 in Study B̃ and even larger in Study Ã. By the necessary and
sufficient condition in Corollary 2, the predictive variance of Study Ã is less than
that of Study B̃ making the predict and more, not less certain. However, notice
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that σ 2 and λ vary from week-to-week in Ã, which may also lead to the paradox
observed in the empirical findings of this section. For example, in panel (b) of Fig-
ure 10, the coverage probability for B̃ at the 4th week is larger than that for Ã.

From the above discussion, we know that the predictive variance of Ã should be
less than that of B̃. However, σ 2 for Ã tends to be larger than for B̃ , leading an
inflated predictive variance for Ã. This feature makes it difficult to compare these
two predictive variances, but explains the paradox we see in those figures.

6. Concluding remarks. To assess the dynamic linear modeling (DLM) ap-
proach to mapping space–time fields, we have applied it to an hourly ozone con-
centration field over a geographical spatial domain covering most of the eastern
United States and compared it to an older and computational leaner approach to
Bayesian spatial prediction [BSP; Le and Zidek (2006)]. Practical considerations
forced us to focus on small clusters of sites including the one treated in this pa-
per, Cluster 2 during a single ozone summer season. The DLM was the primary
focus of the paper since it had already been proposed for modeling hourly ozone
fields, albeit over Mexico City [Huerta et al. (2004)] implemented through MCMC
sampling.

Our assessment reveals some difficulties with this very flexible approach and
practical challenges that it presents. We also have made some recommendations
for improvement.

A curious finding is the posterior dependence of λ and σ 2, in contradiction to
our prior assumption. Although the very efficient method Huerta et al. (2004) pro-
pose for sampling the model parameters is biased, that bias does not appear large
enough to account for that phenomenon. We also discovered that the assumption
of their constancy over time is untenable.

One further Study D̃ tests the proposed constraints on the data. The settings are
identical with those in Study C̃ except that τ 2

y , τ 2
1 and τ 2

2 are replaced by τ 2
y /17,

τ 2
1 /17 and τ 2

2 /17, respectively, to take account of the longer 17 week time span
of our study compared to the one week time span of the application in Huerta et
al. (2004). Figure 10 compares Study D̃ with the others. Observe that its coverage
probabilities behave like those of Study Ã. This adjustment does seem to elimi-
nate the undesirable property of increasing credibility bands of Studies B̃ and C̃,
albeit by an unreasonable modification of the model—and make the prior for these
parameters depend on the time span of the study.

Another possible approach to dealing with the unsuitability of fixed model pa-
rameters uses the composition of Metropolis–Hasting kernels. In other words, we
could include these parameters in the Metropolis–Hasting algorithm. We can use
six Metropolis–Hasting kernels to sample from the target distribution π(γ |y1:T ),
updating each component of γ iteratively, where γ was defined in Section 2. But,
not surprisingly, that approach fails because of the extreme computational burden
it entails. However, that alternative is the subject of current work along with an
approach that admits time varying λ’s and σ 2’s.
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The greatest difficulty involved in the use of the DLM in modeling air pollution
space–time fields lies in the computational burden it entails. For that reason, we
have not been able to address the geographical domain of real interest, one that
embraces 274 sites in central and eastern United States, with 120 days of hourly
ozone concentrations. However, in a manuscript under preparation, an alternative
hierarchical Bayesian method that can cope with that larger domain will be com-
pared with the DLM where feasible.

Finally, given the sophistication of the DLM, the authors were surprised to find
that the BSP performed as least as well and in some cases better. This performance
was achieved with much lower computational demands, thereby making the BSP
suitable for mapping over large geographical domains. So while the BSP was in-
troduced as a “sparring partner” in this paper, it is the only method we can rec-
ommend at this time for spatial mapping in the context we have considered. That
finding led the authors to enhance the BSP and, in particular, to put it into a wholly
Bayesian framework. The results are in a manuscript currently in preparation.

An anonymous reviewer supports the comparison of alternative approaches to
a problem of practical interest but raises the interesting issue that the results may
strongly depend on the details of how the approaches were implemented. We agree.
That is why the authors did their best to implement the method/model of Huerta et
al. (2004), although neither the software used by those authors nor their data were
available to us. Furthermore, we were unable to obtain the kind of weather data
they used in their model. Nevertheless, our results are broadly in accord with theirs.
As for the BSP, it relies on published software and the approach described in Le
and Zidek (2006), so we did not have too much flexibility in our implementation of
that method either. Thus, we did not have much latitude in our implementation of
these methods. By making our software for the DLM available, such a comparison
could well be replicated by others seeking a spatio-temporal model for hourly
ozone fields.

That reviewer also asserted that the comparison does not have a very meaningful
purpose since the main objective of the DLM is to model the temporal evolution;
the spatial correlation structures come as nuisance parameters so to speak. It is true
the genesis of the DLM lay in modeling time-series. However, temporal models
are now commonly combined over space to get space–time models [Lemos, Sansó
and Los Huertos (2007)]. Moreover, Huerta et al. (2004) clearly meant to include
spatial mapping (see their Figure 5) in their application. Indeed, it was this feature
that made this method so prospectively appealing to the authors. Finally, although
the BSP was originally intended for spatial modeling, it can be used for temporal
forecasting. In particular, in a companion report [Dou et al. (2009a)], the DLM and
BSP are compared for making the all-important, short-term, 24-hour ahead ozone
forecasts now common in urban areas. Once again the latter is found to work at
least as well or better than the former. So while we are convinced of the value of
the DLM approach, in some applications the simplicity of the BSP may make it an
advantageous alternative.
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APPENDIX A: SUPPLEMENTARY RESULTS

A.1. Results for Theorem 2. Only the results about the predictive variances
of y01|y11 and y01|y11, y12 are shown in this appendix. The other two cases can be
obtained by the same method. Referring to Theorem 1, the predictive variance of
y01|y11 can also be written as follows:

Var(y01|y11) =
(

1 − exp
(
−d01

λ

))
σ 2

ε

{
2 − 1 − exp(−d01/λ)

1 + (σ 2
β + σ 2

δ )/σ 2
ε

}
.

The first partial derivatives of these predictive variances with respect to d01, λ

and σ 2
ε are given by

∂

∂d01
Var(y01|y11) = 2d01

λ
exp

(
−d01

λ

)
σ 2

ε

σ 2
β + σ 2

δ + σ 2
ε exp(−d01/λ)

σ 2
β + σ 2

δ + σ 2
ε

,

∂

∂λ
Var(y01|y11) = −2d01

λ2 exp
(
−d01

λ

)
σ 2

ε

σ 2
β + σ 2

δ + σ 2
ε exp(−d01/λ)

σ 2
β + σ 2

δ + σ 2
ε

and
∂

∂σ 2
ε

Var(y01|y11) =
(

1 − exp
(
−d01

λ

)){
2 −

(
1 − exp

(
−d01

λ

))

× σ 2
ε

σ 2
ε + 2σ 2

β + 2σ 2
δ

(σ 2
ε + σ 2

β + σ 2
δ )2

}

>

(
1 − exp

(
−d01

λ

)){
2 − σ 2

ε (2σ 2
β + 2σ 2

δ + σ 2
ε )

(σ 2
β + σ 2

δ + σ 2
ε )2

}

= 1 − exp(−d01/λ)

(σ 2
β + σ 2

δ + σ 2
ε )2

{2(σ 2
β + σ 2

δ )2 + σ 4
ε + 2σ 2

ε (σ 2
β + σ 2

δ )},

respectively. It is straightforward to show that Var(y01|y11) is increasing when d01
increases, or λ decreases, or σ 2

ε increases. We next show these properties also hold
for Var(y01|y11, y12). By Theorem 1, Var(y01|y11, y12) can also be written as

Var(y01|y11, y12) =
(

1 − exp
(
−d01

λ

))
σ 2

ε

×
{

2 − 1 − exp(−d01/λ)

1 + (σ 2
β + σ 2

δ )(σ 2
δ + σ 2

ε )/(σ 2
ε (σ 2

β + 2σ 2
δ + σ 2

ε ))

}
.

The corresponding first partial derivatives are given as follows:

∂

∂d01
Var(y01|y11, y12) = 2

λ
exp

(
−d01

λ

)
σ 2

ε

A + exp(−d01/λ)

1 + A
,

∂

∂λ
Var(y01|y11, y12) = −2d01

λ2 exp
(
−d01

λ

)
σ 2

ε

A + exp(−d01/λ)

1 + A
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and

∂

∂σ 2
ε

Var(y01|y11, y12)

=
(

1 − exp
(
−d01

λ

))

×
{

2 −
(

1 − exp
(
−d01

λ

))
σ 2

ε

A2 (c1A − c2c3)

}

>
1 − exp(−d01/λ)

A2 c4,

respectively, where A = (σ 2
β+σ 2

δ )(σ 2
δ +σ 2

ε )

σ 2
ε (σ 2

β+2σ 2
δ +σ 2

ε )
, c1 = σ 2

β + 2σ 2
δ + σ 2

ε , c2 = σ 2
β + σ 2

δ , c3 =
σ 2

δ c1 + σ 2
ε (σ 2

δ + σ 2
ε ) and c4 = σ 2

ε c1(2σ 2
β + 3σ 2

δ + σ 2
ε ) + σ 2

ε c2(σ
2
δ + σ 2

ε )(3σ 2
β +

6σ 2
δ + 4σ 2

ε ) + c2
2(σ

2
δ + σ 2

ε )2.

A.2. Results for equations (2.29) and (2.30). Given the values of phase pa-
rameters, range as well as variance parameters and the observations until time t ,
the joint distribution of αs

1t ,α1t is
(

αs
1t

α1t

)
∼ N

[(
αs

1,t−1
α1,t−1

)
, σ 2τ 2

1 �∗(λ1)

]
,

where

�∗(θ) = exp{−V∗/θ} =
[
�∗

11(θ) �∗
12(θ)

�∗
21(θ) �∗

22(θ)

]
,

with �∗
11(θ) a scalar, �∗

12(θ) a 1 by n vector and �∗
22(θ) a n by n matrix. We use

V∗ to denote the new distance matrix for the unknown site s and the monitoring
stations s1, . . . , sn.

We then have the conditional posterior distribution of αs
1t as follows:

(αs
1t |αs

1,t−1,α1t ,α1,t−1,yt , λ, σ 2)

∼ N
[
αs

1,t−1 + �∗
12(λ1)�

∗
22(λ1)

−1(α1t − α1,t−1),(A.1)

σ 2τ 2
1
(
�∗

11(λ1) − �∗
12(λ1)�

∗
22(λ1)

−1�∗
21(λ1)

)]
.

Similarly, the conditional posterior distribution for αs
2t is

(αs
2t |αs

2,t−1,α2t ,α2,t−1,yt , λ, σ 2)

∼ N
[
αs

2,t−1 + �∗
12(λ2)�

∗
22(λ2)

−1(α2t − α2,t−1),(A.2)

σ 2τ 2
2
(
�∗

11(λ2) − �∗
12(λ2)�

∗
22(λ2)

−1�∗
21(λ2)

)]
.
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Using the observation equation as in (2.1), we have the conditional predictive
distribution for ys

t as follows:

(ys
t |yt , α

s
1t , α

s
2t ,α1t ,α2t , βt , λ, σ 2)

∼ N
[
βt + S1t (a1)α

s
1t + S2t (a2)α

s
2t

+ �∗
12(λ)�∗

22(λ)−1(
yt − 1nβt − S1t (a1)α1t − S2t (a2)α2t

)
,

σ 2(
�∗

11(λ) − �∗
12(λ)�∗

22(λ)−1�∗
21(λ)

)]
.
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SUPPLEMENTARY MATERIAL

Supplement A: MCMC convergence (DOI: 10.1214/09-AOAS318SUPPA;
.pdf). We show the MCMC convergence graphically in detail in Section 5 of this
paper. Starting from different initial values, two Markov chains mixed well after a
few hundred iterations.

Supplement B: Manuscripts for GDLM.1.0 (DOI: 10.1214/09-
AOAS318SUPPB; .pdf). We summarize the usage of the software package
GDLM.1.0 written by R and C languages.
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