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BROWNIAN DISTANCE COVARIANCE
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Bowling Green State University

Distance correlation is a new class of multivariate dependence coeffi-
cients applicable to random vectors of arbitrary and not necessarily equal
dimension. Distance covariance and distance correlation are analogous to
product-moment covariance and correlation, but generalize and extend these
classical bivariate measures of dependence. Distance correlation charac-
terizes independence: it is zero if and only if the random vectors are
independent. The notion of covariance with respect to a stochastic process
is introduced, and it is shown that population distance covariance coincides
with the covariance with respect to Brownian motion; thus, both can be called
Brownian distance covariance. In the bivariate case, Brownian covariance is
the natural extension of product-moment covariance, as we obtain Pearson
product-moment covariance by replacing the Brownian motion in the defin-
ition with identity. The corresponding statistic has an elegantly simple com-
puting formula. Advantages of applying Brownian covariance and correlation
vs the classical Pearson covariance and correlation are discussed and illus-
trated.

1. Introduction. The importance of independence arises in diverse applica-
tions, for inference and whenever it is essential to measure complicated depen-
dence structures in bivariate or multivariate data. This paper focuses on a new
dependence coefficient that measures all types of dependence between random
vectors X and Y in arbitrary dimension. Distance correlation and distance covari-
ance (Székely, Rizzo, and Bakirov [28]), and Brownian covariance, introduced in
this paper, provide a new approach to the problem of measuring dependence and
testing the joint independence of random vectors in arbitrary dimension. The cor-
responding statistics have simple computing formulae, apply to sample sizes n ≥ 2
(not constrained by dimension), and do not require matrix inversion or estimation
of parameters. For example, the distance covariance (dCov) statistic, derived in the

Received June 2009; revised October 2009.
Discussed in 10.1214/09-AOAS312A, 10.1214/09-AOAS312B, 10.1214/09-AOAS312C,

10.1214/09-AOAS312D, 10.1214/09-AOAS312E, 10.1214/09-AOAS312F and
10.1214/09-AOAS312G; rejoinder at 10.1214/09-AOAS312REJ.

1Research supported in part by the NSF.
Key words and phrases. Distance correlation, dcor, Brownian covariance, independence, multi-

variate.

1236

http://www.imstat.org/aoas/
http://dx.doi.org/10.1214/09-AOAS312
http://www.imstat.org
http://dx.doi.org/10.1214/09-AOAS312A
http://dx.doi.org/10.1214/09-AOAS312B
http://dx.doi.org/10.1214/09-AOAS312C
http://dx.doi.org/10.1214/09-AOAS312D
http://dx.doi.org/10.1214/09-AOAS312E
http://dx.doi.org/10.1214/09-AOAS312F
http://dx.doi.org/10.1214/09-AOAS312G
http://dx.doi.org/10.1214/09-AOAS312REJ


BROWNIAN COVARIANCE 1237

next section, is the square root of

V 2
n = 1

n2

n∑
k,l=1

AklBkl,

where Akl and Bkl are simple linear functions of the pairwise distances between
sample elements. It will be shown that the definitions of the new dependence co-
efficients have theoretical foundations based on characteristic functions and on the
new concept of covariance with respect to Brownian motion. Our independence
test statistics are consistent against all types of dependent alternatives with finite
second moments.

Classical Pearson product-moment correlation (ρ) and covariance measure lin-
ear dependence between two random variables, and in the bivariate normal case
ρ = 0 is equivalent to independence. In the multivariate normal case, a diagonal
covariance matrix � implies independence, but is not a sufficient condition for in-
dependence in the general case. Nonlinear or nonmonotone dependence may exist.
Thus, ρ or � do not characterize independence in general.

Although it does not characterize independence, classical correlation is widely
applied in time series, clinical trials, longitudinal studies, modeling financial data,
meta-analysis, model selection in parametric and nonparametric models, classifi-
cation and pattern recognition, etc. Ratios and other methods of combining and
applying correlation coefficients have also been proposed. An important example
is maximal correlation, characterized by Rényi [22].

For multivariate inference, methods based on likelihood ratio tests (LRT) such
as Wilks’ Lambda [32] or Puri-Sen [20] are not applicable if dimension exceeds
sample size, or when distributional assumptions do not hold. Although methods
based on ranks can be applied in some problems, many classical methods are ef-
fective only for testing linear or monotone types of dependence.

There is much literature on testing or measuring independence. See, for exam-
ple, Blomqvist [3], Blum, Kiefer, and Rosenblatt [4], or methods outlined in Hol-
lander and Wolfe [16] and Anderson [1]. Multivariate nonparametric approaches
to this problem can be found in Taskinen, Oja, and Randles [30], and the references
therein.

Our proposed distance correlation represents an entirely new approach. For all
distributions with finite first moments, distance correlation R generalizes the idea
of correlation in at least two fundamental ways:

(i) R(X,Y ) is defined for X and Y in arbitrary dimension.
(ii) R(X,Y ) = 0 characterizes independence of X and Y .

The coefficient R(X,Y ) is a standardized version of distance covariance V(X,Y ),
defined in the next section. Distance correlation satisfies 0 ≤ R ≤ 1, and R = 0
only if X and Y are independent. In the bivariate normal case, R is a deterministic
function of ρ, and R(X,Y ) ≤ |ρ(X,Y )| with equality when ρ = ±1.
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Thus, distance covariance and distance correlation provide a natural extension
of Pearson product-moment covariance σX,Y and correlation ρ, and new method-
ology for measuring dependence in all types of applications.

The notion of covariance of random vectors (X,Y ) with respect to a stochastic
process U is introduced in this paper. This new notion CovU(X,Y ) contains as
distinct special cases distance covariance V 2(X,Y ) and, for bivariate (X,Y ), σ 2

X,Y .
The title of this paper refers to CovW(X,Y ), where W is a Wiener process.

Brownian covariance W = W(X,Y ) is based on Brownian motion or Wiener
process for random variables X ∈ R

p and Y ∈ R
q with finite second moments. An

important property of Brownian covariance is that W (X,Y ) = 0 if and only if X

and Y are independent.
A surprising result develops: the Brownian covariance is equal to the distance

covariance. This equivalence is not only surprising, it also shows that distance
covariance is a natural counterpart of product-moment covariance. For bivari-
ate (X,Y ), by considering the simplest nonrandom function, identity (id), we
obtain Covid(X,Y ) = σ 2

X,Y . Then by considering the most fundamental random
processes, Brownian motion W , we arrive at CovW(X,Y ) = V 2(X,Y ). Brownian
correlation is a standardized Brownian covariance, such that if Brownian motion
is replaced with the identity function, we obtain the absolute value of Pearson’s
correlation ρ.

A further advantage of extending Pearson correlation with distance correlation
is that while uncorrelatedness (ρ = 0) can sometimes replace independence, for
example, in proving some classical laws of large numbers, uncorrelatedness is too
weak to imply a central limit theorem, even for strongly stationary summands (see
Bradley [7–9]). On the other hand, a central limit theorem for strongly stationary
sequences of summands follows from R = 0 type conditions (Székely and Bakirov
[25]).

Distance correlation and distance covariance are presented in Section 2. Brown-
ian covariance is introduced in Section 3. Extensions and applications are dis-
cussed in Sections 4 and 5.

2. Distance covariance and distance correlation. Let X in R
p and Y in R

q

be random vectors, where p and q are positive integers. The lower case fX and
fY will be used to denote the characteristic functions of X and Y , respectively,
and their joint characteristic function is denoted fX,Y . In terms of characteristic
functions, X and Y are independent if and only if fX,Y = fXfY . Thus, a natural
approach to measuring the dependence between X and Y is to find a suitable norm
to measure the distance between fX,Y and fXfY .

Distance covariance V is a measure of the distance between fX,Y and the prod-
uct fXfY . A norm ‖ · ‖ and a distance ‖fX,Y − fXfY ‖ are defined in Section 2.2.
Then an empirical version of V is developed and applied to test the hypothesis of
independence

H0 :fX,Y = fXfY vs H1 :fX,Y �= fXfY .
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In Székely et al. [28] an omnibus test of independence based on the sample dis-
tance covariance V is introduced that is easily implemented in arbitrary dimension
without requiring distributional assumptions. In Monte Carlo studies, the distance
covariance test exhibited superior power relative to parametric or rank-based like-
lihood ratio tests against nonmonotone types of dependence. It was also demon-
strated that the tests were quite competitive with the parametric likelihood ratio test
when applied to multivariate normal data. The practical message is that distance
covariance tests are powerful tests for all types of dependence.

2.1. Motivation.

Notation. The scalar product of vectors t and s is denoted by 〈t, s〉. For
complex-valued functions f (·), the complex conjugate of f is denoted by f and
|f |2 = f f . The Euclidean norm of x in R

p is |x|p . A primed variable X′ is an in-
dependent copy of X; that is, X and X′ are independent and identically distributed
(i.i.d.).

For complex functions γ defined on R
p × R

q , the ‖ · ‖w-norm in the weighted
L2 space of functions on R

p+q is defined by

‖γ (t, s)‖2
w =

∫
Rp+q

|γ (t, s)|2w(t, s) dt ds,(2.1)

where w(t, s) is an arbitrary positive weight function for which the integral above
exists.

With a suitable choice of weight function w(t, s), discussed below, we shall
define a measure of dependence

V 2(X,Y ;w) = ‖fX,Y (t, s) − fX(t)fY (s)‖2
w

(2.2)
=

∫
Rp+q

|fX,Y (t, s) − fX(t)fY (s)|2w(t, s) dt ds,

which is analogous to classical covariance, but with the important property that
V 2(X,Y ;w) = 0 if and only if X and Y are independent. In what follows, w is
chosen such that we can also define

V 2(X;w) = V 2(X,X;w) = ‖fX,X(t, s) − fX(t)fX(s)‖2
w

=
∫

R2p
|fX,X(t, s) − fX(t)fX(s)|2w(t, s) dt ds,

and similarly define V 2(Y ;w). Then a standardized version of V(X,Y ;w) is

Rw = V(X,Y ;w)√
V(X;w)V(Y ;w)

,

a type of unsigned correlation.
In the definition of the norm (2.1) there are more than one potentially interesting

and applicable choices of weight function w, but not every w leads to a dependence
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measure that has desirable statistical properties. Let us now discuss the motivation
for our particular choice of weight function leading to distance covariance.

At least two conditions should be satisfied by the standardized coefficient Rw:

(i) Rw ≥ 0 and Rw = 0 only if independence holds.
(ii) Rw is scale invariant, that is, invariant with respect to transformations

(X,Y ) �→ (εX, εY ), for ε > 0.

However, if we consider integrable weight function w(t, s), then for X and Y with
finite variance

lim
ε→0

V 2(εX, εY ;w)√
V 2(εX;w)V 2(εY ;w)

= ρ2(X,Y ).

The above limit is obtained by considering the Taylor expansions of the underly-
ing characteristic functions. Thus, if the weight function is integrable, Rw can be
arbitrarily close to zero even if X and Y are dependent. By using a suitable non-
integrable weight function, we can obtain an Rw that satisfies both properties (i)
and (ii) above.

Considering the operations on characteristic functions involved in evaluating
the integrand in (2.2), a promising solution to the choice of weight function w is
suggested by the following lemma.

LEMMA 1. If 0 < α < 2, then for all x in R
d

∫
Rd

1 − cos〈t, x〉
|t |d+α

d

dt = C(d,α)|x|αd ,

where

C(d,α) = 2πd/2	(1 − α/2)

α2α	((d + α)/2)
,

and 	(·) is the complete gamma function. The integrals at 0 and ∞ are meant in
the principal value sense: limε→0

∫
Rd\{εB+ε−1Bc}, where B is the unit ball (cen-

tered at 0) in R
d and Bc is the complement of B .

A proof of Lemma 1 is given in Székely and Rizzo [27]. Lemma 1 suggests the
weight functions

w(t, s;α) = (C(p,α)C(q,α)|t |p+α
p |s|q+α

q )−1, 0 < α < 2.(2.3)

The weight functions (2.3) result in coefficients Rw that satisfy the scale invariance
property (ii) above.

In the simplest case corresponding to α = 1 and Euclidean norm |x|,
w(t, s) = (cpcq |t |1+p

p |s|1+q
q )−1,(2.4)
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where

cd = C(d,1) = π(1+d)/2

	((1 + d)/2)
.(2.5)

(The constant 2cd is the surface area of the unit sphere in R
d+1.)

REMARK 1. Lemma 1 is applied to evaluate the integrand in (2.2) for weight
functions (2.3) and (2.4). For example, if α = 1 (2.4), then by Lemma 1 there exist
constants cp and cq such that for X in R

p and Y in R
q ,∫

Rp

1 − exp{i〈t,X〉}
|t |1+p

p

dt = cp|X|p,

∫
Rq

1 − exp{i〈s, Y 〉}
|s|1+q

q

ds = cq |Y |q,

∫
Rp

∫
Rq

1 − exp{i〈t,X〉 + i〈s, Y 〉}
|t |1+p

p |s|1+q
q

dt ds = cpcq |X|p|Y |q .

Distance covariance and distance correlation are a class of dependence coef-
ficients and statistics obtained by applying a weight function of the type (2.3),
0 < α < 2. This type of weight function leads to a simple product-average form
of the covariance (2.8) analogous to Pearson covariance. Other interesting weight
functions could be considered (see, e.g., Bakirov, Rizzo and Székely [2]), but only
the weight functions (2.3) lead to distance covariance type statistics (2.8).

In this paper we apply weight function (2.4) and the corresponding weighted
L2 norm ‖ · ‖, omitting the index w, and write the dependence measure (2.2) as

V 2(X,Y ). Section 4.1 extends our results for α ∈ (0,2).
For finiteness of ‖fX,Y (t, s) − fX(t)fY (s)‖2, it is sufficient that E|X|p < ∞

and E|Y |q < ∞.

2.2. Definitions.

DEFINITION 1. The distance covariance (dCov) between random vectors X

and Y with finite first moments is the nonnegative number V(X,Y ) defined by

V 2(X,Y ) = ‖fX,Y (t, s) − fX(t)fY (s)‖2

(2.6)

= 1

cpcq

∫
Rp+q

|fX,Y (t, s) − fX(t)fY (s)|2
|t |1+p

p |s|1+q
q

dt ds.

Similarly, distance variance (dVar) is defined as the square root of

V 2(X) = V 2(X,X) = ‖fX,X(t, s) − fX(t)fX(s)‖2.

By definition of the norm ‖ · ‖, it is clear that V(X,Y ) ≥ 0 and V(X,Y ) = 0 if
and only if X and Y are independent.
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DEFINITION 2. The distance correlation (dCor) between random vectors X

and Y with finite first moments is the nonnegative number R(X,Y ) defined by

R2(X,Y ) =

⎧⎪⎪⎨
⎪⎪⎩

V 2(X,Y )√
V 2(X)V 2(Y )

, V 2(X)V 2(Y ) > 0;

0, V 2(X)V 2(Y ) = 0.

(2.7)

Several properties of R analogous to ρ are given in Theorem 3. Results for the
special case of bivariate normal (X,Y ) are given in Theorem 6.

The distance dependence statistics are defined as follows. For a random sam-
ple (X,Y) = {(Xk,Yk) :k = 1, . . . , n} of n i.i.d. random vectors (X,Y ) from the
joint distribution of random vectors X in R

p and Y in R
q , compute the Euclidean

distance matrices (akl) = (|Xk − Xl|p) and (bkl) = (|Yk − Yl|q). Define

Akl = akl − āk· − ā·l + ā··, k, l = 1, . . . , n,

where

āk· = 1

n

n∑
l=1

akl, ā·l ,= 1

n

n∑
k=1

akl, ā·· = 1

n2

n∑
k,l=1

akl.

Similarly, define Bkl = bkl − b̄k· − b̄·l + b̄··, for k, l = 1, . . . , n.

DEFINITION 3. The nonnegative sample distance covariance Vn(X,Y) and
sample distance correlation Rn(X,Y) are defined by

V 2
n(X,Y) = 1

n2

n∑
k,l=1

AklBkl(2.8)

and

R2
n(X,Y) =

⎧⎪⎪⎨
⎪⎪⎩

V 2
n(X,Y)√

V 2
n(X)V 2

n(Y)
, V 2

n(X)V 2
n(Y) > 0;

0, V 2
n(X)V 2

n(Y) = 0,

(2.9)

respectively, where the sample distance variance is defined by

V 2
n(X) = V 2

n(X,X) = 1

n2

n∑
k,l=1

A2
kl.(2.10)

The nonnegativity of R2
n and V 2

n may not be immediately obvious from the
definitions above, but this property as well as the motivation for the definitions of
the statistics will become clear from Theorem 1 below.
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2.3. Properties of distance covariance. Several interesting properties of dis-
tance covariance are obtained. Results in this section are summarized as follows:

(i) Equivalent definition of Vn in terms of empirical characteristic functions
and norm ‖ · ‖.

(ii) Almost sure convergence Vn → V and R2
n → R2.

(iii) Properties of V(X,Y ), V(X), and R(X,Y ).
(iv) Properties of Rn and Vn.
(v) Weak convergence of nV 2

n , the limit distribution of nV 2
n , and statistical

consistency.
(vi) Results for the bivariate normal case.

Many of these results were obtained in Székely et al. [28]. Here we give the proofs
of new results and readers are referred to [28] for more details and proofs of our
previous results.

An equivalent definition of Vn. The coefficient V(X,Y ) is defined in terms of
characteristic functions, thus, a natural approach is to define the statistic Vn(X,Y)

in terms of empirical characteristic functions. The joint empirical characteristic
function of the sample, {(X1, Y1), . . . , (Xn,Yn)}, is

f n
X,Y (t, s) = 1

n

n∑
k=1

exp{i〈t,Xk〉 + i〈s, Yk〉}.

The marginal empirical characteristic functions of the X sample and Y sample are

f n
X(t) = 1

n

n∑
k=1

exp{i〈t,Xk〉}, f n
Y (s) = 1

n

n∑
k=1

exp{i〈s, Yk〉},

respectively. Then an empirical version of distance covariance could have been
defined as ‖f n

X,Y (t, s) − f n
X(t)f n

Y (s)‖, where the norm ‖ · ‖ is defined by the in-
tegral as above in (2.1). Theorem 1 establishes that this definition is equivalent to
Definition 3.

THEOREM 1. If (X,Y) is a sample from the joint distribution of (X,Y ), then

V 2
n(X,Y) = ‖f n

X,Y (t, s) − f n
X(t)f n

Y (s)‖2.

The proof applies Lemma 1 to evaluate the integral ‖f n
X,Y (t, s)−f n

X(t)f n
Y (s)‖2

with w(t, s) = {cpcq |t |1+p
p |s|1+q

q }−1. An intermediate result is

‖f n
X,Y (t, s) − f n

X(t)f n
Y (s)‖2 = T1 + T2 − 2T3,(2.11)
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where

T1 = 1

n2

n∑
k,l=1

|Xk − Xl|p|Yk − Yl|q,

T2 = 1

n2

n∑
k,l=1

|Xk − Xl|p 1

n2

n∑
k,l=1

|Yk − Yl|q,

T3 = 1

n3

n∑
k=1

n∑
l,m=1

|Xk − Xl|p|Yk − Ym|q.

Then the algebraic identity T1 + T2 − 2T3 = V 2
n(X,Y), where V 2

n(X,Y) is given
by Definition 3, is established to complete the proof.

As a corollary to Theorem 1, we have V 2
n(X,Y) ≥ 0. It is also easy to see that the

statistic Vn(X) = 0 if and only if every sample observation is identical. If Vn(X) =
0, then Akl = 0 for k, l = 1, . . . , n. Thus, 0 = Akk = −ak· − a·k + a·· implies that
ak· = a·k = a··/2, and

0 = Akl = akl − ak· − a·l + a·· = akl = |Xk − Xl|p,

so X1 = · · · = Xn.

REMARK 2. The simplicity of formula (2.8) for Vn in Definition 3 has prac-
tical advantages. Although the identity (2.11) in Theorem 1 provides an alternate
computing formula for Vn, the original formula in Definition 3 is simpler and re-
quires less computing time (1/3 less time per statistic on our current machine,
for sample size 100). Reusable computations and other efficiencies possible us-
ing the simpler formula (2.8) execute our permutation tests in 94% to 98% less
time, which depends on the number of replicates. It is straightforward to apply
resampling procedures without the need to recompute the distance matrices. See
Example 5, where a jackknife procedure is illustrated.

THEOREM 2. If E|X|p < ∞ and E|Y |q < ∞, then almost surely

lim
n→∞ Vn(X,Y) = V(X,Y ).

COROLLARY 1. If E(|X|p + |Y |q) < ∞, then almost surely

lim
n→∞ R2

n(X,Y) = R2(X,Y ).

THEOREM 3. For random vectors X ∈ R
p and Y ∈ R

q such that E(|X|p +
|Y |q) < ∞, the following properties hold:

(i) 0 ≤ R(X,Y ) ≤ 1, and R = 0 if and only if X and Y are independent.
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(ii) V(a1 + b1C1X,a2 + b2C2Y) =
√

|b1b2|V(X,Y ), for all constant vectors
a1 ∈ R

p , a2 ∈ R
q , scalars b1, b2 and orthonormal matrices C1, C2 in R

p and R
q ,

respectively.
(iii) If the random vector (X1, Y1) is independent of the random vector

(X2, Y2), then

V(X1 + X2, Y1 + Y2) ≤ V(X1, Y1) + V(X2, Y2).

Equality holds if and only if X1 and Y1 are both constants, or X2 and Y2 are both
constants, or X1,X2, Y1, Y2 are mutually independent.

(iv) V(X) = 0 implies that X = E[X], almost surely.
(v) V(a + bCX) = |b|V(X), for all constant vectors a in R

p , scalars b, and
p × p orthonormal matrices C.

(vi) If X and Y are independent, then V(X + Y) ≤ V(X) + V(Y ). Equality
holds if and only if one of the random vectors X or Y is constant.

Proofs of statements (iii) and (vi) are given in the Appendix.

THEOREM 4.

(i) Vn(X,Y) ≥ 0.
(ii) Vn(X) = 0 if and only if every sample observation is identical.

(iii) 0 ≤ Rn(X,Y) ≤ 1.
(iv) Rn(X,Y) = 1 implies that the dimensions of the linear subspaces spanned

by X and Y respectively are almost surely equal, and if we assume that these
subspaces are equal, then in this subspace

Y = a + bXC

for some vector a, nonzero real number b, and orthogonal matrix C.

Theorem 3 and the results below for the dCov test can be applied in a wide
range of problems in statistical modeling and inference, including nonparametric
models, models with multivariate response, or when dimension exceeds sample
size. Some applications are discussed in Section 5.

Asymptotic properties of nV 2
n . A multivariate test of independence is deter-

mined by nV 2
n or nV 2

n/T2, where T2 = ā··b̄·· is as defined in Theorem 1. If we apply
the latter version, it normalizes the statistic so that asymptotically it has expected
value 1. Then if E(|X|p + |Y |q) < ∞, under independence, nV 2

n/T2 converges in
distribution to a quadratic form

Q
D=

∞∑
j=1

λjZ
2
j ,(2.12)



1246 G. J. SZÉKELY AND M. L. RIZZO

where Zj are independent standard normal random variables, {λj } are nonnega-
tive constants that depend on the distribution of (X,Y ), and E[Q] = 1. A test of
independence that rejects independence for large nV 2

n/T2 (or nV 2
n ) is statistically

consistent against all alternatives with finite first moments.
In the next theorem we need only assume finiteness of first moments for weak

convergence of nV 2
n under the independence hypothesis.

THEOREM 5 (Weak convergence). If X and Y are independent and E(|X|p +
|Y |q) < ∞, then

nV 2
n

D−→
n→∞‖ζ(t, s)‖2,

where ζ(·) is a complex-valued zero mean Gaussian random process with covari-
ance function

R(u,u0) = (
fX(t − t0) − fX(t)fX(t0)

)(
fY (s − s0) − fY (s)fY (s0)

)
,

for u = (t, s), u0 = (t0, s0) ∈ R
p × R

q .

COROLLARY 2. If E(|X|p + |Y |q) < ∞, then

(i) If X and Y are independent, then nV2
n/T2

D−→
n→∞Q where Q is a nonnega-

tive quadratic form of centered Gaussian random variables (2.12) and E[Q] = 1.

(ii) If X and Y are independent, then nV2
n

D−→
n→∞Q1 where Q1 is a non-

negative quadratic form of centered Gaussian random variables and E[Q1] =
E|X − X′|E|Y − Y ′|.

(iii) If X and Y are dependent, then nV 2
n/T2

P−→
n→∞∞ and nV 2

n

P−→
n→∞∞.

Corollary 2(i), (ii) guarantees that the dCov test statistic has a proper limit dis-
tribution under the hypothesis of independence for all X and Y with finite first
moments, while Corollary 2(iii) shows that under any dependent alternative, the
dCov test statistic tends to infinity (stochastically). Thus, the dCov test of indepen-
dence is statistically consistent against all types of dependence.

The dCov test is easy to implement as a permutation test, which is the method
that we applied in our examples and power comparisons. For the permutation test
implementation one can apply test statistic nV 2

n . Large values of nV 2
n (or nV 2

n/T2)
are significant. The dCov test and test statistics are implemented in the energy
package for R in functions dcov.test, dcov, and dcor [21, 23].

We have also obtained a result that gives an asymptotic critical value applicable
to arbitrary distributions. If Q is a quadratic form of centered Gaussian random
variables and E[Q] = 1, then

P {Q ≥ χ2
1−α(1)} ≤ α
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for all 0 < α ≤ 0.215, where χ2
1−α(1) is the (1 − α) quantile of a chi-square vari-

able with 1 degree of freedom. This result follows from a theorem of Székely and
Bakirov [26], page 181.

Thus, a test that rejects independence if nV 2
n/T2 ≥ χ2

1−α(1) has an asymptotic
significance level at most α. This test criterion could be quite conservative for
many distributions. Although this critical value is conservative, it is a sharp bound;
the upper bound α is achieved when X and Y are independent Bernoulli variables.

Results for the bivariate normal distribution. When (X,Y ) has a bivariate nor-
mal distribution, there is a deterministic relation between R and |ρ|.

THEOREM 6. If X and Y are standard normal, with correlation ρ = ρ(X,Y ),
then:

(i) R(X,Y ) ≤ |ρ|,
(ii) R2(X,Y ) = ρ arcsinρ+

√
1−ρ2−ρ arcsin(ρ/2)−

√
4−ρ2+1

1+π/3−√
3

,

(iii) infρ �=0
R(X,Y )

|ρ| = limρ→0
R(X,Y )

|ρ| = 1
2(1+π/3−√

3)1/2 � 0.89066.

The relation between R and ρ for a bivariate normal distribution is shown in
Figure 1.

3. Brownian covariance. To introduce the notion of Brownian covariance,
let us begin by considering the squared product-moment covariance. Recall that

FIG. 1. Dependence coefficient R2 (solid line) and correlation ρ2 (dashed line) in the bivariate
normal case.
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a primed variable X′ denotes an i.i.d. copy of the unprimed symbol X. For two
real-valued random variables, the square of their classical covariance is

E2[(
X − E(X)

)(
Y − E(Y )

)]
(3.1)

= E
[(

X − E(X)
)(

X′ − E(X′)
)(

Y − E(Y )
)(

Y ′ − E(Y ′)
)]

.

Now we generalize the squared covariance and define the square of conditional
covariance, given two real-valued stochastic processes U(·) and V (·). We obtain
an interesting result when U and V are independent Weiner processes.

First, to center the random variable X in the conditional covariance, we need the
following definition. Let X be a real-valued random variable and {U(t) : t ∈ R

1} a
real-valued stochastic process, independent of X. The U -centered version of X is
defined by

XU = U(X) −
∫ ∞
−∞

U(t) dFX(t) = U(X) − E[U(X)|U ],(3.2)

whenever the conditional expectation exists.
Note that if id is identity, we have Xid = X − E[X]. The important examples in

this paper apply Brownian motion/Weiner processes.

3.1. Definition of Brownian covariance. Let W be a two-sided one-dimen-
sional Brownian motion/Wiener process with expectation zero and covariance
function

|s| + |t | − |s − t | = 2 min(s, t), t, s ≥ 0.(3.3)

This is twice the covariance of the standard Wiener process. Here the factor 2
simplifies the computations, so throughout the paper, covariance function (3.3) is
assumed for W .

DEFINITION 4. The Brownian covariance or the Wiener covariance of two
real-valued random variables X and Y with finite second moments is a non-
negative number defined by its square

W 2(X,Y ) = Cov2
W(X,Y ) = E[XWX′

WYW ′Y ′
W ′ ],(3.4)

where (W,W ′) does not depend on (X,Y,X′, Y ′).

Note that if W in CovW is replaced by the (nonrandom) identity func-
tion id, then Covid(X,Y ) = |Cov(X,Y )| = |σX,Y |, the absolute value of Pearson’s
product-moment covariance. While the standardized product-moment covariance,
Pearson correlation (ρ), measures the degree of linear relationship between two
real-valued variables, we shall see that standardized Brownian covariance mea-
sures the degree of all kinds of possible relationships between two real-valued
random variables.
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The definition of CovW(X,Y ) can be extended to random processes in higher
dimensions as follows. If X is an R

p-valued random variable, and U(s) is a ran-
dom process (random field) defined for all s ∈ R

p and independent of X, define
the U -centered version of X by

XU = U(X) − E[U(X)|U ],
whenever the conditional expectation exists.

DEFINITION 5. If X is an R
p-valued random variable, Y is an R

q -valued ran-
dom variable, and U(s) and V (t) are arbitrary random processes (random fields)
defined for all s ∈ R

p , t ∈ R
q , then the (U,V ) covariance of (X,Y ) is defined as

the nonnegative number whose square is

Cov2
U,V (X,Y ) = E[XUX′

UYV Y ′
V ],(3.5)

whenever the right-hand side is nonnegative and finite.
In particular, if W and W ′ are independent Brownian motions with covariance

function (3.3) on R
p , and R

q respectively, the Brownian covariance of X and Y is
defined by

W 2(X,Y ) = Cov2
W(X,Y ) = Cov2

W,W ′(X,Y ).(3.6)

Similarly, for random variables with finite variance define the Brownian vari-
ance by

W (X) = VarW(X) = CovW(X,X).

DEFINITION 6. The Brownian correlation is defined as

CorW(X,Y ) = W (X,Y )√
W(X)W (Y )

whenever the denominator is not zero; otherwise CorW(X,Y ) = 0.

In the following sections we prove that CovW(X,Y ) exists for random vectors X

and Y with finite second moments, and derive the Brownian covariance in this case.

3.2. Existence of W(X,Y ). In the following, the subscript on Euclidean norm
|x|d for x ∈ R

d is omitted when the dimension is self-evident.

THEOREM 7. If X is an R
p-valued random variable, Y is an R

q -valued ran-
dom variable, and E(|X|2 + |Y |2) < ∞, then E[XWX′

WYW ′Y ′
W ′ ] is nonnegative

and finite, and

W 2(X,Y ) = E[XWX′
WYW ′Y ′

W ′ ]
= E|X − X′||Y − Y ′| + E|X − X′|E|Y − Y ′|(3.7)

− E|X − X′||Y − Y ′′| − E|X − X′′||Y − Y ′|,
where (X,Y ), (X′, Y ′), and (X′′, Y ′′) are i.i.d.
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PROOF. Observe that

E[XWX′
WYW ′Y ′

W ′ ] = E[E(XWYW ′X′
WY ′

W ′ |W,W ′)]
= E[E(XWYW ′ |W,W ′)E(X′

WY ′
W ′ |W,W ′)]

= E[E(XWYW ′ |W,W ′)]2,

and this is always nonnegative. For finiteness, it is enough to prove that all factors
in the definition of CovW(X,Y ) have finite fourth moments. Equation (3.7) relies
on the special form of the covariance function (3.3) of W . The remaining details
are in the Appendix. �

See Section 4.1 for definitions and extension of results for the general case
of fractional Brownian motion with Hurst parameter 0 < H < 1 and covariance
function |t |2H + |s|2H − |t − s|2H .

3.3. The surprising coincidence: W = V .

THEOREM 8. For arbitrary X ∈ R
p , Y ∈ R

q with finite second moments

W(X,Y ) = V(X,Y ).

PROOF. Both V and W are nonnegative, hence, it is enough to show that their
squares coincide. Lemma 1 can be applied to evaluate V 2(X,Y ). In the numerator
of the integral we have terms like

E[cos〈X − X′, t〉 cos〈Y − Y ′, s〉],
where X,X′ are i.i.d. and Y,Y ′ are i.i.d. Now apply the identity

cosu cosv = 1 − (1 − cosu) − (1 − cosv) + (1 − cosu)(1 − cosv)

and Lemma 1 to simplify the integrand. After cancelation in the numerator of the
integrand, there remains to evaluate integrals of the type

E

∫
Rp+q

[1 − cos〈X − X′, t〉][1 − cos〈Y − Y ′, s〉)]
|t |1+p|s|1+q

dt ds

= E

[∫
Rp

1 − cos〈X − X′, t〉
|t |1+p

dt ×
∫

Rq

1 − cos〈Y − Y ′, s〉
|s|1+q

ds

]

= cpcqE|X − X′|E|Y − Y ′|.
Applying similar steps, after further simplification, we obtain

V 2(X,Y ) = E|X − X′||Y − Y ′| + E|X − X′|E|Y − Y ′|
− E|X − X′||Y − Y ′′| − E|X − X′′||Y − Y ′|,
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and this is exactly equal to the expression (3.7) obtained for W(X,Y ) in Theo-
rem 7. �

As a corollary to Theorem 8, the properties of Brownian covariance for random
vectors X and Y with finite second moments are therefore the same properties
established for distance covariance V(X,Y ) in Theorem 3.

The surprising result that Brownian covariance equals distance covariance
dCov, exactly as defined in (2.6) for X ∈ R

p and Y ∈ R
q , parallels a familiar

special case when p = q = 1. For bivariate (X,Y ) we found that R(X,Y ) is a
natural counterpart of the absolute value of the Pearson correlation. That is, if
in (3.5) U and V are the simplest nonrandom function id, then we obtain the
square of Pearson covariance σ 2

X,Y . Next, if we consider the most fundamental
random processes, U = W and V = W ′, we obtain the square of distance covari-
ance, V 2(X,Y ).

Interested readers are referred to Székely and Bakirov [25] for the background
of the interesting coincidence in Theorem 8.

4. Extensions.

4.1. The class of α-distance dependence measures. In two contexts above
we have introduced dependence measures based on Euclidean distance and on
Brownian motion with Hurst index H = 1/2 (self-similarity index). Our defi-
nitions and results can be extended to a one-parameter family of distance de-
pendence measures indexed by a positive exponent 0 < α < 2 on Euclidean
distance, or equivalently by an index h, where h = 2H for Hurst parameters
0 < H < 1.

If E(|X|αp + |Y |αq ) < ∞ define V (α) by its square

V 2(α)(X,Y ) = ‖fX,Y (t, s) − fX(t)fY (s)‖2
α

= 1

C(p,α)C(q,α)

∫
Rp+q

|fX,Y (t, s) − fX(t)fY (s)|2
|t |α+p

p |s|α+q
q

dt ds.

Similarly, R(α) is the square root of

R2(α) = V 2(α)(X,Y )√
V 2(α)(X)V 2(α)(Y )

, 0 < V 2(α)(X), V 2(α)(Y ) < ∞,

and R(α) = 0 if V 2(α)(X)V 2(α)(Y ) = 0.
Now consider the Lévy fractional Brownian motion {Wd

H(t), t ∈ R
d} with Hurst

index H ∈ (0,1), which is a centered Gaussian random process with covariance
function

E[Wd
H(t)Wd

H (s)] = |t |2H + |s|2H − |t − s|2H , t, s ∈ R
d .
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See Herbin and Merzbach [15].
In the following, (WH ,W ′

H ∗) and (X,X′, Y,Y ′) are supposed to be indepen-
dent.

Using Lemma 1, it can be shown for Hurst parameters 0 < H , H ∗ ≤ 1, h := 2H ,
and h∗ := 2H ∗, that

Cov2
W

p
H ,W

′q
H∗

(X,Y )

= 1

C(p,h)C(q,h∗)

∫
Rp

∫
Rq

|f (t, s) − f (t)g(s)|2 dt ds

|t |p+h
p |s|q+h∗

q
(4.1)

= E|X − X′|hp|Y − Y ′|h∗
q + E|X − X′|hpE|Y − Y ′|h∗

q

− E|X − X′|hp|Y − Y ′′|h∗
q − E|X − X′′|hp|Y − Y ′|h∗

q .

Here we need to suppose that E|X|2h
p < ∞, E|Y |2h∗

q < ∞. Observe that when
h = h∗ = 1, (4.1) is equation (3.7) of Theorem 7.

The corresponding statistics are defined by replacing the exponent 1 with expo-
nent α (or h) in the distance dependence statistics (2.8), (2.10), and (2.9). That is,
in the sample distance matrices replace akl = |Xk − Xl|p with akl = |Xk − Xl|αp,

and replace bkl = |Yk − Yl|q with bkl = |Yk − Yl|αq , k, l = 1, . . . , n.
Theorem 2 can be generalized for ‖ · ‖α norms, so that almost sure convergence

of V (α)
n → V (α) follows if the α-moments are finite. Similarly, one can prove the

weak convergence and statistical consistency for α exponents, 0 < α < 2, provided
that α moments are finite.

Note that the strict inequality 0 < α < 2 is important. Although V (2) can be
defined for α = 2, it does not characterize independence. Indeed, the case α = 2
(squared Euclidean distance) leads to classical product-moment correlation and
covariance for bivariate (X,Y ). Specifically, if p = q = 1, then R(2) = |ρ|, R(2)

n =
|ρ̂|, and V (2)

n = 2|σ̂xy |, where σ̂xy is the maximum likelihood estimator of Pearson
covariance σx,y = σ(X,Y ).

4.2. Affine invariance. Independence is preserved under affine transforma-
tions hence it is natural to consider dependence measures that are affine invariant.
We have seen that R(X,Y ) is invariant with respect to orthogonal transformations

X �→ a1 + b1C1X, Y �→ a2 + b2C2Y,(4.2)

where a1, a2 are arbitrary vectors, b1, b2 are arbitrary nonzero numbers, and C1,
C2 are arbitrary orthogonal matrices. We can also define a distance correlation that
is affine invariant. Define the scaled samples X∗ and Y∗ by

X∗ = XS
−1/2
X , Y∗ = YS

−1/2
Y ,(4.3)

where SX and SY are the sample covariance matrices of X and Y respectively. The
sample vectors in (4.3) are not invariant to affine transformations, but the distances,
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|X∗
k − X∗

l | and |Y ∗
k − Y ∗

l |, k, l = 1, . . . , n, are invariant to affine transformations.
Thus, an affine distance correlation statistic can be defined by its square

R∗2
n (X,Y) = V 2

n(X∗,Y∗)√
V 2

n(X∗)V 2
n(Y∗)

.

Theoretical properties established for Vn and Rn also hold for V ∗
n and

R∗
n, because the transformation simply replaces the original weight function

{cpcq |t |1+p
p |s|1+q

q }−1 with {cpcq |�1/2
X t |1+p

p |�1/2
Y s|1+q

q }−1.

4.3. Rank test. In the case of bivariate (X,Y ) one can also consider a distance
covariance test of independence for rank(X), rank(Y ), which has the advantage
that it is distribution free and invariant with respect to monotone transformations
of X and Y , but usually at a cost of lower power than the dCov(X,Y ) test (see
Example 1). The rank-dCov test can be applied to continuous or discrete data, but
for discrete data it is necessary to use the correct method for breaking ties. Any
ties in ranks should be broken randomly, so that a sample of size n is transformed
to some permutation of the integers 1:n. A table of critical values for the statistic
nR2

n, based on Monte Carlo results, is provided in Table 2 in the Appendix.

5. Applications.

5.1. Nonlinear and nonmonotone dependence. Suppose that one wants to test
the independence of X and Y , where X and Y cannot be observed directly, but can
only be measured with independent errors. Consider the following:

(i) Suppose that Xi can only be measured through observation of Ai = Xi +
εi , where εi are independent of Xi , and similarly for Yi .

(ii) One can only measure (non) random functions of X and Y , for example,
Ai = φ(Xi) and Bi = ψ(Yi).

(iii) Suppose both (i) and (ii) for certain types of random φ and ψ .

In all of these cases, even if (X,Y ) were jointly normal, the dependence be-
tween (A,B) can be such that the correlation of A and B is almost irrelevant,
but dCor(A,B) is obviously relevant.

In this section we illustrate a few of the many possible applications of distance
covariance. The dCov test has been applied using the dcov.test function in the
energy [23] package for R [21], where it is implemented as a permutation test.

5.2. Examples.

EXAMPLE 1. This example is similar to the type considered in (ii), with ob-
served data from the NIST Statistical Reference Datasets (NIST StRD) for Non-
linear Regression. The data analyzed is Eckerle4, data from an NIST study of
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FIG. 2. The Eckerle4 data (a) and plot of residuals vs predictor variable for the NIST certified
estimates (b), in Example 1.

circular interference transmittance [10]. There are 35 observations, the response
variable is transmittance, and the predictor variable is wavelength. A plot of the
data in Figure 2(a) reveals that there is a nonlinear relation between wavelength
and transmittance. The proposed nonlinear model is

y = f (x;β) + ε = β1

β2
exp

{−(x − β3)
2

2β2
2

}
+ ε,

where β1, β2 > 0, β3 ∈ R, and ε is random error. In the hypothesized model, Y

depends on the density of X.
Results of the dCov test of independence of wavelength and transmittance are

dCov test of independence
data: x and y
nV^2 = 8.1337, p-value = 0.021
sample estimates:

dCor
0.4275431

with Rn
.= 0.43, and dCov is significant (p-value = 0.021) based on 999 repli-

cates. In contrast, neither Pearson correlation ρ̂ = 0.0356, (p-value = 0.839) nor
Spearman rank correlation ρ̂s = 0.0062 (p-value = 0.9718) detects the nonlinear
dependence between wavelength and transmittance, even though the relation in
Figure 2(a) appears to be nearly deterministic.

The certified estimates (best solution found) for the parameters are reported by
NIST as β̂1

.= 1.55438, β̂2
.= 4.08883, and β̂3

.= 451.541. The residuals of the
fitted model are easiest to analyze when plotted vs the predictor variable as in
Figure 2(b). Comparing residuals and transmittance,
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dCov test of independence
data: y and res
nV^2 = 0.0019, p-value = 0.019
sample estimates:

dCor
0.4285534

we have Rn
.= 0.43 and the dCov test is significant (p-value = 0.019) based on 999

replicates. Again the Pearson correlation is nonsignificant (ρ̂ .= 0.11, p-value =
0.5378).

Although nonlinear dependence is clearly evident in both plots, note that the
methodology applies to multivariate analysis as well, for which residual plots are
much less informative.

EXAMPLE 2. In the model specification of Example 1, the response variable Y

is assumed to be proportional to a normal density plus random error. For simplicity,
consider (X,Y ) = (X,φ(X)), where X is standard normal and φ(·) is the standard
normal density. Results of a Monte Carlo power comparison of the dCov test with
classical Pearson correlation and Spearman rank tests are shown in Figure 3. The
power estimates are computed as the proportion of significant tests out of 10,000
at 10% significance level.

In this example, where the relation between X and Y is deterministic but not
monotone, it is clear that the dCov test is superior to product moment correla-

FIG. 3. Example 2: Empirical power at 0.1 significance and sample size n.
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tion tests. Statistical consistency of the dCov test is evident, as its power increases
to 1 with sample size, while the power of correlation tests against this alterna-
tive remains approximately level across sample sizes. We also note that distance
correlation applied to ranks of the data is more powerful in this example than ei-
ther correlation test, although somewhat less powerful than the dCov test on the
original (X,Y ) data.

EXAMPLE 3. The Saviotti aircraft data [24] record six characteristics of air-
craft designs which appeared during the twentieth century. We consider two vari-
ables, wing span (m) and speed (km/h) for the 230 designs of the third (of three)
periods. This example and the data (aircraft) are from Bowman and Azzalini [5,
6]. A scatterplot on log-log scale of the variables and contours of a nonparamet-
ric density estimate are shown in Figures 4(a) and 4(b). The nonlinear relation
between speed and wing span is quite evident from the plots.

The dCov test of independence of log(Speed) and log(Span) in period 3 is sig-
nificant (p-value = 0.001), while the Pearson correlation test is not significant
(p-value = 0.8001).

dCov test of independence
data: logSpeed3 and logSpan3
nV^2 = 3.4151, p-value = 0.001
sample estimates:

dCor
0.2804530

FIG. 4. Scatterplot and contours of density estimate for the aircraft speed and span variables,
period 3, in Example 3.
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Pearson’s product-moment correlation
data: logSpeed3 and logSpan3
t = 0.2535, df = 228, p-value = 0.8001
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.1128179 0.1458274
sample estimates:

cor
0.01678556

The sample estimates are ρ̂ = 0.0168 and Rn = 0.2805. Here we have an example
of observed data where two variables are nearly uncorrelated, but dependent. We
obtained essentially the same results on the correlations of ranks of the data.

EXAMPLE 4. This example compares dCor and Pearson correlation in ex-
ploratory data analysis. Consider the Freedman [31, 13] data on crime rates in US
metropolitan areas with 1968 populations of 250,000 or more. The data set is avail-
able from Fox [12], and contains four numeric variables:

population (total 1968, in thousands),
nonwhite (percent nonwhite population, 1960),
density (population per square mile, 1968),
crime (crime rate per 100,000, 1969).

The 110 observations contain missing values. The data analyzed are the 100
cities with complete data. Pearson ρ̂ and dCor statistics Rn are shown in Table 1.
Note that there is a significant association between crime and population density
measured by dCor, which is not significant when measured by ρ̂.

Analysis of this data continues in Example 5.

EXAMPLE 5 (Influential observations). When Vn and Rn are computed using
formula (2.8), it is straightforward to apply a jackknife procedure to identify pos-
sible influential observations or to estimate standard error of Vn or Rn. A ‘leave-
one-out’ sample corresponds to (n− 1)× (n− 1) matrices A(i)kl and B(i)kl , where

TABLE 1
Pearson correlation and distance correlation statistics for the Freedman data of Example 4.

Significance at 0.05,0.01,0.001 for the corresponding tests is indicated by ∗,∗∗,∗ ∗ ∗, respectively

Pearson dCor

Nonwhite Density Crime Nonwhite Density Crime

Population 0.070 0.368∗∗∗ 0.396∗∗∗ 0.260∗ 0.615∗∗∗ 0.422∗∗
Nonwhite 0.002 0.294∗∗ 0.194 0.385∗∗∗
Density 0.112 0.250∗
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the subscript (i) indicates that the ith observation is left out. Then A(i)kl is com-
puted from distance matrix A = (akl) by omitting the ith row and the ith column
of A, and similarly B(i)kl is computed from B = (bkl) by omitting the ith row and
the ith column of B . Then

V 2
(i)(X,Y) = 1

(n − 1)2

∑
k,l �=i

A(i)klB(i)kl, i = 1, . . . , n,

are the jackknife replicates of V 2
n , obtained without recomputing matrices A and B .

Similarly, R2
(i) can be computed from the matrices A and B . A jackknife estimate

of the standard error of Rn is thus easily obtained from the matrices A,B (on the
jackknife, see, e.g., Efron and Tibshirani [11]).

The jackknife replicates R(i) can be used to identify potentially influential ob-
servations, in the sense that outliers within the sample of replicates correspond
to observations Xi that increase or decrease the dependence coefficient more than
other observations. These unusual replicates are not necessarily outliers in the orig-
inal data.

Consider the crime data of Example 4. The studentized jackknife replicates
R(i)/ŝe(R(i)), i = 1, . . . , n, are plotted in Figure 5(a). These replicates were com-
puted on the pairs (x, y), where x is the vector (nonwhite, density, population)
and y is crime. The plot suggests that Philadelphia is an unusual observation. For
comparison we plot the first two principal components of the four variables in Fig-
ure 5(b), but Philadelphia (PHIL) does not appear to be an unusual observation in
this plot or other plots (not shown), including those where log(population) replaces

FIG. 5. Jackknife replicates of dCor (a) and principal components of Freedman data (b) in Exam-
ple 5.
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population in the analysis. One can see from comparing

population nonwhite density crime
PHILADELPHIA 4829 15.7 1359 1753

with sample quartiles

population nonwhite density crime
0% 270.00 0.300 37.00 458.00
25% 398.75 3.400 266.50 2100.25
50% 664.00 7.300 412.00 2762.00
75% 1167.75 14.825 773.25 3317.75
100% 11551.00 64.300 13087.00 5441.00

that crime in Philadelphia is low while population, nonwhite, and density are all
high relative to other cities. Recall that all Pearson correlations were positive in
Example 4.

This example illustrates that having a single multivariate summary statistic dCor
that measures dependence is a valuable tool in exploratory data analysis, and it
can provide information about potential influential observations prior to model
selection.

EXAMPLE 6. In this example we illustrate how to isolate the nonlinear depen-
dence between random vectors to test for nonlinearity.

Gumbel’s bivariate exponential distribution [14] has density function

f (x, y; θ) = [(1 + θx)(1 + θy)] exp(−x − y − θxy), x, y > 0;0 ≤ θ ≤ 1.

The marginal distributions are standard exponential, so there is a strong nonlinear,
but monotone dependence relation between X and Y . The conditional density is

f (y|x) = e−(1+θx)y[(1 + θx)(1 + θy) − θ ], y > 0.

If θ = 0, then fX,Y (x, y) = fX(x)fY (y) and independence holds, so ρ = 0. At
the opposite extreme, if θ = 1, then ρ = −0.40365 (see Kotz, Balakrishnan, and
Johnson [18], Section 2.2). Simulated data was generated using the conditional
distribution function approach outlined in Johnson [17]. Empirical power of dCov
and correlation tests for the case θ = 0.5 are compared in Figure 6(a), estimated
from 10,000 test decisions each for sample sizes {10:100(10), 120:200(20), 250,
300}. This comparison reveals that the correlation test is more powerful than
dCov against this alternative, which is not unexpected because E[Y |X = x] =
(1 + θ + xθ)/(1 + xθ)2 is monotone.

While we cannot split the dCor or dCov coefficient into linear and nonlinear
components, we can extract correlation first and then compute dCor on the residu-
als. In this way one can separately analyze the linear and nonlinear components of
bivariate or multivariate dependence relations.



1260 G. J. SZÉKELY AND M. L. RIZZO

FIG. 6. Power comparison of dCov and correlation tests at 10% significance level for Gumbel’s
bivariate exponential distribution in Example 6.

To extract the linear component of dependence, fit a linear model Y = Xβ + ε

to the sample (X,Y) by ordinary least squares. It is not necessary to test whether
the linear relation is significant. The residuals ε̂i = Xiβ̂ −Yi are uncorrelated with
the predictors X. Apply the dCov test of independence to (X, ε̂).

Returning to the Gumbel bivariate exponential example, we have extracted the
linear component and applied dCov to the residuals of a simple linear regression
model. Repeating the power comparison described above on (X, ε̂) data, we ob-
tained the power estimates shown in Figure 6(b). One can note that power of dCov
tests is increasing to 1 with sample size, exhibiting statistical consistency against
the nonlinear dependence remaining in the residuals of the linear model.

This procedure is easily applied in arbitrary dimension. One can fit a linear mul-
tiple regression model or a model with multivariate response to extract the linear
component of dependence. This has important practical application for evaluating
models in higher dimensions.

More examples, including Monte Carlo power comparisons for random vectors
in dimensions up to p = q = 30, are given in Székely et al. [28].

6. Summary. Distance covariance and distance correlation are natural exten-
sions and generalizations of classical Pearson covariance and correlation in at least
two ways. In one direction we extend the ability to measure linear association to
all types of dependence relations. In another direction we extend the bivariate mea-
sure to a single scalar measure of dependence between random vectors in arbitrary
dimension. In addition to the obvious theoretical advantages, we have the practi-
cal advantages that the dCov and dCor statistics are computationally simple, and
applicable in arbitrary dimension not constrained by sample size.
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We cannot claim that dCov is the only possible or the only reasonable extension
with the above mentioned properties, but we can claim that our extension is a
natural generalization of Pearson’s covariance in the following sense. We defined
the covariance of random vectors with respect to a pair of random processes, and
if these random processes are i.i.d. Brownian motions, which is a very natural
choice, then we arrive at the distance covariance; on the other hand, if we choose
the simplest nonrandom functions, a pair of identity functions (degenerate random
processes), then we arrive at Pearson’s covariance.

We have illustrated only a few of the many applications where distance correla-
tion may provide additional information not measured by classical correlation or
arrays of bivariate statistics. In exploratory data analysis, distance correlation has
the flexibility to be applied as a multivariate measure of dependence, or measure
of dependence among any of the lower dimensional marginal distributions.

The general linear model is fundamental in data analysis for several reasons, but
often a linear model is not adequate. We can test for linearity using dCov as shown
in Example 6. Although illustrated for simple linear regression, the basic method
is applicable for all types of i.i.d. observations, including longitudinal data or other
data with multivariate predictors and/or multivariate response.

In summary, distance correlation is a valuable, practical, and natural tool in data
analysis and inference that extends the good properties of classical correlation to
multivariate analysis and the general hypothesis of independence.

APPENDIX A: PROOFS OF STATEMENTS

For R
d valued random variables, | · |d denotes the Euclidean norm; whenever

the dimension is self-evident we suppress the index d .

A.1. Proof of Theorem 3(iii) and (vi).

PROOF. Starting with the left side of the inequality (iii),

V(X1 + X2, Y1 + Y2)

= ‖fX1+X2,Y1+Y2(t, s) − fX1+X2(t)fY1+Y2(s)‖
= ‖fX1,Y1(t, s)fX2,Y2(t, s) − fX1(t)fX2(t)fY1(s)fY2(s)‖
≤ ∥∥fX1,Y1(t, s)

(
fX2,Y2(t, s) − fX2(t)fY2(s)

)∥∥(A.1)

+ ∥∥fX2(t)fY2(s)
(
fX1,Y1(t, s) − fX1(t)fY1(s)

)∥∥
≤ ‖fX2,Y2(t, s) − fX2(t)fY2(s)‖ + ‖fX1,Y1(t, s) − fX1(t)fY1(s)‖(A.2)

= V(X1, Y1) + V(X2, Y2).

It is clear that if (a) X1 and Y1 are both constants, (b) X2 and Y2 are both
constants, or (c) X1,X2, Y1, Y2 are mutually independent, then we have equality
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in (iii). Now suppose that we have equality in (iii), and thus we have equality
above at (A.1) and (A.2), but neither (a) nor (b) hold. Then the only way we can
have equality at (A.2) is if X1, Y1 are independent and also X2, Y2 are independent.
But our hypothesis assumes that (X1, Y1) and (X2, Y2) are independent hence (c)
must hold.

Finally, (vi) follows from (iii). In this special case X1 = Y1 = X and X2 =
Y2 = Y . Now (a) means that X is constant, (b) means that Y is constant, and (c)
means that both of them are constants, because this is the only case when a random
variable can be independent of itself. �

A.2. Existence of W(X,Y ). To complete the proof of Theorem 7, we need to
show that all factors in the definition of CovW(X,Y ) have finite fourth moments.

PROOF. Note that E[W 2(t)] = 2|t |, so that E[W 4(t)] = 3(E[W 2(t)])2 =
12|t |2 and, therefore,

E[W 4(X)] = E[E(W 4(X)|X)] = E[12|X|2] < ∞.

On the other hand, by the inequality (a + b)4 ≤ 24(a4 + b4), and by Jensen’s
inequality, we have

E(XW)4 = E[W(X) − E(W(X)|W)]4

≤ 24(
E[W 4(X)] + E[E(W(X)|W)]4)

≤ 25E[W 4(X)] = 2512E|X|2 < ∞.

Similarly, the random variables X′
W , YW ′ , and Y ′

W ′ also have finite fourth moments,
hence,

W 2(X,Y ) = E[XWX′
WYW ′Y ′

W ′ ]
≤ 1

4E[(XW)4 + (X′
W)4 + (YW ′)4 + (Y ′

W ′)4] < ∞.

Above we implicitly used the fact that E[W(X)|W ] = ∫
Rp W(t) dFX(t) exists

a.s. This can easily be proved with the help of the Borel–Cantelli lemma, using the
fact that the supremum of centered Gaussian processes have small tails (see [29,
19]).

Observe that

W 2(X,Y ) = E[XWX′
WYW ′Y ′

W ′ ]
= E[E(XWX′

WYW ′Y ′
W ′ |X,X′, Y,Y ′)]

= E[E(XWX′
W |X,X′, Y,Y ′)E(YW ′Y ′

W ′ |X,X′, Y,Y ′)].
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Here

XWX′
W =

{
W(X) −

∫
Rp

W(t) dFX(t)

}{
W(X′) −

∫
Rp

W(t) dFX(t)

}

= W(X)W(X′) −
∫

Rp
W(X)W(t) dFX(t)

−
∫

Rp
W(X′)W(t) dFX(t) +

∫
Rp

∫
Rp

W(t)W(s) dFX(t) dFX(s).

By the definition of W(·), we have E[W(t)W(s)] = |t | + |s| − |t − s|, thus,

E[XWX′
W |X,X′, Y,Y ′] = |X| + |X′| − |X − X′|

−
∫

Rp
(|X| + |t | − |X − t |) dFX(t)

−
∫

Rp
(|X′| + |t | − |X′ − t |) dFX(t)

+
∫

Rp

∫
Rp

(|t | + |s| − |t − s|) dFX(t) dFX(s).

Hence,

E[XWX′
W |X,X′, Y,Y ′] = |X| + |X′| − |X − X′|

− (|X| + E|X| − E′|X − X′|)
− (|X′| + E|X| − E′′|X′ − X′′|)
+ (E|X| + E|X′| − E|X − X′|)

= E′|X − X′| + E′′|X′ − X′′| − |X − X′| − E|X − X′|,
where E′ denotes the expectation with respect to X′ and E′′ denotes the expecta-
tion with respect to X′′. A similar argument for Y completes the proof. �

APPENDIX B: CRITICAL VALUES

Estimated critical values for nR2
n(rank(X), rank(Y)) are summarized in Table 2

for 5% and 10% significance levels. The critical values are estimates of the 95th
and 90th quantiles of the sampling distribution and were obtained by a large scale
Monte Carlo simulation (100,000 replicates for each n). For sample sizes n ≤ 10,
the probabilities were determined by generating all possible permutations of the
ranks, so the achieved significance levels (ASL) reported for n ≤ 10 are exact. The
rejection region is in the upper tail.
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TABLE 2
Critical values of nR2

n(rank(X), rank(Y)); exact achieved significance level (ASL) for n ≤ 10, and
Monte Carlo estimates for n ≥ 11. Reject independence if nR2

n is greater than or equal to
the table value

n 10% (ASL) 5% (ASL) n 10% 5% n 10% 5%

5 3.685 (0.100) 4.211 (0.050) 15 4.25 5.16 25 4.26 5.22
6 3.917 (0.097) 4.699 (0.047) 16 4.25 5.17 30 4.25 5.22
7 4.215 (0.098) 4.858 (0.047) 17 4.25 5.17 35 4.24 5.23
8 4.233 (0.099) 4.995 (0.050) 18 4.25 5.18 40 4.24 5.23
9 4.208 (0.100) 5.072 (0.050) 19 4.25 5.20 50 4.24 5.24

10 4.221 (0.100) 5.047 (0.050) 20 4.25 5.20 60 4.24 5.25
11 4.23 5.07 21 4.26 5.21 70 4.24 5.26
12 4.24 5.10 22 4.26 5.21 80 4.24 5.26
13 4.25 5.14 23 4.26 5.21 90 4.24 5.26
14 4.25 5.16 24 4.26 5.22 100 4.24 5.26
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